51
|
Patel SK, Vikram A, Pathania D, Chugh R, Gaur P, Prajapati G, Kotian SY, Satyanarayana GNV, Yadav AK, Upadhyay AK, Ray RS, Dwivedi A. Allergic potential & molecular mechanism of skin sensitization of cinnamaldehyde under environmental UVB exposure. CHEMOSPHERE 2024; 368:143508. [PMID: 39384131 DOI: 10.1016/j.chemosphere.2024.143508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Fragrance, a key ingredient in cosmetics, often triggers skin allergy causes rashes, itching, dryness, and cracked or scaly skin. Cinnamaldehyde (CA), derived from the bark of the cinnamon tree, used as a fragrance and is a moderate skin sensitizer. CA exhibits strong UVB absorption, its allergic potential and the molecular mechanisms underlying skin sensitization under UVB exposure remain largely unexplored. To investigate the allergic potential and molecular mechanisms of CA-induced skin sensitization under ambient UVB radiation, we employed various alternative in-silico, in-chemico and in-vitro tools. CA under ambient UVB isomerizes from trans to cis CA after 1hr of exposure. Furthermore, DPRA assay and docking with simulation studies demonstrated the enhanced allergic potential of cis-CA. Additionally, our study evaluated intracellular ROS levels and the expression of Nrf2, Catalase, and MMP-2, and 9 in KeratinoSens cells, showing significant upregulation under UVB exposure in the presence of CA. Moreover, our findings indicate that CA activates THP-1 cells co-stimulatory surface marker (CD86) via the activation of intracellular ROS, phagocytosis, and genes of the TLR4 pathway. These insights into the mechanisms uncovered by our study are crucial for managing triggers of allergic skin diseases caused by fragrance use and concurrent exposure to environmental UVB/sunlight.
Collapse
Affiliation(s)
- Sunil Kumar Patel
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Apeksha Vikram
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Diksha Pathania
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rashi Chugh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Prakriti Gaur
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Gaurav Prajapati
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sumana Y Kotian
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - G N V Satyanarayana
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Akhilesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, ASSIST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
52
|
Silva DNA, Monajemzadeh S, Casarin M, Chalmers J, Lubben J, Magyar CE, Tetradis S, Pirih FQ. Diabetes mellitus exacerbates inflammation in a murine model of ligature-induced peri-implantitis: A histological and microtomographic study. J Clin Periodontol 2024; 51:1511-1523. [PMID: 39135333 PMCID: PMC11487626 DOI: 10.1111/jcpe.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 10/19/2024]
Abstract
AIM To investigate the influence of diabetes mellitus (DM) in a murine model of peri-implantitis (PI). MATERIALS AND METHODS Twenty-seven 4-week-old C57BL/6J male mice had their first and second maxillary left molars extracted. Eight weeks later, one machined implant was placed in each mouse. Four weeks after osseointegration, the mice were divided into three groups: (a) control (C), (b) PI and (c) DM + PI. DM was induced by streptozotocin (STZ) administration. After DM induction, PI was induced using ligatures for 2 weeks. The hemimaxillae were collected for micro-CT and histological analyses. The primary outcomes consisted of linear (mm) and volumetric (mm3) bone loss. Secondary outcomes were based on histological analysis and included inflammatory infiltrate, osteoclastic activity, matrix organization, composition and remodelling. Data are presented as means ± SEM. Statistical analyses were performed using one-way ANOVA, followed by Tukey's test. RESULTS Gingival tissue oedema was detected in the PI and DM + PI groups. Micro-CT showed significantly increased linear and volumetric bone loss in the DM + PI group compared to the C and PI groups. H&E staining showed greater inflammatory response and bone resorption in the PI and DM + PI groups than in the C group. The DM + PI group had significantly higher osteoclast numbers than the C and PI groups. Picrosirius red stained less for types I and III collagen in the PI and DM + PI groups than in the C group. There was a significant increase in monocyte/macrophage (CD-11b) counts and matrix metalloproteinases (MMP-2 and MMP-8) marker levels and a significant decrease in the matrix metalloproteinases inhibition marker (TIMP-2) levels in the DM + PI group compared to the C and PI groups. CONCLUSIONS DM exacerbates PI-induced soft-tissue inflammation, matrix degradation and bone loss.
Collapse
Affiliation(s)
- Davi N. A. Silva
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Sepehr Monajemzadeh
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Maísa Casarin
- School of Dentistry, Federal University of Pelotas,
Pelotas, Brazil
| | - Jaclyn Chalmers
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Jacob Lubben
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| | - Clara E. Magyar
- Department of Pathology and Laboratory Medicine, David
Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA,
USA
| | - Sotirios Tetradis
- Section of Oral and Maxillofacial Radiology, University of
California, Los Angeles, CA, USA
| | - Flavia Q. Pirih
- Section of Periodontics, School of Dentistry, University of
California, Los Angeles, CA, USA
| |
Collapse
|
53
|
Wen S, Zheng X, Yin W, Liu Y, Wang R, Zhao Y, Liu Z, Li C, Zeng J, Rong M. Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application. Stem Cell Res Ther 2024; 15:389. [PMID: 39482701 PMCID: PMC11526537 DOI: 10.1186/s13287-024-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Periodontitis, a globally prevalent chronic inflammatory disease is characterized by the progressive degradation of tooth-supporting structures, particularly the periodontal ligament (PDL), which can eventually result in tooth loss. Despite the various clinical interventions available, most focus on symptomatic relief and lack substantial evidence of supporting the functional regeneration of the PDL. Dental stem cells (DSCs), with their homology and mesenchymal stem cell (MSC) properties, have gained significant attention as a potential avenue for PDL regeneration. Consequently, multiple therapeutic strategies have been developed to enhance the efficacy of DSC-based treatments and improve clinical outcomes. This review examines the mechanisms by which DSCs and their derivatives promote PDL regeneration, and explores the diverse applications of exogenous implantation and endogenous regenerative technology (ERT) aimed at amplifying the regenerative capacity of endogenous DSCs. Additionally, the persistent challenges and controversies surrounding DSC therapies are discussed, alongside an evaluation of the limitations in current research on the underlying mechanisms and innovative applications of DSCs in PDL regeneration with the aim of providing new insights for future development. Periodontitis, a chronic inflammatory disease, represents a major global public health concern, affecting a significant proportion of the population and standing as the leading cause tooth loss in adults. The functional periodontal ligament (PDL) plays an indispensable role in maintaining periodontal health, as its structural and biological integrity is crucial for the long-term prognosis of periodontal tissues. It is widely recognized as the cornerstone of periodontal regeneration Despite the availability of various treatments, ranging from nonsurgical interventions to guided tissue regeneration (GTR) techniques, these methods have shown limited success in achieving meaningful PDL regeneration. As a result, the inability to fully restore PDL function underscores the urgent need for innovative therapeutic strategies at reconstructing this essential structure. Stem cell therapy, known for its regenerative and immunomodulatory potential, offers a promising approach for periodontal tissue repair. Their application marks a significant paradigm shift in the treatment of periodontal diseases, opening new avenues for functional PDL regeneration. However, much of the current research has primarily focused on the regeneration of alveolar bone and gingiva, as these hard and soft tissues can be more easily evaluated through visual assessment. The complexity of PDL structure, coupled with the intricate interactions among cellular and molecular components, presents significant scientific and clinical hurdles in translating DSC research into practical therapeutic applications. This review provides a thorough exploration of DSC dynamics in periodontal regeneration, detailing their origins, properties, and derived products, while also examining their potential mechanisms and applications in PDL regeneration. It offers an in-depth analysis of the current research, landscape, acknowledging both the progress made and the challenges that remain in bridging the gap between laboratory findings and clinical implementation. Finally, the need for continued investigation into the intricate mechanisms governing DSC behavior and the optimization of their use in regenerative therapies for periodontal diseases is also emphasized.
Collapse
Affiliation(s)
- Shuyi Wen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wuwei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yushan Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ruijie Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yaqi Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, 528308, China
| | - Cong Li
- Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, 523000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
54
|
Muchova M, Kuehne SA, Grant MM, Smith PP, Nagi M, Chapple ILC, Hirschfeld J. Fusobacterium nucleatum elicits subspecies-specific responses in human neutrophils. Front Cell Infect Microbiol 2024; 14:1449539. [PMID: 39450334 PMCID: PMC11499235 DOI: 10.3389/fcimb.2024.1449539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
Fusobacterium nucleatum as a Gram-negative anaerobe plays a key bridging role in oral biofilms. It is involved in periodontal and extraoral diseases, the most prominent being colorectal cancer. Five subspecies are recognised: animalis, fusiforme, nucleatum, polymorphum and vincentii. Subspecies interact with neutrophils constantly patrolling tissues to remove microbial intruders. Neutrophil antimicrobial activities include generation of reactive oxygen species (ROS), formation of neutrophil extracellular traps (NETs) and release of cytokines and neutrophil enzymes. Subspecies-specific differences in immunogenicity have previously been observed in a neutrophil-like cell line but were not investigated in human neutrophils. Additionally, neutrophil responses to planktonic and biofilm-grown F. nucleatum have not been studied to date. The aims of this study were to compare the immunogenicity of planktonic and biofilm-grown F. nucleatum and to investigate potential differences in human neutrophil responses when stimulated with individual F. nucleatum subspecies. Human neutrophils isolated from peripheral blood were stimulated with planktonic and biofilm-grown F. nucleatum subspecies. Generation of ROS and NET formation were quantified by luminescence and fluorescence assays, respectively. Secretion of cytokines (IL-1β, TNF-α, IL-6, IL-8), neutrophil elastase and matrix metalloproteinase-9 was quantified by enzyme-linked immunosorbent assay (ELISA). Neutrophil responses showed biofilm-grown bacteria induced a significantly higher total and intracellular ROS response, as well as shorter time to total ROS release. Biofilm-grown F. nucleatum led to significantly lower IL-1β release. We found significant differences among individual subspecies in terms of total, intracellular ROS and extracellular superoxide. Subspecies polymorphum stimulated the highest mean amount of NET release. Amounts of cytokines released differed significantly among subspecies, while no differences were found in lysosomal enzyme release. Immunogenicity of F. nucleatum in human neutrophils is highly subspecies-specific in vitro with regard to ROS release and cytokine production. Understanding subspecies-specific immunogenicity of F. nucleatum may facilitate the discovery of novel therapeutic targets in F. nucleatum-mediated diseases.
Collapse
Affiliation(s)
- Maria Muchova
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Sarah A. Kuehne
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Melissa M. Grant
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| | - Peter P. Smith
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Malee Nagi
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Iain L. C. Chapple
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| | - Josefine Hirschfeld
- Periodontal Research Group, Birmingham School of Dentistry, Institute of Clinical Sciences, The University of Birmingham, Birmingham, United Kingdom
- Birmingham Dental Hospital, Birmingham Community Health National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Birmingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre (BRC) in Inflammation, Birmingham University, Birmingham, United Kingdom
| |
Collapse
|
55
|
Khan S, Khan NU, Khan Y, Shehzad I, Alanzi AR, Chen T. Preliminary investigation of MMP8 (rs11225395) and MMP9 (rs3787268) polymorphisms association with breast cancer risk in pashtun women of Pakistan. Mol Biol Rep 2024; 51:1034. [PMID: 39361067 DOI: 10.1007/s11033-024-09968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Single Nucleotide polymorphisms (SNPs) in MMP8 and MMP9 have been widely associated with breast cancer risk in different ethnicities with inconsistent results. There is no such study conducted so far in the Pashtun population of Khyber Pakhtunkhwa, Pakistan. Therefore, this study was conducted to check MMP8 (rs11225395) and MMP9 (rs3787268) polymorphism with breast cancer risk in the selected population. METHODS This study, consisting of 300 breast cancer patients and 168 gender and age-matched healthy controls was subjected to confirm MMP8 and MMP9 polymorphisms. Clinicopathological data and blood samples were taken from all the participants. DNA was extracted and SNPs were confirmed using the T-ARMS-PCR protocol. RESULTS Based on our study results, significant associations were observed between the MMP8 rs11225395 risk allele (G) and increased breast cancer risk, with the G allele frequency higher in patients (65%) compared to controls (51%) (OR = 1.752, 95% CI = 1.423-3.662, p = 0.002). Genotypes GG (OR = 4.218, p = 0.005) and AG (OR = 7.286, p = 0.0001) of MMP8 rs11225395 were also significantly associated with elevated breast cancer risk. Similarly, MMP9 rs3787268 exhibited a higher frequency of the risk allele (A) in breast cancer cases (81%) compared to controls (41%), correlating strongly with increased risk (OR = 6.320, p = 0.0001). Genotypes AA (OR = 14.500, p = 0.0001) and AG (OR = 2.429, p = 0.077) of MMP9 rs3787268 containing the risk allele showed significant associations with heightened breast cancer risk. Subgroup analyses based on age, disease progression, tumor size, and grade revealed noteworthy associations for both MMP8 rs11225395 and MMP9 rs3787268. MMP8 rs11225395 genotypes displayed significant correlations with age (p = 0.066), disease progression (p = 0.0001), larger tumor size (p = 0.005), and higher tumor grade (p = 0.006). Similarly, MMP9 rs3787268 genotypes were significantly associated with age (p = 0.001), disease progression (p = 0.010), larger tumor size (p = 0.018), and higher tumor grade (p = 0.037). Logistic regression analyses further underscored these genetic variants' potential role as biomarkers in breast cancer, particularly in relation to specific hormone receptor statuses such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) positivity. CONCLUSION The results revealed significant associations between the mutant alleles and genotypes of MMP8 (rs11225395) and MMP9 (rs3787268) with increased breast cancer risk in the Pashtun population of Khyber Pakhtunkhwa, Pakistan. However, more investigation will be required on large data sets to confirm the selected SNPs and other SNPs in the selected and other related genes with the risk of breast cancer.
Collapse
Affiliation(s)
- Shehla Khan
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, 25130, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, 25130, Pakistan.
| | - Yumna Khan
- Institute of Biotechnology & Genetic Engineering (Health Division), The University of Agriculture Peshawar, Peshawar, 25130, Pakistan
| | - Iqra Shehzad
- School of Mechanical and Manufacturing Engineering, NUST, Islamabad, 44000, Pakistan
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tianhui Chen
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
56
|
Rani Safitri C, Sidharta W, Kusumaningsih A, Wicaksono FM, Aljunaid M, Krismariono A. The effect of curcumin 1% methanolic extract on the expression of Matrix Metalloproteinase-1, Matrix Metalloproteinase-8, Matrix Metalloproteinase-13, neutrophil, macrophage, lymphocyte counts in Porphyromonas gingivalis induced periodontitis: a randomized controlled trial. Saudi Dent J 2024; 36:1339-1343. [PMID: 39525936 PMCID: PMC11544299 DOI: 10.1016/j.sdentj.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 11/16/2024] Open
Abstract
Objective Hailed as one of the most fundamental and important treatment in management of periodontal disease, scalling and root planning has limitations regarding microorganism elimination. Meanwhile, turmeric has been proven to have a therapeutic effect on gingivitis and periodontitis. This study aimed to analyze the impact of curcumin 1% methanolic extract on the expression of Matrix Metalloproteinase-1, Matrix Metalloproteinase-8, Matrix Metalloproteinase -13, neutrophil, macrophage, and lymphocyte number in the gingiva of Wistar rats exposed to Porphyromonas gingivalis bacteria (P. gingivalis). Materials and methods The experimental animals used were Wistar rats, arbitrarilly split up into three experimental groups namely: normal, control (induced with periodontitis, received no treatment), and treatment (Periodontitis with 1% curcumin treatment). The samples were taken from the gingival tissue of the mandibular incisors on 1 and 7 days. Immunohistochemical and Hematoxylin Eosin staining were performed to measure the expression of Matrix Metalloproteinase-1, Matrix Metalloproteinase-8, Matrix Metalloproteinase-13, and the number of neutrophils, macrophages, and lymphocytes. Data were analyzed for mean standard deviation. The Oneway ANOVA was then performed to see whether there is a significant difference between experimental groups, the test then commenced with Tukey's Honestly Significant Difference test with a significance level (α=0.05). Results MMP-8, MMP-13, neutrophil, and lymphocyte numbers in the treatment groups were significantly lower with P<0.05 than in the control groups in the 1 and 7 days. Meanwhile, in MMP-1 and macrophage numbers the difference was deemed not significant when control and treatment groups are compared. Conclusion The administration of 1% curcumin can significantly reduce the expression of MMP-8, MMP-13, neutrophil and lymphocyte cell numbers, but there is no reducing the number of macrophage cells and MMP-1 expression in gingiva of Wistar rats exposed to P. gingivalis bacteria.
Collapse
Affiliation(s)
- Chika Rani Safitri
- Resident of Periodontic Residency Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wiet Sidharta
- Resident of Periodontic Residency Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Artanti Kusumaningsih
- Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Farisa Miyuki Wicaksono
- Undergraduate Student, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - M. Aljunaid
- Department of Oral and Dental Medicine, Faculty of Medicine, Taiz University, Taiz, Yemen
| | - Agung Krismariono
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
57
|
Muhammad Ridho F, Julyanto Syachputra A, Dias Nur'aini A, Ulfah K, Faqih M, Nurhuda A. Pre-clinical and clinical efficacy of curcumin as an anti-inflammatory agent for periodontitis. A systematic review. REVISTA CIENTÍFICA ODONTOLÓGICA 2024; 12:e222. [PMID: 39912085 PMCID: PMC11792608 DOI: 10.21142/2523-2754-1204-2024-222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction There is ongoing exploration into herbal treatments to identify adjunct therapies with minimal side effects. One such treatment involves curcumin from turmeric (Curcuma longa). This study aims to review the efficacy of curcumin as an anti-inflammatory agent for periodontitis along with the mechanisms of action involved. Methods A systematic review of pre-clinical and clinical studies published on Scopus, PubMed, ScienceDirect, and Google Scholar up to May 2024 was employed following the PRISMA guidelines. Three tools were used for risk of bias assessment, namely the QUIN tool for in vitro studies, the SYRCLE's RoB for in vivo studies, and the Cochrane RoB 2 for RCTs. Finally, nineteen studies were included for review. Results This study highlights curcumin's efficacy in addressing periodontitis through diverse mechanisms. Curcumin demonstrated efficacy in attenuating inflammation within periodontal tissue by inhibiting several pro-inflammatory cytokines and mediators such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, matrix metalloproteinases (MMPs), prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, while concurrently increasing IL-4 and IL-10. In addition, several transcription factors such as nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 1 (STAT1) were also inhibited by curcumin. Administration of curcumin has additionally been demonstrated to reduce other biomarkers of periodontitis, including C-reactive protein (CRP), alkaline phosphatase (ALP), and procalcitonin (PCT). Conclusion Curcumin has been shown to be effective as an adjunct therapeutic agent for periodontitis due to its anti-inflammatory effects by reducing the inflammatory response through a diverse range of mechanisms of action.
Collapse
Affiliation(s)
- Fiki Muhammad Ridho
- Dental Profession Program, Faculty of Dental Medicine, Universitas Airlangga. Surabaya, Indonesia. Dental Profession Program Faculty of Dental Medicine Universitas Airlangga Surabaya Indonesia
| | - Andika Julyanto Syachputra
- Department of Biology, Faculty of Biology, Universitas Gadjah Mada. Yogyakarta, Indonesia. Department of Biology Faculty of Biology Universitas Gadjah Mada Yogyakarta Indonesia
| | - Anisa Dias Nur'aini
- Pharmacist Profession Program, Faculty of Pharmacy, Universitas Ahmad Dahlan. Yogyakarta, Indonesia. Pharmacist Profession Program Faculty of Pharmacy Universitas Ahmad Dahlan Yogyakarta Indonesia
| | - Kamailiya Ulfah
- Veterinarian Profession Program, Faculty of Veterinary Medicine, Universitas Airlangga. Surabaya, Indonesia. Veterinarian Profession Program Faculty of Veterinary Medicine Universitas Airlangga Surabaya Indonesia
| | - Muhamad Faqih
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia. Johor Bahru, Malaysia. Department of Bioprocess Engineering Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Andang Nurhuda
- Undergraduate Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya. Surabaya, Indonesia. Undergraduate Program Faculty of Mathematics and Natural Sciences Universitas Negeri Surabaya Surabaya Indonesia
| |
Collapse
|
58
|
Korczeniewska OA, Dakshinamoorthy J, Prabhakar V, Lingaiah U. Genetics Affecting the Prognosis of Dental Treatments. Dent Clin North Am 2024; 68:659-692. [PMID: 39244250 DOI: 10.1016/j.cden.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Genetics plays a significant role in determining an individual's susceptibility to dental diseases, the response to dental treatments, and the overall prognosis of dental interventions. Here, the authors explore the various genetic factors affecting the prognosis of dental treatments focusing on dental caries, orthodontic treatment, oral cancer, prosthodontic treatment, periodontal disease, developmental disorders, pharmacogenetics, and genetic predisposition to faster wound healing. Understanding the genetic underpinnings of dental health can help personalize treatment plans, predict outcomes, and improve the overall quality of dental care.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, Room D-880, Newark, NJ 07101, USA
| | - Janani Dakshinamoorthy
- GeneAura Pvt. Ltd, AP1166, 4th street, Anna Nagar, Thendral Colony, Chennai 600040, India.
| | - Vaishnavi Prabhakar
- Department of Dental Sciences Dr. M.G.R. Educational And Research Institute Periyar E.V.R. High Road, (NH 4 Highway) Maduravoyal, Chennai 600095, India
| | - Upasana Lingaiah
- Upasana Lingaiah, Department of Oral Medicine and Radiology, V S Dental College and Hospital, Room number 1, K R Road, V V Puram, Bengaluru, Karnataka 560004, India
| |
Collapse
|
59
|
Fadli NA, Abdul Rahman M, Karsani SA, Ramli R. Oral and Gingival Crevicular Fluid Biomarkers for Jawbone Turnover Diseases: A Scoping Review. Diagnostics (Basel) 2024; 14:2184. [PMID: 39410587 PMCID: PMC11475764 DOI: 10.3390/diagnostics14192184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Gingival crevicular fluid (GCF) and oral fluid have emerged as promising diagnostic tools for detecting biomarkers. This review aimed to evaluate the existing literature on using oral fluids as a source of biomarkers for bone turnover diseases affecting the jawbone. A comprehensive search strategy was executed between August 2014 and August 2024 across five major databases (Web of Science, EBSCOhost Dentistry & Oral Sciences Source, Cochrane Library, Scopus, and PubMed) and grey literature sources. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) was applied. The screening was facilitated using Rayyan at rayyan.ai and Endnote X20 software tools, culminating in the evaluation of 14,965 citations from databases and 34 from grey literature. Following rigorous scrutiny, 37 articles were selected for inclusion in this review, encompassing diseases such as periodontitis, medication-related osteonecrosis of the jaw (MRONJ), and osteoporosis. The quality of the included observational studies was assessed using the Revised Risk of Bias Assessment Tool for Non-Randomized Studies (RoBANS 2). Interleukin-1 beta (IL-1β), sclerostin, osteoprotegerin (OPG), and interleukin-34 (IL-34) emerged as significant biomarkers in GCF, and they were mainly from periodontitis and osteoporosis. Osteocalcin (OC), IL-1β, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), OPG, and matrix metalloproteinase-9 (MMP-9) were significant in oral fluid or saliva, and they were from periodontitis, MRONJ, and osteoporosis. These findings underscore the potential use of oral fluids, which are regarded as non-invasive tools for biomarker identification in bone turnover. Many biomarkers overlap, and it is important to identify other specific biomarkers to enable accurate diagnosis of these conditions.
Collapse
Affiliation(s)
- Nurfatima Azzahra Fadli
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Mariati Abdul Rahman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Roszalina Ramli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
60
|
Jansson L, Lundmark A, Modin C, Gustafsson A, Yucel-Lindberg T. Levels of matrix metalloproteinase-1 (MMP-1), MMP-2, MMP-3, osteopontin, pentraxin-3, and thymic stromal lymphopoietin in crevicular fluid samples from peri-implantitis, periodontitis, and healthy sites. J Periodontal Res 2024. [PMID: 39327373 DOI: 10.1111/jre.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024]
Abstract
AIM Periodontitis and peri-implantitis are chronic inflammatory diseases characterized by the destruction of supporting tissues. Despite some similarities, it is essential to understand the differences in how these diseases elicit unique host responses within the oral tissues, including the production of selected matrix metalloproteinases (MMPs) and inflammatory mediators involved in tissue remodelling. The aim of this study was to evaluate the levels of proteolytic enzymes MMP-1, MMP-2, MMP-3, as well as the inflammatory mediators osteopontin (OPN), pentraxin-3 (PTX3), and thymic stromal lymphopoietin (TSLP) in crevicular fluid samples collected from healthy, periodontitis-affected, and peri-implantitis sites. METHODS Gingival crevicular fluid (GCF) and peri-implant crevicular fluid (PICF) samples were collected from healthy and diseased teeth and implant sites of 163 patients. The MMP-1, MMP-2, MMP-3, OPN, PTX3, and TSLP levels were determined using commercially available immunoassays. A linear mixed model procedure was adopted for multilevel analyses, using biomarker levels as the outcome variable to compare two types of sites. The diagnostic accuracy of the biomarkers was evaluated by Youden's index to estimate the sensitivity, specificity and the area under curve (AUC). RESULTS The levels of MMP-1, MMP-2, MMP-3, OPN, and TSLP were higher at sites with periodontitis and peri-implantitis compared to the levels at sites with healthy teeth and healthy implants. No significant differences were observed in the levels of the measured markers between the sites diagnosed with periodontitis and those diagnosed with peri-implantitis. The highest diagnostic potential at implant sites was found for MMP-2 (AUC = 0.74) and TSLP (AUC = 0.72). The highest AUC (0.82) at tooth sites was found for OPN. CONCLUSIONS The findings indicate that the proteolytic enzyme MMP-2 and the cytokine TSLP might be potential biomarkers for both periodontitis and peri-implantitis, whereas the proinflammatory cytokine OPN may serve as a biomarker for periodontitis. Further studies are required to confirm the utility of these biomarkers and explore their potential clinical applications.
Collapse
Affiliation(s)
- Leif Jansson
- Folktandvården Stockholms län AB, Folktandvården Eastmaninstitutet, Department of Periodontology, Stockholm, Sweden
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Anna Lundmark
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
| | - Carolina Modin
- Folktandvården Stockholms län AB, Folktandvården Eastmaninstitutet, Department of Periodontology, Stockholm, Sweden
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Anders Gustafsson
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
61
|
Azimi N, Khanmohammadi MM, Mesbahian S, Khatibzadeh M, Vatanpour M, Moshari A. Matrix metalloproteinase 9 level changes in gingival crevicular fluid samples of teeth with acute and chronic apical periodontitis. Dent Res J (Isfahan) 2024; 21:52. [PMID: 39512581 PMCID: PMC11542748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 11/15/2024] Open
Abstract
Background This study investigates the influence of dental pulp and periapical status on inflammatory mediators, particularly matrix metalloproteinases (MMPs), which contribute to tissue destruction around the teeth and the development of periodontitis. This study aimed to compare MMP-9 levels in the gingival crevicular fluid (GCF) between the cases of acute apical periodontitis, chronic apical periodontitis, and healthy controls before and after root canal treatment (RCT). Materials and Methods This prospective, cohort study involved 19 samples each of acute and chronic periodontitis cases, both before and after RCT, along with 18 samples from healthy control teeth. The samples were collected from the GCF using paper cones. After 2 weeks of RCT, the process was repeated. MMP-9 levels were measured using the enzyme-linked immunosorbent assay technique. Statistical analysis was performed using the paired t-test and analysis of variance test and the significance level was set at < 0.05. Results Before treatment, there was no significant difference in MMP-9 levels between the healthy (0.476 μg/μL) and acute (0.48 μg/μL) groups; however, significant differences were observed between the healthy and chronic (0.534 μg/μL) groups. In addition, MMP-9 levels differed significantly between the acute and chronic groups before treatment. Post-treatment, the healthy group showed no notable difference compared to either patient group. However, a significant difference was observed between the acute (0.445 μg/μL) and chronic (0.491 μg/μL) groups after treatment. Conclusion Our findings suggest that MMP-9 levels in GCF increase during periapical inflammation and decrease after endodontic treatment. MMP-9 may serve as a potential diagnostic biomarker for pulp and periapical inflammation, enhancing our understanding of these clinical conditions and informing future therapeutic strategies.
Collapse
Affiliation(s)
- Nozhan Azimi
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sarvin Mesbahian
- Student Research Committee, Dental Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mozhgan Khatibzadeh
- Student Research Committee, Dental Branch, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mehdi Vatanpour
- Department of Endodontics, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirabbas Moshari
- Department of Endodontics, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
62
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
63
|
Xie C, Dong JZ, Lu BS, Yan PY, Zhao YS, Ding XY, Lv CE, Zheng X. Pharmacology and therapeutic potential of agarwood and agarwood tree leaves in periodontitis. Front Pharmacol 2024; 15:1468393. [PMID: 39323637 PMCID: PMC11422227 DOI: 10.3389/fphar.2024.1468393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
The main bioactive components of agarwood, derived from Aquilaria sinensis, include sesquiterpenes, 2-(2-phenethyl) chromone derivatives, aromatic compounds, and fatty acids, which typically exert anti-inflammatory, antioxidant, immune-modulating, hypoglycemic, and antitumor pharmacological effects in the form of essential oils. Agarwood tree leaves, rich in flavonoids, 2-(2-phenethyl) chromone compounds, and flavonoid compounds, also exhibit significant anti-inflammatory, antioxidant, and immune-modulating effects. These properties are particularly relevant to the treatment of periodontitis, given that inflammatory responses, oxidative stress, and immune dysregulation are key pathological mechanisms of the disease, highlighting the substantial potential of agarwood and agarwood tree leaves in this therapeutic area. However, the low solubility and poor bioavailability of essential oils present challenges that necessitate the development of improved active formulations. In this review, we will introduce the bioactive components, extraction methods, pharmacological actions, and clinical applications of agarwood and agarwood tree leaves, analyzing its prospects for the treatment of periodontitis.
Collapse
Affiliation(s)
- Chen Xie
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Jing-Zhe Dong
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Bing-Shuai Lu
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Peng-Yao Yan
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Yun-Shan Zhao
- Integrated Department, Hainan Stomatological Hospital, Haikou, China
| | - Xin-Yue Ding
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Cheng-En Lv
- School of Stomatology, Hainan Medical University, Haikou, China
| | - Xu Zheng
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- School of Stomatology, Hainan Medical University, Haikou, China
| |
Collapse
|
64
|
Jung JS, Choi GH, Lee H, Ko Y, Ji S. The Clinical Effect of a Propolis and Mangosteen Extract Complex in Subjects with Gingivitis: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial. Nutrients 2024; 16:3000. [PMID: 39275315 PMCID: PMC11396876 DOI: 10.3390/nu16173000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study investigated the efficacy and safety of a propolis-mangosteen extract complex (PMEC) on gingival health in patients with gingivitis and incipient periodontitis. A multicentered, randomized, double-blind, placebo-controlled trial involving 104 subjects receiving either PMEC or placebo for eight weeks was conducted. The primary focus was on the changes in inflammatory biomarkers from gingival crevicular fluid (GCF), with clinical parameters as secondary outcomes. The results revealed that the PMEC group showed a significantly reduced expression of all measured GCF biomarkers compared to the placebo group (p < 0.0001) at 8 weeks, including substantial reductions in IL-1β, PGE2, MMP-8, and MMP-9 levels compared to the baseline. While clinical parameters trended towards improvement in both groups, the intergroup differences were not statistically significant. No significant adverse events were reported, indicating a favorable safety profile. These findings suggest that PMEC consumption can attenuate gingival inflammation and mitigate periodontal tissue destruction by modulating key inflammatory mediators in gingival tissue. Although PMEC shows promise as a potential adjunctive therapy for supporting gingival health, the discrepancy between biomarker improvements and clinical outcomes warrants further investigation to fully elucidate its therapeutic potential in periodontal health management.
Collapse
Affiliation(s)
- Jae-Suk Jung
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Geum-Hee Choi
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Heelim Lee
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Youngkyung Ko
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Suk Ji
- Department of Periodontology, Institute of Oral Health Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
65
|
Zhou L, Wu Y, Bai Z, Bian J, Xie H, Chen C. Effects of 10-MDP calcium salt on osteoblasts and fibroblasts. Dent Mater 2024; 40:1322-1331. [PMID: 38876824 DOI: 10.1016/j.dental.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE 10-methacryloyloxidecyl dihydrogen phosphate monomer (10-MDP) is commonly used as a bonding monomer in universal adhesives. Adhesives that contain this monomer can directly contact the surrounding periodontium due to the chemical binding of 10-MDP with hydroxyapatite in hard tissue to form calcium salts. However, the effect of these calcium salts on the periodontium in the case of subgingival fillings remains poorly understood. The objective of this study was to investigate effects of 10-MDP calcium salts on osteoblasts and fibroblasts in the periodontal tissues. METHODS This study investigated the effects of different concentrations of 10-MDP calcium salts on the migration, proliferation, and differentiation of osteoblasts (MC3T3-E1) and fibroblasts (L929); additionally, the effect on apoptosis and matrix metalloproteinases (MMPs) expression in these cells was evaluated. Cell proliferation assay, alkaline phosphatase (ALP) activity assay, Western blotting, and quantitative real-time polymerase chain reaction were performed to determine the effects. RESULTS The 10-MDP calcium salts (within a concentration of 0.5 mg/mL) showed no cytotoxicity and did not seem to influence the apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) levels in the cells. However, they had an inhibitory effect on the secretion of MMP2 and MMP9 in the osteoblasts and fibroblasts. The ALP activity assay and Alizarin Red staining did not reveal any significant effects of the 10-MDP calcium salts on osteoblast differentiation. SIGNIFICANCE These results suggest that applying 10-MDP-containing adhesives to subgingival fillings may be safe and beneficial for the periodontal tissues.
Collapse
Affiliation(s)
- Lvhui Zhou
- Department of Endodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yumin Wu
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zehua Bai
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Bian
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haifeng Xie
- Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China.
| |
Collapse
|
66
|
Dolińska E, Skurska A, Pietruska M, Dymicka-Piekarska V, Milewski R, Sculean A. Effect of nonsurgical periodontal therapy with additional photodynamic therapy on the level of MMP-9 and TIMP-1 in GCF in chronic periodontitis patients-a preliminary pilot study. Adv Med Sci 2024; 69:362-367. [PMID: 39059469 DOI: 10.1016/j.advms.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/17/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) catalyze degradation of extracellular matrix proteins. The activity of MMPs is controlled by tissue inhibitors of metalloproteinases (TIMPs). An imbalance in the MMP-9/TIMP-1 ratio has been linked with chronic periodontitis (CP). Photodynamic therapy (PDT) uses visible light, photosensitizer and oxygen to eradicate pathogens. The aim of the study was to evaluate the presence of MMP-9 and TIMP-1 in gingival crevicular fluid (GCF) in chronic periodontitis patients before and after nonsurgical periodontal therapy with additional PDT. METHODS Nineteen patients, each with CP, were included in the study. After periodontal examination one site with a probing depth (PD) ≥ 4 mm was selected. The patients received scaling and root planing (SRP) with additional PDT by means of HELBO® diode minilaser. Prior to treatment, and after 3 and 6 months, the following parameters were estimated from the same site: PD, gingival recession (GR), clinical attachment level (CAL), plaque index (PI), bleeding on probing (BOP) and sulcus fluid flow rate (SFFR). The levels of MMP-9 and TIMP-1 in GCF were determined. RESULTS Compared to baseline, the levels of MMP-9 and TIMP-1 did not show statistically significant differences after 3 and 6 months. According to Spearman's rank correlations, MMP-9 was positively correlated with SFFR at all time points. PD, CAL and PI showed a statistically significant decrease compared to baseline (p < 0.001). SFFR decreased but not significantly. CONCLUSION Nonsurgical periodontal therapy in conjunction with PDT was clinically effective but it had no effect on the levels of MMP-9 and TIMP-1 in GCF.
Collapse
Affiliation(s)
- Ewa Dolińska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, Bialystok, Poland.
| | - Anna Skurska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, Bialystok, Poland; Department of Integrated Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Pietruska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, Bialystok, Poland
| | | | - Robert Milewski
- Department of Biostatistics and Medical Informatics, Medical University of Bialystok, Bialystok, Poland
| | - Anton Sculean
- Department of Periodontology, Dental School University of Bern, Bern, Switzerland
| |
Collapse
|
67
|
Zailani H, Wang WL, Satyanarayanan SK, Chiu WC, Liu WC, Sung YS, Chang JPC, Su KP. Omega-3 Polyunsaturated Fatty Acids and Blood-Brain Barrier Integrity in Major Depressive Disorder: Restoring Balance for Neuroinflammation and Neuroprotection. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:349-363. [PMID: 39351324 PMCID: PMC11426295 DOI: 10.59249/yzlq4631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Major depressive disorder (MDD), affecting over 264 million individuals globally, is associated with immune system dysregulation and chronic neuroinflammation, potentially linked to neurodegenerative processes. This review examines blood-brain barrier (BBB) dysfunction in MDD, focusing on key regulators like matrix metalloproteinase 9 (MMP9), aquaporin-4 (AQP4), and ATP-binding cassette subfamily B member 1 (ABCB1). We explore potential mechanisms by which compromised BBB integrity in MDD may contribute to neuroinflammation and discuss the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFAs). n-3 PUFAs have demonstrated anti-inflammatory and neuroprotective effects, and potential ability to modulate MMP9, AQP4, and ABCB1, thereby restoring BBB integrity in MDD. This review aims to elucidate these potential mechanisms and evaluate the evidence for n-3 PUFAs as a strategy to mitigate BBB dysfunction and neuroinflammation in MDD.
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China
Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Nutrition, China Medical
University, Taichung, Taiwan
- Department of Biochemistry, Ahmadu Bello University,
Zaria, Nigeria
| | - Wen-Lung Wang
- Department of Psychiatry, An Nan Hospital, China
Medical University, Tainan, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Centre for Regenerative Medicine and Health, Hong Kong
Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong
Science Park, Hong Kong, China
| | - Wei-Che Chiu
- Department of Psychiatry, Cathay General Hospital,
Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, Taipei,
Taiwan
| | - Wen-Chun Liu
- Department of Education and Research, An Nan Hospital,
China Medical University, Tainan, Taiwan
- Department of Nursing, National Tainan Junior College
of Nursing, Tainan, Taiwan
| | - Yi-Shan Sung
- Mind-Body Interface Research Center (MBI-Lab), China
Medical University Hospital, Taichung, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Research Center (MBI-Lab), China
Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University,
Taichung, Taiwan
- Child and Adolescent Psychiatry Division, Department
of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China
Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University,
Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China
Medical University, Taichung, Taiwan
- An Nan Hospital, China Medical University, Tainan,
Taiwan
| |
Collapse
|
68
|
Feng J, Li Y, Liu J, Li N, Sun B, Zhao S, Zhai Y. Preliminary investigation on the mechanism of anti-periodontitis effect of Scutellariae Radix based on bioinformatics analysis and in vitro verification. Heliyon 2024; 10:e35744. [PMID: 39224355 PMCID: PMC11367040 DOI: 10.1016/j.heliyon.2024.e35744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To investigate the material basis, targets and molecular mechanism of Scutellariae Radix against periodontitis to provide theoretical basis for clinical applications. Materials and methods The active compounds and targets of Scutellariae Radix were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and the periodontitis-related targets were collected by integrating Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), Genecards and Gene Expression Omnibus (GEO) database together. The potential targets of Scutellariae Radix against periodontitis were obtained from the intersection of two target sets. Metascape database was used for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Discovery Studio software was used for molecular docking between key targets and compounds to evaluate their binding affinity. Western blot was used to check the expression of PTGS2 and MMP9 to verify the regulatory effects of baicalein, the main active compound of Scutellariae Radix, on human periodontal ligament stem cells (hPDLSCs) cultured under inflammatory environment which induced by lipopolysaccharide (LPS). Results 15 active compounds of Scutellariae Radix and 53 common targets for periodontitis treatment were identified. Among these targets, the 10 core targets were AKT1, IL-6, TNF, VEGFA, TP53, PTGS2, CASP3, JUN, MMP9 and HIF1A. GO and KEGG analysis mainly focused on response to LPS and pathways in cancer. Molecular docking showed that the main active compounds had good binding affinity with key targets. Cell experiments confirmed that baicalein can interfere the expression of pro-inflammatory factors PTGS2 and MMP9 proteins and exert anti-inflammatory effects. Conclusion Current study preliminarily analyzed the mechanism of Scutellariae Radix against periodontitis, which provide a new idea for the utilization of Scutellariae Radix and the development of novel medicine for the clinical treatment of periodontitis.
Collapse
Affiliation(s)
- Jixian Feng
- School of Stomatology, Henan University, Kaifeng, 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Juan Liu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250000, China
| | - Ningli Li
- School of Stomatology, Henan University, Kaifeng, 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, 475000, China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252000, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, Kaifeng, 475000, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, 475000, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, 475000, China
| |
Collapse
|
69
|
Aji NRAS, Räisänen IT, Rathnayake N, Lundy FT, Mc Crudden MTC, Goyal L, Sorsa T, Gupta S. aMMP-8 POCT vs. Other Potential Biomarkers in Chair-Side Diagnostics and Treatment Monitoring of Severe Periodontitis. Int J Mol Sci 2024; 25:9421. [PMID: 39273368 PMCID: PMC11395035 DOI: 10.3390/ijms25179421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to compare several potential mouthrinse biomarkers for periodontitis including active matrix-metalloproteinase-8 (aMMP-8), total MMP-8, and other inflammatory biomarkers in diagnosing and monitoring the effects of nonsurgical periodontal therapy. Thirteen patients with stage III/IV periodontitis were recruited, along with thirteen periodontally and systemically healthy controls. These 13 patients were representative of the number of outpatients visiting any dentist in a single day. Full-mouth clinical periodontal parameters and biomarkers (the aMMP-8 point-of-care-test [POCT], total MMP-8, tissue inhibitor of MMPs (TIMP)-1, the aMMP-8 RFU activity assay, Myeloperoxidase, PMN elastase, calprotectin, and interleukin-6) were recorded at baseline and after nonsurgical therapy at 6 weeks. The aMMP-8 POCT was the most efficient and precise discriminator, with a cut-off of 20 ng/mL found to be optimal. Myeloperoxidase, MMP-8's oxidative activator, was also efficient. Following closely in precision was the aMMP-8 RFU activity assay and PMN elastase. In contrast, the total MMP-8 assay and the other biomarkers were less efficient and precise in distinguishing patients with periodontitis from healthy controls. aMMP-8, MPO, and PMN elastase may form a proteolytic and pro-oxidative tissue destruction cascade in periodontitis, potentially representing a therapeutic target. The aMMP-8 chair-side test with a cut-off of 20 ng/mL was the most efficient and precise discriminator between periodontal health and disease. The aMMP-8 POC test can be effectively used by dental professionals in their dental practices in online and real-time diagnoses as well as in monitoring periodontal disease and educating and encouraging good oral practices among patients.
Collapse
Grants
- Y1014SULE1 Helsinki and Uusimaa Hospital District (HUS), Finland
- Y1014SL018 Helsinki and Uusimaa Hospital District (HUS), Finland
- Y1014SL017 Helsinki and Uusimaa Hospital District (HUS), Finland
- TYH2019319 Helsinki and Uusimaa Hospital District (HUS), Finland
- TYH2018229 Helsinki and Uusimaa Hospital District (HUS), Finland
- TYH2017251 Helsinki and Uusimaa Hospital District (HUS), Finland
- TYH2016251 Helsinki and Uusimaa Hospital District (HUS), Finland
- TYH2020337 Helsinki and Uusimaa Hospital District (HUS), Finland
- TYH2022225 Helsinki and Uusimaa Hospital District (HUS), Finland
- Y2519SU010 Helsinki and Uusimaa Hospital District (HUS), Finland
- N/A Finnish Dental Society Apollonia
- N/A Karolinska Institutet
- 202231103652 PUSLAPDIK and LPDP Republic of Indonesia
Collapse
Affiliation(s)
- Nur Rahman Ahmad Seno Aji
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, 10 Sleman, Yogyakarta 55281, Indonesia
| | - Ismo T Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Nilminie Rathnayake
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Maelíosa T C Mc Crudden
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Lata Goyal
- Periodontics Division, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, Punjab 151001, India
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Shipra Gupta
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
70
|
Chen X, Dai Y, Li Y, Xin J, Zou J, Wang R, Zhang H, Liu Z. Identification of cross-talk pathways and PANoptosis-related genes in periodontitis and Alzheimer's disease by bioinformatics analysis and machine learning. Front Aging Neurosci 2024; 16:1430290. [PMID: 39258145 PMCID: PMC11384588 DOI: 10.3389/fnagi.2024.1430290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Background and objectives Periodontitis (PD), a chronic inflammatory disease, is a serious threat to oral health and is one of the risk factors for Alzheimer's disease (AD). A growing body of evidence suggests that the two diseases are closely related. However, current studies have not provided a comprehensive understanding of the common genes and common mechanisms between PD and AD. This study aimed to screen the crosstalk genes of PD and AD and the potential relationship between cross-talk and PANoptosis-related genes. The relationship between core genes and immune cells will be analyzed to provide new targets for clinical treatment. Materials and methods The PD and AD datasets were downloaded from the GEO database and differential expression analysis was performed to obtain DEGs. Overlapping DEGs had cross-talk genes linking PD and OP, and PANoptosis-related genes were obtained from a literature review. Pearson coefficients were used to compute cross-talk and PANoptosis-related gene correlations in the PD and AD datasets. Cross-talk genes were obtained from the intersection of PD and AD-related genes, protein-protein interaction(PPI) networks were constructed and cross-talk genes were identified using the STRING database. The intersection of cross-talk and PANoptosis-related genes was defined as cross-talk-PANoptosis genes. Core genes were screened using ROC analysis and XGBoost. PPI subnetwork, gene-biological process, and gene-pathway networks were constructed based on the core genes. In addition, immune infiltration on the PD and AD datasets was analyzed using the CIBERSORT algorithm. Results 366 cross-talk genes were overlapping between PD DEGs and AD DEGs. The intersection of cross-talk genes with 109 PANoptosis-related genes was defined as cross-talk-PANoptosis genes. ROC and XGBoost showed that MLKL, DCN, IL1B, and IL18 were more accurate than the other cross-talk-PANoptosis genes in predicting the disease, as well as better in overall characterization. GO and KEGG analyses showed that the four core genes were involved in immunity and inflammation in the organism. Immune infiltration analysis showed that B cells naive, Plasma cells, and T cells gamma delta were significantly differentially expressed in patients with PD and AD compared with the normal group. Finally, 10 drugs associated with core genes were retrieved from the DGIDB database. Conclusion This study reveals the joint mechanism between PD and AD associated with PANoptosis. Analyzing the four core genes and immune cells may provide new therapeutic directions for the pathogenesis of PD combined with AD.
Collapse
Affiliation(s)
- Xiantao Chen
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yifei Dai
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yushen Li
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jiajun Xin
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jiatong Zou
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
71
|
Al-Sharqi AJB, Abdulkareem A. Microbiological and Salivary Biomarkers Successfully Predict Site-Specific and Whole-Mouth Outcomes of Nonsurgical Periodontal Treatment. J Clin Med 2024; 13:4256. [PMID: 39064296 PMCID: PMC11277870 DOI: 10.3390/jcm13144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Nonsurgical periodontal treatment (NSPT) is the gold-standard technique for treating periodontitis. However, an individual's susceptibility or the inadequate removal of subgingival biofilms could lead to unfavorable responses to NSPT. This study aimed to assess the potential of salivary and microbiological biomarkers in predicting the site-specific and whole-mouth outcomes of NSPT. Methods: A total of 68 periodontitis patients exhibiting 1111 periodontal pockets 4 to 6 mm in depth completed the active phase of periodontal treatment. Clinical periodontal parameters, saliva, and subgingival biofilm samples were collected from each patient at baseline and three months after NSPT. A quantitative PCR assay was used to detect the presence of Fusobaterium nucleatum and Porphyromonas gingivalis in the biofilm samples. Salivary biomarkers including matrix metalloproteinase (MMP)-9, glutathione S-transferase (GST), and Annexin-1 were assayed both qualitatively (Western blot analysis) and quantitively (ELISA). Results: NSPT yielded significant improvements in all clinical parameters, including a reduction in bacterial load and decreased levels of MMP-9 together with increased concentrations of GST and Annexin-1. The binary logistic regression suggested that the overall accuracy of P. gingivalis identification, probing pocket depth, and interproximal sites was 71.1% in predicting successful site-specific outcomes. The salivary biomarker model yielded an overall accuracy of 79.4% in predicting whole-mouth outcomes following NSPT. Conclusions: At baseline, the presence of shallow periodontal pockets at interdental locations with a lower abundance of P. gingivalis is predictive of a favorable response to NSPT at the site level. Decreased salivary MMP-9 associated with increased GST and Annexin-1 levels can predict successful whole-mouth outcomes following NSPT.
Collapse
Affiliation(s)
| | - Ali Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Bab Al Mudam, Baghdad P.O. Box 1417, Iraq;
| |
Collapse
|
72
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
73
|
Korgaonkar J, Tarman AY, Ceylan Koydemir H, Chukkapalli SS. Periodontal disease and emerging point-of-care technologies for its diagnosis. LAB ON A CHIP 2024; 24:3326-3346. [PMID: 38874483 DOI: 10.1039/d4lc00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Periodontal disease (PD), a chronic inflammatory disorder that damages the tooth and its supporting components, is a common global oral health problem. Understanding the intricacies of these disorders, from gingivitis to severe PD, is critical for efficient treatment, diagnosis, and prevention in dental care. Periodontal biosensors and biomarkers are critical in improving oral health diagnostic skills. Clinicians may accomplish early identification, tailored therapy, and efficient tracking of periodontal diseases by using these technologies, ushering in a new age of accurate oral healthcare. Traditional periodontitis diagnostic methods frequently rely on physical probing and visual examinations, necessitating the development of point-of-care (POC) devices. As periodontal disorders necessitate more precise and rapid diagnosis, incorporating novel innovations in biosensors and biomarkers becomes increasingly crucial. These innovations improve our capacity to diagnose, monitor, and adapt periodontal therapies, bringing in the next phase of customized and effective dental healthcare. The review discusses the characteristics and stages of PD, clinical treatment techniques, prominent biomarkers and infection-associated factors that may be employed to determine PD, biomedical sensing, and POC appliances that have been created so far to diagnose stages of PD and its progression profile, as well as predicting future developments in this field.
Collapse
Affiliation(s)
- Jayesh Korgaonkar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Azra Yaprak Tarman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Sasanka S Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
74
|
Tuerhong K, Liu K, Shen D, Zhang Q, Huang Q, Yang M, Huang Z, Wang L, Yang S, Li Y. Integrating network pharmacology and experimental evaluation to explore the complementary therapeutic effect and mechanism of melatonin in periodontitis. Heliyon 2024; 10:e32494. [PMID: 38948030 PMCID: PMC11209020 DOI: 10.1016/j.heliyon.2024.e32494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Objective To explore the potential targets for melatonin in the treatment of periodontitis through network pharmacologic analysis and experimental validation via in vivo animal models and in vitro cellular experiments. Materials and methods In this study, we first screened melatonin targets from Pharm Mapper for putative targets, Drug Bank, and TCMSP databases for known targets. Then, disease database was searched and screened for differential expressed genes associated with periodontitis. The intersection of disease and melatonin-related genes yielded potential target genes of melatonin treatment for periodontitis. These target genes were further investigated by protein-protein interaction network and GO/KEGG enrichment analysis. In addition, the interactions between melatonin and key target genes were interrogated by molecular docking simulations. Then, we performed animal studies to validate the therapeutic effect of melatonin by injecting melatonin into the peritoneal cavity of ligation-induced periodontitis (LIP) mice. The effects of melatonin on the predicted target proteins were also analyzed using Western blot and immunofluorescence techniques. Finally, we constructed an in vitro cellular model and validated the direct effect of melatonin on the predicted targets by using qPCR. Results We identified 8 potential target genes by network pharmacology analysis. Enrichment analysis suggests that melatonin may treat periodontitis by inhibiting the expression of three potential targets (MPO, MMP8, and MMP9). Molecular docking results showed that melatonin could effectively bind to MMP8 and MMP9. Subsequently, melatonin was further validated in a mouse LIP model to inhibit the expression of MPO, MMP8, and MMP9 in the periodontal tissue. Finally, we verified the direct effect of melatonin on the mRNA expression of MPO, MMP8, and MMP9 in an in vitro cellular model. Conclusions Through a combination of network pharmacology and experimental validation, this study provides a more comprehensive understanding of the mechanism of melatonin to treat periodontitis. Our study suggests that MPO, MMP8, and MMP9 as key target genes of melatonin to treat periodontitis. These findings present a more comprehensive basis for further investigation into the mechanisms of pharmacological treatment of periodontitis by melatonin.
Collapse
Affiliation(s)
- Kamoran Tuerhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Kehao Liu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Danfeng Shen
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Qianyu Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Qi Huang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Mingcong Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Ziyu Huang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Lu Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| |
Collapse
|
75
|
Mao G, Douglas D, Prajapati M, Janardhanam Raghavendra Rao T, Zheng H, Zhao C, Billack B. Investigation of inflammatory mechanisms induced by croton oil in mouse ear. Curr Res Toxicol 2024; 7:100184. [PMID: 39285937 PMCID: PMC11403446 DOI: 10.1016/j.crtox.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/12/2024] [Accepted: 06/21/2024] [Indexed: 09/19/2024] Open
Abstract
Croton oil is liquid at room temperature, with a pale-yellow color and spicy odor. It is commonly used in combination with phenol as a chemical peeling agent in dermatology, which reveals its caustic exfoliating effects. Topical use of croton oil at a high dose produces skin irritation, inflammation, swelling, pain, and even tumors. Therefore, croton oil has been widely used for inflammation, pain, and tumor related research, with different animal models having been established. However, mechanistic studies through which croton oil induces skin swelling, injury and activates tissue repair/regeneration are limited. The present study used croton oil to induce mouse ear edema and examined tissue responses 4 h after exposure. To this end, croton oil was applied to the ventral side of mouse ears, followed by tissue collection. Samples were analyzed by hematoxylin and eosin (H&E) staining, toluidine blue staining, and immunohistochemistry staining for myeloperoxidase (MPO) and matrix metalloproteinase-9 (MMP-9). Western blotting and ELISA were also carried out for MMP-9 together with unbiased proteomic analysis using mass-spectrometry. Results from our study demonstrated that as soon as 4 h of exposure to 2.5 % croton oil, the expression levels of MPO and MMP-9 in the dermis significantly increased compared to acetone-treated (vehicle) control ears, as did other inflammatory reactions such as swelling and neutrophil aggregation and infiltration. Subsequently, proteomic analysis confirmed that croton oil treatment resulted in significant upregulation of proteins such as myeloperoxidase (MPO), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-8 (MMP-8) in the ear skin. Interestingly, mouse ears treated with acetone vehicle showed differential expression of 2,478 proteins relative to naïve tissues; among those differentially expressed in acetone-treated samples were members of the phosphatidylinositol-glycan biosynthesis class N, T and U proteins (PIGN, PIGT, and PIGU). Overall, this work confirms the presence of neutrophil-derived MPO and MMP-9 and extends the body of knowledge to show that MMP-8 is also present during croton oil-mediated skin inflammation in the mouse ear; moreover, we find that acetone vehicle is not inert and has effects on the skin that should be considered moving forward.
Collapse
Affiliation(s)
- Ganming Mao
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Dalon Douglas
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | | | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | - Blase Billack
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
76
|
Lima KM, Calado KAA, Pereira ADFV, da Silva MCP, Lopes FF. MMP-8 in Periodontal Sites of Postpartum and without-Any-Pregnancy Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:739. [PMID: 38928985 PMCID: PMC11203714 DOI: 10.3390/ijerph21060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The hypothesis that physiological changes in women can affect periodontal tissues is the subject of this study, and inflammatory markers such as matrix metalloproteinase-8 can measure susceptibility to inflammation. The study aimed to analyze MMP-8 levels in periodontal sites of postpartum women and women without a history of pregnancy, comparing health parameters and periodontal disease. This is a case-control study with 40 participants, 20 cases (women in the postpartum period) and 20 controls (women without any pregnancy), who underwent clinical periodontal examination and the collection of crevicular gingival fluid. The ELISA test was used to detect MMP-8 levels. Postpartum women had worse periodontal parameters, such as bleeding index on probing, number of sites with CAL ≥ 3, and fewer teeth present. In the group of women without a history of pregnancy, a significantly lower MMP-8 level was observed in healthy sites and a higher one was observed in periodontal pockets (p < 0.01). In contrast, in postpartum women, MMP-8 levels were elevated in both healthy sites and periodontal pockets (p > 0.01). The MMP-8 levels in gingival fluid appear to be related to periodontal clinical parameters and may be a possible marker of enzymatic changes involved in periodontal tissue destruction in postpartum women.
Collapse
Affiliation(s)
- Karyne Martins Lima
- Postgraduate Program in Dentistry, Federal University of Maranhão, São Luís CEP 65080-805, Brazil;
| | - Keiko Aramaki Abreu Calado
- Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís CEP 65080-805, Brazil; (K.A.A.C.); (M.C.P.d.S.)
| | | | - Mayara Cristina Pinto da Silva
- Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís CEP 65080-805, Brazil; (K.A.A.C.); (M.C.P.d.S.)
| | - Fernanda Ferreira Lopes
- Postgraduate Program in Dentistry, Federal University of Maranhão, São Luís CEP 65080-805, Brazil;
- Postgraduate Program in Adult Health, Federal University of Maranhão, São Luís CEP 65080-805, Brazil; (K.A.A.C.); (M.C.P.d.S.)
- Teacher of the Department of Dentistry II, Federal University of Maranhão, São Luís CEP 65080-805, Brazil;
| |
Collapse
|
77
|
Ebersole JL, Hasturk H, Huber M, Gellibolian R, Markaryan A, Zhang XD, Miller CS. Realizing the clinical utility of saliva for monitoring oral diseases. Periodontol 2000 2024; 95:203-219. [PMID: 39010260 DOI: 10.1111/prd.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 07/17/2024]
Abstract
In the era of personalized/precision health care, additional effort is being expended to understand the biology and molecular mechanisms of disease processes. How these mechanisms are affected by individual genetics, environmental exposures, and behavioral choices will encompass an expanding role in the future of optimally preventing and treating diseases. Considering saliva as an important biological fluid for analysis to inform oral disease detection/description continues to expand. This review provides an overview of saliva as a diagnostic fluid and the features of various biomarkers that have been reported. We emphasize the use of salivary biomarkers in periodontitis and transport the reader through extant literature, gaps in knowledge, and a structured approach toward validating and determine the utility of biomarkers in periodontitis. A summation of the findings support the likelihood that a panel of biomarkers including both host molecules and specific microorganisms will be required to most effectively identify risk for early transition to disease, ongoing disease activity, progression, and likelihood of response to standard periodontal therapy. The goals would be to develop predictive algorithms that serve as adjunctive diagnostic tools which provide the clinician and patient important information for making informed clinical decisions.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Hatice Hasturk
- Immunology and Inflammation, Center for Clinical and Translational Research, The ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Michaell Huber
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Xiaohua D Zhang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Craig S Miller
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
78
|
Buduneli N, Bıyıkoğlu B, Kinane DF. Utility of gingival crevicular fluid components for periodontal diagnosis. Periodontol 2000 2024; 95:156-175. [PMID: 39004819 DOI: 10.1111/prd.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Periodontal diseases are highly prevalent chronic diseases, and severe periodontitis creates functional and esthetic problems and decreases self-esteem for a large percentage of the older population worldwide. In many cases of periodontitis, there is no distinct tell-tale pain that motivates a patient to seek treatment, rather the signs become clinically detectable late, and typically when the disease has progressed to a problematic level for the life of the dentition. Early periodontal screening and diagnostics tools will provide early recognition of periodontal diseases and facilitate timely management of the disease to reduce tooth loss. To this goal, gingival crevicular fluid is easily sampled, can be repeatedly and non-invasively collected, and can be tested for potential biomarkers. Moreover, the site specificity of periodontal diseases enhances the usefulness of gingival crevicular fluid sampled from specific sites as a biofluid for diagnosis and longitudinal monitoring of periodontal diseases. The present review aimed to provide up-to-date information on potential diagnostic biomarkers with utility that can be assayed from gingival crevicular fluid samples, focusing on what is new and useful and providing only general historic background textually and in a tabulated format.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey
| | - Başak Bıyıkoğlu
- Department of Periodontology, School Dentistry, Altinbas University, Istanbul, Turkey
| | - Denis F Kinane
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
79
|
Khoswanto C, Dewi IK. DMP-1 expression in alveolar bone socket following Anredera cordifolia (Ten.) Steenis treatment: A histological study. J Adv Vet Anim Res 2024; 11:291-295. [PMID: 39101081 PMCID: PMC11296160 DOI: 10.5455/javar.2024.k775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 08/06/2024] Open
Abstract
Objective The study aimed to ascertain how Anredera cordifolia (Ten.) Steenis Gel affects the expression of protein dentin matrix protein-1 (DMP-1) in alveolar Wistar rats after tooth extraction. Materials and Methods Rats were given A. cordifolia (Ten.) Steenis gel was in the socket after tooth extraction, and then the wound was sutured. The rats were sacrificed for 8 and 15 days following tooth extraction. The results on the 8th and 15th days demonstrate that the expression of DMP-1 in the treatment group is significantly higher than in the control group. Results Expression of DMP-1 in the socket after tooth extraction on days 8 and 15 with a 400x magnification light microscope in both of the A. cordifolia (Ten.) Steenis gel treatment groups showed significant differences compared to the control group. Conclusion The use of A. cordifolia (Ten.) Steenis gel can stimulate DMP-1 expression in alveolar bone after tooth extraction.
Collapse
Affiliation(s)
- Christian Khoswanto
- Department of Oral Biology Faculty of Dentistry, Airlangga University Surabaya, Surabaya, Indonesia
| | | |
Collapse
|
80
|
Scrobota I, Tig IA, Marcu AO, Potra Cicalau GI, Sachelarie L, Iova G. Evaluation of Immunohistochemical Biomarkers in Diabetic Wistar Rats with Periodontal Disease. J Pers Med 2024; 14:527. [PMID: 38793109 PMCID: PMC11121950 DOI: 10.3390/jpm14050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The association of periodontal disease and diabetes is a subject of intense research in terms of etiopathology and treatment options. This research aimed to evaluate the modulation of the local inflammatory status by two natural extracts, curcumin (Cu) and rutin (R), in an experimentally induced diabetes and periodontal disease in Wistar rats. METHODS Fifty Wistar albino rats were randomly assigned to five groups: Control (C), Diabetes-associated Periodontal Disease (DP), Diabetes-associated Periodontal Disease treated with Curcumin (DPCu), Diabetes-associated Periodontal Disease treated with Rutin (DPR), and Diabetes-associated Periodontal Disease treated with both Curcumin and Rutin (DPCuR). Gingival samples were collected from all rats, and immunohistochemical markers CD3, CD20, and CD34 were evaluated to assess the local inflammatory infiltrate. Descriptive statistics were applied (SPSS24 Software, Armonk, NY, USA). RESULTS Rutin, alone or combined with Curcumin, reduced CD3-positive cell levels. Curcumin demonstrated superior efficacy in reducing CD20-positive cells. The combination of Curcumin and Rutin had the most important impact on both markers. Curcumin notably increased immature CD34-positive cell levels. CONCLUSIONS Curcumin and Rutin, either alone or together, hold potential for reducing local inflammation in diabetes-induced periodontal disease in Wistar rats.
Collapse
Affiliation(s)
- Ioana Scrobota
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Ioan Andrei Tig
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Andrea Olivia Marcu
- Preclinics Department, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Georgiana Ioana Potra Cicalau
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| | - Liliana Sachelarie
- Preclinics Department, Faculty of Medicine, Apollonia University, 700511 Iasi, Romania
| | - Gilda Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (I.S.); (I.A.T.); (G.I.P.C.); (G.I.)
| |
Collapse
|
81
|
Zhang M, Yu T, Li J, Yan H, Lyu L, Yu Y, Yang G, Zhang T, Zhou Y, Wang X, Liu D. Matrix Metalloproteinase-Responsive Hydrogel with On-Demand Release of Phosphatidylserine Promotes Bone Regeneration Through Immunomodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306924. [PMID: 38460178 PMCID: PMC11132073 DOI: 10.1002/advs.202306924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Indexed: 03/11/2024]
Abstract
Inflammation-responsive hydrogels loaded with therapeutic factors are effective biomaterials for bone tissue engineering and regenerative medicine. In this study, a matrix metalloproteinase (MMP)-responsive injectable hydrogel is constructed by integrating an MMP-cleavable peptide (pp) into a covalent tetra-armed poly-(ethylene glycol) (PEG) network for precise drug release upon inflammation stimulation. To establish a pro-regenerative environment, phosphatidylserine (PS) is encapsulated into a scaffold to form the PEG-pp-PS network, which could be triggered by MMP to release a large amount of PS during the early stage of inflammation and retain drug release persistently until the later stage of bone repair. The hydrogel is found to be mechanically and biologically adaptable to the complex bone defect area. In vivo and in vitro studies further demonstrated the ability of PEG-pp-PS to transform macrophages into the anti-inflammatory M2 phenotype and promote osteogenic differentiation, thus, resulting in new bone regeneration. Therefore, this study provides a facile, safe, and promising cell-free strategy on simultaneous immunoregulation and osteoinduction in bone engineering.
Collapse
Affiliation(s)
- Mingjin Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Tingting Yu
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Jing Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Huichun Yan
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Liang Lyu
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yi Yu
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Gengchen Yang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Ting Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yanheng Zhou
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Dawei Liu
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
82
|
Lin Q, Cai B, Ke R, Chen L, Ni X, Liu H, Lin X, Wang B, Shan X. Integrative bioinformatics and experimental validation of hub genetic markers in acne vulgaris: Toward personalized diagnostic and therapeutic strategies. J Cosmet Dermatol 2024; 23:1777-1799. [PMID: 38268224 DOI: 10.1111/jocd.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Acne vulgaris is a widespread chronic inflammatory dermatological condition. The precise molecular and genetic mechanisms of its pathogenesis remain incompletely understood. This research synthesizes existing databases, targeting a comprehensive exploration of core genetic markers. METHODS Gene expression datasets (GSE6475, GSE108110, and GSE53795) were retrieved from the GEO. Differentially expressed genes (DEGs) were identified using the limma package. Enrichment analyses were conducted using GSVA for pathway assessment and clusterProfiler for GO and KEGG analyses. PPI networks and immune cell infiltration were analyzed using the STRING database and ssGSEA, respectively. We investigated the correlation between hub gene biomarkers and immune cell infiltration using Spearman's rank analysis. ROC curve analysis validated the hub genes' diagnostic accuracy. miRNet, TarBase v8.0, and ChEA3 identified miRNA/transcription factor-gene interactions, while DrugBank delineated drug-gene interactions. Experiments utilized HaCaT cells stimulated with Propionibacterium acnes, treated with retinoic acid and methotrexate, and evaluated using RT-qPCR, ELISA, western blot, lentiviral transduction, CCK-8, wound-healing, and transwell assays. RESULTS There were 104 genes with consistent differences across the three datasets of paired acne and normal skin. Functional analyses emphasized the significant enrichment of these DEGs in immune-related pathways. PPI network analysis pinpointed hub genes PTPRC, CXCL8, ITGB2, and MMP9 as central players in acne pathogenesis. Elevated levels of specific immune cell infiltration in acne lesions corroborated the inflammatory nature of the disease. ROC curve analysis identified the acne diagnostic potential of four hub genes. Key miRNAs, particularly hsa-mir-124-3p, and central transcription factors like TFEC were noted as significant regulators. In vitro validation using HaCaT cells confirmed the upregulation of hub genes following Propionibacterium acnes exposure, while CXCL8 knockdown reduced pro-inflammatory cytokines, cell proliferation, and migration. DrugBank insights led to the exploration of retinoic acid and methotrexate, both of which mitigated gene expression upsurge and inflammatory mediator secretion. CONCLUSION This comprehensive study elucidated pivotal genes associated with acne pathogenesis, notably PTPRC, CXCL8, ITGB2, and MMP9. The findings underscore potential biomarkers, therapeutic targets, and the therapeutic potential of agents like retinoic acid and methotrexate. The congruence between bioinformatics and experimental validations suggests promising avenues for personalized acne treatments.
Collapse
Affiliation(s)
- Qian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Beichen Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruonan Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Lu Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuejun Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinjian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
83
|
Ma W, Zou Z, Yang L, Lin D, Guo J, Shan Z, Hu Q, Wang Z, Li B, Fang J. Exploring the bi-directional relationship between periodontitis and dyslipidemia: a comprehensive systematic review and meta-analysis. BMC Oral Health 2024; 24:508. [PMID: 38684998 PMCID: PMC11059608 DOI: 10.1186/s12903-023-03668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/14/2023] [Indexed: 05/02/2024] Open
Abstract
AIM As periodontitis and dyslipidemia are diseases that occur with high incidence, the relationship between them has attracted much attention. Previous studies on these diseases have tended to focus on lipid parameters and periodontitis, we aimed to investigate the relationship between dyslipidemia and periodontitis. MATERIALS AND METHODS A comprehensive search to identify the studies investigating the relationship between dyslipidemia and periodontitis was performed on PubMed, Web of Science and Cochrane Library before the date of August, 2023. Studies were considered eligible if they contained data on abnormal blood lipid parameters and periodontitis. Studies that reported mean differences and 95% confidence intervals or odds ratios were used. RESULTS A total of 73 publications were included in the meta-analysis. Hyper total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL) and lower high-density lipoprotein (HDL) levels are risk factors for periodontitis. Periodontal disease is a risk factor for high TG and low HDL levels. Three months after periodontal treatment, the levels of TC, TG and HDL were significantly improved, and statin treatment only improved gingival index (GI) levels compared to that of the dietary control. CONCLUSIONS The findings reported here suggest that the mutual promotion of periodontitis and dyslipidemia can be confirmed. Non-surgical periodontal therapy may improve lipid abnormalities. It can't be demonstrated whether systematic application of statins have a better effect on the improvement in periodontal status in patients with dyslipidemia compared to that of the control.
Collapse
Affiliation(s)
- Wanting Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, Guangdong, China
- Central Laboratory, No. 1, Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Yunnan, 650021, Kunming, China
| | - Zhaolei Zou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, Guangdong, China
| | - Lisa Yang
- Department of Stomatology, Binzhou Medical University Hospital, Binzhou Medical University Hospital, 661 Huanghe Second Road, Shandong, 256603, Binzhou, China
| | - Dongjia Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, Guangdong, China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, Guangdong, China
| | - Zhongyan Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, Guangdong, China
| | - Qiannan Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, Guangdong, China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, Guangdong, China
| | - Bin Li
- Clinical Trials Unit, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, No. 58, Zhongshan Er Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
84
|
Ferrà-Cañellas MDM, Garcia-Sureda L. Exploring the Potential of Micro-Immunotherapy in the Treatment of Periodontitis. Life (Basel) 2024; 14:552. [PMID: 38792574 PMCID: PMC11122531 DOI: 10.3390/life14050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis, characterized by the progressive destruction of dental support tissues due to altered immune responses, poses a significant concern for public health. This condition involves intricate interactions between the immune response and oral microbiome, where innate and adaptive immune responses, with their diverse cell populations and inflammatory mediators, play crucial roles in this immunopathology. Indeed, cytokines, chemokines, growth factors, and immune cells perform key functions in tissue remodeling. Focusing on periodontal therapies, our attention turns to micro-immunotherapy (MI), employing low doses (LDs) and ultra-low doses (ULDs) of immunological signaling molecules like cytokines, growth factors, and hormones. Existing studies across various fields lay the groundwork for the application of MI in periodontitis, highlighting its anti-inflammatory and regenerative potential in soft tissue models based on in vitro research. In summary, this review underscores the versatility and potential of MI in managing periodontal health, urging further investigations to solidify its clinical integration. MI supports an innovative approach by modulating immune responses at low doses to address periodontitis.
Collapse
Affiliation(s)
- Maria del Mar Ferrà-Cañellas
- Preclinical Research Department, Labo’Life España, 07330 Consell, Spain
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain
| | | |
Collapse
|
85
|
Hooshiar MH, Moghaddam MA, Kiarashi M, Al-Hijazi AY, Hussein AF, A Alrikabi H, Salari S, Esmaelian S, Mesgari H, Yasamineh S. Recent advances in nanomaterial-based biosensor for periodontitis detection. J Biol Eng 2024; 18:28. [PMID: 38637787 PMCID: PMC11027550 DOI: 10.1186/s13036-024-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Periodontitis, a chronic inflammatory condition caused by bacteria, often causes gradual destruction of the components that support teeth, such as the alveolar bone, cementum, periodontal ligament, and gingiva. This ultimately results in teeth becoming loose and eventually falling out. Timely identification has a crucial role in preventing and controlling its progression. Clinical measures are used to diagnose periodontitis. However, now, there is a hunt for alternative diagnostic and monitoring methods due to the progress of technology. Various biomarkers have been assessed using multiple bodily fluids as sample sources. Furthermore, conventional periodontal categorization factors do not provide significant insights into the present disease activity, severity and amount of tissue damage, future development, and responsiveness to treatment. In recent times, there has been a growing utilization of nanoparticle (NP)-based detection strategies to create quick and efficient detection assays. Every single one of these platforms leverages the distinct characteristics of NPs to identify periodontitis. Plasmonic NPs include metal NPs, quantum dots (QDs), carbon base NPs, and nanozymes, exceptionally potent light absorbers and scatterers. These find application in labeling, surface-enhanced spectroscopy, and color-changing sensors. Fluorescent NPs function as photostable and sensitive instruments capable of labeling various biological targets. This article presents a comprehensive summary of the latest developments in the effective utilization of various NPs to detect periodontitis.
Collapse
Affiliation(s)
| | - Masoud Amiri Moghaddam
- Assistant Professor of Periodontics, Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Sara Salari
- Doctor of Dental Surgery, Islamic Azad University of Medical Sciences, Esfahan, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Hassan Mesgari
- Department, Faculty of Dentistry Oral and Maxillofacial Surgery, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
86
|
Negrin LL, Carlin GL, Ristl R, Hajdu S. Time trajectories and within-subject correlations of matrix metalloproteinases 3, 8, 9, 10, 12, and 13 serum levels and their ability to predict mortality in polytraumatized patients: a pilot study. Eur J Med Res 2024; 29:225. [PMID: 38594750 PMCID: PMC11005259 DOI: 10.1186/s40001-024-01775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Managing polytrauma victims poses a significant challenge to clinicians since applying the same therapy to patients with similar injury patterns may result in different outcomes. Using serum biomarkers hopefully allows for treating each multiple injured in the best possible individual way. Since matrix metalloproteinases (MMPs) play pivotal roles in various physiological processes, they might be a reliable tool in polytrauma care. METHODS We evaluated 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and stayed at the intensive care unit for at least one night. We determined their MMP3, MMP8, MMP9, MMP10, MMP12, and MMP13 serum levels at admission (day 0) and on days 1, 3, 5, 7, and 10. RESULTS Median MMP8, MMP9, and MMP12 levels immediately rose after the polytrauma occurred; however, they significantly decreased from admission to day 1 and significantly increased from day 1 to day 10, showing similar time trajectories and (very) strong correlations between each two of the three enzyme levels assessed at the same measurement point. For a two-day lag, autocorrelations were significant for MMP8 (- 0.512) and MMP9 (- 0.302) and for cross-correlations between MMP8 and MMP9 (- 0.439), MMP8 and MMP12 (- 0.416), and MMP9 and MMP12 (- 0.307). Moreover, median MMP3, MMP10, and MMP13 levels significantly increased from admission to day 3 and significantly decreased from day 3 to day 10, showing similar time trajectories and an (almost) strong association between every 2 levels until day 7. Significant cross-correlations were detected between MMP3 and MMP10 (0.414) and MMP13 and MMP10 (0.362). Finally, the MMP10 day 0 level was identified as a predictor for in-hospital mortality. Any increase of the MMP10 level by 200 pg/mL decreased the odds of dying by 28.5%. CONCLUSIONS The time trajectories of the highly varying individual MMP levels elucidate the involvement of these enzymes in the endogenous defense response following polytrauma. Similar time courses of MMP levels might indicate similar injury causes, whereas lead-lag effects reveal causative relations between several enzyme pairs. Finally, MMP10 abundantly released into circulation after polytrauma might have a protective effect against dying.
Collapse
Affiliation(s)
- Lukas L Negrin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Greta L Carlin
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- University Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Hajdu
- University Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
87
|
Radu CM, Radu CC, Arbănaşi EM, Hogea T, Murvai VR, Chiș IA, Zaha DC. Exploring the Efficacy of Novel Therapeutic Strategies for Periodontitis: A Literature Review. Life (Basel) 2024; 14:468. [PMID: 38672739 PMCID: PMC11050937 DOI: 10.3390/life14040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Periodontitis, a prevalent oral condition, is facing difficulties in therapeutic approaches, sometimes leading to failure. This literature review was conducted to investigate the diversity of other therapeutic approaches and their potential contributions to the successful management of the disease. This research scrutinized the alterations in microbial diversity and imbalances in crucial microbial species, which contribute significantly to the pathogenesis of periodontitis. Within the limitations of this study, we highlight the importance of understanding the treatment plan's role in periodontitis disease, opening the way for further research and innovative treatment plans to mitigate the impact of periodontitis on oral health. This will aid both healthcare professionals and patients in preventing and effectively treating periodontitis, ultimately improving oral health outcomes and overall systemic health and well-being.
Collapse
Affiliation(s)
- Casandra-Maria Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
| | - Carmen Corina Radu
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
- Institute of Forensic Medicine, 540141 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Emil-Marian Arbănaşi
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Vascular Surgery, Mureș County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
| | - Timur Hogea
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gheorghe Marinescu Street, 540139 Targu Mures, Romania
- Institute of Forensic Medicine, 540141 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Viorela Romina Murvai
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| | - Ioana-Andreea Chiș
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
| | - Dana Carmen Zaha
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1 December Sq, 410028 Oradea, Romania
| |
Collapse
|
88
|
Ortiz-Sánchez BJ, Juárez-Avelar I, Andrade-Meza A, Mendoza-Rodríguez MG, Chirino YI, Monroy-Pérez E, Paniagua-Contreras GL, Rodriguez-Sosa M. Periodontitis exacerbation during pregnancy in mice: Role of macrophage migration inhibitory factor as a key inductor. J Periodontal Res 2024; 59:267-279. [PMID: 37990413 DOI: 10.1111/jre.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE The present study was designed to investigate the role of macrophage migration inhibitory factor (MIF) in the exacerbation of pregestational periodontal disease (PGPD). BACKGROUND Periodontitis (PT) is a severe stage of periodontal disease characterized by inflammation of the supporting tissues of the teeth, which usually worsens during pregnancy. MIF is a proinflammatory cytokine that is significantly elevated in periodontitis, both at the beginning and at the end of pregnancy. Although periodontitis usually presents with greater severity during pregnancy, the participation of MIF in the evolution of periodontitis has not been established. METHODS To analyze the relevance of MIF in the exacerbation of PGPD, we employed a model of PGPD in WT and Mif-/- mice, both with a BALB/c genetic background. PT was induced with nylon suture ligatures placed supramarginally around the second upper right molar. For PGPD, PT was induced 2 weeks before mating. We evaluated histological changes and performed histometric analysis of the clinical attachment loss, relative expression of MMP-2 and MMP-13 by immunofluorescence, and relative expression of the cytokines mif, tnf-α, ifn-γ, and il-17 by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our data revealed that periodontal tissue from PGPD WT mice produced a twofold increase in MIF compared with PT WT mice. Moreover, the evolution of periodontitis in Mif-/- mice was less severe than in PGDP WT mice. Periodontal tissue from Mif-/- mice with PGPD produced 80% less TNF-α and no IFN-γ, as well as 50% lower expression of matrix metalloproteinase (MMP)-2 and 25% less MMP-13 compared to WT PGDP mice. CONCLUSIONS Our study suggests that MIF plays an important role in the exacerbation of periodontitis during pregnancy and that MIF is partially responsible for the inflammation associated with the severity of periodontitis during pregnancy.
Collapse
Affiliation(s)
- Betsaida J Ortiz-Sánchez
- Carrera de Cirujano Dentista, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Imelda Juárez-Avelar
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Laboratorio de Inmunidad Innata. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Antonio Andrade-Meza
- Laboratorio de Inmunidad Innata. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Mónica Gabriela Mendoza-Rodríguez
- Laboratorio de Inmunoparasitología. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología. Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | - Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Mexico
| | | | - Miriam Rodriguez-Sosa
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
89
|
Tavakoli F, Faramarzi M, Salimnezhad S, Jafari B, Eslami H, MohammadPourTabrizi B. Comparing the activity level of salivary matrix metalloproteinase-8 in patients with diabetes and moderate to severe chronic generalized periodontitis. Clin Exp Dent Res 2024; 10:e865. [PMID: 38433295 PMCID: PMC10909802 DOI: 10.1002/cre2.865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES The response of the host to plaque can be affected by systemic diseases like diabetes, hormonal changes, or immunological deficits, which can hasten the progression and severity of periodontitis. This study aimed to compare the activity of salivary matrix metalloproteinase-8 (MMP-8) in patients with moderate to severe generalized chronic generalized periodontitis between healthy individuals and those with type 2 diabetes who were referred to the Tabriz School of Dentistry. MATERIALS AND METHODS For this cross-sectional study, 90 patients were randomly divided into three groups based on inclusion and exclusion criteria: patients with chronic generalized periodontitis with diabetes, patients with generalized chronic periodontal disease with normal blood glucose, and a control group of 30 healthy individuals. Participants were instructed not to brush their teeth for 12 h and not to eat or drink for 90 min before saliva sampling. Saliva samples were immediately stored at -80°C and analyzed using an ELISA test. RESULTS The results showed that there was a significant difference in salivary MMP-8 levels among the three groups. Patients with periodontitis and diabetes had the highest levels of salivary MMP-8, while the control group had the lowest levels. This indicates that chronic generalized periodontitis is strongly associated with the activity level of salivary MMP-8, and elevated levels of MMP-8 in diabetic patients demonstrate the impact of diabetes on periodontal disease. CONCLUSION This study highlights the importance of monitoring salivary MMP-8 levels in patients with periodontitis, especially those with diabetes. It also emphasizes the need for proper management of systemic diseases to prevent or slow down the progression of periodontal disease.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Oral and Maxillofacial Medicine Department, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Masoumeh Faramarzi
- Department of Periodontology, Faculty of DentistryTabriz University of Medical SciencesTabrizIran
| | | | - Bahare Jafari
- School of DentistryShiraz University of Medical SciencesShirazIran
| | - Hosein Eslami
- Oral and Maxillofacial Medicine Department, School of DentistryTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
90
|
Oh JM, Kim Y, Son H, Kim YH, Kim HJ. Comparative transcriptome analysis of periodontitis and peri-implantitis in human subjects. J Periodontol 2024; 95:337-349. [PMID: 37789641 DOI: 10.1002/jper.23-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Peri-implantitis is similar to periodontitis, but there are some differences. For the effective control of peri-implantitis, it is necessary to clarify its similarities and differences with periodontitis in terms of gene expression. METHODS This cross-sectional study included 20 participants (10 healthy subjects and 10 patients with periodontitis and peri-implantitis). Gingival tissue samples (10 healthy, 10 periodontitis, and 10 peri-implantitis tissues) were collected, RNAs were extracted, and RNA sequencing and analysis were performed. RESULTS Differentially expressed gene (DEG) analysis identified 757 upregulated and 159 downregulated genes common between periodontitis and peri-implantitis. Periodontitis tissues uniquely showed 186 overexpressed and 22 suppressed genes compared with peri-implantitis and healthy tissues, while peri-implantitis had 1974 and 642, respectively. Each common and unique differential gene set showed distinct enriched biological features between periodontitis and peri-implantitis after the pathway enrichment analysis. The expression pattern of selected DEGs focused on the representability of the disease was validated by RT-qPCR. CONCLUSIONS Although periodontitis and peri-implantitis showed common gene expression that was clearly differentiated from healthy conditions, there were also unique gene patterns that were differentially expressed only in peri-implantitis. These findings will help elucidate the mechanisms involved in the progression of peri-implantitis.
Collapse
Affiliation(s)
- Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Yeongjoo Kim
- Biomedical Research Institute, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyojae Son
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Periodontology, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Department of Periodontics and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| |
Collapse
|
91
|
Mohammed OA, Doghish AS, Alamri MMS, Alharthi MH, Alfaifi J, Adam MI, Alhalafi AH, AlQahtani AAJ, Rezigalla AA, Taura MG, Isa AI, Binafif AF, Attia MA, Elmorsy EA, Yousef AA, Abdel-Reheim MA, Elkady MA. The role of matrix metalloproteinase-2 and miR-196a2 in bronchial asthma pathogenesis and diagnosis. Heliyon 2024; 10:e27694. [PMID: 38509956 PMCID: PMC10950666 DOI: 10.1016/j.heliyon.2024.e27694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Background Bronchial asthma is a persistent inflammatory respiratory condition that restricts the passage of air and causes hyperresponsiveness. Chronic asthma can be classified into three categories: mild, moderate, and severe. Remodeling took place as the extracellular matrix accumulated in the walls of the airways. Inflammation occurs as a result of the damage caused by matrix metalloproteinase-2 (MMP-2) to basement membrane type IV collagen. The severity of asthma may be associated with miR-196a2. The objective of our study was to investigate the underlying mechanisms and clinical relevance of miR-196a2 and MMP-2 serum levels in relation to the severity of asthma. Methods This study recruited 85 controls and 95 asthmatics classified as mild, moderate, or severe. Expression of miR-196a2 was measured by quantitative reverse transcriptase PCR. Using the enzyme-linked immunosorbent assay (ELISA), MMP-2, IL-6, and total immunoglobulin E (IgE) levels in the serum of asthmatics of various grades were compared to a control group. MMP-2's diagnostic and prognostic potential was determined using ROC curve analysis. This study also measured blood Eosinophils and PFTs. We examined MMP-2's connections with IgE, blood Eosinophils, and PFTs. Results The current investigation found that miR-196a2 expression was significantly higher in the control group than in asthmatic patients as a whole. The study found that severe asthmatics had higher MMP-2, IL-6, and IgE serum levels than healthy controls. We identified the MMP-2 serum concentration cutoff with great sensitivity and specificity. Significant relationships between MMP-2 serum level and miR-196a2 expression in the patient group with severe asthmatics were found. The MMP-2, IL-6, and IgE serum levels were considerably higher in mild, moderate, and severe asthmatics than controls. The miR-196a2 expression and MMP-2 serum concentration correlated positively with IgE and blood eosinophils % and negatively with all lung function tests in the asthmatic patient group.Conclusion: the study revealed that the elevated miR-196a2 expression and serum concentration of MMP-2, IL-6, and IgE associated with elevated blood eosinophils % is associated with pathophysiology and degree of asthma severity. The miR-196a2 expression and MMP-2 serum concentration have a promising diagnostic and prognostic ability in bronchial asthma.
Collapse
Affiliation(s)
- Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed S. Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Department of Biochemistry and Molecular Biology, Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Mohannad Mohammad S. Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Masoud I.E. Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Magaji Garba Taura
- Department of Anatomy, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Adamu Imam Isa
- Department of Physiology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahad Fuad Binafif
- Blood Transfusion Services Center, Health Support Services Center, Ministry of Health, Riyadh, 11176, Saudi Arabia
| | - Mohammed A. Attia
- Department of Clinical Pharmacology, Mansoura University, Mansoura, 35516, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, 11597, Saudi Arabia
| | - Elsayed A. Elmorsy
- Department of Clinical Pharmacology, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ayman A. Yousef
- Chest Department, Benha University Hospitals, Qaliubyia, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
- Department of Pharmacology and Toxicology, Beni-Suef University, Beni.Suef, 62521, Egypt
| | - Mohamed A. Elkady
- Department of Biochemistry and Molecular Biology, Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
92
|
Piatnitskaia S, Rafikova G, Bilyalov A, Chugunov S, Akhatov I, Pavlov V, Kzhyshkowska J. Modelling of macrophage responses to biomaterials in vitro: state-of-the-art and the need for the improvement. Front Immunol 2024; 15:1349461. [PMID: 38596667 PMCID: PMC11002093 DOI: 10.3389/fimmu.2024.1349461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
The increasing use of medical implants in various areas of medicine, particularly in orthopedic surgery, oncology, cardiology and dentistry, displayed the limitations in long-term integration of available biomaterials. The effective functioning and successful integration of implants requires not only technical excellence of materials but also consideration of the dynamics of biomaterial interaction with the immune system throughout the entire duration of implant use. The acute as well as long-term decisions about the efficiency of implant integration are done by local resident tissue macrophages and monocyte-derived macrophages that start to be recruited during tissue damage, when implant is installed, and are continuously recruited during the healing phase. Our review summarized the knowledge about the currently used macrophages-based in vitro cells system that include murine and human cells lines and primary ex vivo differentiated macrophages. We provided the information about most frequently examined biomarkers for acute inflammation, chronic inflammation, foreign body response and fibrosis, indicating the benefits and limitations of the model systems. Particular attention is given to the scavenging function of macrophages that controls dynamic composition of peri-implant microenvironment and ensures timely clearance of microorganisms, cytokines, metabolites, extracellular matrix components, dying cells as well as implant debris. We outline the perspective for the application of 3D systems for modelling implant interaction with the immune system in human tissue-specific microenvironment avoiding animal experimentation.
Collapse
Affiliation(s)
- Svetlana Piatnitskaia
- Cell Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Guzel Rafikova
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, Russia
| | - Azat Bilyalov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Svyatoslav Chugunov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Iskander Akhatov
- Laboratory of Mathematical modeling, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
93
|
Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, Daood U. Newly discovered clouting interplay between matrix metalloproteinases structures and novel quaternary Ammonium K21: computational and in-vivo testing. BMC Oral Health 2024; 24:382. [PMID: 38528501 DOI: 10.1186/s12903-024-04069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
AIMS AND OBJECTIVES To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation. MATERIALS AND METHODS In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)). RESULTS Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test. CONCLUSION K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jia Chern Pang
- School of Postgraduate Studies, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Seow Liang Lin
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Division of Clinical Oral Health, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia.
| |
Collapse
|
94
|
LI KUNLUN, LI DANDAN, HAFEZ BARBOD, BEKHIT MOUNIRMSALEM, JARDAN YOUSEFABIN, ALANAZI FARSKAED, TAHA EHABI, AUDA SAYEDH, RAMZAN FAIQAH, JAMIL MUHAMMAD. Identifying and validating MMP family members (MMP2, MMP9, MMP12, and MMP16) as therapeutic targets and biomarkers in kidney renal clear cell carcinoma (KIRC). Oncol Res 2024; 32:737-752. [PMID: 38560573 PMCID: PMC10972725 DOI: 10.32604/or.2023.042925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.
Collapse
Affiliation(s)
- KUNLUN LI
- The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - DANDAN LI
- Department of Pharmaceutical Engineering, Jiangsu Ocean University, Lianyungang, China
| | - BARBOD HAFEZ
- Department of Biological Engineering, University of Salford, Salford, UK
| | - MOUNIR M. SALEM BEKHIT
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - YOUSEF A. BIN JARDAN
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - FARS KAED ALANAZI
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - EHAB I. TAHA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - SAYED H. AUDA
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - FAIQAH RAMZAN
- Department of Animal and Poultry Production, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - MUHAMMAD JAMIL
- Department of Arid Zone Research, PARC institute, Dera Ismail Khan, Pakistan
| |
Collapse
|
95
|
Peron PF, Wehrbein H, Mundethu A, Schmidtmann I, Erbe C. Clinical parameters and inflammatory biomarkers among patients with multibracket appliances: a prospective clinical trial. BMC Oral Health 2024; 24:308. [PMID: 38443926 PMCID: PMC10913366 DOI: 10.1186/s12903-024-03995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Aim of the presented study was to investigate changes in clinical parameters and active matrix metalloproteinase-8 (aMMP-8) levels in gingival crevicular fluid of patients before and during treatment with multibrackets appliances. METHODS Fifty-five adolescents scheduled for the treatment were included. Clinical parameters and subgingival samples were obtained at six time points: 1 week before appliance insertion (T0), 3 (T1), 6 (T2) weeks, 3 (T3), 6 (T4) months, and 1 year (T5) after that. Gingival index and plaque index were assessed to evaluated changes on the clinical status. Subgingival samples were collected to analyze changes in aMMP-8. RESULTS Scores for gingival and plaque index increased after bracket insertion. The gingival index increased from T2 (p < 0.05) until T5 (p < 0.0001). Plaque index also increased, reaching its maximum peak at T3 (p < 0.05). Moreover, an increase of aMMP-8 levels (p < 0.05) was noted. There was no significant between upper and lower jaws. CONCLUSIONS Treatment with multibracket appliances in adolescents favors dental plaque accumulation and may transitionally increase gingival and plaque index and aMMP-8 levels leading to gingival inflammation, even 1 year after therapy began. TRIAL REGISTRATION This study was approved by the Ethics Committee of the dental medical association Rheiland-Pfalz, Germany (process no. 837.340.12 (8441-F)), and followed the guidelines of Good Clinical Practices.
Collapse
Affiliation(s)
- Priscila Ferrari Peron
- Department of Orthodontics and Dentofacial Orthopedics, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131, Mainz, Germany.
| | - Heinrich Wehrbein
- Department of Orthodontics and Dentofacial Orthopedics, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131, Mainz, Germany
| | - Ambili Mundethu
- Department of Orthodontics and Dentofacial Orthopedics, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 69, 55131, Mainz, Germany
| | - Christina Erbe
- Department of Orthodontics and Dentofacial Orthopedics, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
96
|
Zalewska EA, Ławicka R, Grygorczuk P, Nowosielska M, Kicman A, Ławicki S. Importance of Metalloproteinase 8 (MMP-8) in the Diagnosis of Periodontitis. Int J Mol Sci 2024; 25:2721. [PMID: 38473967 DOI: 10.3390/ijms25052721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Periodontitis is a complex condition. Left untreated, it leads to tooth loss and the need for prosthetic treatment. The incidence of periodontitis is steadily increasing, so new methods are being sought to aid in the diagnosis of the disease. Among the methods postulated is the determination of concentrations of bioactive compounds which include extracellular matrix metalloproteinases (MMPs). These enzymes are present in various structural elements of the stomatognathic system. The most promising enzyme of this group appears to be metalloproteinase 8 (MMP-8). MMP-8 assays are performed in gingival fluid or saliva, and MMP-8 levels have been shown to be higher in patients with periodontitis compared to healthy subjects and correlated with some clinical parameters of the condition and the severity of the disease. In addition, the preliminary usefulness of this enzyme in evaluating the effectiveness of periodontal treatment and doxycycline therapy has been demonstrated. Determination of the active form of MMP-8 (aMMP-8) in oral rinse fluid using off-the-shelf assays shows the highest potential. Despite reports about aMMP-8 and promising data on the role of MMP-8 in periodontal diagnosis, a clear determination of the usefulness of this enzyme requires further research.
Collapse
Affiliation(s)
| | - Renata Ławicka
- The "Karedent" Dental Clinic, Bukowskiego 1/u3, 15-006 Bialystok, Poland
| | - Piotr Grygorczuk
- The "Karedent" Dental Clinic, Bukowskiego 1/u3, 15-006 Bialystok, Poland
| | - Magdalena Nowosielska
- Department of Gerostomatology, Medical University of Białystok, Akademicka 3, 15-267 Bialystok, Poland
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Białystok, Akademicka 3, 15-267 Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Waszyngtona 13a, 15-269 Bialystok, Poland
| |
Collapse
|
97
|
Liu C, Guan C, Li Y, Li Z, Wang Y, Han G. Advances in Electrochemical Biosensors for the Detection of Common Oral Diseases. Crit Rev Anal Chem 2024:1-21. [PMID: 38366356 DOI: 10.1080/10408347.2024.2315112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanchun Wang
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
98
|
Hu X, Su X. Study of Herbs Cortex Moutan, Poria cocos, and Alisma orientale and Periodontitis. Int Dent J 2024; 74:88-94. [PMID: 37758581 PMCID: PMC10829340 DOI: 10.1016/j.identj.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION The Chinese traditional herbs Cortex Moutan, Poria cocos, and Alisma orientale are considered to have potential to ameliorate periodontitis, although the possible underlying mechanisms remain mostly unknown. Due to the complex formulation of Chinese herbs, it is important to understand the mechanisms of pharmacologic effects of traditional herbs for better application in modern medical treatment. METHODS Network pharmacology was applied to explore the mechanism of Cortex Moutan, Poria cocos, and Alisma orientale. First we analysed their chemical ingredients using the Traditional Chinese Medicine Systems Pharmacology database and identified 20 active ingredients. Then we analysed the target genes of these 20 active ingredients as well as genes associated with periodontitis and found 74 co-target genes. We further analysed the protein-protein interaction network of these 74 co-target genes using the STRING database and enriched the pathways using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS The top 10 core targets elicited were vascular endothelial growth factor A (VEGFA), interlukin-6 (IL-6), tumour necrosis factor (TNF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), AKT serine/threonine kinase 1 (AKT1), prostaglandin-endoperoxide synthase 2 (PTGS2), kinase insert domain receptor (KDR), fibroblast growth factor 2 (FGF2), and serpin family E member 1 (SERPINE1). Using these a network of "herbs-ingredients-targetgenes-KEGG pathways." was constructed. CONCLUSIONS The target and bioprocess network suggested that the pharmacologic effects of Cortex Moutan, Poria cocos, and Alisma orientale may be mainly dependent on their anti-inflammatory potential. Further work is required to eucidate their detailed mechanisms of activity.
Collapse
Affiliation(s)
- Xinyuan Hu
- Department of Stomatology, Harbin Medical University Cancer Hospital, Nangang District, Harbin, China
| | - Xin Su
- Department of Stomatology, The Sixth Affiliated Hospital of Harbin Medical University, Songbei District, Harbin, China.
| |
Collapse
|
99
|
Goriuc A, Cojocaru KA, Luchian I, Ursu RG, Butnaru O, Foia L. Using 8-Hydroxy-2'-Deoxiguanosine (8-OHdG) as a Reliable Biomarker for Assessing Periodontal Disease Associated with Diabetes. Int J Mol Sci 2024; 25:1425. [PMID: 38338704 PMCID: PMC10855048 DOI: 10.3390/ijms25031425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, research has shown that oxidative stress plays a significant role in chronic inflammatory conditions. The alteration of the oxidant/antioxidant balance leads to the appearance of free radicals, important molecules involved in both diabetes mellitus and periodontal disease. Diabetes is considered to be one of the major risk factors of periodontal disease and the inflammation characterizing this condition is associated with oxidative stress, implicitly resulting in oxidative damage to DNA. 8-Hydroxydeoxyguanosine (8-OHdG) is the most common stable product of oxidative DNA damage caused by reactive oxygen species, and its levels have been reported to increase in body fluids and tissues during inflammatory conditions. 8-OHdG emerges as a pivotal biomarker for assessing oxidative DNA damage, demonstrating its relevance across diverse health conditions, including neurodegenerative disorders, cancers, inflammatory conditions, and periodontal disease. Continued research in this field is crucial for developing more precise treatments and understanding the detailed link between oxidative stress and the progression of periodontitis. The use of the 8-OHdG biomarker in assessing and managing chronic periodontitis is an area of increased interest in dental research, with the potential to provide crucial information for diagnosis and treatment.
Collapse
Affiliation(s)
- Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| | - Karina-Alexandra Cojocaru
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Ramona-Garbriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Liliana Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| |
Collapse
|
100
|
Rasti Boroojeni F, Naeimipour S, Lifwergren P, Abrahamsson A, Dabrosin C, Selegård R, Aili D. Proteolytic remodeling of 3D bioprinted tumor microenvironments. Biofabrication 2024; 16:025002. [PMID: 38128125 DOI: 10.1088/1758-5090/ad17d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
In native tissue, remodeling of the pericellular space is essential for cellular activities and is mediated by tightly regulated proteases. Protease activity is dysregulated in many diseases, including many forms of cancer. Increased proteolytic activity is directly linked to tumor invasion into stroma, metastasis, and angiogenesis as well as all other hallmarks of cancer. Here we show a strategy for 3D bioprinting of breast cancer models using well-defined protease degradable hydrogels that can facilitate exploration of the multifaceted roles of proteolytic extracellular matrix remodeling in tumor progression. We designed a set of bicyclo[6.1.0]nonyne functionalized hyaluronan (HA)-based bioinks cross-linked by azide-modified poly(ethylene glycol) (PEG) or matrix metalloproteinase (MMP) degradable azide-functionalized peptides. Bioprinted structures combining PEG and peptide-based hydrogels were proteolytically degraded with spatial selectivity, leaving non-degradable features intact. Bioprinting of tumor-mimicking microenvironments using bioinks comprising human breast cancer cells (MCF-7) and fibroblast in hydrogels with different susceptibilities to proteolytic degradation shows that MCF-7 proliferation and spheroid size were significantly increased in protease degradable hydrogel compartments, but only in the presence of fibroblasts. In the absence of fibroblasts in the stromal compartment, cancer cell proliferation was reduced and did not differ between degradable and nondegradable hydrogels. The interactions between spatially separated fibroblasts and MCF-7 cells consequently resulted in protease-mediated remodeling of the bioprinted structures and a significant increase in cancer cell spheroid size, highlighting the close interplay between cancer cells and stromal cells in the tumor microenvironment and the influence of proteases in tumor progression.
Collapse
Affiliation(s)
- Fatemeh Rasti Boroojeni
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sajjad Naeimipour
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Philip Lifwergren
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|