51
|
Wenger ES, Christianson DW. Structure of Bifunctional Variediene Synthase Yields Unique Insight on Biosynthetic Diterpene Assembly and Cyclization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626647. [PMID: 39677668 PMCID: PMC11643100 DOI: 10.1101/2024.12.03.626647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
An unusual family of bifunctional terpene synthases has been discovered in which both catalytic domains - a prenyltransferase and a cyclase - are connected by a long, flexible linker. These enzymes are unique to fungi and catalyze the first committed steps in the biosynthesis of complex terpenoid natural products: the prenyltransferase assembles 5-carbon precursors to form C 20 geranylgeranyl diphosphate (GGPP), and the cyclase converts GGPP into a polycyclic hydrocarbon product. Weak domain-domain interactions as well as linker flexibility render these enzymes refractory to crystallization and challenge their visualization by cryo-EM. Despite these challenges, we now present the first experimentally-determined structure of a massive, 495-kD bifunctional terpene synthase revealing the assembly of all catalytic domains. The cryo-EM structure of variediene synthase from Emericella variecolor (EvVS) exhibits a bollard-like architecture, consisting of a hexameric prenyltransferase core sandwiched between two triads of cyclase domains. Although prenyltransferase and cyclase active sites are relatively close together, enzymological measurements indicate that GGPP is not channeled from one to the other. Surprisingly, however, the individual cyclase domain from another bifunctional diterpene synthase, fusicoccadiene synthase from Phomopsis amygdali , preferentially receives GGPP from the EvVS prenyltransferase in substrate competition experiments. Our previous studies of fusicoccadiene synthase suggest that GGPP channeling occurs through transient binding of cyclase domains to the sides of the prenyltransferase oligomer. The bollard-like architecture of EvVS leaves the sides of the prenyltransferase oligomer open and accessible, suggesting that a non-native cyclase could bind to the sides of the prenyltransferase oligomer to achieve GGPP channeling.
Collapse
|
52
|
Zhao Y, Wang Y. Protein Dynamics in Plant Immunity: Insights into Plant-Pest Interactions. Int J Mol Sci 2024; 25:12951. [PMID: 39684662 DOI: 10.3390/ijms252312951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
All living organisms regulate biological activities by proteins. When plants encounter pest invasions, the delicate balance between protein synthesis and degradation becomes even more pivotal for mounting an effective defense response. In this review, we summarize the mechanisms by which plants regulate their proteins to effectively coordinate immune responses during plant-pest interactions. Additionally, we discuss the main pathway proteins through which pest effectors manipulate host protein homeostasis in plants to facilitate their infestation. Understanding these processes at the molecular level not only deepens our knowledge of plant immunity but also holds the potential to inform strategies for developing pest-resistant crops, contributing to sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanru Wang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
53
|
Zhang L, Chen C, Li Y, Suo C, Zhou W, Liu X, Deng Y, Sohail H, Li Z, Liu F, Chen X, Yang X. Enhancing aphid resistance in horticultural crops: a breeding prospective. HORTICULTURE RESEARCH 2024; 11:uhae275. [PMID: 39712868 PMCID: PMC11659385 DOI: 10.1093/hr/uhae275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 12/24/2024]
Abstract
Increasing agricultural losses caused by insect infestations are a significant problem, so it is important to generate pest-resistant crop varieties to address this issue. Several reviews have examined aphid-plant interactions from an entomological perspective. However, few have specifically focused on plant resistance mechanisms to aphids and their applications in breeding for aphid resistance. In this review, we first outline the types of resistance to aphids in plants, namely antixenosis, tolerance (cell wall lignification, resistance proteins), and antibiosis, and we discuss strategies based on each of these resistance mechanisms to generate plant varieties with improved resistance. We then outline research on the complex interactions amongst plants, viruses, and aphids, and discuss how aspects of these interactions can be exploited to improve aphid resistance. A deeper understanding of the epigenetic mechanisms related to induced resistance, i.e. the phenomenon where plants become more resistant to a stress they have encountered previously, may allow for its exploitation in breeding for aphid resistance. Wild relatives of crop plants serve as important sources of resistance traits. Genes related to these traits can be introduced into cultivated crop varieties by breeding or genetic modification, and de novo domestication of wild varieties can be used to exploit multiple excellent characteristics, including aphid resistance. Finally, we discuss the use of molecular design breeding, genomic data, and gene editing to generate new aphid-resistant, high-quality crop varieties.
Collapse
Affiliation(s)
- Lili Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chaoyan Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chunyu Suo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wei Zhou
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaowei Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yizhuo Deng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyi Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaodong Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
54
|
Qasim M, Su J, Noman A, Ma T, Islam W, Hussain D, Rizwan M, Hameed MS, Khan KA, Ghramh HA, Wang L, Han X. Citrus psyllid management by collective involvement of plant resistance, natural enemies and entomopathogenic fungi. Microb Pathog 2024; 197:107047. [PMID: 39442809 DOI: 10.1016/j.micpath.2024.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Crops face constant threats from insect pests, which can lead to sudden disasters and global famine. One of the most dangerous pests is the Asian citrus psyllid (ACP), which poses a significant threat to citrus plantations worldwide. Effective and adaptive management strategies to combat ACP are always in demand. Plant resistance (PR) is a key element in pest management, playing crucial roles such as deterring pests through antifeedant and repellant properties, while also attracting natural enemies of these pests. One effective and innovative approach is the use of entomopathogenic fungi (EPF) to reduce pest populations. Additionally, other natural enemies play an important role in controlling certain insect pests. Given the significance of PR, EPF, and natural arthropod enemies (NAE), this review highlights the benefits of these strategies against ACP, drawing on successful examples from recent research. Furthermore, we discuss how EPF can be effectively utilized in citrus orchards, proposing strategies to ensure its efficient use and safeguard food security in the future.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China; State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jie Su
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Ting Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Dilbar Hussain
- Department of Entomology, Ayub Agriculture Research Institute, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
55
|
Li T, Yuan L, Jiang D, Yan S. HcCYP6AE178 plays a crucial role in facilitating Hyphantria cunea's adaptation to a diverse range of host plants. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106194. [PMID: 39672613 DOI: 10.1016/j.pestbp.2024.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 12/15/2024]
Abstract
Strong multi-host adaptability significantly contributes to the rapid dissemination of Hyphantria cunea. The present study explores the involvement of cytochrome P450 monooxygenase (P450) in the multi-host adaptation of H. cunea and aims to develop RNA pesticides targeting essential P450 genes to disrupt this adaptability. The results showed that inhibiting P450 activity notably reduced larval weight and food-intake across seven plants groups. The P450 gene HcCYP6AE178 was highly upregulated in H. cunea larvae from medium- and low-preference host plant groups. Silencing HcCYP6AE178 significantly decreased H. cunea larval body weight, increased larval mortality, inhibited energy metabolism genes expression and interfered with growth regulatory genes expression. Overexpression of HcCYP6AE178 enhanced the tolerance of Drosophila and Sf9 cells to the plant defensive substances cytisine and coumarin. The RNA pesticide CS-dsHcCYP6AE178 constructed using chitosan (CS) exhibited remarkable stability. Treatment with CS-dsHcCYP6AE178 effectively reduced H. cunea larval body weight, heightened larval mortality, and disrupted growth regulatory genes expression in low-preference host plant groups. Combined treatment of CS-dsHcCYP6AE178 and coumarin significantly elevated H. cunea larval mortality compared to coumarin alone, accompanied by the inhibition of growth regulatory genes expression and an abnormal increase in energy metabolism genes expression. Taken together, HcCYP6AE178 is essential for the adaptation of H. cunea to multiple host plants, and RNA pesticides targeting HcCYP6AE178 can effectively impair the performance of H. cunea in different host plants.
Collapse
Affiliation(s)
- Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
56
|
Qi R, Pei J, Zhou Q, Hao K, Tian Y, Ren L, Luo Y. Comparative Metabolic Defense Responses of Three Tree Species to the Supplemental Feeding Behavior of Anoplophora glabripennis. Int J Mol Sci 2024; 25:12716. [PMID: 39684427 DOI: 10.3390/ijms252312716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Elaeagnus angustifolia L. can attract adult Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and kill their offspring by gum secretion in oviposition scars. This plant has the potential to be used as a dead-end trap tree for ALB management. However, there is a limited understanding of the attraction ability and biochemical defense response of E. angustifolia to ALB. In this study, we conducted host selection experiments with ALB and then performed physiological and biochemical assays on twigs from different tree species before and after ALB feeding. We analyzed the differential metabolites using the liquid chromatograph-mass spectrometer method. The results showed that ALB's feeding preference was E. angustifolia > P.× xiaohei var. gansuensis > P. alba var. pyramidalis. After ALB feeding, the content of soluble sugars, soluble proteins, flavonoids, and tannins decreased significantly in all species. In three comparison groups, a total of 492 differential metabolites were identified (E. angustifolia:195, P.× xiaohei var. gansuensis:255, P. alba var. pyramidalis:244). Differential metabolites were divided into overlapping and specific metabolites for analysis. The overlapping differential metabolites 7-isojasmonic acid, zerumbone, and salicin in the twigs of three tree species showed upregulation after ALB feeding. The specific metabolites silibinin, catechin, and geniposide, in E. angustifolia, significantly increased after being damaged. Differential metabolites enriched in KEGG pathways indicated that ALB feeding activated tyrosine metabolism and the biosynthesis of phenylpropanoids in three tree species, with a particularly high enrichment of differential metabolites in the flavonoid biosynthesis pathway in E. angustifolia. This study provides the metabolic defense strategies of different tree species against ALB feeding and proposes candidate metabolites that can serve as metabolic biomarkers, potentially offering valuable insights into using E. angustifolia as a control measure against ALB.
Collapse
Affiliation(s)
- Ruohan Qi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jiahe Pei
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Quan Zhou
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Keyu Hao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yi Tian
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
57
|
Akbar R, Sun J, Bo Y, Khattak WA, Khan AA, Jin C, Zeb U, Ullah N, Abbas A, Liu W, Wang X, Khan SM, Du D. Understanding the Influence of Secondary Metabolites in Plant Invasion Strategies: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3162. [PMID: 39599372 PMCID: PMC11597624 DOI: 10.3390/plants13223162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The invasion of non-native plant species presents a significant ecological challenge worldwide, impacting native ecosystems and biodiversity. These invasive plant species significantly affect the native ecosystem. The threat of invasive plant species having harmful effects on the natural ecosystem is a serious concern. Invasive plant species produce secondary metabolites, which not only help in growth and development but are also essential for the spread of these plant species. This review highlights the important functions of secondary metabolites in plant invasion, particularly their effect on allelopathy, defense system, interaction with micro soil biota, and competitive advantages. Secondary metabolites produced by invasive plant species play an important role by affecting allelopathic interactions and herbivory. They sometimes change the soil chemistry to make a viable condition for their proliferation. The secondary metabolites of invasive plant species inhibit the growth of native plant species by changing the resources available to them. Therefore, it is necessary to understand this complicated interaction between secondary metabolites and plant invasion. This review mainly summarizes all the known secondary metabolites of non-native plant species, emphasizing their significance for integrated weed management and research.
Collapse
Affiliation(s)
- Rasheed Akbar
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Department of Entomology, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Amir Abdullah Khan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Cheng Jin
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoyan Wang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shah Masaud Khan
- Department of Horticulture, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
58
|
Cho JY, Ryu DH, Hamayun M, Lee SH, Jung JH, Kim HY. Scent Knows Better: Utilizing Volatile Organic Compounds as a Robust Tool for Identifying Higher Cannabidiol- and Tetrahydrocannabinol-Containing Cannabis Cultivars in Field Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24711-24723. [PMID: 39468951 DOI: 10.1021/acs.jafc.4c06652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The primary cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC), found in cannabis, are known to originate from genetic diversity, resulting in distinct characteristics. This study aimed to identify VOC markers to distinguish between higher CBD and THC cannabis cultivars under field conditions. Among the 58 VOCs, β-caryophyllene and α-humulene were primary VOCs across all cannabis cultivars. Intriguingly, certain terpene VOCs exhibited contrasting trends between higher CBD and higher THC cannabis cultivars. Eudesma-3,7(11)-diene and α-guaiol consistently appeared as highlighted compounds, suggesting their potential to distinguish between higher CBD and THC cannabis cultivars. ROC curve analysis revealed approximately 94% predictive accuracy for these putative markers. Given the current focus on VOCs as sensor markers for plant health, growth, and quality, the identified VOC markers─applicable across varieties and growth stages─could enable nondestructive, rapid, and accurate identification of CBD- and THC-rich cannabis species in field conditions.
Collapse
Affiliation(s)
- Jwa Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Muhammad Hamayun
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Nowshera Mardan Rd, Mardan 23200, Pakistan
| | - Su Hyeon Lee
- Department of southern area crop science, National institute of crop science, Rural development administration, Miryang, Gyeongnam 50424, Republic of Korea
| | - Je Hyeong Jung
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
- Natural Product Applied Science, KIST school, University of Science and Technology (UST), Gangneung, Gangwon 25451, Republic of Korea
| |
Collapse
|
59
|
Kefale H, You J, Zhang Y, Getahun S, Berhe M, Abbas AA, Ojiewo CO, Wang L. Metabolomic insights into the multiple stress responses of metabolites in major oilseed crops. PHYSIOLOGIA PLANTARUM 2024; 176:e14596. [PMID: 39575499 DOI: 10.1111/ppl.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 12/06/2024]
Abstract
The multidimensional significance of metabolomics has gained increasing attention in oilseeds research and development. Sesame, peanut, soybean, sunflower, rapeseed, and perilla are the most important oilseed crops consumed as vegetable oils worldwide. However, multiple biotic and abiotic stressors affect metabolites essential for plant growth, development, and ecological adaptation, resulting in reduced productivity and quality. Stressors can result in dynamic changes in oilseed crops' overall performance, leading to changes in primary (ex: saccharides, lipids, organic acids, amino acids, vitamins, phytohormones, and nucleotides) and secondary (ex: flavonoids, alkaloids, phenolic acids, terpenoids, coumarins, and lignans) major metabolite classes. Those metabolites indicate plant physiological conditions and adaptation strategies to diverse biotic and abiotic stressors. Advancements in targeted and untargeted detection and quantification approaches and technologies aided metabolomics and crop improvement. This review seeks to clarify the metabolomics advancements, significant contributions of metabolites, and specific metabolites that accumulate in reaction to various stressors in oilseed crops. Considering the response of metabolites to multiple stress effects, we compiled comprehensive and combined metabolic biosynthesis pathways for six major classes. Understanding these essential metabolites and pathways can inform molecular breeding strategies to develop resilient oilseed cultivars. Hence, this review highlights metabolomics advancements and metabolites' potential roles in major oilseed crops' biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Ethiopia
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Sewnet Getahun
- Department of Plant Science, College of Agriculture and Natural Resources, Debre Markos University, Ethiopia
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, Tigray, Ethiopia
| | - Ahmed A Abbas
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Agronomy, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Chris O Ojiewo
- Dryland Crops Program, International Maize and Wheat Improvement Center (CIMMYT) ICRAF House, United Nations Avenue, Nairobi-, Kenya
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
60
|
Libin KV, Debnath M, Sisodiya S, Rathod SB, Prajapati PB, Lisina KV, Bhuyan R, Evanjelene VK. Bioefficacy, chromatographic profiling and drug-likeness analysis of flavonoids and terpenoids as potential inhibitors of H1N1 influenza viral proteins. Int J Biol Macromol 2024; 281:136125. [PMID: 39357733 DOI: 10.1016/j.ijbiomac.2024.136125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Considering medicinal plants, natural products present in these plants are the best sources of medications for combating viral infection. The possible drug target against viral H1N1 influenza proteins lead to identification of selected secondary metabolites from potential plants Tinospora cordifolia, Ocimum sanctum, and Piper nigrum. On analysis of in vitro cell based antiviral activity of the selected plant extracts, an indication for a possible lead compound against neuraminidase activity was evident. Potent ligands were selected using drug docking and ADMET analysis, and the screened lead metabolites were ultimately identified as terpenoid (Columbin) and, flavonoid (Cubebin, and Apigenin). Among the selected ligands, the drug binding activity of Cubebin with all the 6 proteins of H1N1 influenza type A virus, HA (4r8w), NA (4qn7), M2 (3lbw), PA (4wsb), PB1 (2znl) and PB2 (3wil), was pronounced. In addition, physicochemical and pharmacokinetic parameters linked to absorption, distribution, metabolism, excretion and toxicity (ADMET) have been evaluated and corroborate with our in vitro results. Molecular dynamics modelling indicated Cubebin can be a potential phytochemical in a drug discovery pipeline for the development of neuraminidase inhibitors. Further studies can provide a possibility for an alternative therapy against Influenza viruses.
Collapse
Affiliation(s)
- K V Libin
- Department of Biosciences and Biotechnology, Banasthali Vidyapith Jaipur, Rajasthan 304802, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India.
| | - Smita Sisodiya
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India
| | - Shravan B Rathod
- Department of Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat, India
| | - Pravin B Prajapati
- Department of Chemistry, Sheth M. N. Science College, Patan, Gujarat, India
| | - K V Lisina
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Rajabrata Bhuyan
- Department of Biosciences and Biotechnology, Banasthali Vidyapith Jaipur, Rajasthan 304802, India
| | | |
Collapse
|
61
|
Yoon D, Choi BR, Kim HG, Lee DY. Metabolic differences in Zingiber officinale Roscoe by geographical origin determined via multiplatform metabolomics and method for simultaneous analysis of six phenolic compounds. J Food Sci 2024; 89:7452-7463. [PMID: 39390639 DOI: 10.1111/1750-3841.17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Ginger, which is the rhizome of Zingiber officinale Roscoe, is widely distributed and consumed. The taste and aroma of ginger differ depending on its geographical origin. To distinguish the origin of ginger, ginger extracts from Korea, Peru, and China were analyzed using ultra-performance liquid chromatography (UPLC) coupled to quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy for metabolomics. Korean ginger contained more 10-gingerol, and Peruvian ginger contained more 6-gingerol and 8-gingerol. Several amino acids negatively correlated with gingerols, suggesting that amino acids are related to the biosynthesis of gingerols. Sugars, which are the main energy source, positively correlated with gingerols. Organic acids and gingerols were also positively correlated, indicating that both organic acids and gingerols are used for adaptation to the environment surrounding the root. We confirmed the features of the primary and secondary metabolites by verifying the correlation between metabolites and differences in metabolites according to ginger origin. We additionally optimized a simultaneous UPLC analytical method of marker compounds for the simple and rapid quality control of ginger. This method exhibits excellent linearity, sensitivity, and reproducibility. Using metabolomics, differences in origin were observed, and a low-end equipment analysis method for quality control can be used in the ginger industry.
Collapse
Affiliation(s)
- Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Hyoung-Geun Kim
- Natural Product Research Center and Natural Product Central Bank, KRIBB, Ochang, Republic of Korea
| | - Dae Young Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
62
|
Bozza D, Barboni D, Spadafora ND, Felletti S, De Luca C, Nosengo C, Compagnin G, Cavazzini A, Catani M. Untargeted metabolomics approaches for the characterization of cereals and their derived products by means of liquid chromatography coupled to high resolution mass spectrometry. JOURNAL OF CHROMATOGRAPHY OPEN 2024; 6:100168. [DOI: 10.1016/j.jcoa.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
63
|
Commey L, Mechref Y, Burow M, Mendu V. Identification and Characterization of Peanut Seed Coat Secondary Metabolites Inhibiting Aspergillus flavus Growth and Reducing Aflatoxin Contamination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23844-23858. [PMID: 39412821 PMCID: PMC11528429 DOI: 10.1021/acs.jafc.4c05517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024]
Abstract
The peanut seed coat acts as a physical and biochemical barrier against Aspergillus flavus infection; however, the nature of the inhibitory chemicals in the peanut seed coat in general is not known. This study identified and characterized peanut seed coat metabolites that inhibit A. flavus growth and aflatoxin contamination. Selected peanut accessions grown under well-watered and water-deficit conditions were assayed for A. flavus resistance, and seed coats were metabolically profiled using liquid chromatography mass spectrometry. Kyoto Encyclopedia of Genes and Genome phenylpropanoid pathway reference analysis resulted in the identification of several seed coat metabolic compounds, and ten selected metabolites were tested for inhibition of A. flavus growth and aflatoxin contamination. Radial growth bioassay demonstrated that 2,5-dihydroxybenzaldehyde inhibited A. flavus growth (98.7%) and reduced the aflatoxin contamination estimate from 994 to 1 μg/kg. Scanning electron micrographs showed distorted hyphae and conidiophores in cultures of 2,5-dihydroxybenzaldehyde-treated A. flavus, indicating its potential use for field application as well as seed coat metabolic engineering.
Collapse
Affiliation(s)
- Leslie Commey
- Department
of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79409, United States
| | - Mark Burow
- Department
of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, United States
- Texas
A&M AgriLife Research, Lubbock, Texas 79403, United States
| | - Venugopal Mendu
- Department
of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, United States
- Department
of Agronomy, Agribusiness & Environmental Sciences, Texas A&M University, Kingsville, Texas 78363, United States
| |
Collapse
|
64
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
65
|
Chakraborty S, Dwivedi S, Schuster S. Mathematical modeling predicts that endemics by generalist insects are eradicated if nearly all plants produce constitutive defense. Sci Rep 2024; 14:25771. [PMID: 39468088 PMCID: PMC11519633 DOI: 10.1038/s41598-024-74771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Plants with constitutive defense chemicals exist widely in nature. The phenomenon is backed by abundant data from plant chemical ecology. Sufficient data are also available to conclude that plant defenses act as deterrent and repellent to attacking herbivores, particularly deleterious generalist insects. In the wild, generalist species are usually not endemic, meaning they are not restricted to certain plant species in a region. Therefore, our objective is to inspect theoretically whether evolution of chemical defenses in all plant species eradicate an endemic by any generalist species. The objective is addressed by developing deterministic ordinary differential equations under the following conditions: Plants without constitutive defenses are susceptible to oviposition by generalist insects, while they become defended against generalists by storing chemical defenses. From the models, we explicitly obtain that a generalist-free stable state is only possible if the vast majority of all plant individuals have chemical defenses. The model also allows one to predict the highest possible percentage of undefended plant individuals, which may be considered as free-riders.
Collapse
Affiliation(s)
- Suman Chakraborty
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany
- International Max Planck Research School 'Chemical Communication in Ecological Systems', Jena, 07745, Thuringia, Germany
| | - Shalu Dwivedi
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany.
| |
Collapse
|
66
|
Wu YT, Ma R, Wei JW, Song LW, Dewer Y, Wang SS, Liu L, Zhou JJ. ApCarE4 and ApPOD3 participate in the adaptation of pea aphids to different alfalfa varieties. Sci Rep 2024; 14:25444. [PMID: 39455643 PMCID: PMC11511942 DOI: 10.1038/s41598-024-76192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The adaptability of insects to hosts has long been a focal point in the study of insect-plant interactions. The pea aphid (Acythosiphon pisum), a significant pest of numerous leguminous crops, not only inflicts direct economic losses but also disseminates various plant viruses. To understand how pea aphids adapt to diverse alfalfa varieties. We analyzed the differentially expressed genes (DEGs) of pea aphids in distinct alfalfa varieties using transcriptome sequencing, and subsequently conducted functional validation of these genes. Comparative analysis between pea aphids feeding on susceptible and resistant strains revealed that DEGs in aphids feeding on resistant strains were primarily associated with transcriptional enrichment in the sugar, amino acid, protein, and lipid metabolism pathways. Fourteen DEGs related to adaptation of the pea aphid to alfalfa were chosen, including five carboxylesterases (CarE), four cytochrome P450s, three glutathione S-transferases, and two peroxidases (POD). RT-qPCR results indicated significant up-regulation of two carboxylesterase genes and two peroxidase genes after 24 h of feeding resistant alfalfa (Gannong 5, GN5) compared to the susceptible varieties (Hunter River, LRH), particularly highlighting the high expression levels of ApCarE4 and ApPOD3. Simultaneously, RNAi-induced knockdown of ApCarE4 and ApPOD3 led to a higher mortality of pea aphids in the alfalfa Hunter River. These results indicate that ApPOD3 and ApCarE4 are involved in the detoxification of metabolic functions in the adaptation of pea aphids to host switching. These findings contribute to the understanding of pea aphid adaptation to host plants and lay a foundation for further exploration of the physiological roles of carboxylesterase and peroxidase genes in pea aphids.
Collapse
Affiliation(s)
- Yi-Ting Wu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Rui Ma
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Jiang-Wen Wei
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Li-Wen Song
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Sen-Shan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu Province, China.
| | - Lei Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu Province, China.
| | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen village, Anning District, Lanzhou, 730070, Gansu Province, China
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
67
|
Adepoju M, Verheecke-Vaessen C, Pillai LR, Phillips H, Cervini C. Unlocking the Potential of Teff for Sustainable, Gluten-Free Diets and Unravelling Its Production Challenges to Address Global Food and Nutrition Security: A Review. Foods 2024; 13:3394. [PMID: 39517178 PMCID: PMC11545792 DOI: 10.3390/foods13213394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Sustainable diets, as defined by the Food and Agriculture Organisation, aim to be nutritionally adequate, safe, and healthy, while optimising natural and human resources. Teff (Eragrostis tef), a gluten-free grain primarily grown in Ethiopia, has emerged as a key contender in this context. Widely regarded as a "supergrain", teff offers an outstanding nutrition profile, making it an excellent choice for people with gluten-related disorders. Rich with protein, essential amino acids, polyunsaturated fats, and fibre, and abundant in minerals like calcium and iron, teff rivals other popular grains like quinoa and durum wheat in promoting human health. Beyond its nutritional benefits, teff is a hardy crop that thrives in diverse climates, tolerating both drought and waterlogged conditions. Due to its resilience and rich nutrient content, teff holds the potential to address nine of the 17 United Nations' Sustainable Development Goals (SDGs), including SDG 1 (no poverty), SDG 2 (zero hunger), and SDG 3 (good health and wellbeing), which are tied to improving food and nutrition security. However, teff production in Ethiopia faces significant issues. Traditional farming practices, insufficient storage infrastructure, and food safety challenges, including adulteration, hinder teff's full potential. This review explores teff's dual role as a nutritious, sustainable food source and outlines the key challenges in its production to conclude on what needs to be done for its adoption as a golden crop to address global food and nutrition security.
Collapse
Affiliation(s)
| | | | | | | | - Carla Cervini
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
68
|
Yang W, Zhang L, Yang Y, Xiang H, Yang P. Plant secondary metabolites-mediated plant defense against bacteria and fungi pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109224. [PMID: 39437667 DOI: 10.1016/j.plaphy.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plant diseases caused by pathogenic bacteria and fungi are major threats to both wild plants and crops. To counteract these threats, plants have evolved various defense mechanisms, including the production of plant secondary metabolites (PSMs). These compounds, such as terpenoids, phenolics, alkaloids, and glucosinolates, offer a versatile, efficient, and cost-effective means of pathogen resistance. The traditional pathogen management methods relying on synthetic microbicides are often environment unfriendly. In contrast, PSMs provide promising alternative way due to their high efficiency and environmental benefits. This article reviews the categories, biosynthetic pathways, mechanisms of actions, and the commercialization of the PSMs to enhance our understanding of their pathogen resistance capabilities. The goal is to develop sustainable disease management strategies using PSM-based bactericides and fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
69
|
Abrosimov R, Moosmann B. The HOMO-LUMO Gap as Discriminator of Biotic from Abiotic Chemistries. Life (Basel) 2024; 14:1330. [PMID: 39459630 PMCID: PMC11509606 DOI: 10.3390/life14101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Low-molecular-mass organic chemicals are widely discussed as potential indicators of life in extraterrestrial habitats. However, demarcation lines between biotic chemicals and abiotic chemicals have been difficult to define. Here, we have analyzed the potential utility of the quantum chemical property, HOMO-LUMO gap (HLG), as a novel proxy variable of life, since a significant trend towards incrementally smaller HLGs has been described in the genetically encoded amino acids. The HLG is a zeroth-order predictor of chemical reactivity. Comparing a set of 134 abiotic organic molecules recovered from meteorites, with 570 microbial and plant secondary metabolites thought to be exclusively biotic, we found that the average HLG of biotic molecules was significantly narrower (-10.4 ± 0.9 eV versus -12.4 ± 1.6 eV), with an effect size of g = 1.87. Limitation to hydrophilic molecules (XlogP < 2) improved the separation of biotic from abiotic compounds (g = 2.52). The "hydrophilic reactivity" quadrant defined by |HLG| < 11.25 eV and XlogP < 2 was populated exclusively by 183 biotic compounds and 6 abiotic compounds, 5 of which were nucleobases. We conclude that hydrophilic molecules with small HLGs represent valuable indicators of biotic activity, and we discuss the evolutionary plausibility of this inference.
Collapse
Affiliation(s)
- Roman Abrosimov
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany;
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
70
|
Mondal PC, Salim R, Kumar V, Kaushik P, Shakil NA, Pankaj, Rana VS. Aphidicidal activity of nano-emulsions of spearmint oil and carvone against Rhopalosiphum maidis and Sitobion avenae. Sci Rep 2024; 14:24226. [PMID: 39414889 PMCID: PMC11484702 DOI: 10.1038/s41598-024-74149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
Different species of aphids, responsible for severe yield losses of cereal crops including wheat, (Triticum aestivum L.) are managed by insecticides, which are harmful to organisms and the environment under field conditions. Therefore, an environment friendly aphidicidal product of plant origin is required. Mentha spicata oil was found to be rich in carvone (81.88%), but the use of its oil and carvone in crop protection is lacking due to their volatility, poor solubility, and stability. A nanoformulaton not only solves these problems but also improve the efficacy and dose of the bioactive compounds. Thus, nano-emulsions of the oil and carvone prepared were characterized, and evaluated against Rhopalosiphum maidis (corn aphid) and Sitobion avenae (wheat aphid) The average droplet size of nano-emulsions of the oil and carvone was found to be 22.1 and 41.21 nm. Nano-emulsion of carvone exhibited higher aphid mortality (LC50 = 0.87-1.94 mg/mL) at 24 h and acetylcholinesterase inhibitory activity (IC50 = 0.07-3.83 mg/mL) compared to the nano-emulsion of the oil (LC50 = 2.87-2.81 mg/mL; IC50 = 1.66-5.34 mg/mL). The repellence index (RI) in nano-emulsion of essential oil was found to be higher (84.73 and 81.72%) at the highest concentration (0.05 µL/cm2) than that of carvone (77.59 and 80.98%) for R. maidis and S. avenae. Further, in silico studies also revealed the favourable binding energy (- 6.6 to - 8.5 kcal/mol) of the main compounds in the oil with acetylcholinesterase, facilitated by hydrophobic interactions and hydrogen bonding. This study suggests that the nano-emulsions of the essential oil and carvone can be explored under field conditions to establish efficacy for their utilization as aphidicidal and repellent products against aphids. In the present study, aphidicial and repellent activities of its essential oil and carvone were reported for the first time against R.maidis and S.avenae.
Collapse
Affiliation(s)
- Partha Chandra Mondal
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajna Salim
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vijay Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Parshant Kaushik
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Najam Akhtar Shakil
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pankaj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
71
|
Sun J, Liu Y, Fei S, Wang Y, Liu J, Zhang H. Seed Coating with Thiamethoxam-Induced Plant Volatiles Mediates the Olfactory Behavior of Sitobion miscanthi. INSECTS 2024; 15:810. [PMID: 39452387 PMCID: PMC11508528 DOI: 10.3390/insects15100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Pesticides can induce target plants to release odors that are attractive or repellent to their herbivore insects. But, to date, the activity of volatile organic compounds (VOCs), singly or as mixtures, which play a crucial role in the olfactory behavior of herbivore insects, remains unclear. The objective of our research was to investigate the impact of thiamethoxam (TMX), a pesticide, on the emission of odors by wheat plants, and how these odors influence the behavior of grain aphids (Sitobion miscanthi). S. miscanthi showed a greater repellent response to the volatiles emitted by Thx-induced plants compared to those emitted by uncoated plants. Using gas chromatography-mass spectrometry (GCMS), we discovered that TMX greatly induced the release of VOCs in wheat plants. For instance, the levels of Bornyl acetate, 2-Oxepanone, Methyl acrylate, Cyclohexene, α-Pinene, and 1-Nonanol in coated wheat plants were significantly higher as compared to uncoated wheat plants. Moreover, varying concentrations also had an impact on the olfactory behavior of S. miscanthi. For instance, Cyclohexene exhibited clear attractiveness to aphids at concentrations of 100 μL/mL, whereas it displayed evident repellent properties at concentrations of 1 μL/mL and 10 μL/mL. These new findings demonstrate how TMX-induced VOCs affect the behavior of S. miscanthi and could help in developing innovative approaches to manage aphids by manipulating the emission of plant volatiles. Furthermore, these findings can also be utilized to evaluate substances that either attract or repel aphids, with the aim of implementing early monitoring and environmentally friendly methods to manage aphids, while simultaneously impeding the spread of viruses.
Collapse
Affiliation(s)
- Jiacong Sun
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.W.); (J.L.)
| | - Yonggang Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.W.); (J.L.)
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Shaodan Fei
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| | - Yixuan Wang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.W.); (J.L.)
| | - Jinglong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.W.); (J.L.)
| | - Haiying Zhang
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| |
Collapse
|
72
|
Xu N, Yang F, Dai W, Yuan C, Li J, Zhang H, Ren Y, Zhang M. The Influence of Sodium Humate on the Biosynthesis and Contents of Flavonoid Constituents in Lemons. PLANTS (BASEL, SWITZERLAND) 2024; 13:2888. [PMID: 39458835 PMCID: PMC11511212 DOI: 10.3390/plants13202888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Sodium humate (SH) is the sodium salt of humic acid. Our previous research has demonstrated that SH has the ability to enhance the levels of total flavonoids in various parts of lemons, including the leaves, peels, pulps, and seeds, thereby improving the quality of lemons. In the current study, the regulation effect of SH on the biosynthesis and content of lemon flavonoid compounds was examined using transcriptome sequencing technology and flavonoid metabolomic analysis. Following SH treatment, the transcriptome sequencing analysis revealed 320 differentially expressed genes (DEGs) between samples treated with SH and control (CK) samples, some of which were associated with the phenylalanine pathway by KEGG annotation analysis. The levels of seven flavonoid compounds identified in lemon peels were observed to increase, and eriocitrin and isoorientin were identified as differential metabolites (DMs, VIP > 1) using OPLS-DA analysis. The integrated analysis of transcriptomics and flavonoid metabolomics indicates that SH treatment induces alterations in gene expression and metabolite levels related to flavonoid synthesis. Specifically, SH influences flavonoid biosynthesis by modulating the activity of key enzymes in the phenylalanine pathway, including HCT (O-hydroxycinnamoyltransferase) and F5H (ferulate-5-hydroxylase).
Collapse
Affiliation(s)
- Nianao Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Fan Yang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Ruili 678600, China; (F.Y.); (J.L.)
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Cheng Yuan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Jinxue Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Ruili 678600, China; (F.Y.); (J.L.)
| | - Hanqi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Youdi Ren
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| | - Mi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (N.X.); (W.D.); (C.Y.); (H.Z.); (Y.R.)
| |
Collapse
|
73
|
Li ZX, Tan JF, Yao N, Xie RH. From trade-off to synergy: how nutrient status modulates plant resistance to herbivorous insects? ADVANCED BIOTECHNOLOGY 2024; 2:37. [PMID: 39883238 PMCID: PMC11740848 DOI: 10.1007/s44307-024-00045-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 01/31/2025]
Abstract
The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores. This review aims to summarize recent advances that elucidate the impact of nutrient availability on plant defense responses. Particularly, we focus on how nutrient status shapes plant resistance to herbivores, delving into the molecular mechanisms underlying this physiological process. Moreover, the interplay between mineral nutrients and various herbivore defense mechanisms, including physical protection, plant hormone signaling, defensive metabolite production, and volatile organic compound emissions that deter herbivores or attract their natural enemies, are discussed. This comprehensive review sets the stage for future investigations into the intricate crosstalk between nutrient signaling and plant defense responses, which serves as a central mechanism to guide sustainable pest management approaches, thereby promoting balanced agroecosystem health and enhancing plant ecosystem productivity and resilience.
Collapse
Affiliation(s)
- Zhi-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruo-Han Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
74
|
Qi Y, Gao P, Yang S, Li L, Ke Y, Zhao Y, Huang F, Yu L. Unveiling the impact of nitrogen deficiency on alkaloid synthesis in konjac corms (Amorphophallus muelleri Blume). BMC PLANT BIOLOGY 2024; 24:923. [PMID: 39358689 PMCID: PMC11448245 DOI: 10.1186/s12870-024-05642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Konjac corms are known for their alkaloid content, which possesses pharmacological properties. In the primary cultivation areas of konjac, nitrogen deficiency is a common problem that significantly influences alkaloid synthesis. The impact of nitrogen deficiency on the alkaloids in konjac corms remains unclear, further complicated by the transition from mother to daughter corms during their growth cycle. RESULTS This study examined 21 alkaloids, including eight indole alkaloids, five isoquinoline alkaloids, and eight other types of alkaloids, along with the associated gene expressions throughout the development of Amorphophallus muelleri Blume under varying nitrogen levels. Nitrogen deficiency significantly reduced corm diameter and fresh weight and delayed the transformation process. Under low nitrogen conditions, the content of indole alkaloids and the expression of genes involved in their biosynthesis, such as tryptophan synthase (TRP) and tryptophan decarboxylase (TDC), exhibited a substantial increase in daughter corms, with fold changes of 61.99 and 19.31, respectively. Conversely, in the mother corm, TDC expression was markedly reduced, showing only 0.04 times the expression level observed under 10 N treatment. The patterns of isoquinoline alkaloid accumulation in corms subjected to nitrogen deficiency were notably distinct from those observed for indole alkaloids. The accumulation of isoquinoline alkaloids was significantly higher in mother corms, with expression levels of aspartate aminotransferase (GOT), chorismate mutase (CM), tyrosine aminotransferase (TAT), and pyruvate decarboxylase (PD) being 4.30, 2.89, 921.18, and 191.40 times greater, respectively. Conversely, in daughter corms, the expression levels of GOT and CM in the 0 N treatment were markedly lower (0.01 and 0.83, respectively) compared to the 10 N treatment. CONCLUSIONS The study suggests that under nitrogen deficiency, daughter corms preferentially convert chorismate into tryptophan to synthesize indole alkaloids, while mother corms convert it into tyrosine, boosting the production of isoquinoline alkaloids. This research provides valuable insights into the mechanisms of alkaloid biosynthesis in A. muelleri and can aid in developing nitrogen fertilization strategies and in the extraction and utilization of alkaloids.
Collapse
Affiliation(s)
- Ying Qi
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Penghua Gao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Shaowu Yang
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Lifang Li
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Yanguo Ke
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Yongteng Zhao
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China
| | - Feiyan Huang
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| | - Lei Yu
- College of Agronomy, Yunnan Key Laboratory of Konjac Biology, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, 650214, China.
| |
Collapse
|
75
|
Ahsan S, Injamum-Ul-Hoque M, Shaffique S, Ayoobi A, Rahman MA, Rahman MM, Choi HW. Illuminating Cannabis sativa L.: The Power of Light in Enhancing C. sativa Growth and Secondary Metabolite Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2774. [PMID: 39409645 PMCID: PMC11479007 DOI: 10.3390/plants13192774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Light is crucial for higher plants, driving photosynthesis and serving as a powerful sensory signal that profoundly modulates growth, development, physiological functions, hormone activation, and biochemical pathways. Various light parameters-quality, intensity, composition, and photoperiod-exert a tremendous influence on plant growth and development, particularly in industrial hemp (Cannabis sativa L.). C. sativa, a crop of historical significance and unparalleled versatility, holds immense value in the food, fiber, and medicinal industries. The cultivation of medicinal cannabis is burgeoning in controlled environments due to evolving healthcare regulations. Optimal light conditions significantly enhance both yield and harvest quality, notably increasing the density of apical inflorescences and the ratio of inflorescence to total aboveground biomass. C. sativa metabolites, especially phenolic and terpene compounds and Phytocannabinoids like CBD (cannabidiol), THC (tetrahydrocannabinol), and CBG (cannabigerol), possess immense medicinal value. Secondary metabolites in C. sativa predominantly accumulate in the trichomes of female flowers and surrounding sugar leaves, underscoring the critical need to boost inflorescence weight and metabolite concentrations while ensuring product consistency. Different light parameters distinctly impact C. sativa's metabolic profile, providing a robust foundation for understanding the optimal conditions for synthesizing specific secondary metabolites. While the effects of light measurement on various crops are well-established, scientific evidence specifically relating to light quality effects on C. sativa morphology and secondary metabolite accumulation remains scarce. In this review, we critically summarized how different light properties can alter cannabis growth (vegetative and reproductive), physiology and metabolism. Furthermore, the mechanisms by which specific wavelengths influence growth, development, and secondary metabolite biosynthesis in C. sativa are not fully elucidated, which could be a prospective task for future researchers. Our review paves the way for a profound understanding of light's influence on C. sativa growth and advancements in greenhouse settings to maximize metabolite production for commercial use.
Collapse
Affiliation(s)
- S.M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (S.S.)
| | - Akhtar Ayoobi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (S.A.); (A.A.)
| | | | - Md. Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Hyong Woo Choi
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
76
|
Qiu M, Tian M, Sun Y, Li H, Huang W, Ouyang H, Lin S, Zhang C, Wang M, Wang Y. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2234-2250. [PMID: 38965141 DOI: 10.1007/s11427-023-2596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.
Collapse
Affiliation(s)
- Min Qiu
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Sun
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaibo Li
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwen Huang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyan Lin
- China State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Zhang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
77
|
Dehghan A, Safa M. Host Plants and Fertilization Mediated Life History of American Serpentine Leaf Miner, Liriomyza trifolii (Burgess) (Diptera: Agromyzidae). NEOTROPICAL ENTOMOLOGY 2024; 53:1137-1148. [PMID: 39026134 DOI: 10.1007/s13744-024-01181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Herbivorous insects depend on the host plant to optimize their overall reproductive success, and balanced fertilization may alter the plant's quality against herbivory. Life history traits of the Liriomyza trifolii (Burgess) were determined under laboratory conditions using either unfertilized and fertilized plants of bean [Phaseolus vulgaris L. (Fabaceae)], chrysanthemum [Chrysanthemum × morifolium (Asteraceae)], potato [Solanum tuberosum (Solanaceae)], bell pepper [Capsicum annuum (Solanaceae)], and tomato [Solanum lycopersicum (Solanaceae)]. Results indicated that L. trifolii completed development on all studied unfertilized and fertilized plants. Nevertheless, a higher performance of the leaf miner was observed on bean and bell pepper plants compared to the other plants. Furthermore, there was an interaction of the host plant and fertilization with Calcium Aria or Sitam negatively affecting the fitness-related traits of the leaf miner. Application of these fertilizers resulted in delayed immature development of L. trifolii, decreased survival rate, and reduced adult longevity and fecundity. The activity of cinnamyl alcohol dehydrogenase (CAD), peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) enzymes, as well as phenolic, flavonoid, and lignin content were higher in Calcium Aria + Sitam fertilized plants, intermediate in Calcium Aria and Sitam treated plants, and the lower in unfertilized plants. The development and survival of L. trifolii on different host plants, considering fertilization options, become important for deploying cultural control practices against this important pest species.
Collapse
Affiliation(s)
- Azita Dehghan
- Dept of Agriculture, Bam Branch, Islamic Azad Univ, Bam, Iran
| | - Mahsa Safa
- Dept of Biotechnology, School of Advanced Sciences and Technology, Medical Sciences of Tehran, Islamic Azad Univ, Tehran, Iran.
| |
Collapse
|
78
|
Ait Elallem K, Ben Bakrim W, Yasri A, Boularbah A. Growth, Biochemical Traits, Antioxidant Enzymes, and Essential Oils of Four Aromatic and Medicinal Plants Cultivated in Phosphate-Mine Residues. PLANTS (BASEL, SWITZERLAND) 2024; 13:2656. [PMID: 39339631 PMCID: PMC11435175 DOI: 10.3390/plants13182656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Revegetation emerges as a promising approach to alleviate the adverse impacts of mining residues. However, it is essential to evaluate the characteristics of these materials and select suitable plant species to ensure successful ecosystem restoration. This study aimed to investigate the effects of phosphate-mine residues (MR) on the growth, biochemical properties, and essential oil concentration of Rosmarinus officinalis L., Salvia Officinalis L., Lavandula dentata L., and Origanum majorana L. The results showed that R. officinalis L. appeared to be particularly well-suited to thriving in MR soil. Our finding also revealed that L. dentata L., O. majorana L., and S. officinalis L. grown in MR exhibited significantly lower growth performance (lower shoot length, smaller leaves, and altered root structure) and higher antioxidant activities, with an alterations of photosynthetic pigment composition. They showed a decrease in total chlorophylls when grown on MR (0.295, 0.453, and 0.562 mg g-1 FW, respectively) compared to the control (0.465, 0.807, and 0.808 mg g-1 FW, respectively); however, they produced higher essential oil content (1.8%, 3.06%, and 2.88%, respectively). The outcomes of this study could offer valuable insights for the advancement of revegetation technologies and the utilization of plant products derived from phosphate-mine residues.
Collapse
Affiliation(s)
- Khadija Ait Elallem
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Widad Ben Bakrim
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laâyoune 70000, Morocco
| | - Abdelaziz Yasri
- Biomass Valorization and Biorefinery Laboratory, Biodiversity & Plant Sciences Division, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
- Institut National de la Recherche Agronomique (INRA), Rabat 10090, Morocco
| | - Ali Boularbah
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco
- Center of Excellence for Soil and Fertilizer Research in Africa, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| |
Collapse
|
79
|
Wang Y, Chen P, Lin Q, Zuo L, Li L. Endophytic bacteria with allelopathic potential regulate gene expression and metabolite production in host Casuarina equisetifolia. FRONTIERS IN PLANT SCIENCE 2024; 15:1435440. [PMID: 39359630 PMCID: PMC11445032 DOI: 10.3389/fpls.2024.1435440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Introduction Casuarina equisetifolia is a common protective forest in coastal areas. However, artificial C. equisetifolia forests cannot self-renew, mainly due to the accumulation of allelochemicals. Endophytic bacteria may alleviate the root growth inhibition caused by allelochemicals in C. equisetifolia seedlings. B. amyloliquefaciens and B. aryabhattai were endophytic bacteria with strong allelopathy in C. equisetifolia root. The allelopathy mechanism of these two endophytes and their interaction with C. equisetifolia remains to be studied. Methods Whole-genome sequencing of B. amyloliquefaciens and B. aryabhattai isolated from the roots of allelochemical-accumulating C. equisetifolia was performed using Illumina Hiseq and PacBio single-molecule sequencing platforms. Sterile seedlings of C. equisetifolia were treated with either individual or mixed bacterial cultures through root drenching. Transcriptional and metabolomics analyses were conducted after 3 days of infection. Results and discussion Whole-genome sequencing of Bacillus aryabhattai and Bacillus amyloliquefaciens showed that the two strains contained various horizontal gene transfer elements such as insertion sequence, prophage and transposon. In addition, these two strains also contain numerous genes related to the synthesis and catabolism of allelochemicals. After these two strains of bacteria were individually or mixed infected with C. equisetifolia, metabolomics and transcriptomic analysis of C. equisetifolia showed the 11 important secondary metabolite biosynthesis among them alkaloids biosynthesis, phenylpropanoid and terpenes biosynthesis and related genes were putatively regulated. Correlation analysis revealed that 48 differentially expressed genes had strong positive correlations with 42 differential metabolites, and 48 differentially expressed genes had strong negative correlations with 36 differential metabolites. For example, CMBL gene showed positive correlations with the allelochemical (-)-Catechin gallate, while Bp10 gene showed negative correlations with (-)-Catechin gallate. Conclusion The intergenerational accumulation of allelochemicals may induce horizontal gene transfer in endogenic bacteria of Casuarina equisetifolia root. Endophytic Bacillus plays an allelopathic role by assisting the host in regulating gene expression and the production and/or variety of allelochemicals. This comprehensive study sheds light on the intricate genetic and metabolic interactions between Bacillus endophytes and C. equisetifolia. These findings provide insights into endophyte-mediated allelopathy and its potential uses in plant biology and forest sustainability.
Collapse
Affiliation(s)
| | | | | | | | - Lei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
80
|
Felisberto JS, Machado DB, Assunção JAS, Massau SAS, de Queiroz GA, Guimarães EF, Ramos YJ, Moreira DDL. Spatio-Temporal Variations of Volatile Metabolites as an Eco-Physiological Response of a Native Species in the Tropical Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:2599. [PMID: 39339574 PMCID: PMC11435382 DOI: 10.3390/plants13182599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This study evaluates the essential oil (EO) composition of Piper rivinoides Kunth, a shrub native to the Brazilian tropical rainforest, across different plant parts and developmental phases. The aim was to explore the chemical diversity of EO and its reflection in the plant's ecological interactions and adaptations. Plant organs (roots, stems, branches, and leaves) at different developmental phases were subjected to hydrodistillation followed by chemical analysis using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID). The results revealed a relevant variation in EO yield and composition among different plant parts and developmental phases. Leaves showed the highest yield and chemical diversity, with α-pinene and β-pinene as major constituents, while roots and stems were characterized by a predominance of arylpropanoids, particularly apiol. The chemical diversity in leaves increased with plant maturity, indicating a dynamic adaptation to environmental interactions. The study underscores the importance of considering the ontogeny of plant parts in understanding the ecological roles and potential applications of P. rivinoides in medicine and agriculture. The findings contribute to the overall knowledge of Piperaceae chemodiversity and ecological adaptations, offering insights into the plant's interaction with its environment and its potential uses based on chemical composition.
Collapse
Affiliation(s)
- Jéssica Sales Felisberto
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
- Earth’s Pharmacy Laboratory, Federal University of Bahia, Ondina, Salvador 40170-215, BA, Brazil
| | - Daniel B. Machado
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - Jeferson A. S. Assunção
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Samik A. S. Massau
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - George A. de Queiroz
- Department of Pharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, RJ, Brazil;
| | - Elsie F. Guimarães
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - Ygor J. Ramos
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Earth’s Pharmacy Laboratory, Federal University of Bahia, Ondina, Salvador 40170-215, BA, Brazil
| | - Davyson de Lima Moreira
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| |
Collapse
|
81
|
He T, Chen L, Wu Y, Wang J, Wu Q, Sun J, Ding C, Zhou T, Chen L, Jin A, Li Y, Zhu Q. Combined Metabolome and Transcriptome Analyses of Maize Leaves Reveal Global Effect of Biochar on Mechanisms Involved in Anti-Herbivory to Spodoptera frugiperda. Metabolites 2024; 14:498. [PMID: 39330505 PMCID: PMC11433984 DOI: 10.3390/metabo14090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Fall armyworm (FAW, Spodoptera frugiperda) has now spread to more than 26 Chinese provinces. The government is working with farmers and researchers to find ways to prevent and control this pest. The use of biochar is one of the economic and environmentally friendly strategies to increase plant growth and improve pest resistance. We tested four v/v combinations of bamboo charcoal with coconut bran [BC1 (10:1), BC2(30:1), BC3(50:1)] against a control (CK) in maize. We found that plant height, stem thickness, fresh weight and chlorophyll content were significantly higher in BC2, in addition to the lowest FAW survival %. We then compared the metabolome and transcriptome profiles of BC2 and CK maize plants under FAW herbivory. Our results show that the levels of flavonoids, amino acids and derivatives, nucleotides and derivatives and most phenolic acids decreased, while terpenoids, organic acids, lipids and defense-related hormones increased in BC-grown maize leaves. Transcriptome sequencing revealed consistent expression profiles of genes enriched in these pathways. We also observed the increased expression of genes related to abscisic acid, jasmonic acid, auxin and MAPK signaling. Based on these observations, we discussed the possible pathways involved in maize against FAW herbivory. We conclude that bamboo charcoal induces anti-herbivory responses in maize leaves.
Collapse
Affiliation(s)
- Tianjun He
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Lin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Yingjun Wu
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China;
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Quancong Wu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Jiahao Sun
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Chaohong Ding
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Tianxing Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Limin Chen
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Aiwu Jin
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Yang Li
- Soil Fertilizer and Plant Protection Station of Lishui City, Lishui 323000, China
| | - Qianggen Zhu
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| |
Collapse
|
82
|
Wang S, Chen Z, Wang M, Zhang M, Zhang C, Huang T, Zhao Y, Xu Z. The feeding preference and bite response between Microtus fortis and Broussonetia papyrifera. FRONTIERS IN PLANT SCIENCE 2024; 15:1361311. [PMID: 39315380 PMCID: PMC11417685 DOI: 10.3389/fpls.2024.1361311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Introduction Broussonetia papyrifera is a dioecious plant that is rich in various metabolites and widely distribute in Asia. Microtus fortis is a rodent that often causes damage to crops, especially in the Dongting Lake region of China. There is a wide overlap in the distribution areas for the above species and the M. fortis feeds on the leaves of the B. papyrifera. Preliminary experiments have shown that the reproduction of M. fortis is inhibited after feeding on the leaves of the B. papyrifera. Methods In order to explore the potential of using B. papyrifera to develop botanical pesticides, we investigated the palatability and reactive substances. The feeding frequency of M. fortis on B. papyrifera leaves to that of on daily fodder and Carex brevicuspis that is the primary food for the wild population were compared. We also attempted to identify the responsive substances in B. papyrifera leaves that were bitten by M. fortis using metabolome analysis. Results In general, B. papyrifera leaves exhibited a stronger attraction to M. fortis. M. fortis foraged B. papyrifera leaves more frequently, and the intake was higher than that of the other two. Differential metabolites were screened by comparing normal leaves and leaves bitten by M. fortis, meanwhile with the intervention of clipped leaves. A total of 269 substances were screened, and many of these were involved in the biosynthesis of secondary metabolites, including terpenoids and alkaloids. These substances may be related to the defense mechanism of B. papyrifera against herbivores. Discussion These findings support further research examining animal-plant interactions and simultaneously provide insights into the utilisation of B. papyrifera resources and the management of rodents. The good palatability and the defense of B. papyrifera leaves suggest that they have the potential to contribute in development of plant rodenticide.
Collapse
Affiliation(s)
- Shuangye Wang
- School of Basic Medicine, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zihao Chen
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Mengxin Wang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Meiwen Zhang
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chen Zhang
- Dongting Lake Station for Wetland Ecosystem Research, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tian Huang
- Hunan Engineering Research Center of Ecological Environment lntelligent Monitoring and Disaster Prevention and Mitigation Technology in Dongting Lake Region, Hunan City University, Yiyang, Hunan, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
- Hunan Engineering Research Center of Ecological Environment lntelligent Monitoring and Disaster Prevention and Mitigation Technology in Dongting Lake Region, Hunan City University, Yiyang, Hunan, China
| |
Collapse
|
83
|
Wang H, Zhang F, Zhang Y, Wang M, Zhang Y, Zhang J. Enrichment of novel entomopathogenic Pseudomonas species enhances willow resistance to leaf beetles. MICROBIOME 2024; 12:169. [PMID: 39252132 PMCID: PMC11382411 DOI: 10.1186/s40168-024-01884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/27/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Plants have evolved various defense mechanisms against insect herbivores, including the formation of physical barriers, the synthesis of toxic metabolites, and the activation of phytohormone responses. Although plant-associated microbiota influence plant growth and health, whether they play a role in plant defense against insect pests in natural ecosystems is unknown. RESULTS Here, we show that leaves of beetle-damaged weeping willow (Salix babylonica) trees are more resistant to the leaf beetle Plagiodera versicolora (Coleoptera) than those of undamaged leaves. Bacterial community transplantation experiments demonstrated that plant-associated microbiota from the beetle-damaged willow contribute to the resistance of the beetle-damaged willow to P. versicolora. Analysis of the composition and abundance of the microbiome revealed that Pseudomonas spp. is significantly enriched in the phyllosphere, roots, and rhizosphere soil of beetle-damaged willows relative to undamaged willows. From a total of 49 Pseudomonas strains isolated from willows and rhizosphere soil, we identified seven novel Pseudomonas strains that are toxic to P. versicolora. Moreover, re-inoculation of a synthetic microbial community (SynCom) with these Pseudomonas strains enhances willow resistance to P. versicolora. CONCLUSIONS Collectively, our data reveal that willows can exploit specific entomopathogenic bacteria to enhance defense against P. versicolora, suggesting that there is a complex interplay among plants, insects, and plant-associated microbiota in natural ecosystems.
Collapse
Affiliation(s)
- Haitao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yali Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Mengnan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yiqiu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
84
|
Desika J, Yogendra K, Hepziba SJ, Patne N, Vivek BS, Ravikesavan R, Nair SK, Jaba J, Razak TA, Srinivasan S, Shettigar N. Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm ( Spodoptera frugiperda [J.E. Smith]) Infestation in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2451. [PMID: 39273935 PMCID: PMC11397220 DOI: 10.3390/plants13172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
The Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is a highly destructive lepidopteran pest known for its extensive feeding on maize (Zea mays L.) and other crops, resulting in a substantial reduction in crop yields. Understanding the metabolic response of maize to FAW infestation is essential for effective pest management and crop protection. Metabolomics, a powerful analytical tool, provides insights into the dynamic changes in maize's metabolic profile in response to FAW infestation. This review synthesizes recent advancements in metabolomics research focused on elucidating maize's metabolic responses to FAW and other lepidopteran pests. It discusses the methodologies used in metabolomics studies and highlights significant findings related to the identification of specific metabolites involved in FAW defense mechanisms. Additionally, it explores the roles of various metabolites, including phytohormones, secondary metabolites, and signaling molecules, in mediating plant-FAW interactions. The review also examines potential applications of metabolomics data in developing innovative strategies for integrated pest management and breeding maize cultivars resistant to FAW by identifying key metabolites and associated metabolic pathways involved in plant-FAW interactions. To ensure global food security and maximize the potential of using metabolomics in enhancing maize resistance to FAW infestation, further research integrating metabolomics with other omics techniques and field studies is necessary.
Collapse
Affiliation(s)
- Jayasaravanan Desika
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Sundararajan Juliet Hepziba
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nagesh Patne
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | | | - Rajasekaran Ravikesavan
- Centre for Plant Breeding & Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Jagdish Jaba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Thurapmohideen Abdul Razak
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Subbiah Srinivasan
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nivedita Shettigar
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
- Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad 500030, India
| |
Collapse
|
85
|
Muhammad M, Wahab A, Waheed A, Mohamed HI, Hakeem KR, Li L, Li WJ. Harnessing bacterial endophytes for environmental resilience and agricultural sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122201. [PMID: 39142107 DOI: 10.1016/j.jenvman.2024.122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
In the current era of environmental disasters and the necessity of sustainable development, bacterial endophytes have gotten attention for their role in improving agricultural productivity and ecological sustainability. This review explores the multifaceted contributions of bacterial endophytes to plant health and ecosystem sustainability. Bacterial endophytes are invaluable sources of bioactive compounds, promising breakthroughs in medicine and biotechnology. They also serve as natural biocontrol agents, reducing the need for synthetic fertilizers and fostering environmentally friendly agricultural practices. It provides eco-friendly solutions that align with the necessity of sustainability since they can improve pest management, increase crop resilience, and facilitate agricultural production. This review also underscores bacterial endophytes' contribution to promoting sustainable and green industrial productions. It also presented how incorporating these microorganisms into diverse industrial sectors can harmonize humankind with ecological stability. The potential of bacterial endophytes has been largely untapped, presenting an opportunity for pioneering advancements in sustainable industrial applications. Their importance caught attention as they provided innovative solutions to the challenging problems of the new era. This review sheds light on the remarkable potential of bacterial endophytes in various industrial sectors. Further research is imperative to discover their multifaceted potential. It will be essential to delve deeper into their mechanisms, broaden their uses, and examine their long-term impacts.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China.
| | - Abdul Wahab
- University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Heba Ibrahim Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
86
|
Mehmood F, Hassan F, Sarfraz R, Khadim Z, Alamer KH, Attia H, Saleh MA, Al-Robai SA, Zaman QU, Iftikhar Z. Phytochemical screening, antibacterial, antioxidant, and cytotoxic activities of Geranium pusillum leaves. Microsc Res Tech 2024; 87:2171-2185. [PMID: 38706433 DOI: 10.1002/jemt.24579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 05/07/2024]
Abstract
Traditional medicinal plants play an important role in primary health care worldwide. The phytochemical screening and activities of Geranium pusillum were investigated in this research. The dried plant leaves were extracted with ethanol, n-hexane, chloroform, dichloromethane, methanol, acetone, and aqueous solvents. These extracts were qualitatively analyzed, GC-MS, antimicrobial activities by using the disc diffusion method, antioxidant activity was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, and cytotoxic activity was analyzed by the hemolytic activity of human red blood cells. The results showed phytochemicals such as flavonoids, terpenoids, steroids, phenols, saponins, tannins, and cardiac glycosides were detected in plant leaves. The ethanol extract at a concentration of 10 mg/mL showed a maximum inhibition zone 17.5 ± 0.09, 15.6 ± 0.11, 14.2 ± 0.17, 18.4 ± 0.11, 16.6 ± 0.15, 12.5 ± 0.13, 15.9 ± 0.10, and 13.1 ± 0.11 mm, and at 15 mg/mL showed 24.5 ± 0.09, 27.2 ± 0.12, 26.3 ± 0.17, 28.4 ± 0.10, 27.9 ± 0.16, 22.5 ± 0.13, 27.1 ± 0.10, and 24.1 ± 0.16 mm against Escherichia coli, Pasturella multocida (gram-negative), Staphylococcus aureus, Bacillus subtilus (gram-positive), Rhizopus solani, Aspergillus flavus, Aspergillus niger, and Alternaria alternate (fungal strain), respectively, and dichloromethane showed a minimum inhibition zone as compared to other extracts against bacterial as well as fungal strains. Chloroform extract had maximum antioxidant activity (45.00 ± 0.08%) and minimum in dichloromethane (12.20 ± 0.04%). Cytotoxic activity was found maximum in acetone extract (19.83 ± 0.07%) and minimum in ethanol extract (4.72 ± 0.04%). It is concluded that phytochemicals like phenols, flavonoids, and others may be responsible for these activities, which is why this plant is used for traditional medicine. RESEARCH HIGHLIGHTS: Geranium pusillum has therapeutic properties that exhibit various biological activities beneficial for human health. G. pusillum has significant inhibitory effects against bacterial and fungal strains. Chloroform solvent extract indicates potential free radical scavenging abilities. Acetone extract exhibits notable effects on human red blood cells and demonstrates significant cytotoxic activity.
Collapse
Affiliation(s)
- Faisal Mehmood
- Department of Chemistry, the University of Lahore, Lahore, Pakistan
| | - Faiza Hassan
- Department of Chemistry, the University of Lahore, Lahore, Pakistan
| | - Rafaqat Sarfraz
- Department of Chemistry, the University of Lahore, Lahore, Pakistan
| | - Zeeshan Khadim
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Houneida Attia
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Muneera A Saleh
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Al-Baha University, Saudi Arabia
| | - Qamar Uz Zaman
- Department of Environmental Sciences, the University of Lahore, Lahore, Pakistan
| | - Zohaib Iftikhar
- Department of Chemistry, the University of Lahore, Lahore, Pakistan
| |
Collapse
|
87
|
Freitas CDT, Demarco D, Oliveira JS, Ramos MV. Review: Laticifer as a plant defense mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112136. [PMID: 38810884 DOI: 10.1016/j.plantsci.2024.112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Laticifers have been utilized as paradigms to enhance comprehension of specific facets of plant ecology and evolution. From the beginning of seedling growth, autonomous laticifer networks are formed throughout the plant structure, extending across all tissues and organs. The vast majority of identified products resulting from laticifer chemistry and metabolism are linked to plant defense. The latex, which is the fluid contained within laticifers, is maintained under pressure and has evolved to serve as a defense mechanism against both aggressors and invaders, irrespective of their capabilities or tactics. Remarkably, the latex composition varies among different species. The current goal is to understand the specific functions of various latex components in combating plant enemies. Therefore, the study of latex's chemical composition and proteome plays a critical role in advancing our understanding about plant defense mechanisms. Here, we will discuss some of these aspects.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - Diego Demarco
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson S Oliveira
- Federal University of Delta of Parnaíba, Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Márcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| |
Collapse
|
88
|
Farhan M, Pan J, Hussain H, Zhao J, Yang H, Ahmad I, Zhang S. Aphid-Resistant Plant Secondary Metabolites: Types, Insecticidal Mechanisms, and Prospects for Utilization. PLANTS (BASEL, SWITZERLAND) 2024; 13:2332. [PMID: 39204768 PMCID: PMC11360209 DOI: 10.3390/plants13162332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Aphids pose a significant threat to global agricultural crop production, leading to widespread pesticide use and resistance. This necessitates the use of alternative substances, like plant secondary metabolites (PSMs). Plants have developed protective compounds known as alkaloids, terpenoids, phenolics, sulfur- and nitrogen-containing metabolites. These compounds exhibit promising characteristics against aphids, such as antifeedant, aphicidal, and disrupting survival fitness. This review highlights the importance and application of secondary metabolites in combating aphid populations. Different insect-resistant substances have different mechanisms for managing aphids and other pests, including defensive signaling, inhibiting growth, and attracting natural predators by releasing herbivore-induced volatiles (HIPV). The application of plant secondary metabolites as biopesticides has proven to be an effective, economical, and eco-friendly alternative to synthetic pesticide chemicals. Furthermore, this review comprehensively discusses the principle role of plant secondary metabolites, encouraging sustainable agricultural practices and emphasizing the integrated management of the aphid population.
Collapse
Affiliation(s)
- Muhammad Farhan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| | - Jilong Pan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| | - Hammad Hussain
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China;
| | - Jun Zhao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| | - Hanjing Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Shuai Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (J.P.); (J.Z.); (H.Y.)
| |
Collapse
|
89
|
Borges DJV, Souza RAC, de Oliveira A, de Sousa RMF, Venâncio H, Demetrio GR, Ambrogi BG, Santos JC. Green Lacewing Chrysoperla externa Is Attracted to Volatile Organic Compounds and Essential Oils Extracted from Eucalyptus urograndis Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:2192. [PMID: 39204628 PMCID: PMC11360061 DOI: 10.3390/plants13162192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Plant herbivore interactions have long been recognized as a complex interplay influenced by various factors, including plant volatile emissions. Understanding the role of these volatiles in mediating plant predator interactions is crucial for developing sustainable pest management strategies. This study investigated the olfactory preferences of Chrysoperla externa larvae for volatiles emitted by Eucalyptus urograndis leaves, focusing on both seedlings and essential oils (EOs). We used Y-tube olfactometry to compare larval preferences between the clean air and various plant treatments, including undamaged and herbivore-damaged leaves. Chemical analysis of EOs revealed higher concentrations of oxygenated monoterpenes and sesquiterpenes in young and damaged leaves, particularly linalool, which has been implicated in insect attraction. Our results showed a significant preference for volatiles emitted by young damaged leaves over clean air for both seedlings (χ2 = 11.03, p = 0.001) and EOs (χ2 = 9.76, p = 0.002). Chrysoperla externa larvae are significantly attracted to specific volatiles from damaged E. urograndis leaves, suggesting these compounds could serve as cues for natural enemy foraging. Our findings enhance the understanding of plant-predator dynamics and suggest potential applications of eucalyptus plantations to sustain C. externa populations for biocontrol purposes.
Collapse
Affiliation(s)
- David Jackson Vieira Borges
- Pos-Graduate Program in Ecology, Conservation and Biodiversity, Federal University of Uberlandia, Uberlandia 38405-240, Minas Gerais, Brazil;
| | - Rafael Aparecido Carvalho Souza
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Alberto de Oliveira
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Raquel Maria Ferreira de Sousa
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil; (R.A.C.S.); (A.d.O.); (R.M.F.d.S.)
| | - Henrique Venâncio
- Pos-Graduate Program in Ecology and Conservation, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Guilherme Ramos Demetrio
- Laboratory of Plant Ecology, U. E. Penedo, Campus Arapiraca, Federal University of Alagoas, Penedo 57200-000, Alagoas, Brazil;
| | - Bianca Giuliano Ambrogi
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| | - Jean Carlos Santos
- Department of Ecology, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil;
| |
Collapse
|
90
|
Biswas S, Kundu A, Suby SB, Kushwah AS, Patanjali N, Shasany AK, Verma R, Saha S, Mandal A, Banerjee T, Kumar A, Singh A. Lippia alba-a potential bioresource for the management of Spodoptera frugiperda (Lepidoptera: Noctuidae). FRONTIERS IN PLANT SCIENCE 2024; 15:1422578. [PMID: 39175487 PMCID: PMC11338851 DOI: 10.3389/fpls.2024.1422578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), a threat to maize production systems, is a polyphagous pest of global significance. There is no registered bioinsecticide of botanical origin to provide green remedy against this pest of concern. The present study reports for the first time the potency of the polar and non-polar bioinsecticidal leads sourced from Lippia alba (Mill.) N.E. Br. leaves. Shade-dried leaves of L. alba were extracted and evaluated; based on preliminary bioassay, the ethyl acetate leaf extract of L. alba (LEAE) was found to be the most potent against FAW in the in vitro and in vivo studies. Ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometric (UPLC-QToF-MS) analysis of LEAE revealed the rich chemical profile of 28 compounds, dominated by flavones, namely, naringenin, trihydroxy-dimethoxy flavone, and dihydroxy-trimethoxy flavone. Among others, glycosides, such as clerodendrin, calceolarioside E, forsythoside B, geniposide, and martynoside, and glucuronides, such as luteolin-7-diglucuronide, tricin-7-O-glucuronide, and luteolin-7-O-glucuronide, were also identified. LEAE exhibited exceptionally high in vitro [LC50 = 6,900 parts per million (ppm)] and in vivo (computed as damage score on a scale of 1-9) insecticidal activity against S. frugiperda, with no phytotoxicity at a dose as high as 20 times of LC50. LEAE also exhibited significant antifeedant, ovicidal, and growth regulatory activity at the 70-16,000 ppm (w/v) concentration range. In silico assessment revealed strong binding of martynoside, calceolarioside E, and forsythoside B with acetylcholinesterase-, sodium-, and chloride-dependent γ-aminobutyric acid (GABA) receptor and ryanodine receptor, respectively, facilitated by hydrogen bonds (conventional and C-H bonds) stabilized by hydrophobic pi-sigma, pi-pi stacked, pi-alkyl, and alkyl interactions. The present study established L. alba as a potential bioresource and secondary metabolite enriched LEAE as bioinsecticide for further product development.
Collapse
Affiliation(s)
- Shreosi Biswas
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - S. B. Suby
- ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Abran Singh Kushwah
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ajit Kumar Shasany
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Rajesh Verma
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar
- Indian Council of Agricultural Research, New Delhi, India
| | - Anupama Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
91
|
Liu Q, Ahmed W, Li G, He Y, Mohany M, Li Z, Shen T. A Novel Plant-Derived Biopesticide Mitigates Fusarium Root Rot of Angelica sinensis by Modulating the Rhizosphere Microbiome and Root Metabolome. PLANTS (BASEL, SWITZERLAND) 2024; 13:2180. [PMID: 39204616 PMCID: PMC11360690 DOI: 10.3390/plants13162180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Fusarium root rot caused by the Fusarium species complex significantly affects the yield and quality of Angelica sinensis, a valuable medicinal herb. Traditional management primarily relies on chemical fungicides, which have led to pathogen resistance, environmental hazards, and concerns regarding public health and the active components in A. sinensis. This study explores the efficacy of a novel plant-derived biopesticide Shi Chuang Zhi Feng Ning (T1; SCZFN), alongside Bacillus subtilis wettable powder (T2) and a chemical fungicide (T3), in controlling root rot and understanding their impacts on the rhizosphere microbial community and root metabolome. Results of the field experiment demonstrated that treatments T1 and T3 achieved control efficiencies of 73.17% and 75.45%, respectively, significantly outperforming T2 (39.99%) and the control. High-throughput sequencing revealed that all treatments altered the diversity and structure of microbial communities, with T1 and T2 reducing the abundance of taxa linked to root rot, such as Muribaculaceae spp., Humicola spp., Fusarium spp., and Mycochlamys spp. Treatment T1 notably enhanced beneficial bacterial taxa, including Acidobacteria spp., Nitrospira spp., and Pedosphaeraceae spp., involved in carbon cycling and plant growth promotion. Metabolomic analysis identified 39, 105, and 45 differentially expressed metabolites (DEMs) across the treatments, demonstrating T1's potential to modulate the root metabolome effectively. Further, a correlation analysis demonstrated a stronger correlation between distinct microorganisms with significant influence and DEMs of T1 treatment compared to other treatments. These findings underscore biopesticide SCZFN's role in enhancing plant health and disease suppression in A. sinensis, providing insights into its biocontrol mechanisms and supporting the development of sustainable disease management strategies in its cultivation.
Collapse
Affiliation(s)
- Qi Liu
- Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Waqar Ahmed
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guoli Li
- Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yilin He
- Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhaoyu Li
- Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tong Shen
- Research Institute, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
92
|
Li ZX, Wang DX, Shi WX, Weng BY, Zhang Z, Su SH, Sun YF, Tan JF, Xiao S, Xie RH. Nitrogen-mediated volatilisation of defensive metabolites in tomato confers resistance to herbivores. PLANT, CELL & ENVIRONMENT 2024; 47:3227-3240. [PMID: 38738504 DOI: 10.1111/pce.14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.
Collapse
Affiliation(s)
- Zhi-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dan-Xia Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wen-Xuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Bo-Yang Weng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhi Zhang
- General Management Office, Shennong Technology Group Co., Ltd, Jinzhong, China
| | - Shi-Hao Su
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yu-Fei Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ruo-Han Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
93
|
Boter M, Diaz I. Contrasting defence mechanisms against spider mite infestation in cyanogenic and non-cyanogenic legumes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112118. [PMID: 38776983 DOI: 10.1016/j.plantsci.2024.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Understanding the complex interactions between plants and herbivores is essential for improving crop resistance. Aiming to expand the role of cyanogenesis in plant defence, we investigated the response of the cyanogenic Phaseolus lunatus (lima bean) and the non-cyanogenic Phaseolus vulgaris (common bean) to Tetranychus urticae (spider mite) infestation. Despite mite infesting both legumes, leaf damage infringed by this feeder was reduced in lima bean. Comparative transcriptome analyses revealed that both species exhibited substantial metabolic and transcriptional changes upon infestation, although alterations in P. lunatus were significantly more pronounced. Specific differences in amino acid homeostasis and key genes associated with the cyanogenic pathway were observed in these species, as well as the upregulation of the mandelonitrile lyase gene (PlMNL1) following T. urticae feeding. Concomitantly, the PIMNL1 activity increased. Lima bean plants also displayed an induction of β-cyanoalanine synthase (PlCYSC1), a key enzyme for cyanide detoxification, suggesting an internal regulatory mechanism to manage the toxicity of their defence responses. These findings contribute to our understanding of the legume-herbivore interactions and underscore the potential role of cyanogenesis in the elaboration of specific defensive responses, even within the same genus, which may reflect distinctive evolutionary adaptations or varying metabolic capabilities between species.
Collapse
Affiliation(s)
- Marta Boter
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| |
Collapse
|
94
|
Al Mamun A, Rahman MM, Huq MA, Rahman MM, Rana MR, Rahman ST, Khatun ML, Alam MK. Phytoremediation: a transgenic perspective in omics era. Transgenic Res 2024; 33:175-194. [PMID: 38922381 DOI: 10.1007/s11248-024-00393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Shabiha Tasbir Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Mst Lata Khatun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Khasrul Alam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
95
|
Cao S, Ren X, Zhang G, Wang H, Wei B, Niu C. Gut microbiota metagenomics and mediation of phenol degradation in Bactrocera minax (Diptera, Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:3935-3944. [PMID: 38520323 DOI: 10.1002/ps.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Gut microbiota mediating insect-plant interactions have many manifestations, either by provisioning missing nutrients, or by overcoming plant defensive reactions. However, the mechanism by which gut microbiota empower insects to survive by overcoming a variety of plant secondary metabolites remains largely unknown. Bactrocera minax larvae develop in immature citrus fruits, which present numerous phenolic compounds that challenge the larvae. To explore the role of gut microbes in host use and adaptability, we uncovered the mechanisms of phenol degradation by gut microbes using metagenomic and metatranscriptomic analyses, and verified the degradation ability of isolated and cultured bacteria. Research on this subject can help develop potential strain for the environmental friendly pest management operations. RESULTS We demonstrated the ability of gut microbes in B. minax larvae to degrade phenols in unripe citrus. After antibiotic treatment, coniferyl alcohol and coumaric aldehyde significantly reduced the survival rate, body length and body weight of the larvae. The metagenomic and metatranscriptomic analyses in B. minax provided evidence for the presence of genes in bacteria and the related pathway involved in phenol degradation. Among them, Enterococcus faecalis and Serratia marcescens, isolated from the gut of B. minax larvae, played critical roles in phenol degradation. Furthermore, supplementation of E. faecalis and S. marcescens in artificial diets containing coniferyl alcohol and coumaric aldehyde increased the survival rate of larvae. CONCLUSION In summary, our results provided the first comprehensive analysis of gut bacterial communities by high-throughput sequencing and elucidated the role of bacteria in phenol degradation in B. minax, which shed light on the mechanism underlying specialist insect adaption to host secondary metabolites via gut bacteria. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
96
|
Singh P, Kumari A, Khaladhar VC, Singh N, Pathak PK, Kumar V, Kumar RJ, Jain P, Thakur JK, Fernie AR, Bauwe H, Raghavendra AS, Gupta KJ. Serine hydroxymethyltransferase6 is involved in growth and resistance against pathogens via ethylene and lignin production in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1920-1936. [PMID: 38924321 DOI: 10.1111/tpj.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.
Collapse
Affiliation(s)
- Pooja Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Namrata Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pradeep Kumar Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ritika Jantu Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- AIMMSCR, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Jitendra Kumar Thakur
- Plant Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Rostock, D-18051, Germany
| | - A S Raghavendra
- School of Life Sciences, Department of Plant Sciences University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
97
|
Pan X, Liu H, Li Y, Guo L, Zhang Y, Zhu Y, Yang M. Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses. Metabolites 2024; 14:402. [PMID: 39195498 DOI: 10.3390/metabo14080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, the transcriptome profiles of tissue-cultured grapevine (Vitis vinifera L. × Vitis labrusca L.: Rose Honey) seedlings inoculated with fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2), were analyzed at three different time points (6 h, 6 d, and 15 d). A total of 4783 differentially expressed genes (DEGs) was found, of which 1853 (6 h), 3878 (6 d), and 4732 (15 d) were differentially expressed relative to those of the control in endophyte Epi R2-21 treatments, while a total of 5898 DEGs, of which 2726 (6 h), 4610 (6 d), and 3938 (15 d) were differentially expressed in endophyte Alt XHYN2 treatments. DEGs enriched in secondary metabolic pathways, plant-pathogen interaction, and hormone signalling were further analysed. The upregulated DEGs in the Epi R2-21 and Alt XHYN2 treatments, both enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG), were mainly involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, phenylalanine metabolism, and circadian rhythms-plant and plant-pathogen interactions, similar to the trend observed in our previous study conducted on the cultivar 'Cabernet Sauvignon' (Vitis vinifera L.). Taken together with the results obtained from the cultivar 'Cabernet Sauvignon', it was found that tissue-cultured seedlings of the cultivar 'Rose Honey' induced a stronger defence response to fungal endophyte infection than that of the cultivar 'Cabernet Sauvignon', and inoculation with the endophyte Alt XHYN2 triggered a stronger response than inoculation with the endophyte Epi R2-21. In addition, the protein-protein interaction (PPI) network revealed that the genes VIT_16s0100g00910, encoding CHS, and VIT_11s0065g00350, encoding CYP73A, were involved in secondary metabolism and thus mediated in the resistance mechanism of grapevine on both the cultivars. The results showed that inoculation with the endophytes Epi R2-21 and Alt XHYN2 had a great ability to induce defence responses and reprogram the gene expression profiles in different grapevine cultivars, which deepens our knowledge of the interaction between fungal endophytes and grapevine and gives hints for grape quality management in viticulture using candidate fungal endophytes.
Collapse
Affiliation(s)
- Xiaoxia Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Huizhi Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Yiqian Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Lirong Guo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yunuo Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Youyong Zhu
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Mingzhi Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| |
Collapse
|
98
|
Kanwal B, Tanwir S, Ahmad F, Ahmad JN. Jasmonic Acid and Salicylic Acid improved resistance against Spodoptera frugiperda Infestation in maize by modulating growth and regulating redox homeostasis. Sci Rep 2024; 14:16823. [PMID: 39039220 PMCID: PMC11263373 DOI: 10.1038/s41598-024-67151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Exploring host plant resistance and elevating plant defense mechanisms through the application of exogenous elicitors stands as a promising strategy for integrated pest management. The fall armyworm, a pernicious menace to grain crops in tropical and subtropical regions, stands as a formidable threat due to its capacity for devastation and a wide-ranging spectrum of host plants. There is no literature regarding artificially induced resistance in maize against fall armyworm (Spodoptera frugiperda) by exogenous application of phytohormones. The present investigation was performed to evaluate the role of jasmonic acid (JA) and salicylic acid (SA) on two maize hybrids namely FH-1046 and YH-1898 against fall armyworm. Results showed that plant height, biomass and lengths, fresh and dry weight of root shoot which decreased with armyworm infestation improved with phytohormonal application. JA treatment resulted in a higher increase in all attributes as compared to SA treatment. Improvement in relative water contents, photosynthetic pigments and pronounced levels of phenol and proline accumulation were observed in infested plants after JA treatment. Infested plants recovered from oxidative stress as JA application activated and increased the antioxidant enzyme activity of superoxide dismutase, peroxidase and polyphenol oxidase activity in both FH-1046 and YH-1898 . The oxidative stress reduction in infested plants after JA treatment was also evident from a fair decrease in MDA and H2O2 in both varieties. The SA and JA mediated genes expression was studied and it was found that in FH1046 maize cultivar, JA dependent genes, particularly marker genes PR1 and Lox5 were highly expressed along with TPS10 and BBT12. Whereas SPI, WRKY28, ICS and PAL were shown to be activated upon SA application. Evidently, both JA and SA elicited a robust defensive response within the maize plants against the voracious S. frugiperda, which in consequence exerted a discernible influence over the pest's developmental trajectory and physiological dynamics. A decrease in detoxification enzyme activity of the insects was observed after feeding on treated plants. Moreover, it was recorded that the survival and weight gain of FAW feeding on phytohormone treated maize plants also decelerated. In conclusion, FH-1046 was found to be more tolerant than YH-1898 against fall armyworm infestation and 1 mM JA was more effective than 1 mM SA for alleviation of fall armyworm stress. Therefore, it was inferred that phytohormones regulated redox homeostasis to circumvent oxidative damage and mediate essential metabolic events in maize under stress. To our current understanding, this study is the very first presentation of induced resistance in maize against S. frugiperda with the phytohormonal application (JA and SA).
Collapse
Affiliation(s)
- Bilqees Kanwal
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Samina Tanwir
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Farooq Ahmad
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jam Nazeer Ahmad
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
99
|
Subahar R, Hadyansyah R, Aldilla R, Yulhasri Y, Winita R, Dwira S, El Bayani GF. Toxicity of 6-gingerol and Cymbopogon citratus against Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae): Mortality, detoxifying enzymes, and morphological ultrastructure alterations in lice. Res Vet Sci 2024; 177:105364. [PMID: 39053092 DOI: 10.1016/j.rvsc.2024.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Pediculus humanus capitis (head louse), which causes pediculosis capitis, remains a global health concern. Plant products are efficient alternative pediculicides for treating the human ectoparasite P. h. capitis which is resistant to permethrin. The study evaluates the toxicity and mechanisms of 6-gingerol and Cymbopogon citratus leaf extract on P. h. capitis. Pediculus humanus capitis adult stages were exposed to three different dosages of 6-gingerol and C. citratus crude leaf extract on filter sheets for 5, 10, and 30 min, respectively. The biochemical approach was used to assess the activity of detoxifying enzymes including acetylcholinesterase (AChE), glutathione S-transferase (GST), and oxidase. Scanning electron microscope (SEM) was used to investigate the ultrastructure of the morphological body of lice. After 30 min, 6-gingerol and C. citratus leaf extract killed P. h. capitis completely. Bioassay periods significantly affected lice mortality (P < 0.05). The LC50 values for 6-gingerol and C. citratus extract were 1.79 μg/cm2 and 25.0 μg/cm2, respectively. 6-Gingerol and C. citratus leaf extract significantly lower AChE and GST activity (P < 0.05). Cymbopogon citratus also caused morphological ultrastructure changes in P. h. capitis, including an irregularly formed head, thorax, abdominal respiratory spiracles, and belly. 6-Gingerol and C. citratus leaf extracts could be used as an alternate pediculicide to decrease P. h. capitis populations.
Collapse
Affiliation(s)
- Rizal Subahar
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia.
| | - Rizqy Hadyansyah
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Rachmanin Aldilla
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Yulhasri Yulhasri
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Rawina Winita
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Surya Dwira
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Gulshan Fahmi El Bayani
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
100
|
d’Aquino L, Cozzolino R, Malorni L, Bodhuin T, Gambale E, Sighicelli M, Della Mura B, Matarazzo C, Piacente S, Montoro P. Light Flux Density and Photoperiod Affect Growth and Secondary Metabolism in Fully Expanded Basil Plants. Foods 2024; 13:2273. [PMID: 39063357 PMCID: PMC11275332 DOI: 10.3390/foods13142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Indoor production of basil (Ocimum basilicum L.) is influenced by light spectrum, photosynthetic photon flux density (PPFD), and the photoperiod. To investigate the effects of different lighting on growth, chlorophyll content, and secondary metabolism, basil plants were grown from seedlings to fully expanded plants in microcosm devices under different light conditions: (a) white light at 250 and 380 μmol·m-2·s-1 under 16/8 h light/dark and (b) white light at 380 μmol·m-2·s-1 under 16/8 and 24/0 h light/dark. A higher yield was recorded under 380 μmol·m-2·s-1 compared to 250 μmol·m-2·s-1 (fresh and dry biomasses 260.6 ± 11.3 g vs. 144.9 ± 14.6 g and 34.1 ± 2.6 g vs. 13.2 ± 1.4 g, respectively), but not under longer photoperiods. No differences in plant height and chlorophyll content index were recorded, regardless of the PPFD level and photoperiod length. Almost the same volatile organic compounds (VOCs) were detected under the different lighting treatments, belonging to terpenes, aldehydes, alcohols, esters, and ketones. Linalool, eucalyptol, and eugenol were the main VOCs regardless of the lighting conditions. The multivariate data analysis showed a sharp separation of non-volatile metabolites in apical and middle leaves, but this was not related to different PPFD levels. Higher levels of sesquiterpenes and monoterpenes were detected in plants grown under 250 μmol·m-2·s-1 and 380 μmol·m-2·s-1, respectively. A low separation of non-volatile metabolites based on the photoperiod length and VOC overexpression under longer photoperiods were also highlighted.
Collapse
Affiliation(s)
- Luigi d’Aquino
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy;
| | - Rosaria Cozzolino
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | - Livia Malorni
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | | | - Emilia Gambale
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Portici Research Centre, Piazzale E. Fermi 1, 80055 Portici, Italy;
| | - Maria Sighicelli
- Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, Santa Maria di Galeria, 00060 Roma, Italy;
| | - Brigida Della Mura
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Cristina Matarazzo
- Institute of Food Science, National Council of Research (CNR), Via Roma 64, 83100 Avellino, Italy; (L.M.); (C.M.)
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (S.P.); (P.M.)
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (S.P.); (P.M.)
| |
Collapse
|