51
|
Aon M, Aoun AH, Al Shami A, Alharbi A, Aljenfawi K, Al-Anazi S, Salman F, Assaf M, Mobarak M, AlRoomi E, Abdelwahab OA, Ibrahim MM. Association of Diabetes Mellitus With Increased Mortality in Carbapenem-Resistant Enterobacterales Infections. Cureus 2024; 16:e53606. [PMID: 38449962 PMCID: PMC10915714 DOI: 10.7759/cureus.53606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Carbapenem-resistant Enterobacterales (CRE) infections have high mortality. We aimed to examine the diabetes mellitus (DM) association with CRE mortality. Methodology Our study is a retrospective cohort study including patients who were admitted to the medical wards in the main district hospital (New Jahra Hospital, Kuwait) between January 1, 2022, and January 1, 2023, and diagnosed with CRE infections during hospitalization. The patients were divided into diabetic and non-diabetic groups. Clinical and laboratory data were collected. The presence of carbapenemase genes was detected. The primary outcome was 30-day hospital mortality. We assessed the effect of glycemic control on the outcomes. Results We included 47 patients in the diabetic group and 39 patients in the non-diabetic group. Females represented 54.7% of patients, and the median age was 73 and 55 years in the two groups, respectively. Klebsiella pneumonia (86%) and Escherichia coli (12.8%) were the most frequently isolated CRE. Carbapenemase genes were detected in all patients: NDM-1 in 67.4%, OXA-48 in 18.6%, and both genes coexisted in 14%. The 30-day hospital mortality was significantly higher in the diabetic group compared to the non-diabetic group (48.9% vs. 28.2%, P = 0.041). Among the diabetic patients, there was no significant difference between survivors and non-survivors regarding median glucose or glycated hemoglobin (HbA1c) levels (P = 0.465 and 0.932, respectively). Moreover, levels of glucose (odds ratio (OR) 0.928, confidence interval (CI) 0.763-1.13, P = 0.457) and HbA1c (OR 0.89, CI 0.63-1.26, P = 0.507) were not risk factors for increased mortality among diabetic patients. Conclusion We demonstrated the association between DM and increased CRE mortality regardless of the level of glycemic control. This study demonstrates the interaction between communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Mohamed Aon
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Giza, EGY
| | - Ahmed H Aoun
- Department of Pediatrics, Faculty of Medicine, Cairo University, Giza, EGY
- Department of Pediatrics, Primary Health Care Corporation, Doha, QAT
| | - Ahmad Al Shami
- Department of Internal Medicine, New Jahra Hospital, Jahra, KWT
| | | | | | - Sarah Al-Anazi
- Department of Internal Medicine, New Jahra Hospital, Jahra, KWT
| | - Fares Salman
- Department of Internal Medicine, New Jahra Hospital, Jahra, KWT
| | - Mohammed Assaf
- Department of Internal Medicine, New Jahra Hospital, Jahra, KWT
| | - Magd Mobarak
- Department of Microbiology, New Jahra Hospital, Jahra, KWT
| | | | - Omar A Abdelwahab
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, EGY
| | - Mohamed M Ibrahim
- Department of Internal Medicine, Jaber Al-Ahmed Armed Forces Hospital, Kuwait, KWT
| |
Collapse
|
52
|
Bologna E, Licari LC, Manfredi C, Ditonno F, Cirillo L, Fusco GM, Abate M, Passaro F, Di Mauro E, Crocetto F, Pandolfo SD, Aveta A, Cilio S, Di Filippo I, Barone B, Franco A, Arcaniolo D, La Rocca R, Pinchera B, Napolitano L. Carbapenem-Resistant Enterobacteriaceae in Urinary Tract Infections: From Biological Insights to Emerging Therapeutic Alternatives. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:214. [PMID: 38399502 PMCID: PMC10889937 DOI: 10.3390/medicina60020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Urinary tract infections (UTIs) are the second most frequent type of infection observed in clinical practice. Gram-negative Enterobacteriaceae are common pathogens in UTIs. Excessive antibiotic use in humans and animals, poor infection control, and increased global travel have accelerated the spread of multidrug-resistant strains (MDR). Carbapenem antibiotics are commonly considered the last line of defense against MDR Gram-negative bacteria; however, their efficacy is now threatened by the increasing prevalence of carbapenem-resistant Enterobacteriaceae (CRE). This comprehensive review aims to explore the biological mechanisms underlying carbapenem resistance and to present a focus on therapeutic alternatives currently available for complicated UTIs (cUTIs). A comprehensive bibliographic search was conducted on the PubMed/MEDLINE, Scopus, and Web of Science databases in December 2023. The best evidence on the topic was selected, described, and discussed. Analyzed with particular interest were the clinical trials pivotal to the introduction of new pharmacological treatments in the management of complicated cUTIs. Additional suitable articles were collected by manually cross-referencing the bibliography of previously selected papers. This overview provides a current and comprehensive examination of the treatment options available for CRE infections, offering a valuable resource for understanding this constantly evolving public health challenge.
Collapse
Affiliation(s)
- Eugenio Bologna
- Unit of Urology, Department of Maternal-Child and Urological Sciences, Policlinico Umberto I Hospital, “Sapienza” University, 00161 Rome, Italy; (E.B.); (L.C.L.)
| | - Leslie Claire Licari
- Unit of Urology, Department of Maternal-Child and Urological Sciences, Policlinico Umberto I Hospital, “Sapienza” University, 00161 Rome, Italy; (E.B.); (L.C.L.)
| | - Celeste Manfredi
- Unit of Urology, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Francesco Ditonno
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37100 Verona, Italy;
| | - Luigi Cirillo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Giovanni Maria Fusco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Marco Abate
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Francesco Passaro
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Ernesto Di Mauro
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
- Department of Urology, University of L’Aquila, 67010 L’Aquila, Italy
| | - Achille Aveta
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Simone Cilio
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Isabella Di Filippo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples “Federico II”, 80131 Naples, Italy; (I.D.F.); (B.P.)
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Antonio Franco
- Department of Urology, Sant’Andrea Hospital, “Sapienza” University, 00189 Rome, Italy;
| | - Davide Arcaniolo
- Unit of Urology, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Roberto La Rocca
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples “Federico II”, 80131 Naples, Italy; (I.D.F.); (B.P.)
| | - Luigi Napolitano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| |
Collapse
|
53
|
Huang J, Lv C, Li M, Rahman T, Chang YF, Guo X, Song Z, Zhao Y, Li Q, Ni P, Zhu Y. Carbapenem-resistant Escherichia coli exhibit diverse spatiotemporal epidemiological characteristics across the globe. Commun Biol 2024; 7:51. [PMID: 38184739 PMCID: PMC10771496 DOI: 10.1038/s42003-023-05745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
Carbapenem-resistant Escherichia coli (CREC) poses a severe global public health risk. This study reveals the worldwide geographic spreading patterns and spatiotemporal distribution characteristics of resistance genes in 7918 CREC isolates belonging to 497 sequence types (ST) and originating from 75 countries. In the last decade, there has been a transition in the prevailing STs from highly virulent ST131 and ST38 to higher antibiotic-resistant ST410 and ST167. The rise of multi-drug resistant strains of CREC carrying plasmids with extended-spectrum beta-lactamase (ESBL) resistance genes could be attributed to three important instances of host-switching events. The spread of CREC was associated with the changing trends in blaNDM-5, blaKPC-2, and blaOXA-48, as well as the plasmids IncFI, IncFII, and IncI. There were intercontinental geographic transfers of major CREC strains. Various crucial transmission hubs and patterns have been identified for ST131 in the United Kingdom, Italy, the United States, and China, ST167 in India, France, Egypt, and the United States, and ST410 in Thailand, Israel, the United Kingdom, France, and the United States. This work is valuable in managing CREC infections and preventing CREC occurrence and transmission inside healthcare settings and among diverse hosts.
Collapse
Affiliation(s)
- Jiewen Huang
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lv
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Xiaokui Guo
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Song
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Zhao
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Peihua Ni
- Department of Laboratory Medicine, College of Health Science and Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yongzhang Zhu
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
54
|
Xu Q, Lin H, Liu W, Zhong Y, Zhou Y, Xu Z, Chen D. Genomic Characterization of Escherichia coli Co-Producing KPC-2 and NDM-5 Carbapenemases Isolated from Intensive Care Unit in a Chinese Hospital. Microb Drug Resist 2024; 30:27-36. [PMID: 38150122 DOI: 10.1089/mdr.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Background: Around the world, carbapenemase-producing Escherichia coli is becoming more prevalent. The purpose of this research was to analyze the whole plasmid sequences from YL03 isolates of the E. coli strain that produce both KPC-2 and NDM-5 carbapenemases. Materials and Methods: Whole-genome sequencing (WGS) and analysis of E. coli strain YL03, which was isolated from a wound sample, was performed by Illumina Novaseq 6000 and Pacific Biosciences Sequel (PacBio, Menlo Park, CA) sequencers. Following that, the WGS results were used to predict and analyze the YL03 genome composition and function. A complete gene sequence for YL03 with the accession number CP093551 has been uploaded to GenBank. Results: The results showed that YL03 co-carried five resistance genes, which included blaKPC-2, blaNDM-5, blaTEM-1B, blaCTX-M-14, and mdf(A). Furthermore, three resistance plasmids were found in YL03: pYL03-KPC, pYL03-NDM, and pYL03-CTX. Among them, the 53 kb-long pYL03-KPC plasmid belonging to the IncP, carried the replicase gene (repA) and the carbapenemase gene (blaKPC-2). The blaKPC-2 gene was flanked by a composite transposon-like element (Tn3-[Tn3] tnpR-ISKpn27 blaKPC--ISKpn6). Conclusions: The YL03 strain co-carried blaKPC-2 and blaNDM-5 and had a unique multidrug resistance plasmid containing blaKPC-2.
Collapse
Affiliation(s)
- Qian Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Haoyi Lin
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wanting Liu
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuxia Zhong
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yingchun Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhenbo Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, People's Republic of China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
55
|
Wu YL, Hu XQ, Wu DQ, Li RJ, Wang XP, Zhang J, Liu Z, Chu WW, Zhu X, Zhang WH, Zhao X, Guan ZS, Jiang YL, Wu JF, Cui Z, Zhang J, Li J, Wang RM, Shen SH, Cai CY, Zhu HB, Jiang Q, Zhang J, Niu JL, Xiong XP, Tian Z, Zhang JS, Zhang JL, Tang LL, Liu AY, Wang CX, Ni MZ, Jiang JJ, Yang XY, Yang M, Zhou Q. Prevalence and risk factors for colonisation and infection with carbapenem-resistant Enterobacterales in intensive care units: A prospective multicentre study. Intensive Crit Care Nurs 2023; 79:103491. [PMID: 37480701 DOI: 10.1016/j.iccn.2023.103491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVES This study aimed to investigate the prevalence and risk factors for carbapenem-resistant Enterobacterales colonisation/infection at admission and acquisition among patients admitted to the intensive care unit. RESEARCH METHODOLOGY/DESIGN A prospective and multicentre study. SETTING This study was conducted in 24 intensive care units in Anhui, China. MAIN OUTCOME MEASURES Demographic and clinical data were collected, and rectal carbapenem-resistant Enterobacterales colonisation was detected by active screening. Multivariate logistic regression models were used to analyse factors associated with colonisation/infection with carbapenem-resistant Enterobacterales at admission and acquisition during the intensive care unit stay. RESULTS There were 1133 intensive care unit patients included in this study. In total, 5.9% of patients with carbapenem-resistant Enterobacterales colonisation/infection at admission, and of which 56.7% were colonisations. Besides, 8.5% of patients acquired carbapenem-resistant Enterobacterales colonisation/infection during the intensive care stay, and of which 67.6% were colonisations. At admission, transfer from another hospital, admission to an intensive care unit within one year, colonisation/infection/epidemiological link with carbapenem-resistant Enterobacterales within one year, and exposure to any antibiotics within three months were risk factors for colonisation/infection with carbapenem-resistant Enterobacterales. During the intensive care stay, renal disease, an epidemiological link with carbapenem-resistant Enterobacterales, exposure to carbapenems and beta-lactams/beta-lactamase inhibitors, and intensive care stay of three weeks or longer were associated with acquisition. CONCLUSION The prevalence of colonisation/infection with carbapenem-resistant Enterobacterales in intensive care units is of great concern and should be monitored systematically. Particularly for the 8.5% prevalence of carbapenem-resistant Enterobacterales acquisition during the intensive care stay needs enhanced infection prevention and control measures in these setting. Surveillance of colonisation/infection with carbapenem-resistant Enterobacterales at admission and during the patient's stay represents an early identification tool to prevent further transmission of carbapenem-resistant Enterobacterales. IMPLICATIONS FOR CLINICAL PRACTICE Carbapenem-resistant Enterobacterales colonization screening at admission and during the patient's stay is an important tool to control carbapenem-resistant Enterobacterales spread in intensive care units.
Collapse
Affiliation(s)
- Yi-Le Wu
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Qian Hu
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De-Quan Wu
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ruo-Jie Li
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Ping Wang
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jin Zhang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhou Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Wen Chu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xi Zhu
- Department of Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen-Hui Zhang
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue Zhao
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zi-Shu Guan
- Anhui No.2 Provincial People's Hospital, Hefei, Anhui, China
| | - Yun-Lan Jiang
- Department of Hospital Infection Prevention and Control, the First People's Hospital of Anqing, Anqing, Anhui, China
| | - Jin-Feng Wu
- Department of Hospital Infection Prevention and Control, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Zhuo Cui
- Department of Hospital Infection Prevention and Control, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ju Zhang
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Bengbu, Bengbu, Anhui, China
| | - Jia Li
- Department of Hospital Infection Prevention and Control, The Third People's Hospital of Bengbu, Bengbu, Anhui, China
| | - Ru-Mei Wang
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Hua Shen
- Department of Hospital Infection Prevention and Control, Fuyang People's Hospital, Fuyang, Anhui, China
| | - Chao-Yang Cai
- Department of Hospital Infection Prevention and Control, The Second People's Hospital of Hefei, Hefei, Anhui, China
| | - Hai-Bin Zhu
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Huainan City, Huainan, Anhui, China
| | - Quan Jiang
- Department of Clinical Laboratory Medicine, Huainan Xinhua Medical Group, Huainan, Anhui, China
| | - Jing Zhang
- Department of Hospital Infection Prevention and Control, Huaibei People's Hospital, Huaibei, Anhui, China
| | - Jia-Lan Niu
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Huoqiu County, Huoqiu, Anhui, China
| | - Xian-Peng Xiong
- Department of Hospital Infection Prevention and Control, Lu'an People's Hospital, Lu'an, Anhui, China
| | - Zhen Tian
- Department of Hospital Infection Prevention and Control, Suzhou Municipal Hospital, Suzhou, Anhui, China
| | - Jian-She Zhang
- Department of Hospital Infection Prevention and Control, Taihe County People's Hospital, Taihe, Anhui, China
| | - Jun-Lin Zhang
- Department of Hospital Infection Prevention and Control, Tongling People's Hospital, Tongling, Anhui, China
| | - Li-Ling Tang
- Department of Hospital Infection Prevention and Control, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - An-Yun Liu
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Cheng-Xiang Wang
- Department of Hospital Infection Prevention and Control, The First People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Ming-Zhu Ni
- Department of Hospital Infection Prevention and Control, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Jing-Jing Jiang
- Department of Hospital Infection Prevention and Control, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Xi-Yao Yang
- Department of Hospital Infection Prevention and Control, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Min Yang
- The Second Department of Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
56
|
Mendes G, Santos ML, Ramalho JF, Duarte A, Caneiras C. Virulence factors in carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2023; 14:1325077. [PMID: 38098668 PMCID: PMC10720631 DOI: 10.3389/fmicb.2023.1325077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Hypervirulence and carbapenem-resistant have emerged as two distinct evolutionary pathotypes of Klebsiella pneumoniae, with both reaching their epidemic success and posing a great threat to public health. However, as the boundaries separating these two pathotypes fade, we assist a worrisome convergence in certain high-risk clones, causing hospital outbreaks and challenging every therapeutic option available. To better understand the basic biology of these pathogens, this review aimed to describe the virulence factors and their distribution worldwide among carbapenem-resistant highly virulent or hypervirulent K. pneumoniae strains, as well as to understand the interplay of these virulence strains with the carbapenemase produced and the sequence type of such strains. As we witness a shift in healthcare settings where carbapenem-resistant highly virulent or hypervirulent K. pneumoniae are beginning to emerge and replace classical K. pneumoniae strains, a better understanding of these strains is urgently needed for immediate and appropriate response.
Collapse
Affiliation(s)
- Gabriel Mendes
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Leonor Santos
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Ramalho
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
| | - Cátia Caneiras
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
57
|
Pereira MA, Palmeira JD, Ferreira H. Contamination of a Water Stream and Water Drainage Reaching Matosinhos Beach by Antibiotic-Resistant Bacteria. Microorganisms 2023; 11:2833. [PMID: 38137977 PMCID: PMC10745308 DOI: 10.3390/microorganisms11122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic-resistant bacteria represent a major public health concern, especially impacting medical care centers and hospitals, thereby challenging the effectiveness of current infection treatment protocols. The emergence and persistence of antimicrobial resistance in the environment have been thoroughly researched, with a focus on the aquatic environment as a potential reservoir of these bacteria in areas with anthropogenic contamination. Having this in mind, this work aims to investigate the water streams of Riguinha and Brito Capelo Street, both of which ultimately flow into Matosinhos Beach in Portugal, to determine the potential presence of fecal contamination. Six water samples were collected and analyzed within twenty-four hours from these two water streams. A phenotypic characterization was performed in various volumes on MacConkey agar with antibiotics. Randomly selected lactose-fermenting gram-negative bacteria underwent antimicrobial susceptibility tests using the agar diffusion method following EUCAST guidelines, covering β-lactam and non-β-lactam antibiotics. The isolates were analyzed through Polymerase Chain Reaction. The findings of this study confirm that both water streams were contaminated by multidrug-resistant bacteria such as Enterobacteriaceae, including Escherichia coli, the KESC group, and Pseudomonas, exhibiting extended-spectrum β-lactamases (ESBL), AmpC β-lactamases, and carbapenemases. These indicate the presence of fecal contamination with relevant antimicrobial-resistant threats.
Collapse
Affiliation(s)
- Matilde A. Pereira
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.A.P.); (J.D.P.)
| | - Josman D. Palmeira
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.A.P.); (J.D.P.)
- i4Health, UCIBIO, University of Porto, 4050-313 Porto, Portugal
| | - Helena Ferreira
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.A.P.); (J.D.P.)
- i4Health, UCIBIO, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
58
|
Aghamohammad S, Khazani Asforooshani M, Malek Mohammadi Y, Sholeh M, Badmasti F. Decoding the genetic structure of conjugative plasmids in international clones of Klebsiella pneumoniae: A deep dive into blaKPC, blaNDM, blaOXA-48, and blaGES genes. PLoS One 2023; 18:e0292288. [PMID: 37971980 PMCID: PMC10653425 DOI: 10.1371/journal.pone.0292288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/17/2023] [Indexed: 11/19/2023] Open
Abstract
Carbapanem-resistant Klebsiella pneumoniae is a globally healthcare crisis. The distribution of plasmids carrying carbapenemase genes among K. pneumoniae poses a serious threat in clinical settings. Here, we characterized the genetic structure of plasmids harboring major carbapenemases (e.g. blaKPC, blaNDM, blaOXA-48-like, and blaGES) from K. pneumoniae using bioinformatics tools. The plasmids carrying at least one major carbapenemase gene were retrieved from the GenBank database. The DNA length, Inc type, and conjugal apparatus of these plasmids were detected. Additionally, allele types, co-existence, co-occurrence of carbapenemase genes, gene repetition, and sequence types of isolates, were characterized. There were 2254 plasmids harboring carbapenemase genes in the database. This study revealed that blaKPC-2, blaNDM-1, blaOXA-48, and blaGES-5 were the most prevalent allele types. Out of 1140 (50%) plasmids were potentially conjugative. IncFII, IncR, IncX3, and IncL replicon types were predominant. The co-existence analysis revealed that the most prevalent of other resistance genes were blaTEM-1 (related to blaKPC), blaOXA-232 (related to blaOXA-48), bleMBL (related to blaNDM), and aac (6')-Ib4 (related to blaGES). The co-occurrence of carbapenemases was detected in 42 plasmids while 15 plasmids contained carbapenemase gene repetitions. Sequence alignments highlighted that plasmids carrying blaKPC and blaOXA-48-like were more homogeneous whereas the plasmids carrying blaNDM were divergent. It seems that K. pneumoniae utilizes diversity of genetic flexibility and recombination for resistance against carbapenems. The genetic structure of the plasmids showed that class I and III, Tn3 family, Tn5403 family derivatives, and Tn7-like elements were strongly associated with carbapenemases. The mobilizable plasmids carrying carbapenemases play an important role in the spread of these genes. In addition, gene repetition maybe is related to carbapenem heteroresistance. According to MST (minimum spanning tree) results, the majority of plasmids belonged to sequence type (ST) 11, ST14, and ST12. These international clones have a high capacity to acquire the carbapenemase-containing plasmids.
Collapse
Affiliation(s)
| | - Mahshid Khazani Asforooshani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | | | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
59
|
Li L, Li S, Wei X, Lu Z, Qin X, Li M. Infection with Carbapenem-resistant Hypervirulent Klebsiella Pneumoniae: clinical, virulence and molecular epidemiological characteristics. Antimicrob Resist Infect Control 2023; 12:124. [PMID: 37953357 PMCID: PMC10642049 DOI: 10.1186/s13756-023-01331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is gradually becoming the dominant nosocomial pathogens in the healthcare setting. METHODS A retrospective study was conducted on patients with CR-KP from July 2021 to May 2022 in a teaching hospital. We identified bacterial isolates, collected the clinical data, and performed antimicrobial susceptibility testing, hypermucoviscosity string test, antimicrobial and virulence-associated genotype, as well as multi-locus sequence typing. CR-hvKP was defined as the presence of some combination of rmpA and/or rmpA2 with iucA, iroB, or peg-344. SPSS was used for data analysis. Univariate logistic regression analyses were used for risk factor and all statistically significant variables were included in the multivariate model. Statistical significance was taken to be P < 0.05. RESULTS A total of 69 non-duplicated CR-KP isolates were collected, 27 of which were CR-hvKP. Out of the 69 CR-KP strains under investigation, they were distributed across 14 distinct sequence types (STs), wherein ST11 exhibited the highest prevalence, constituting 65.2% (45/69) of the overall isolates. The principal carbapenemase genes identified encompassed blakpc-2, blaNDM-1, and blaOXA-48, with blakpc-2 prevailing as the predominant type, accounting for 73.9% (51/69). A total of 69 CR-KP strains showed high resistance to common clinical antibiotics, with the exception of ceftazidime/avibactam. The ST11 (P = 0.040), ST65 (P = 0.030) and blakpc-2 ST11 clones (P = 0.010) were found to be highly related to hvKp. Regarding the host, tracheal intubation (P = 0.008), intracranial infection (P = 0.020) and neutrophil count (P = 0.049) were significantly higher in the patients with CR-hvKP. Multivariate analysis showed tracheal intubation to be an independent risk factor for CR-hvKP infection (P = 0.030, OR = 4.131). According to the clinical data we collected, tracheal intubation was performed mainly in the elderly with severe underlying diseases, which implied that CR-hvKP has become prevalent among elderly patients with comorbidities. CONCLUSIONS The prevalence of CR-hvKP may be higher than expected in the healthcare setting. CR-hvKP is gradually becoming the dominant nosocomial pathogen, and its prevalence and treatment will be a major challenge. It is essential to enhance clinical awareness and management of CR-hvKP infection.
Collapse
Affiliation(s)
- Linlin Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xianzhen Wei
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaolu Lu
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Qin
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meng Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
60
|
Furlan JPR, Stehling EG. Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings. Pathogens 2023; 12:1335. [PMID: 38003800 PMCID: PMC10675545 DOI: 10.3390/pathogens12111335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Pluralibacter gergoviae is a member of the Enterobacteriaceae family that has been reported sporadically. Although P. gergoviae strains exhibiting multidrug-resistant profiles have been identified an in-depth genomic analysis focusing on antimicrobial resistance (AMR) has been lacking, and was therefore performed in this study. Forty-eight P. gergoviae strains, isolated from humans, animals, foods, and the environment during 1970-2023, were analyzed. A large number of single-nucleotide polymorphisms were found, indicating a highly diverse population. Whilst P. gergoviae strains were found to be circulating at the One Health interface, only human and environmental strains exhibited multidrug resistance genotypes. Sixty-one different antimicrobial resistance genes (ARGs) were identified, highlighting genes encoding mobile colistin resistance, carbapenemases, and extended-spectrum β-lactamases. Worryingly, the co-occurrence of mcr-9.1, blaKPC-2, blaCTX-M-9, and blaSHV-12, as well as mcr-10.1, blaNDM-5, and blaSHV-7, was detected. Plasmid sequences were identified as carrying clinically important ARGs, evidencing IncX3 plasmids harboring blaKPC-2, blaNDM-5, or blaSHV-12 genes. Virulence genotyping underlined P. gergoviae as being a low-virulence species. In this regard, P. gergoviae is emerging as a new multidrug-resistant species belonging to the Enterobacteriaceae family. Therefore, continuous epidemiological genomic surveillance of P. gergoviae is required.
Collapse
Affiliation(s)
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil;
| |
Collapse
|
61
|
Kyung SM, Lee JH, Lee ES, Hwang CY, Yoo HS. Whole genome structure and resistance genes in carbapenemase-producing multidrug resistant ST378 Klebsiella pneumoniae. BMC Microbiol 2023; 23:323. [PMID: 37924028 PMCID: PMC10623767 DOI: 10.1186/s12866-023-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Klebsiella pneumoniae (CPKP) is one of the most dangerous multidrug-resistant (MDR) pathogens in human health due to its widespread circulation in the nosocomial environment. CPKP carried by companion dogs, which are close to human beings, should be considered a common threat to public health. However, CPKP dissemination through companion animals is still under consideration of major diagnosis and surveillance systems. METHODS Two CPKP isolates which were genotyped to harbor bla NDM-5-encoding IncX3 plasmids, were subjected to the whole-genome study. Whole bacterial DNA was isolated, sequenced, and assembled with Oxford Nanopore long reads and corrected with short reads from the Illumina NovaSeq 6000 platform. The whole-genome structure and positions of antimicrobial resistance (AMR) genes were identified and visualized using CGView. Worldwide datasets were downloaded from the NCBI GenBank database for whole-genome comparative analysis. The whole-genome phylogenetic analysis was constructed using the identified whole-chromosome SNP sites from K. pneumoniae HS11286. RESULTS As a result of the whole-genome identification, 4 heterogenous plasmids and a single chromosome were identified, each carrying various AMR genes. Multiple novel structures were identified from the AMR genes, coupled with mobile gene elements (MGE). The comparative whole-genome epidemiology revealed that ST378 K. pneumoniae is a novel type of CPKP, carrying a higher prevalence of AMR genes. CONCLUSIONS The characterized whole-genome analysis of this study shows the emergence of a novel type of CPKP strain carrying various AMR genes with variated genomic structures. The presented data in this study show the necessity to develop additional surveillance programs and control measures for a novel type of CPKP strain.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
62
|
Piérard D, Hermsen ED, Kantecki M, Arhin FF. Antimicrobial Activities of Aztreonam-Avibactam and Comparator Agents against Enterobacterales Analyzed by ICU and Non-ICU Wards, Infection Sources, and Geographic Regions: ATLAS Program 2016-2020. Antibiotics (Basel) 2023; 12:1591. [PMID: 37998793 PMCID: PMC10668788 DOI: 10.3390/antibiotics12111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Increasing antimicrobial resistance among multidrug-resistant (MDR), extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales (CPE), in particular metallo-β-lactamase (MBL)-positive strains, has led to limited treatment options in these isolates. This study evaluated the activity of aztreonam-avibactam (ATM-AVI) and comparator antimicrobials against Enterobacterales isolates and key resistance phenotypes stratified by wards, infection sources and geographic regions as part of the ATLAS program between 2016 and 2020. Minimum inhibitory concentrations (MICs) were determined per Clinical and Laboratory Standards Institute (CLSI) guidelines. The susceptibility of antimicrobials were interpreted using CLSI and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. A tentative pharmacokinetic/pharmacodynamic breakpoint of 8 µg/mL was considered for ATM-AVI activity. ATM-AVI inhibited ≥99.2% of Enterobacterales isolates across wards and ≥99.7% isolates across infection sources globally and in all regions at ≤8 µg/mL. For resistance phenotypes, ATM-AVI demonstrated sustained activity across wards and infection sources by inhibiting ≥98.5% and ≥99.1% of multidrug-resistant (MDR) isolates, ≥98.6% and ≥99.1% of ESBL-positive isolates, ≥96.8% and ≥90.9% of carbapenem-resistant (CR) isolates, and ≥96.8% and ≥97.4% of MBL-positive isolates, respectively, at ≤8 µg/mL globally and across regions. Overall, our study demonstrated that ATM-AVI represents an important therapeutic option for infections caused by Enterobacterales, including key resistance phenotypes across different wards and infection sources.
Collapse
Affiliation(s)
- Denis Piérard
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, B-1090 Brussels, Belgium;
| | | | | | | |
Collapse
|
63
|
Alioto TS, Gut M, Rodiño-Janeiro BK, Cruz F, Gómez-Garrido J, Vázquez-Ucha JC, Mata C, Antoni R, Briansó F, Dabad M, Casals E, Ingham M, Álvarez-Tejado M, Bou G, Gut IG. Development of a novel streamlined workflow (AACRE) and database (inCREDBle) for genomic analysis of carbapenem-resistant Enterobacterales. Microb Genom 2023; 9. [PMID: 38010338 DOI: 10.1099/mgen.0.001132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
In response to the threat of increasing antimicrobial resistance, we must increase the amount of available high-quality genomic data gathered on antibiotic-resistant bacteria. To this end, we developed an integrated pipeline for high-throughput long-read sequencing, assembly, annotation and analysis of bacterial isolates and used it to generate a large genomic data set of carbapenemase-producing Enterobacterales (CPE) isolates collected in Spain. The set of 461 isolates were sequenced with a combination of both Illumina and Oxford Nanopore Technologies (ONT) DNA sequencing technologies in order to provide genomic context for chromosomal loci and, most importantly, structural resolution of plasmids, important determinants for transmission of antimicrobial resistance. We developed an informatics pipeline called Assembly and Annotation of Carbapenem-Resistant Enterobacteriaceae (AACRE) for the full assembly and annotation of the bacterial genomes and their complement of plasmids. To explore the resulting genomic data set, we developed a new database called inCREDBle that not only stores the genomic data, but provides unique ways to filter and compare data, enabling comparative genomic analyses at the level of chromosomes, plasmids and individual genes. We identified a new sequence type, ST5000, and discovered a genomic locus unique to ST15 that may be linked to its increased spread in the population. In addition to our major objective of generating a large regional data set, we took the opportunity to compare the effects of sample quality and sequencing methods, including R9 versus R10 nanopore chemistry, on genome assembly and annotation quality. We conclude that converting short-read and hybrid microbial sequencing and assembly workflows to the latest nanopore chemistry will further reduce processing time and cost, truly enabling the routine monitoring of resistance transmission patterns at the resolution of complete chromosomes and plasmids.
Collapse
Affiliation(s)
- Tyler S Alioto
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Bruno Kotska Rodiño-Janeiro
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
| | - Fernando Cruz
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Juan Carlos Vázquez-Ucha
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Caterina Mata
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Regina Antoni
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Ferran Briansó
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), Barcelona, Spain
- Roche Diagnostics, Sant Cugat del Vallès, Barcelona, Spain
| | - Marc Dabad
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Eloi Casals
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Matthew Ingham
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Germán Bou
- Microbiology Department, Complejo Hospitalario Universitario A Coruña-Instituto Investigación Biomédica A Coruña (INIBIC), A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
64
|
Alghamdi A, AlQahtani H, Albilal S, Mater Almutairi M, Alobaidallah N, Alghamdi L, Alfayez A, Almangour T, Al-jedai A. Ceftazidime-avibactam use for the treatment of OXA-48- and/or New Delhi metallo-β-lactamase-producing Enterobacterales in cancer patients: a retrospective observational study. Ann Saudi Med 2023; 43:373-379. [PMID: 38071439 PMCID: PMC11182426 DOI: 10.5144/0256-4947.2023.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Infection is the second-leading cause of death among cancer patients, but there have been few studies on the effectiveness of novel antimicrobial agents to treat carbapenem-resistant Enterobacterales in cancer patients. OBJECTIVE Evaluate the mortality and clinical outcomes of ceftazi-dime-avibactam for OXA-48- and/or New Delhi metallo-β-lactamase (NDM)-producing Enterobacterales infection in cancer patients. DESIGN Retrospective observational cohort study. SETTING Tertiary academic medical center in Riyadh, Saudi Arabia. SUBJECTS AND METHODS This study included patients who had cancer and received ceftazidime-avibactam for at least 72 hours for infections caused by OXA-48- and/or NDM-producing Enterobacterales. We excluded patients who died within 72 hours of treatment, patients with polymicrobial infections, and patients who did not receive appropriate antimicrobial therapy. MAIN OUTCOMES AND MEASURES Primary outcomes were 30-day mortality and hospital mortality. Secondary outcomes included clinical cure, relapse, and reinfection. SAMPLE SIZE 32 cancer patients. RESULTS The 30-day mortality among all patients was 15/32 (47%), clinical cure was achieved in 19/32 (59%) of the patients, and the relapse and reinfection rates were 2/19 (10.5%) and 4/17 (23.5%), respectively. CONCLUSION This is the largest study to evaluate clinical outcomes associated with infections caused by OXA-48- and/or NDM-producing Enterobacterales in cancer patients. The mortality rate remains high; however, ceftazidime-avibactam is an encouraging alternative for treating severe infections in cancer patients. LIMITATIONS Small sample size and single center.
Collapse
Affiliation(s)
- Ahlam Alghamdi
- From the Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hajar AlQahtani
- From the Department of Pharmaceutical Care, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sara Albilal
- From the Department of Pharmaceutical Care, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Maram Mater Almutairi
- From the Department of Pharmaceutical Care, King Abdullah bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Nouf Alobaidallah
- From the Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Linah Alghamdi
- From the Department of Pharmaceutical Care, King Abdullah bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Amal Alfayez
- From the Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thamer Almangour
- From the Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-jedai
- From the Deputyship of Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
| |
Collapse
|
65
|
Karnmongkol C, Wiriyaampaiwong P, Teerakul M, Treeinthong J, Srisamoot N, Tankrathok A. Emergence of NDM-1-producing Raoultella ornithinolytica from reservoir water in Northeast Thailand. Vet World 2023; 16:2321-2328. [PMID: 38152267 PMCID: PMC10750751 DOI: 10.14202/vetworld.2023.2321-2328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim Antibiotic resistance is a major global health threat. The increasing prevalence of drug-resistant bacteria poses a serious challenge to the effective treatment of infections in both humans and animals. Water is a major source of human and animal exposure to bacteria, and the presence of drug-resistant bacteria in water could present a severe threat to public health and animal production. This study investigated the presence of drug-resistant bacteria in Lam Pao Dam (LPD) water in Kalasin, Thailand. Materials and Methods Ampicillin-resistant strains were obtained from LPD water and identified using 16s rDNA sequencing. Antibiotic resistance genes were detected by polymerase chain reaction using specific primers. The presence of antibiotic-resistant bacteria was evaluated using 16s amplicon analysis. The minimum inhibitory concentration (MIC) of Raoultella ornithinolytica strains against antibiotics was determined. Results A total of 12 R. ornithinolytica, 4 Bacillus cereus, and 4 Enterococcus faecalis isolates were resistant to ampicillin. Almost all R. ornithinolytica strains harbored blaSHV and blaOXA genes, and two strains also harbored the blaNDM-1 gene. All four E. faecalis strains harbored the blaIMP gene. The most abundant species in the LPD sample was Exiguobacterium indicum, followed by E. faecalis and R. ornithinolytica. The MICs of 10 R. ornithinolytica strains against five antibiotics revealed that all strains were resistant to ampicillin but susceptible to meropenem, doripenem, ertapenem, and imipenem. Conclusion These findings suggest a high prevalence of drug-resistant bacteria in LPD water. This is a cause for concern, as it could spread antibiotic-resistant infections in the community.
Collapse
Affiliation(s)
- Chutima Karnmongkol
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, Thailand
| | - Piyachat Wiriyaampaiwong
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, Thailand
| | - Mullika Teerakul
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, Thailand
| | - Jukkarin Treeinthong
- Department of Fisheries Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin, Thailand
| | - Nattapong Srisamoot
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, Thailand
| | - Anupong Tankrathok
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
66
|
Chen S, Zhou P, Wu C, Wang J, Zhou Y, Zhang J, Wang B, Zhao H, Rao L, Li M, Yu F, Lin C. Polymyxin B and fusidic acid, a novel potent synergistic combination against Klebsiella pneumoniae and Escherichia coli isolates with polymyxin B resistance. Front Microbiol 2023; 14:1220683. [PMID: 37886061 PMCID: PMC10598591 DOI: 10.3389/fmicb.2023.1220683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The increasing prevalence of multidrug-resistant (MDR) Gram-negative bacteria and comparatively limited options of antibiotics pose a major threat to public health worldwide. Polymyxin B is the last resort against extensively resistant Gram-negative bacterial infections. However, a large number of Gram-negative bacteria exhibited high-level resistance to Polymyxin B, bringing challenges for antimicrobial chemotherapy. Combination therapies using polymyxins and other antibiotics are recommended to treat multidrug-resistant pathogens. In this study, we selected Gram-negative bacterial strains, including Klebsiella pneumoniae and Escherichia coli, to explore whether fusidic acid and polymyxin B have a synergistic killing effect. Through broth microdilution, we observed that minimum inhibitory concentrations (MICs) against polymyxin B in the isolates tested were significantly reduced by the addition of fusidic acid. Notably, chequerboard analysis indicated a synergistic effect between polymyxin B and fusidic acid. In addition, subsequent time-kill experiments showed that the combination of polymyxin B and fusidic acid was more effective than a single drug in killing bacteria. Finally, our investigation utilizing the murine model revealed a higher survival rate in the combination therapy group compared to the monotherapy group. Our research findings provide evidence of the synergistic effect between polymyxin B and fusidic acid. Fusidic acid was shown to increase the sensitivity of multi-drug resistant E. coli and K. pneumoniae to polymyxin B, thereby enhancing its bactericidal activity. This study provides new insights into a potential strategy for overcoming polymyxin B resistance, however, further investigations are required to evaluate their feasibility in real clinical settings.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunyang Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lulin Rao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meilan Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunchan Lin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
67
|
Kagambèga AB, Dembélé R, Bientz L, M’Zali F, Mayonnove L, Mohamed AH, Coulibaly H, Barro N, Dubois V. Detection and Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital Effluents of Ouagadougou, Burkina Faso. Antibiotics (Basel) 2023; 12:1494. [PMID: 37887195 PMCID: PMC10603891 DOI: 10.3390/antibiotics12101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Hospital wastewater is a recognized reservoir for resistant Gram-negative bacteria. This study aimed to screen for carbapenemase-producing Escherichia coli and Klebsiella pneumoniae and their resistance determinants in two hospital effluents of Ouagadougou. Carbapenem-resistant E. coli and K. pneumoniae were selectively isolated from wastewater collected from two public hospitals in Ouagadougou, Burkina Faso. Bacterial species were identified via MALDI-TOF mass spectrometry. Carbapenemase production was studied phenotypically using antibiotic susceptibility testing via the disk diffusion method. The presence of carbapenemases was further characterized by PCR. A total of 14 E. coli (13.59%) and 19 K. pneumoniae (17.92%) carbapenemase-producing isolates were identified with different distributions. They were, respectively, blaNDM (71.43%), blaVIM (42.86%), blaIMP (28.57%), blaKPC (14.29%), blaOXA-48 (14.29%); and blaKPC (68.42%), blaNDM (68.42%), blaIMP (10.53%), blaVIM (10.53%), and blaOXA-48 (5.26%). In addition, eight (57.14%) E. coli and eleven (57.89%) K. pneumoniae isolates exhibited more than one carbapenemase, KPC and NDM being the most prevalent combination. Our results highlight the presence of clinically relevant carbapenemase-producing isolates in hospital effluents, suggesting their presence also in hospitals. Their spread into the environment via hospital effluents calls for intensive antimicrobial resistance (AMR) surveillance.
Collapse
Affiliation(s)
- Alix Bénédicte Kagambèga
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - René Dembélé
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
- Training and Research Unit in Applied Sciences and Technologies, University of Dedougou, Dedougou 03 BP 176, Burkina Faso
| | - Léa Bientz
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Fatima M’Zali
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Laure Mayonnove
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Alassane Halawen Mohamed
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
- Microbiology Laboratory of the General Reference Hospital (GRH), Niamey BP 12674, Niger
| | - Hiliassa Coulibaly
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - Nicolas Barro
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - Véronique Dubois
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| |
Collapse
|
68
|
De Belder D, Martino F, Tijet N, Melano RG, Faccone D, De Mendieta JM, Rapoport M, Albornoz E, Petroni A, Tuduri E, Derdoy L, Cogut S, Errecalde L, Pasteran F, Corso A, Gomez SA. Co-integrate Col3m bla NDM-1-harboring plasmids in clinical Providencia rettgeri isolates from Argentina. Microbiol Spectr 2023; 11:e0165123. [PMID: 37732774 PMCID: PMC10581215 DOI: 10.1128/spectrum.01651-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
The first cases of bla NDM in Argentina were detected in three Providencia rettgeri (Pre) recovered from two hospitals in Buenos Aires city in 2013. The isolates were genetically related, but the plasmid profile was different. Here, we characterized the bla NDM-1-harboring plasmids of the first three cases detected in Argentina. Hybrid assembly obtained from short- and long-read sequencing rendered bla NDM-1 in Col3M plasmids of ca. 320 kb (p15268A_320) in isolate PreM15268, 210 kb (p15758B_210) in PreM15758, and 225 kb (p15973A_225) in PreM15973. In addition, PreM15758 harbored a 98-kb circular plasmid (p15758C_98) flanked by a putative recombination site (hin-TnAs2), with 100% nucleotide ID and coverage with p15628A_320. Analysis of PFGE/S1-nuclease gel, Southern hybridization with bla NDM-1 probe, hybrid assembly of short and long reads suggests that pM15758C_98 can integrate by homologous recombination. The three bla NDM-1-plasmids were non-conjugative in vitro. Moreover, tra genes were incomplete, and oriT was not found in the three bla NDM-1-plasmids. In two isolates, blaNDM-1 was embedded in a partially conserved structure flanked by two ISKox2. In addition, all plasmids harbored aph(3')-Ia, aph(3')-VI, and qnrD1 genes and aac(6´)Ib-cr, bla OXA-1, catB3, and arr3 as part of a class 1 integron. Also, p15268A_320 and p15973A_225 harbored bla PER-2. To the best of our knowledge, this is the first report of clinical P. rettgeri harboring blaNDM-1 in an atypical genetic environment and located in unusual chimeric Col3M plasmids. The study and continuous surveillance of these pathogens are crucial to tracking the evolution of these resistant plasmids and finding solutions to tackle their dissemination. IMPORTANCE Infections caused by carbapenem hydrolyzing enzymes like NDM (New Delhi metallo-beta-lactamase) represent a serious problem worldwide because they restrict available treatment options and increase morbidity and mortality, and treatment failure prolongs hospital stays. The first three cases of NDM in Argentina were caused by genetically related P. rettgeri recovered in two hospitals. In this work, we studied the genetic structure of the plasmids encoding bla NDM in those index cases and revealed the enormous plasticity of these genetic elements. In particular, we found a small plasmid that was also found inserted in the larger plasmids by homologous recombination as a co-integrate element. We also found that the bla NDM plasmids were not able to transfer or move to other hosts, suggesting their role as reservoir elements for the acquisition of resistance genes. It is necessary to unravel the dissemination strategies and the evolution of these resistant plasmids to find solutions to tackle their spread.
Collapse
Affiliation(s)
- Denise De Belder
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
- National Council on Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Florencia Martino
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Nathalie Tijet
- Public Health Ontario Laboratory, Toronto, Ontario, Canada
| | - Roberto G. Melano
- Public Health Ontario Laboratory, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Diego Faccone
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
- National Council on Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Manuel De Mendieta
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Melina Rapoport
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Ezequiel Albornoz
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Alejandro Petroni
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Ezequiel Tuduri
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Laura Derdoy
- Hospital General de Agudos José María Ramos Mejía, Buenos Aires, Argentina
| | - Sandra Cogut
- Hospital General de Agudos Dr. Juan A. Fernández, Buenos Aires, Argentina
| | - Laura Errecalde
- Hospital General de Agudos Dr. Juan A. Fernández, Buenos Aires, Argentina
| | - Fernando Pasteran
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Alejandra Corso
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Sonia A. Gomez
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR), National Institute of Infectious Diseases–ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
- National Council on Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
69
|
de'Angelis N, Schena CA, Marchegiani F, Reitano E, De Simone B, Wong GYM, Martínez-Pérez A, Abu-Zidan FM, Agnoletti V, Aisoni F, Ammendola M, Ansaloni L, Bala M, Biffl W, Ceccarelli G, Ceresoli M, Chiara O, Chiarugi M, Cimbanassi S, Coccolini F, Coimbra R, Di Saverio S, Diana M, Dioguardi Burgio M, Fraga G, Gavriilidis P, Gurrado A, Inchingolo R, Ingels A, Ivatury R, Kashuk JL, Khan J, Kirkpatrick AW, Kim FJ, Kluger Y, Lakkis Z, Leppäniemi A, Maier RV, Memeo R, Moore EE, Ordoñez CA, Peitzman AB, Pellino G, Picetti E, Pikoulis M, Pisano M, Podda M, Romeo O, Rosa F, Tan E, Ten Broek RP, Testini M, Tian Wei Cheng BA, Weber D, Sacco E, Sartelli M, Tonsi A, Dal Moro F, Catena F. 2023 WSES guidelines for the prevention, detection, and management of iatrogenic urinary tract injuries (IUTIs) during emergency digestive surgery. World J Emerg Surg 2023; 18:45. [PMID: 37689688 PMCID: PMC10492308 DOI: 10.1186/s13017-023-00513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023] Open
Abstract
Iatrogenic urinary tract injury (IUTI) is a severe complication of emergency digestive surgery. It can lead to increased postoperative morbidity and mortality and have a long-term impact on the quality of life. The reported incidence of IUTIs varies greatly among the studies, ranging from 0.3 to 1.5%. Given the high volume of emergency digestive surgery performed worldwide, there is a need for well-defined and effective strategies to prevent and manage IUTIs. Currently, there is a lack of consensus regarding the prevention, detection, and management of IUTIs in the emergency setting. The present guidelines, promoted by the World Society of Emergency Surgery (WSES), were developed following a systematic review of the literature and an international expert panel discussion. The primary aim of these WSES guidelines is to provide evidence-based recommendations to support clinicians and surgeons in the prevention, detection, and management of IUTIs during emergency digestive surgery. The following key aspects were considered: (1) effectiveness of preventive interventions for IUTIs during emergency digestive surgery; (2) intra-operative detection of IUTIs and appropriate management strategies; (3) postoperative detection of IUTIs and appropriate management strategies and timing; and (4) effectiveness of antibiotic therapy (including type and duration) in case of IUTIs.
Collapse
Affiliation(s)
- Nicola de'Angelis
- Unit of Colorectal and Digestive Surgery, DIGEST Department, Beaujon University Hospital, AP-HP, Clichy, Paris, France
- Faculty of Medicine, University of Paris Cité, Paris, France
| | - Carlo Alberto Schena
- Unit of Colorectal and Digestive Surgery, DIGEST Department, Beaujon University Hospital, AP-HP, Clichy, Paris, France.
| | - Francesco Marchegiani
- Unit of Colorectal and Digestive Surgery, DIGEST Department, Beaujon University Hospital, AP-HP, Clichy, Paris, France
| | - Elisa Reitano
- Department of General Surgery, Nouvel Hôpital Civil, CHRU-Strasbourg, Research Institute Against Digestive Cancer (IRCAD), 67000, Strasbourg, France
| | - Belinda De Simone
- Department of Minimally Invasive Surgery, Guastalla Hospital, AUSL-IRCCS Reggio, Emilia, Italy
| | - Geoffrey Yuet Mun Wong
- Department of Upper Gastrointestinal Surgery, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Aleix Martínez-Pérez
- Unit of Colorectal Surgery, Department of General and Digestive Surgery, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Fikri M Abu-Zidan
- The Research Office, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Vanni Agnoletti
- Department of General and Emergency Surgery, Bufalini Hospital-Level 1 Trauma Center, Cesena, Italy
| | - Filippo Aisoni
- Department of Morphology, Surgery and Experimental Medicine, Università Degli Studi Di Ferrara, Ferrara, Italy
| | - Michele Ammendola
- Science of Health Department, Digestive Surgery Unit, University "Magna Graecia" Medical School, Catanzaro, Italy
| | - Luca Ansaloni
- Department of General Surgery, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Miklosh Bala
- Acute Care Surgery and Trauma Unit, Department of General Surgery, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem Kiriat Hadassah, Jerusalem, Israel
| | - Walter Biffl
- Division of Trauma/Acute Care Surgery, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Graziano Ceccarelli
- General Surgery, San Giovanni Battista Hospital, USL Umbria 2, Foligno, Italy
| | - Marco Ceresoli
- General and Emergency Surgery, School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
| | - Osvaldo Chiara
- General Surgery and Trauma Team, ASST Niguarda Milano, University of Milano, Milan, Italy
| | - Massimo Chiarugi
- General, Emergency and Trauma Department, Pisa University Hospital, Pisa, Italy
| | - Stefania Cimbanassi
- General Surgery and Trauma Team, ASST Niguarda Milano, University of Milano, Milan, Italy
| | - Federico Coccolini
- General, Emergency and Trauma Department, Pisa University Hospital, Pisa, Italy
| | - Raul Coimbra
- Riverside University Health System Medical Center, Riverside, CA, USA
| | - Salomone Di Saverio
- Unit of General Surgery, San Benedetto del Tronto Hospital, av5 Asur Marche, San Benedetto del Tronto, Italy
| | - Michele Diana
- Department of General Surgery, Nouvel Hôpital Civil, CHRU-Strasbourg, Research Institute Against Digestive Cancer (IRCAD), 67000, Strasbourg, France
| | | | - Gustavo Fraga
- Department of Trauma and Acute Care Surgery, University of Campinas, Campinas, Brazil
| | - Paschalis Gavriilidis
- Department of HBP Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK
| | - Angela Gurrado
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Academic General Surgery "V. Bonomo", University of Bari "A. Moro", Bari, Italy
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, 70021, Acquaviva Delle Fonti, Italy
| | - Alexandre Ingels
- Department of Urology, Henri Mondor Hospital, University of Paris Est Créteil (UPEC), 94000, Créteil, France
| | - Rao Ivatury
- Professor Emeritus, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeffry L Kashuk
- Department of Surgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jim Khan
- Department of Colorectal Surgery, Queen Alexandra Hospital, University of Portsmouth, Southwick Hill Road, Cosham, Portsmouth, UK
| | - Andrew W Kirkpatrick
- Departments of Surgery and Critical Care Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, EG23T2N 2T9, Canada
| | - Fernando J Kim
- Division of Urology, Denver Health Medical Center, Denver, CO, USA
| | - Yoram Kluger
- Division of General Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Zaher Lakkis
- Department of Digestive Surgical Oncology - Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Ari Leppäniemi
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ronald V Maier
- Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Riccardo Memeo
- Unit of Hepato-Pancreato-Biliary Surgery, General Regional Hospital "F. Miulli", Acquaviva Delle Fonti, Bari, Italy
| | - Ernest E Moore
- Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, USA
| | - Carlos A Ordoñez
- Division of Trauma and Acute Care Surgery, Fundación Valle del Lili, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Andrew B Peitzman
- Department of Surgery, University of Pittsburgh School of Medicine, UPMC-Presbyterian, Pittsburgh, USA
| | - Gianluca Pellino
- Colorectal Surgery Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Manos Pikoulis
- 3rd Department of Surgery, Attikon General Hospital, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Michele Pisano
- 1st General Surgery Unit, Department of Emergency, ASST Papa Giovanni Hospital Bergamo, Bergamo, Italy
| | - Mauro Podda
- Department of Emergency Surgery, Cagliari University Hospital, Cagliari, Italy
| | | | - Fausto Rosa
- Emergency and Trauma Surgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Edward Tan
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Mario Testini
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Academic General Surgery "V. Bonomo", University of Bari "A. Moro", Bari, Italy
| | | | - Dieter Weber
- Department of Trauma Surgery, Royal Perth Hospital, Perth, Australia
| | - Emilio Sacco
- Department of Urology, Università Cattolica del Sacro Cuore Di Roma, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Alfredo Tonsi
- Digestive Diseases Department, Royal Sussex County Hospital, University Hospitals Sussex, Brighton, UK
| | - Fabrizio Dal Moro
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Fausto Catena
- Department of General and Emergency Surgery, Bufalini Hospital-Level 1 Trauma Center, Cesena, Italy.
| |
Collapse
|
70
|
Song S, Zhao S, Wang W, Jiang F, Sun J, Ma P, Kang H. Characterization of ST11 and ST15 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae from Patients with Ventilator-Associated Pneumonia. Infect Drug Resist 2023; 16:6017-6028. [PMID: 37705511 PMCID: PMC10496924 DOI: 10.2147/idr.s426901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Background The prevalence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (hv-CRKP) is a serious public threat globally. Here, we performed clinical, molecular, and phenotypic monitoring of hv-CRKP strains isolated from the intensive care unit (ICU) to offer evidence for prevention and control in hospitals. Methods Data analysis of ICU patients suffering from ventilator-associated pneumonia (VAP) because of hv-CRKP infection, admitted at the Chinese Teaching Hospital between March 2019 and September 2021 was performed. Patients' antibiotic-resistance genes, virulence-associated genes, and capsular serotypes of these isolates were detected. Homology analysis of the strains was performed by MLST and PFGE. Six different strains were tested for their virulence traits using the serum killing test and the Galleria mellonella infection assay. For whole genome sequencing, KP3 was selected as a representative strain. Results Clinical data of 19 hv-CRKP-VAP patients were collected and their hv-CRKP were isolated, including 10 of ST11-KL64, 4 of ST15-KL112, 2 of ST11-KL47, 1 of ST15-KL19, 1 of ST17-KL140, and 1 of ST48-KL62. Four ST15 and 8 ST11 isolates revealed high homology, respectively. Most strains carried the carbapenemase gene blaKPC-2 (14/19, 73.68%), followed by blaOXA-232 (4/19, 21.05%). All strains were resistant to almost all the antibiotics except polymyxin and tigacycline. Ten patients were treated with polymyxin or tigacycline based on their susceptibility results, and unfortunately 6 patients died. All strains exhibited a hyper-viscous phenotype, and the majority (17/19, 89.47%) of them contained rmpA and rmpA2. The serum killing test showed that KP9 was resistant to normal healthy serum, others were intermediately or highly sensitive. G. mellonella larvae infection assay suggested that the strains in this study were hypervirulent. Conclusion This study highlights the dominant strain and molecular epidemiology of hv-CRKP in a hospital in China. We should pay more attention to the effect of hv-CRKP on VAP, strengthen monitoring and control transmission.
Collapse
Affiliation(s)
- Shuang Song
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Shulong Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Wei Wang
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Fei Jiang
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jingfang Sun
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Ping Ma
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Haiquan Kang
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
71
|
Gracia-Ahufinger I, López-González L, Vasallo FJ, Galar A, Siller M, Pitart C, Bloise I, Torrecillas M, Gijón-Cordero D, Viñado B, Castillo-García J, Campo R, Mulet X, Madueño-Alonso A, Chamizo-López FJ, Arrastia-Erviti M, Galán-Sánchez F, Fernández-Quejo M, Rodríguez-Díaz JC, Gutiérrez-Zufiaurre MN, Rodríguez-Maresca MA, Ortega-Lafont MDP, Yagüe-Guirao G, Chaves-Blanco L, Colomina-Rodríguez J, Vidal-Acuña MR, Portillo ME, Franco-Álvarez de Luna F, Centelles-Serrano MJ, Azcona-Gutiérrez JM, Delgado-Iribarren García Campero A, Rey-Cao S, Muñoz P, Calvo-Montes J, Zboromyrska Y, Grandioso D, Càmara J, Cantón R, Larrosa-Escartín N, Díaz-Regañón J, Martínez-Martínez L. The CARBA-MAP study: national mapping of carbapenemases in Spain (2014-2018). Front Microbiol 2023; 14:1247804. [PMID: 37744921 PMCID: PMC10516297 DOI: 10.3389/fmicb.2023.1247804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Infections caused by carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa, including isolates producing acquired carbapenemases, constitute a prevalent health problem worldwide. The primary objective of this study was to determine the distribution of the different carbapenemases among carbapenemase-producing Enterobacterales (CPE, specifically Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, and Klebsiella aerogenes) and carbapenemase-producing P. aeruginosa (CPPA) in Spain from January 2014 to December 2018. Methods A national, retrospective, cross-sectional multicenter study was performed. The study included the first isolate per patient and year obtained from clinical samples and obtained for diagnosis of infection in hospitalized patients. A structured questionnaire was completed by the participating centers using the REDCap platform, and results were analyzed using IBM SPSS Statistics 29.0.0. Results A total of 2,704 carbapenemase-producing microorganisms were included, for which the type of carbapenemase was determined in 2692 cases: 2280 CPE (84.7%) and 412 CPPA (15.3%), most often using molecular methods and immunochromatographic assays. Globally, the most frequent types of carbapenemase in Enterobacterales and P. aeruginosa were OXA-48-like, alone or in combination with other enzymes (1,523 cases, 66.8%) and VIM (365 cases, 88.6%), respectively. Among Enterobacterales, carbapenemase-producing K. pneumoniae was reported in 1821 cases (79.9%), followed by E. cloacae complex in 334 cases (14.6%). In Enterobacterales, KPC is mainly present in the South and South-East regions of Spain and OXA-48-like in the rest of the country. Regarding P. aeruginosa, VIM is widely distributed all over the country. Globally, an increasing percentage of OXA-48-like enzymes was observed from 2014 to 2017. KPC enzymes were more frequent in 2017-2018 compared to 2014-2016. Discussion Data from this study help to understand the situation and evolution of the main species of CPE and CPPA in Spain, with practical implications for control and optimal treatment of infections caused by these multi-drug resistant organisms.
Collapse
Affiliation(s)
- Irene Gracia-Ahufinger
- Unit of Microbiology, Reina Sofia University Hospital, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Laura López-González
- Clinical Microbiology Service, IML, San Carlos Clinical University Hospital, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Francisco José Vasallo
- Microbiology Service, Vigo University Hospital Complex (CHUVI), Vigo, Spain
- Health Research Institute Galicia Sur (IISGS), Vigo, Spain
| | - Alicia Galar
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Hospital Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
| | - María Siller
- Microbiology Service, Marqués de Valdecilla University Hospital, Santander, Spain
- Marqués de Valdecilla Health Research Institute (IDIVAL), Santander, Spain
| | - Cristina Pitart
- Microbiology Service, Hospital Clinic, Barcelona, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institute of Global Health of Barcelona, Barcelona, Spain
| | - Iván Bloise
- Clinical Microbiology Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Miriam Torrecillas
- Clinical Microbiology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - Desirée Gijón-Cordero
- Microbiology Service, Ramón y Cajal University Hospital, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Belén Viñado
- Microbiology Service, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Javier Castillo-García
- Microbiology Service, Lozano Blesa Clinical University Hospital, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Rainer Campo
- Microbiology Service, Asturias Central University Hospital, Oviedo, Spain
| | - Xavier Mulet
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Son Espases University Hospital, Palma de Mallorca, Spain
- Institute for Health Research Illes Balears (IdISBa), Palma, Spain
| | - Ana Madueño-Alonso
- Microbiology Service, University Hospital of the Canary Islands, Tenerife, Spain
| | | | | | | | | | - Juan Carlos Rodríguez-Díaz
- Microbiology Service, General University Hospital Dr. Balmis, Alicante, Spain
- Health and Biomedical Research Institute of Alicante (ISABIAL), Alicante, Spain
| | | | | | | | - Genoveva Yagüe-Guirao
- Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
- Murcian Institute for Biomedical Research (IMIB), Murcia, Spain
| | - Lucía Chaves-Blanco
- Microbiology Service, San Cecilio Clinical University Hospital, Granada, Spain
| | | | | | - María Eugenia Portillo
- Clinical Microbiology Service, University Hospital of Navarra, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | | | - María José Centelles-Serrano
- Microbiology Area, Clinical Laboratory, Hospital of Tortosa Virgen de la Cinta, Tortosa, Spain
- Institute for Health Research Pere Virgili, Tortosa, Spain
| | | | | | - Sonia Rey-Cao
- Microbiology Service, Vigo University Hospital Complex (CHUVI), Vigo, Spain
- Health Research Institute Galicia Sur (IISGS), Vigo, Spain
| | - Patricia Muñoz
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Hospital Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Calvo-Montes
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Marqués de Valdecilla University Hospital, Santander, Spain
- Marqués de Valdecilla Health Research Institute (IDIVAL), Santander, Spain
| | - Yuliya Zboromyrska
- Microbiology Service, Hospital Clinic, Barcelona, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
| | - David Grandioso
- Clinical Microbiology Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Jordi Càmara
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Clinical Microbiology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- Institut Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Rafael Cantón
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Ramón y Cajal University Hospital, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Nieves Larrosa-Escartín
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Luis Martínez-Martínez
- Unit of Microbiology, Reina Sofia University Hospital, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
72
|
El Khoury M, Salloum T, Al Kodsi I, Jisr T, El Chaar M, Tokajian S. Whole-genome sequence analysis of carbapenem-resistant Enterobacteriaceae recovered from hospitalized patients. J Glob Antimicrob Resist 2023; 34:150-160. [PMID: 37437842 DOI: 10.1016/j.jgar.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
OBJECTIVES Carbapenems are among the few effective antibiotics against multidrug-resistant Enterobacteriaceae. This study aimed at characterizing the plasmid content and resistome of clinical carbapenem-resistant Enterobacteriaceae (CRE) recovered from 2016 to 2019 from hospitalized patients in Lebanon. METHODS Plasmid typing and whole-genome sequencing were used to study the genomic characteristics of 65 clinical CREs including 27 Escherichia coli, 24 Klebsiella pneumoniae, one Klebsiella quasipneumoniae, three Morganella morganii, three Citrobacter freundii, five Enterobacter hormaechei, and two Serratia marcescens. RESULTS blaOXA-48 (33.8%; n = 22) and blaOXA-48-like genes were among the detected resistance determinants, with two isolates co-harbouring blaNDM-5. Various blaNDM variants, blaNDM-1 (16.9%; n = 11), blaNDM-5 (9.2%; n = 6), blaNDM-7 (9.2%; n = 6), and blaNDM-19 (4.6%; n = 3), different ESBLs, and AmpC β-lactamases were detected. Carbapenem resistance determinants were linked to a variety of incompatibility groups with IncFIB(K) (43.1%; n = 28) being the most prevalent, followed by IncFIA (40.0%), IncL (35.4%), IncX3 (32.3%), IncI1 (32.3%), and IncFIIK (29.2%). CONCLUSIONS We analysed the clonality and resistance determinants of 65 multidrug-resistant (MDR) Enterobacteriaceae recovered in the period from 2016 to 2019 from a large tertiary hospital in Lebanon. NDM variants, OXA-48, and OXA-181 were the most prevalent detected carbapenemases and were mostly linked to the dissemination of IncL, IncX3, and IncF. This study reinforces the need to track the spread and dominance of clinically relevant carbapenemase-encoding plasmids in healthcare settings.
Collapse
Affiliation(s)
- Maria El Khoury
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Ibrahim Al Kodsi
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamima Jisr
- Makassed General Hospital, Hopital Makassed Street, Beirut, Lebanon
| | - Mira El Chaar
- Faculty of Health Sciences, University of Balamand, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
73
|
Ezzeddine Z, Ghssein G. Towards new antibiotics classes targeting bacterial metallophores. Microb Pathog 2023; 182:106221. [PMID: 37391099 DOI: 10.1016/j.micpath.2023.106221] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
The increasing bacterial resistance caused by antibiotic overuse has promoted the search for new antimicrobial strategies. Metals uptake via bacterial metallophores are studied to develop new therapeutics against infectious diseases, because metal ions are essential for bacterial growth and virulence. Metal ions assimilation is mainly dependent on metallophores production which are metal chelators synthetized and produced by bacteria to facilitate metals uptake and are vital for bacterial pathogenicity. Here we highlight the perspective for antimicrobial and therapeutic potential of metallophores through several approaches for metallophores application in antimicrobial therapy.
Collapse
Affiliation(s)
- Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box, 30014, Lebanon; Faculty of Sciences V, Lebanese University, Nabatieh, 1700, Lebanon.
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box, 30014, Lebanon; Faculty of Sciences V, Lebanese University, Nabatieh, 1700, Lebanon.
| |
Collapse
|
74
|
Nordmann P, Bouvier M, Poirel L. Efficacy of ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam combinations against carbapenemase-producing Enterobacterales in Switzerland. Eur J Clin Microbiol Infect Dis 2023; 42:1145-1152. [PMID: 37566365 PMCID: PMC10427697 DOI: 10.1007/s10096-023-04647-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Carbapenemase-producing in Enterobacterales (CPE) represent a critical health concern worldwide, including in Switzerland, leading to very limited therapeutic options. Therefore, our aim was to evaluate the susceptibility to the novel ß-lactam/ß-lactamase inhibitor combinations ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam of CPE isolates recovered in Switzerland from 2018 to 2020. A total of 150 clinical CPE were studied including mainly Klebsiella pneumoniae (n = 61, 40.3%) and Escherichia coli (n = 53, 35.3%). The distribution of carbapenemases was as follows: KPC-like (32%), OXA-48-like (32%), NDM-like (24%), combinations of carbapenemases (10%), VIM-1 producers (n = 2), and a single IMI-1 producer. Overall, 77% of the strains were susceptible to meropenem-vaborbactam, 63% was susceptible to ceftazidime-avibactam, and 62% susceptible to imipenem-relebactam. Those data may contribute to optimize the choice of first line therapy for treating infections due to CPE.
Collapse
Affiliation(s)
- Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Maxime Bouvier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland.
| |
Collapse
|
75
|
Sun J, Ren S, Yang Y, Li X, Zhang X. Betaxolol as a Potent Inhibitor of NDM-1-Positive E. coli That Synergistically Enhances the Anti-Inflammatory Effect in Combination with Meropenem. Int J Mol Sci 2023; 24:13399. [PMID: 37686201 PMCID: PMC10487625 DOI: 10.3390/ijms241713399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
With significant human and economic losses, increasing bacterial resistance is a serious global threat to human life. Due to their high efficacy, broad spectrum, and cost-effectiveness, beta-lactams are widely used in the clinical management of bacterial infection. The emergence and wide spread of New Delhi metallo-β-lactamase (NDM-1), which can effectively inactivate β-lactams, has posed a challenge in the design of effective new antimicrobial treatments. Medicine repurposing is now an important tool in the development of new alternative medicines. We present a known glaucoma therapeutic, betaxolol (BET), which with a 50% inhibitory concentration (IC50) of 19.3 ± 0.9 μM significantly inhibits the hydrolytic activity of the NDM-1 enzyme and may represent a potential NDM-1 enzyme inhibitor. BET combined with meropenem (MEM) showed bactericidal synergism in vitro. The efficacy of BET was further evaluated against systemic bacterial infections in BALB/c mice. The results showed that BET+MEM decreased the numbers of leukocytes and inflammatory factors in peripheral blood, as well as the organ bacterial load and pathological damage. Molecular docking and kinetic simulations showed that BET can form hydrogen bonds and hydrophobic interactions directly with key amino acid residues in the NDM-1 active site. Thus, we demonstrated that BET inhibited NDM-1 by competitively binding to it and that it can be developed in combination with MEM as a new therapy for the management of infections caused by medicine-resistant bacteria.
Collapse
Affiliation(s)
- Jichao Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; (J.S.); (S.R.); (Y.Y.); (X.L.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shangjie Ren
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; (J.S.); (S.R.); (Y.Y.); (X.L.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yaozu Yang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; (J.S.); (S.R.); (Y.Y.); (X.L.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; (J.S.); (S.R.); (Y.Y.); (X.L.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; (J.S.); (S.R.); (Y.Y.); (X.L.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
76
|
Nieto-Saucedo JR, López-Jacome LE, Franco-Cendejas R, Colín-Castro CA, Hernández-Duran M, Rivera-Garay LR, Zamarripa-Martinez KS, Mosqueda-Gómez JL. Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico. Antibiotics (Basel) 2023; 12:1295. [PMID: 37627715 PMCID: PMC10451683 DOI: 10.3390/antibiotics12081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Carbapenem-resistant Gram-negative bacilli (CR-GNB) are a major public health concern. We aimed to evaluate the prevalence of CR-GNB and the frequency of carbapenemase-encoding genes in a tertiary referral center from El Bajio, Mexico. A cross-sectional study was conducted between January and October 2022; Gram-negative bacilli (GNB) were screened for in vitro resistance to at least one carbapenem. CR-GNB were further analyzed for carbapenemase-production through phenotypical methods and by real-time PCR for the following genes: blaKPC, blaGES, blaNDM, blaVIM, blaIMP, and blaOXA-48. In total, 37 out of 508 GNB were carbapenem-resistant (7.3%, 95% CI 5.2-9.9). Non-fermenters had higher rates of carbapenem resistance than Enterobacterales (32.5% vs. 2.6%; OR 18.3, 95% CI 8.5-39, p < 0.0001), and Enterobacter cloacae showed higher carbapenem resistance than other Enterobacterales (27% vs. 1.4%; OR 25.9, 95% CI 6.9-95, p < 0.0001). Only 15 (40.5%) CR-GNB had a carbapenemase-encoding gene; Enterobacterales were more likely to have a carbapenemase-encoding gene than non-fermenters (63.6% vs. 30.8%, p = 0.08); blaNDM-1 and blaNDM-5 were the main genes found in Enterobacterales; and blaIMP-75 was the most common for Pseudomonas aeruginosa. The mcr-2 gene was harbored in one polymyxin-resistant E. cloacae. In our setting, NDM was the most common carbapenemase; however, less than half of the CR-GNB showed a carbapenemase-encoding gene.
Collapse
Affiliation(s)
- Jose Raul Nieto-Saucedo
- Fellow of the General Directorate of Quality and Education in Health, Ministry of Health, Mexico City 06696, Mexico
- Department of Medicine and Nutrition, Universidad de Guanajuato, Leon 37670, Mexico
| | - Luis Esaú López-Jacome
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Biology Department, Chemistry Faculty, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Franco-Cendejas
- Biomedical Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Claudia Adriana Colín-Castro
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Melissa Hernández-Duran
- Infectious Diseases Laboratory, Infectious Diseases Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | | | | | - Juan Luis Mosqueda-Gómez
- Department of Medicine and Nutrition, Universidad de Guanajuato, Leon 37670, Mexico
- Hospital Regional de Alta Especialidad del Bajío, Leon 37660, Mexico
| |
Collapse
|
77
|
Lee SH, Kim CH, Lee HY, Park KH, Han SH. Epidemiology of Carbapenem-Resistant Enterobacteriaceae Bacteremia in Gyeonggi Province, Republic of Korea, between 2018 and 2021. Antibiotics (Basel) 2023; 12:1286. [PMID: 37627706 PMCID: PMC10451680 DOI: 10.3390/antibiotics12081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of carbapenem-resistant Enterobacteriaceae (CRE) has been increasing since 2008, with Gyeonggi Province in South Korea being particularly vulnerable due to its large number of healthcare facilities. This study examines the trends of CRE occurrence in Gyeonggi Province over the past four years and the epidemiological characteristics of the infected patients. Patients with positive CRE blood cultures admitted to healthcare facilities in Gyeonggi Province from January 2018 to December 2021 were evaluated in this study. Risk factors for CRE-related death were analyzed using data from patients who died within 30 days of the last blood sampling. Older adults aged 70 years and above constituted the majority of patients with CRE bacteremia. Antibiotic use did not significantly affect mortality risk. Non-survivors were more common in tertiary hospitals and intensive care units and included patients with hypertension, malignant tumors, and multiple underlying diseases. Klebsiella pneumoniae was the most common CRE strain, with Klebsiella pneumoniae carbapenemase being the predominant carbapenemase. Our study suggests the endemicity of CRE in Gyeonggi Province and highlights the increasing isolation of CRE strains in South Korean long-term care hospitals within the province. Further, infection control measures and government support specific to each healthcare facility type are crucial.
Collapse
Affiliation(s)
- Seung Hye Lee
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon-si 16508, Gyeonggi-do, Republic of Korea; (S.H.L.)
| | - Chan Hee Kim
- Gyeonggi Infectious Disease Control Center, Health Bureau, Gyeonggi Provincial Government, Suwon-si 16508, Gyeonggi-do, Republic of Korea; (S.H.L.)
| | - Hee Young Lee
- Center for Preventive Medicine and Public Health, Seoul National University Bundang Hospital, Seongnam-si 13620, Gyeonggi-do, Republic of Korea;
| | - Kun Hee Park
- Pyeongchang County Health and Medical Center, Pyeongchang-gun 25374, Gangwon-do, Republic of Korea;
| | - Su Ha Han
- Department of Nursing, College of Medicine, SoonChunHyang University, Cheonan-si 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
78
|
Villalva C, Patil G, Narayanan S, Chanda D, Ghimire R, Snider T, Ramachandran A, Channappanavar R, More S. Klebsiella pneumoniae C o-infection Leads to Fatal Pneumonia in SARS-CoV-2-infected Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551035. [PMID: 37577517 PMCID: PMC10418095 DOI: 10.1101/2023.07.28.551035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
SARS-CoV-2 patients have been reported to have high rates of secondary Klebsiella pneumoniae infections. Klebsiella pneumoniae is a commensal that is typically found in the respiratory and gastrointestinal tracts. However, it can cause severe disease when a person's immune system is compromised. Despite a high number of K. pneumoniae cases reported in SARS-CoV-2 patients, a co-infection animal model evaluating the pathogenesis is not available. We describe a mouse model to study disease pathogenesis of SARS-CoV-2 and K. pneumoniae co-infection. BALB/cJ mice were inoculated with mouse-adapted SARS-CoV-2 followed by a challenge with K. pneumoniae . Mice were monitored for body weight change, clinical signs, and survival during infection. The bacterial load, viral titers, immune cell accumulation and phenotype, and histopathology were evaluated in the lungs. The co-infected mice showed severe clinical disease and a higher mortality rate within 48 h of K. pneumoniae infection. The co-infected mice had significantly elevated bacterial load in the lungs, however, viral loads were similar between co-infected and single-infected mice. Histopathology of co-infected mice showed severe bronchointerstitial pneumonia with copious intralesional bacteria. Flow cytometry analysis showed significantly higher numbers of neutrophils and macrophages in the lungs. Collectively, our results demonstrated that co-infection of SARS-CoV-2 with K. pneumoniae causes severe disease with increased mortality in mice.
Collapse
|
79
|
Mancuso G, De Gaetano S, Midiri A, Zummo S, Biondo C. The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". Microorganisms 2023; 11:1912. [PMID: 37630472 PMCID: PMC10456941 DOI: 10.3390/microorganisms11081912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (S.Z.); (C.B.)
| | | | | | | | | |
Collapse
|
80
|
Pruss A, Kwiatkowski P, Sienkiewicz M, Masiuk H, Łapińska A, Kot B, Kilczewska Z, Giedrys-Kalemba S, Dołęgowska B. Similarity Analysis of Klebsiella pneumoniae Producing Carbapenemases Isolated from UTI and Other Infections. Antibiotics (Basel) 2023; 12:1224. [PMID: 37508320 PMCID: PMC10376303 DOI: 10.3390/antibiotics12071224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen responsible for severe infections, mainly urinary tract infections (UTIs) and pneumonia. Hospital epidemic infections caused by multiresistant strains of carbapenemase-producing K. pneumoniae are the most concerning. NDM-producing strains are resistant to a wide range of antibiotics and have become the most significant threat. Determining the natural reservoirs and routes of infections is essential to end hospital outbreaks. Understanding the relatedness of K. pneumoniae strains is essential to determine the range and nature of the infection. The study compared phylogenetic relatedness between multiresistant K. pneumoniae strains isolated from hospitalized patients. Susceptibility to drugs and mechanisms of resistance were confirmed using phenotypic methods. PFGE was used to analyze the relatedness between strains. We analyzed 69 K. pneumoniae strains from various healthcare units. The isolates were mainly identified from urine. Strains were resistant to β-lactam antibiotics with β-lactamase inhibitors, cephalosporins, and quinolones. Their susceptibility to aminoglycosides and carbapenem antibiotics was diverse. Most of the isolated strains produced New Delhi metallo-ß-lactamase (NDM). Although K. pneumoniae strains were classified into several genotype clusters, closely related isolates were confirmed in the same hospital's wards, and in two hospitals in the same province.
Collapse
Affiliation(s)
- Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego St. 1, 90-151 Lodz, Poland
| | - Helena Masiuk
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Agnieszka Łapińska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Barbara Kot
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Bolesława Prusa Str., 08-110 Siedlce, Poland
| | - Zuzanna Kilczewska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Stefania Giedrys-Kalemba
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
81
|
Lai W, Xu Y, Liu L, Cao H, Yang B, Luo J, Fei Y. Simultaneous and Visual Detection of KPC and NDM Carbapenemase-Encoding Genes Using Asymmetric PCR and Multiplex Lateral Flow Strip. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:9975620. [PMID: 37520816 PMCID: PMC10386901 DOI: 10.1155/2023/9975620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/03/2023] [Accepted: 06/17/2023] [Indexed: 08/01/2023]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) infections constitute a threat to public health, and KPC and NDM are the major carbapenemases of concern. Rapid diagnostic tests are highly desirable in point-of-care (POC) and emergency laboratories with limited resources. Here, we developed a multiplex lateral flow assay based on asymmetric PCR and barcode capture probes for the simultaneous detection of KPC-2 and NDM-1. Biotinylated barcode capture probes corresponding to the KPC-2 and NDM-1 genes were designed and cast onto two different sensing zones of a nitrocellulose membrane after reacting with streptavidin to prepare a multiplex lateral flow strip. Streptavidin-coated gold nanoparticles (SA-AuNPs) were used as signal reporters. In response to the target carbapenemase genes, biotin-labelled ssDNA libraries were produced by asymmetric PCR, which bond to SA-AuNPs via biotin and hybridise with the barcode capture probe via a complementary sequence, thereby bridging SA-AuNPs and the barcode capture probe to form visible red lines on the detection zones. The signal intensities were proportional to the number of resistance genes tested. The strip sensor showed detection limits of 0.03 pM for the KPC-2 and 0.07 pM for NDM-1 genes, respectively, and could accurately distinguish between KPC-2 and NDM-1 genes in CRE strains. For the genotyping of clinical isolates, our strip exhibited excellent consistency with real-time fluorescent quantitative PCR and gene sequencing. Given its simplicity, cost-effectiveness, and rapid analysis accomplished by the naked eye, the multiplex strip is promising auxiliary diagnostic tool for KPC-2 and NDM-1 producers in routine clinical laboratories.
Collapse
Affiliation(s)
- Wei Lai
- School of Medical Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yongjie Xu
- NHC Key Laboratory of Pulmonary Immunological-Related Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Lin Liu
- NHC Key Laboratory of Pulmonary Immunological-Related Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Huijun Cao
- School of Medical Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou, China
- The Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Bin Yang
- NHC Key Laboratory of Pulmonary Immunological-Related Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Jie Luo
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang 550002, China
| | - Ying Fei
- School of Medical Laboratory, Guizhou Medical University, Guiyang 550004, Guizhou, China
- The Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
82
|
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel) 2023; 11:1946. [PMID: 37444780 DOI: 10.3390/healthcare11131946] [Citation(s) in RCA: 280] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Antibiotics are among the most important discoveries of the 20th century, having saved millions of lives from infectious diseases. Microbes have developed acquired antimicrobial resistance (AMR) to many drugs due to high selection pressure from increasing use and misuse of antibiotics over the years. The transmission and acquisition of AMR occur primarily via a human-human interface both within and outside of healthcare facilities. A huge number of interdependent factors related to healthcare and agriculture govern the development of AMR through various drug-resistance mechanisms. The emergence and spread of AMR from the unrestricted use of antimicrobials in livestock feed has been a major contributing factor. The prevalence of antimicrobial-resistant bacteria has attained an incongruous level worldwide and threatens global public health as a silent pandemic, necessitating urgent intervention. Therapeutic options of infections caused by antimicrobial-resistant bacteria are limited, resulting in significant morbidity and mortality with high financial impact. The paucity in discovery and supply of new novel antimicrobials to treat life-threatening infections by resistant pathogens stands in sharp contrast to demand. Immediate interventions to contain AMR include surveillance and monitoring, minimizing over-the-counter antibiotics and antibiotics in food animals, access to quality and affordable medicines, vaccines and diagnostics, and enforcement of legislation. An orchestrated collaborative action within and between multiple national and international organizations is required urgently, otherwise, a postantibiotic era can be a more real possibility than an apocalyptic fantasy for the 21st century. This narrative review highlights on this basis, mechanisms and factors in microbial resistance, and key strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Md Abdus Salam
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Md Yusuf Al-Amin
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
- The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed A A Alqumber
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Albaha University, Al Baha 65431, Saudi Arabia
| |
Collapse
|
83
|
Zhuo J, Liang B, Zhang H, Chi Y, Cai Y. An overview of gram-negative bacteria with difficult-to-treat resistance: definition, prevalence, and treatment options. Expert Rev Anti Infect Ther 2023; 21:1203-1212. [PMID: 37811630 DOI: 10.1080/14787210.2023.2267765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Difficult-to-treat resistance (DTR) is a newly proposed resistance phenotype characterized by resistance to all first-line drugs. The emergence of DTR as a new resistance phenotype has significant implications for clinical practice. This new concept has the potential to be widely used instead of traditional phenotypes. AREAS COVERED This study carried out a detailed analysis about the definition, application, and evolution of various resistance phenotypes. We collected all the research articles on Gram-negative bacteria with difficult-to-treat resistance (GNB-DTR), analyzed the DTR in each region and each bacterial species. The advantages and doubts of DTR, the dilemma of GNB-DTR infections and the potential therapeutic strategies are summarized in the review. EXPERT OPINION Available studies show that the prevalence of GNB-DTR is not optimistic. Unlike traditional resistance phenotypes, DTR is more closely aligned with the clinical treatment perspective and can help with the prompt selection of an appropriate treatment plan. Currently, potential treatment options for GNB-DTR include a number of second-line drugs and novel antibiotics. However, the definition of first-line drugs is inherently dynamic. Therefore, the DTR concept based on first-line drugs needs to be continuously updated and refined, considering the emergence of new antibiotics, resistance characteristics, and pathogen prevalence in different regions.
Collapse
Affiliation(s)
- Jiaju Zhuo
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Beibei Liang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Huan Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| |
Collapse
|
84
|
Harding-Crooks R, Smith D, Fanning S, Fox EM. Dissemination of carbapenemase-producing Enterobacteriaceae and associated resistance determinants through global food systems. Compr Rev Food Sci Food Saf 2023; 22:2706-2727. [PMID: 37083194 DOI: 10.1111/1541-4337.13159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Antimicrobial agents are a critical component of modern healthcare systems, fulfilling a core function in patient care and improving individual patient outcomes and consequently overall public health. However, the efficacy of antimicrobial interventions is being consistently eroded by the emergence and dissemination of various antimicrobial resistance (AMR) mechanisms. One highly valued class of antimicrobial compounds is carbapenems, which retain efficacy in treating most multidrug-resistant infections and are considered "last line" agents. Therefore, recent trends in proliferation of carbapenem resistance (CR) via dissemination of carbapenemase-encoding genes among members of the Enterobacteriaceae family pose a significant threat to public health. While much of the focus relating to this has been on nosocomial environments, community-acquired carbapenemase-producing Enterobacteriaceae (CPE) infections and their associated transmission routes are less well studied. Among these community-associated vectors, the role of food chains and contaminated foods is important, since Enterobacteriaceae occupy niches within these settings. This review examines foodborne CPE transmission by exploring how interactions within and between food, the food chain, and agriculture not only promote and disseminate CPE, but also create reservoirs of mobile genetic elements that may lead to further carbapenemase gene proliferation both within and between microbial communities. Additionally, recent developments regarding the global occurrence and molecular epidemiology of CPEs in food chains will be reviewed.
Collapse
Affiliation(s)
| | - Darren Smith
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
85
|
Huang E, Yang X, Leighton E, Li X. Carbapenem resistance in the food supply chain. J Food Prot 2023; 86:100108. [PMID: 37244353 DOI: 10.1016/j.jfp.2023.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Carbapenems are critically important antibiotic agents because they are considered the "last-resort" antibiotics for treating serious infections. However, resistance to carbapenems is increasing throughout the world and has become an urgent problem. Some carbapenem-resistant bacteria are considered urgent threats by the United States Centers for Disease Control and Prevention. In this review, we searched and summarized studies published mostly in the recent five years related to carbapenem resistance in three main areas in the food supply chain: livestock, aquaculture, and fresh produce. We have found that many studies have shown a direct or indirect correlation between carbapenem resistance in the food supply chain and human infections. Our review also revealed the worrisome incidences of the cooccurrence of resistance to carbapenem and other "last-resort" antibiotics, such as colistin and/or tigecycline, in the food supply chain. Antibiotic resistance is a global public health challenge, and more effort related to carbapenem resistance in the food supply chain for different food commodities is still needed in some countries and regions, including the United States. In addition, antibiotic resistance in the food supply chain is a complicated issue. Based on the knowledge from current studies, only restricting the use of antibiotics in food animal production might not be enough. Additional research is needed to determine factors contributing to the introduction and persistence of carbapenem resistance in the food supply chain. Through this review, we hope to provide a better understanding of the current state of carbapenem resistance, and the niches of knowledge that are needed for developing strategies to mitigate antibiotic resistance, especially carbapenem resistance in the food supply chain.
Collapse
Affiliation(s)
- En Huang
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA
| | - Elizabeth Leighton
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA.
| |
Collapse
|
86
|
Cerón S, Salem-Bango Z, Contreras DA, Ranson EL, Yang S. Clinical and Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae with Concurrent Production of NDM and OXA-48-like Carbapenemases in Southern California, 2016-2022. Microorganisms 2023; 11:1717. [PMID: 37512889 PMCID: PMC10383945 DOI: 10.3390/microorganisms11071717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The global emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a critical public healthcare concern due to treatment challenges and high mortality. In recent years, there has been an increase in cases of CRKP co-producing New Delhi metallo-β-lactamases (NDM) and oxacillinase 48 (OXA-48)-like carbapenemases in the US. The aim of this study was to correlate the clinical and genomic characteristics of CRKP co-producing NDM and OXA-48-like carbapenemases isolated from patients in Southern California since 2016. Whole-genome sequencing was performed on clinical isolates obtained from various sources, including blood, abdominal fluid, wounds, and urine. Genetic diversity was observed in these CRKP, including ST-14, ST-16, ST-167, ST-437, ST-2096, and ST-2497 lineages. Phylogenetic analysis revealed two closely related clusters (ST-14 and ST-2497), with single nucleotide polymorphism (SNP) differences ranging from 0 to 36, suggesting a possible local spread of these CRKP. Significant antimicrobial resistance (AMR) genes were identified in these CRKP, including blaNDM-1, blaNDM-5, blaOXA-232, blaOXA-181, blaCTX-M-15, armA, tet(A), and tet(D). Moreover, pColKP3-type and Inc-type plasmids known to harbor AMR genes were also detected in these isolates. Most of the patients infected with this rare type of CRKP died, although their severe comorbidities also played important roles in their demise. Our study highlighted the extremely limited treatment options and poor clinical outcomes associated with these dual-carbapenemase-producing CRKP. Real-time genomic surveillance of these unusual and deadly CRKP can provide critical information for infection prevention and treatment guidance.
Collapse
Affiliation(s)
- Stacey Cerón
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Zackary Salem-Bango
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Deisy A Contreras
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elizabeth L Ranson
- Division of Infectious Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- West Los Angeles VA Medical Center, Los Angeles, CA 90073, USA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
87
|
Sevillano L, Herrera C, Valdes Á, de la Hoz Á, Cardeñoso L, Domingo D, Semiglia MA. First report of a carbapenemase OXA-48-producing Hafnia alvei clinical isolate. Access Microbiol 2023; 5:acmi000498.v3. [PMID: 37424558 PMCID: PMC10323787 DOI: 10.1099/acmi.0.000498.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/21/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Carbapenems are usually used in the treatment of infections caused by cephalosporin-resistant Enterobacterales ; however, the increase in carbapenem-resistant Enterobacterales (CRE) has become one of the most important problems in public health. Hafnia alvei is associated with intestinal and extraintestinal infections, especially in patients with any chronic disease or some type of immunosupression. H. alvei is resistant to first-generation aminopenicillins and cephalosporins owing to the β-lactamase (Amp C) in their chromosome; the only carbapenem-resistant Hafnia strain described until now was due to a lack of the OmpK36 protein that plays an important role in permeability to carbapenems. Case presentation We present the case of a 65-year-old male diagnosed with acute lithiasic cholecystitis. Culture of the biliary prosthesis yielded a OXA-48-producing H. alvei that was identified by MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) MS. Carbapenemase production was detected by immunochromatography and confirmed by sequencing. Conclusion To our knowledge, this is the first report of OXA-48-producing H. alvei probably obtained by horizontal transfer from Enterobacter cloacae OXA-48 isolated in previous samples.
Collapse
Affiliation(s)
- Laura Sevillano
- Servicio de Microbiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Cristhian Herrera
- Servicio de Microbiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Álvaro Valdes
- Servicio de Cirugía General y Digestivo, Hospital Universitario de La Princesa, C/Diego de León, 62. 28006, Madrid, Spain
| | - Ángela de la Hoz
- Servicio de Cirugía General y Digestivo, Hospital Universitario de La Princesa, C/Diego de León, 62. 28006, Madrid, Spain
| | - Laura Cardeñoso
- Servicio de Microbiología, Hospital Universitario de La Princesa, Madrid, Spain
| | - Diego Domingo
- Servicio de Microbiología, Hospital Universitario de La Princesa, Madrid, Spain
| | | |
Collapse
|
88
|
Li C, Zhou P, Liu Y, Zhang L. Treatment of Ventriculitis and Meningitis After Neurosurgery Caused by Carbapenem-Resistant Enterobacteriaceae (CRE): A Challenging Topic. Infect Drug Resist 2023; 16:3807-3818. [PMID: 37342434 PMCID: PMC10278654 DOI: 10.2147/idr.s416948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Post-neurosurgical infection is a common complication of neurosurgery, and serious infection can threaten the life of patients. In recent years, the increase in multidrug-resistant bacteria, especially carbapenem-resistant Enterobacteriaceae (CRE), has proved fatal to patients. Although there are a few cases of CRE meningitis and few clinical trials have been carried out, it has attracted increasing attention with the increasing probability of its occurrence, especially considering that there are few successful cases. An increasing number of studies are also looking for the risk factors and clinical symptoms of CRE intracranial infection. In terms of treatment, some new antibiotics are gradually being used in the clinic, but due to the complicated drug-resistant mechanism of CRE and the obstruction of the blood‒brain barrier (BBB), the therapeutic effect is still very poor. In addition, obstructive hydrocephalus and brain abscess caused by CRE meningitis are still important causes of patient death and are also difficult to treat.
Collapse
Affiliation(s)
- Cuiling Li
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Peng Zhou
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Yuanqin Liu
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Lei Zhang
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| |
Collapse
|
89
|
Euler CW, Raz A, Hernandez A, Serrano A, Xu S, Andersson M, Zou G, Zhang Y, Fischetti VA, Li J. PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-Negative ESKAPE Pathogens. Antimicrob Agents Chemother 2023; 67:e0151922. [PMID: 37098944 PMCID: PMC10190635 DOI: 10.1128/aac.01519-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
Klebsiella pneumoniae and Pseudomonas aeruginosa are two leading causes of burn and wound infections, pneumonia, urinary tract infections, and more severe invasive diseases, which are often multidrug resistant (MDR) or extensively drug resistant. Due to this, it is critical to discover alternative antimicrobials, such as bacteriophage lysins, against these pathogens. Unfortunately, most lysins that target Gram-negative bacteria require additional modifications or outer membrane permeabilizing agents to be bactericidal. We identified four putative lysins through bioinformatic analysis of Pseudomonas and Klebsiella phage genomes in the NCBI database and then expressed and tested their intrinsic lytic activity in vitro. The most active lysin, PlyKp104, exhibited >5-log killing against K. pneumoniae, P. aeruginosa, and other Gram-negative representatives of the multidrug-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumonia, Acinetobacter baumannii, P. aeruginosa, and Enterobacter species) without further modification. PlyKp104 displayed rapid killing and high activity over a wide pH range and in high concentrations of salt and urea. Additionally, pulmonary surfactants and low concentrations of human serum did not inhibit PlyKp104 activity in vitro. PlyKp104 also significantly reduced drug-resistant K. pneumoniae >2 logs in a murine skin infection model after one treatment of the wound, suggesting that this lysin could be used as a topical antimicrobial against K. pneumoniae and other MDR Gram-negative infections.
Collapse
Affiliation(s)
- Chad W. Euler
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Assaf Raz
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anaise Hernandez
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York, USA
| | - Anna Serrano
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Siyue Xu
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martin Andersson
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
90
|
Liu P, Yang A, Tang B, Wang Z, Jian Z, Liu Y, Wang J, Zhong B, Yan Q, Liu W. Molecular epidemiology and clinical characteristics of the type VI secretion system in Klebsiella pneumoniae causing abscesses. Front Microbiol 2023; 14:1181701. [PMID: 37266024 PMCID: PMC10230222 DOI: 10.3389/fmicb.2023.1181701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Purpose The type VI system (T6SS) has the potential to be a new virulence factor for hypervirulent Klebsiella pneumoniae (hvKp) strains. This study aimed to characterize the molecular and clinical features of T6SS-positive and T6SS-negative K. pneumoniae isolates that cause abscesses. Patients and methods A total of 169 non-duplicate K. pneumoniae strains were isolated from patients with abscesses in a tertiary hospital in China from January 2018 to June 2022, and clinical data were collected. For all isolates, capsular serotypes, T6SS genes, virulence, and drug resistance genes, antimicrobial susceptibility testing, and biofilm formation assays were assessed. Multilocus sequence typing was used to analyze the genotypes of hvKp. T6SS-positive hvKp, T6SS-negative hvKp, T6SS-positive cKP, and T6SS-negative cKP (n = 4 strains for each group) were chosen for the in vivo Galleria mellonella infection model and in vitro competition experiments to further explore the microbiological characteristics of T6SS-positive K. pneumoniae isolates. Results The positive detection rate for T6SS was 36.1%. The rates of hvKp, seven virulence genes, K1 capsular serotype, and ST23 in T6SS-positive strains were all higher than those in T6SS-negative strains (p < 0.05). Multivariate logistic regression analysis indicated that the carriage of aerobactin (OR 0.01) and wcaG (OR 33.53) were independent risk factors for T6SS-positive strains (p < 0.05). The T6SS-positive strains had a stronger biofilm-forming ability than T6SS-negative strains (p < 0.05). The T6SS-positive and T6SS-negative strains showed no significant differences in competitive ability (p = 0.06). In the in vivo G. mellonella infection model, the T6SS(+)/hvKP group had the worst prognosis. Except for cefazolin and tegacyclin, T6SS-positive isolates displayed a lower rate of antimicrobial resistance to other drugs (p < 0.05). The T6SS-positive isolates were more likely to be acquired from community infections (p < 0.05). Conclusion Klebsiella pneumoniae isolates causing abscesses have a high prevalence of T6SS genes. T6SS-positive K. pneumoniae isolates are associated with virulence, and the T6SS genes may be involved in the hvKp virulence mechanism.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Awen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqian Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahui Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
91
|
Arafi V, Hasani A, Sadeghi J, Varshochi M, Poortahmasebi V, Hasani A, Hasani R. Uropathogenic Escherichia coli endeavors: an insight into the characteristic features, resistance mechanism, and treatment choice. Arch Microbiol 2023; 205:226. [PMID: 37156886 DOI: 10.1007/s00203-023-03553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are the strains diverted from the intestinal status and account mainly for uropathogenicity. This pathotype has gained specifications in structure and virulence to turn into a competent uropathogenic organism. Biofilm formation and antibiotic resistance play an important role in the organism's persistence in the urinary tract. Increased consumption of carbapenem prescribed for multidrug-resistant (MDR) and Extended-spectrum-beta lactamase (ESBL)-producing UPECs, has added to the expansion of resistance. The World Health Organization (WHO) and Centre for Disease Control (CDC) placed the Carbapenem-resistant Enterobacteriaceae (CRE) on their treatment priority lists. Understanding both patterns of pathogenicity, and multiple drug resistance may provide guidance for the rational use of anti-bacterial agents in the clinic. Developing an effective vaccine, adherence-inhibiting compounds, cranberry juice, and probiotics are non-antibiotical approaches proposed for the treatment of drug-resistant UTIs. We aimed to review the distinguishing characteristics, current therapeutic options and promising non-antibiotical approaches against ESBL-producing and CRE UPECs.
Collapse
Affiliation(s)
- Vahid Arafi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Varshochi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
92
|
Ge H, Qiao J, Zheng J, Xu H, Liu R, Zhao J, Chen R, Li C, Guo X, Zheng B. Emergence and clonal dissemination of KPC-3-producing Pseudomonas aeruginosa in China with an IncP-2 megaplasmid. Ann Clin Microbiol Antimicrob 2023; 22:31. [PMID: 37120531 PMCID: PMC10149002 DOI: 10.1186/s12941-023-00577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Despite the global prevalence of Klebsiella pneumoniae Carbapenemase (KPC)-type class A β-lactamases, occurrences of KPC-3-producing isolates in China remain infrequent. This study aims to explore the emergence, antibiotic resistance profiles, and plasmid characteristics of blaKPC-3-carrying Pseudomonas aeruginosa. METHODS Species identification was performed by MALDI-TOF-MS, and antimicrobial resistance genes (ARGs) were identified by polymerase chain reaction (PCR). The characteristics of the target strain were detected by whole-genome sequencing (WGS) and antimicrobial susceptibility testing (AST). Plasmids were analyzed by S1-nuclease pulsed-field gel electrophoresis(S1-PFGE), Southern blotting and transconjugation experiment. RESULTS Five P. aeruginosa strains carrying blaKPC-3 were isolated from two Chinese patients without a history of travelling to endemic areas. All strains belonged to the novel sequence type ST1076. The blaKPC-3 was carried on a 395-kb IncP-2 megaplasmid with a conserved structure (IS6100-ISKpn27-blaKPC-3-ISKpn6-korC-klcA), and this genetic sequence was identical to many plasmid-encoded KPC of Pseudomonas species. By further analyzing the genetic context, it was supposed that the original of blaKPC-3 in our work was a series of mutation of blaKPC-2. CONCLUSIONS The emergence of a multidrug resistance IncP-2 megaplasmid and clonal transmission of blaKPC-3-producing P. aeruginosa in China underlined the crucial need for continuous monitoring of blaKPC-3 for prevention and control of its further dissemination in China.
Collapse
Affiliation(s)
- Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahao Zheng
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
93
|
Baek MS, Kim S, Kim WY, Kweon MN, Huh JW. Gut microbiota alterations in critically Ill patients with carbapenem-resistant Enterobacteriaceae colonization: A clinical analysis. Front Microbiol 2023; 14:1140402. [PMID: 37082174 PMCID: PMC10110853 DOI: 10.3389/fmicb.2023.1140402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundCarbapenem-resistant Enterobacteriaceae (CRE) are an emerging concern for global health and are associated with high morbidity and mortality in critically ill patients. Risk factors for CRE acquisition include broad-spectrum antibiotic use and microbiota dysbiosis in critically ill patients. Therefore, we evaluated the alteration of the intestinal microbiota associated with CRE colonization in critically ill patients.MethodsFecal samples of 41 patients who were diagnosed with septic shock or respiratory failure were collected after their admission to the intensive care unit (ICU). The gut microbiota profile determined using 16S rRNA gene sequencing and quantitative measurement of fecal short-chain fatty acids were evaluated in CRE-positive (n = 9) and CRE negative (n = 32) patients. The analysis of bacterial metabolic abundance to identify an association between CRE acquisition and metabolic pathway was performed.ResultsCRE carriers showed a significantly increased proportion of the phyla Proteobacteria and decreased numbers of the phyla Bacteroidetes as compared to the CRE non-carriers. Linear discriminant analysis (LDA) with linear discriminant effect size showed that the genera Erwinia, Citrobacter, Klebsiella, Cronobacter, Kluyvera, Dysgomonas, Pantoea, and Alistipes had an upper 2 LDA score in CRE carriers. The alpha-diversity indices were significantly decreased in CRE carriers, and beta-diversity analysis demonstrated that the two groups were clustered significantly apart. Among short-chain fatty acids, the levels of isobutyric acid and valeric acid were significantly decreased in CRE carriers. Furthermore, the PICRUSt-predicted metabolic pathways revealed significant differences in five features, including ATP-binding cassette transporters, phosphotransferase systems, sphingolipid metabolism, other glycan degradation, and microbial metabolism, in diverse environments between the two groups.ConclusionCritically ill patients with CRE have a distinctive gut microbiota composition and community structure, altered short-chain fatty acid production and changes in the metabolic pathways. Further studies are needed to determine whether amino acids supplementation improves microbiota dysbiosis in patients with CRE.
Collapse
Affiliation(s)
- Moon Seong Baek
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Seungil Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won-Young Kim
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- *Correspondence: Jin Won Huh,
| |
Collapse
|
94
|
Sader HS, Carvalhaes CG, Huband MD, Mendes RE, Castanheira M. Antimicrobial activity of ceftibuten-avibactam against a global collection of Enterobacterales from patients with urinary tract infections (2021). Eur J Clin Microbiol Infect Dis 2023; 42:453-459. [PMID: 36810724 PMCID: PMC9998307 DOI: 10.1007/s10096-023-04562-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
We evaluated the in vitro activity of ceftibuten-avibactam against Enterobacterales causing urinary tract infection (UTI). A total of 3216 isolates (1/patient) were consecutively collected from patients with UTI in 72 hospitals from 25 countries in 2021 then susceptibility tested by CLSI broth microdilution. Ceftibuten-susceptible breakpoints currently published by EUCAST (≤ 1 mg/L) and CLSI (≤ 8 mg/L) were applied to ceftibuten-avibactam for comparison. The most active agents were ceftibuten-avibactam (98.4%/99.6% inhibited at ≤ 1/ ≤ 8 mg/L), ceftazidime-avibactam (99.6% susceptible [S]), amikacin (99.1%S), and meropenem (98.2%S). Ceftibuten-avibactam (MIC50/90, 0.03/0.06 mg/L) was fourfold more potent than ceftazidime-avibactam (MIC50/90, 0.12/0.25 mg/L) based on MIC50/90 values. The most active oral agents were ceftibuten (89.3%S; 79.5% inhibited at ≤ 1 mg/L), levofloxacin (75.4%S), and trimethoprim-sulfamethoxazole (TMP-SMX; 73.4%S). Ceftibuten-avibactam inhibited 97.6% of isolates with an extended-spectrum β-lactamase phenotype, 92.1% of multidrug-resistant isolates, and 73.7% of carbapenem-resistant Enterobacterales (CRE) at ≤ 1 mg/L. The second most active oral agent against CRE was TMP-SMX (24.6%S). Ceftazidime-avibactam was active against 77.2% of CRE isolates. In conclusion, ceftibuten-avibactam was highly active against a large collection of contemporary Enterobacterales isolated from patients with UTI and exhibited a similar spectrum to ceftazidime-avibactam. Ceftibuten-avibactam may represent a valuable option for oral treatment of UTI caused by multidrug-resistant Enterobacterales.
Collapse
Affiliation(s)
- Helio S Sader
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA, 52317, USA.
| | - Cecilia G Carvalhaes
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA, 52317, USA
| | - Michael D Huband
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA, 52317, USA
| | - Rodrigo E Mendes
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA, 52317, USA
| | - Mariana Castanheira
- JMI Laboratories, 345 Beaver Kreek Centre, Suite A, North Liberty, IA, 52317, USA
| |
Collapse
|
95
|
Meng L, Liu Z, Liu C, Li C, Shen H, Cao X. The distribution characteristics of global blaOXA-carrying Klebsiella pneumoniae. BMC Infect Dis 2023; 23:182. [PMID: 36991368 PMCID: PMC10053090 DOI: 10.1186/s12879-023-08156-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Objective
To analyze the distribution of blaOXA among global Klebsiella pneumoniae and the characteristics of blaOXA-carrying K. pneumoniae.
Materials and Methods
The genomes of global K. pneumoniae were downloaded from NCBI by Aspera software. After quality check, the distribution of blaOXA among the qualified genomes was investigated by annotation with the resistant determinant database. The phylogenetic tree was constructed for the blaOXA variants based on the single nucleotide polymorphism (SNP) to explore the evolutionary relationship between these variants. The MLST (multi-locus sequence type) website and blastn tools were utilized to determine the sequence types (STs) of these blaOXA-carrying strains. and sample resource, isolation country, date and host were extracted by perl program for analyzing the characteristics of these strains.
Results
A total of 12,356 K. pneumoniae genomes were downloaded and 11,429 ones were qualified. Among them, 4386 strains were found to carry 5610 blaOXA variants which belonged to 27 varieties of blaOXAs, blaOXA-1 (n = 2891, 51.5%) and blaOXA-9 (n = 969, 17.3%) were the most prevalent blaOXA variants, followed by blaOXA-48 (n = 800, 14.3%) and blaOXA-232 (n = 480, 8.6%). The phylogenetic tree displayed 8 clades, three of them were composed of carbapenem-hydrolyzing oxacillinase (CHO). Totally, 300 distinct STs were identified among 4386 strains with ST11 (n = 477, 10.9%) being the most predominant one followed by ST258 (n = 410, 9.4%). Homo sapiens (2696/4386, 61.5%) was the main host for blaOXA-carrying K. pneumoniae isolates. The blaOXA-9-carrying K. pneumoniae strains were mostly found in the United States and blaOXA-48-carrying K. pneumoniae strains were mainly distributed in Europe and Asia.
Conclusion
Among the global K. pneumoniae, numerous blaOXA variants were identified with blaOXA-1, blaOXA-9, blaOXA-48 and blaOXA-232 being the most prevalent ones, indicating that blaOXA rapidly evolved under the selective pressure of antimicrobial agents. ST11 and ST258 were the main clones for blaOXA-carrying K. pneumoniae.
Collapse
|
96
|
Cerini P, Meduri FR, Tomassetti F, Polidori I, Brugneti M, Nicolai E, Bernardini S, Pieri M, Broccolo F. Trends in Antibiotic Resistance of Nosocomial and Community-Acquired Infections in Italy. Antibiotics (Basel) 2023; 12:antibiotics12040651. [PMID: 37107013 PMCID: PMC10135155 DOI: 10.3390/antibiotics12040651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The World Health Organization has recently identified three categories of pathogens, namely: critical, high, and medium priority, according to the need for new antibiotics. Critical priority pathogens include carbapenem-resistant microorganism (CPO) such as A. baumannii and P. aeruginosa, K. pneumoniae, and Enterobacter spp., whereas vancomycin-resistant E. faecium (VRE), methicillin and vancomycin-resistant S. aureus (MRSA) are in the high priority list. We compared the trend of antimicrobial resistants (AMRs) in clinical isolates, divided by year and bacteria spp., of samples obtained from nosocomial and community patients. Patient records were collected, including age, sex, site of infection, isolated organisms, and drug susceptibility patterns. From 2019 to 2022, a total of 113,635 bacterial isolates were tested, of which 11,901 resulted in antimicrobial resistants. An increase in the prevalence of several antibiotics resistant bacteria was observed. Specifically, the percentage of CPO cases increased from 2.62% to 4.56%, the percentage of MRSA increased from 1.84% to 2.81%, and the percentage of VRE increased from 0.58% to 2.21%. AMRs trend resulted in increases in CPO and MRSA for both community and nosocomial. Our work aims to highlight the necessity of preventive and control measures to be adopted in order to reduce the spread of multidrug-resistant pathogens.
Collapse
|
97
|
Carbapenem-resistance worldwide: a call for action - correspondence. Ann Med Surg (Lond) 2023; 85:564-566. [PMID: 36923775 PMCID: PMC10010816 DOI: 10.1097/ms9.0000000000000262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/18/2023] Open
|
98
|
Metagenomic Analysis of the Abundance and Composition of Antibiotic Resistance Genes in Hospital Wastewater in Benin, Burkina Faso, and Finland. mSphere 2023; 8:e0053822. [PMID: 36728456 PMCID: PMC9942590 DOI: 10.1128/msphere.00538-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance is a global threat to human health, with the most severe effect in low- and middle-income countries. We explored the presence of antibiotic resistance genes (ARGs) in the hospital wastewater (HWW) of nine hospitals in Benin and Burkina Faso, two low-income countries in West Africa, with shotgun metagenomic sequencing. For comparison, we also studied six hospitals in Finland. The highest sum of the relative abundance of ARGs in the 68 HWW samples was detected in Benin and the lowest in Finland. HWW resistomes and mobilomes in Benin and Burkina Faso resembled each other more than those in Finland. Many carbapenemase genes were detected at various abundances, especially in HWW from Burkina Faso and Finland. The blaGES genes, the most widespread carbapenemase gene in the Beninese HWW, were also found in water intended for hand washing and in a puddle at a hospital yard in Benin. mcr genes were detected in the HWW of all three countries, with mcr-5 being the most common mcr gene. These and other mcr genes were observed in very high relative abundances, even in treated wastewater in Burkina Faso and a street gutter in Benin. The results highlight the importance of wastewater treatment, with particular attention to HWW. IMPORTANCE The global emergence and increased spread of antibiotic resistance threaten the effectiveness of antibiotics and, thus, the health of the entire population. Therefore, understanding the resistomes in different geographical locations is crucial in the global fight against the antibiotic resistance crisis. However, this information is scarce in many low- and middle-income countries (LMICs), such as those in West Africa. In this study, we describe the resistomes of hospital wastewater in Benin and Burkina Faso and, as a comparison, Finland. Our results help to understand the hitherto unrevealed resistance in Beninese and Burkinabe hospitals. Furthermore, the results emphasize the importance of wastewater management infrastructure design to minimize exposure events between humans, HWW, and the environment, preventing the circulation of resistant bacteria and ARGs between humans (hospitals and community) and the environment.
Collapse
|
99
|
Yang S, He L, Li K, Yu X, Ni L, Hu L, Guo J, Biskup E, Tang L, Wu W. Efficacy of Active Rapid Molecular Screening and IPC Interventions on Carbapenem-Resistant Enterobacterales Infections in Emergency Intensive Care Units without Enough Single-Room Isolation. Infect Drug Resist 2023; 16:1039-1048. [PMID: 36845019 PMCID: PMC9951601 DOI: 10.2147/idr.s396331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose To investigate whether rapid active molecular screening and infection prevention and control (IPC) interventions can reduce colonization or infection with carbapenem-resistant Enterobacterales (CRE) in a general emergency intensive care unit (EICU) without enough single-room isolation. Methods The study was designed as a before-and-after quasi-experiment. Before the experimental period, the ward was rescheduled and the staff were trained. From May 2018 to April 2021, active screening was performed by seminested real-time fluorescent polymerase chain reaction (PCR) detection with rectal swabs from all patients on admission to the EICU, and the results were reported in 1 hour. Other IPC interventions including hand hygiene, contact precautions, patient isolation, environmental disinfection, environment surveillance, monitoring, auditing and feedback were conducted under strict supervision. The patients' clinical characteristics were collected simultaneously. Results In this 3-year study, 630 patients were enrolled and 19.84% of the patients were initially colonized or infected with CRE as shown by active molecular screening. The average drug resistance ratio to carbapenem shown by clinical culture detection of Klebsiella pneumoniae (KPN) before the study was performed was 71.43% in EICU. The drug resistance ratio decreased significantly from 75%, 66.67% to 46.67% in the next 3 years (p<0.05) during which active screening and IPC interventions were strictly executed. While the ratio gaps between EICU and the whole hospital were narrowed from 22.81%, 21.11% to 4.64%. Patients with invasive devices, skin barrier damage, and the recent use of antibiotics on admission were found to have a higher risk of being colonized or infected with CRE (p<0.05). Conclusion Active rapid molecular screening and other IPC interventions may significantly reduce CRE nosocomial infections even in wards without enough single-room isolation. The key to reduce the spread of CRE in the EICU is the strict execution of IPC interventions by all medical staff and healthcare workers.
Collapse
Affiliation(s)
- Simin Yang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lihua He
- Department of Hospital Infection Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ke Li
- Department of Emergency Intensive Care Unit, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lijun Ni
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Liang Hu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ewelina Biskup
- Department of Basic and Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China,Department of Internal Medicine, University Hospital of Basel, Basel, Switzerland
| | - Lunxian Tang
- Department of Emergency Intensive Care Unit, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China,Correspondence: Lunxian Tang; Wenjuan Wu, Tel +86-15921155750; +86-13386057159, Email ;
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
100
|
Zhou J, Wang W, Liang M, Yu Q, Cai S, Lei T, Jiang Y, Du X, Zhou Z, Yu Y. A Novel CMY Variant Confers Transferable High-Level Resistance to Ceftazidime-Avibactam in Multidrug-Resistant Escherichia coli. Microbiol Spectr 2023; 11:e0334922. [PMID: 36786629 PMCID: PMC10100771 DOI: 10.1128/spectrum.03349-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Here, our objective was to explore the molecular mechanism underlying ceftazidime-avibactam resistance in a novel CMY-178 variant produced by the clinical Escherichia coli strain AR13438. The antibiotic susceptibility of the clinical isolate, its transconjugants, and its transformants harboring transferable blaCMY were determined by the agar dilution method. S1-PFGE, cloning experiments, and whole-genome sequencing (WGS) were performed to investigate the molecular characteristics of ceftazidime-avibactam resistance genes. Kinetic parameters were compared among the purified CMY variants. Structural modeling and molecular docking were performed to assess the affinity between the CMYs and drugs. The horizontal transferability of the plasmid was evaluated by a conjugation experiment. The fitness cost of the plasmid was analyzed by determining the maximal growth rate, the maximum optical density at 600 nm (OD600), and the duration of the lag phase. AR13438, a sequence type 457 E. coli strain, was resistant to multiple cephalosporins, piperacillin-tazobactam, and ceftazidime-avibactam at high levels and was susceptible to carbapenems. WGS and cloning experiments indicated that a novel CMY gene, blaCMY-178, was responsible for ceftazidime-avibactam resistance. Compared with the closely related CMY-172, CMY-178 had a nonsynonymous amino acid substitution at position 70 (Asn70Thr). CMY-178 increased the MICs of multiple cephalosporins and ceftazidime-avibactam compared with CMY-172. The kinetic constant Ki values of CMY-172 and CMY-178 against tazobactam were 2.12 ± 0.34 and 2.49 ± 0.51 μM, respectively. Structural modeling and molecular docking indicated a narrowing of the CMY-178 ligand-binding pocket and its entrance and a stronger positive charge at the pocket entrance compared with those observed with CMY-172. blaCMY-178 was located in a 96.9-kb IncI1-type plasmid, designated pAR13438_2, which exhibited high transfer frequency without a significant fitness cost. In conclusion, CMY-178 is a novel CMY variant that mediates high-level resistance to ceftazidime-avibactam by enhancing the ability to hydrolyze ceftazidime and reducing the affinity for avibactam. Notably, blaCMY-178 could be transferred horizontally at high frequency without fitness costs. IMPORTANCE Ceftazidime-avibactam is a novel β-lactam-β-lactamase inhibitor (BLBLI) combination with powerful activity against Enterobacterales isolates producing AmpC, such as CMY-like cephalosporinase. However, in recent years, CMY variants have been reported to confer ceftazidime-avibactam resistance. We reported a novel CMY variant, CMY-178, that confers high-level ceftazidime-avibactam resistance with potent transferability. Therefore, this resistance gene is a tremendous potential menace to public health and needs attention of clinicians.
Collapse
Affiliation(s)
- Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Liang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiqi Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Du
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|