51
|
Haga Y, Meyer K, Sung MMH, Reagan EK, Weissman D, Ray R. Hepatitis C virus modified sE2 F442NYT as an antigen in candidate vaccine facilitates human immune cell activation. J Virol 2024; 98:e0180923. [PMID: 38084956 PMCID: PMC10805031 DOI: 10.1128/jvi.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/24/2024] Open
Abstract
The rational selection of hepatitis C virus (HCV) vaccine antigen will aid in the prevention of future chronic liver disease burden and associated healthcare costs. We have previously shown that HCV E2 glycoprotein is not highly immunogenic, and the modification of E2 reduced CD81 binding and displayed altered cytokine and protective immune responses in vitro and in a surrogate mouse model. Here, we compared the influence of a parental and a modified sE2F442NYT glycoprotein region from HCV genotype 1a for the activation of peripheral blood mononuclear cell (PBMC)-derived dendritic cells (DCs), CD4+T cells, and B cells. Modified sE2F442NYT, when incubated with DCs, induced a higher number of CD86-positive cells. The sE2F442NYT or parental sE2 encapsulated as mRNA-lipid nanoparticle (sE2F442NYT mRNA-LNP) primed DCs co-cultured with autologous CD4+T cells did not induce CD25 or forkhead box P3 expression. PBMC-derived CD4+T cells treated with sE2F442NYT exhibited enhanced signal transducer and activator of transcription (Stat)1/Stat4 phosphorylation in response to anti-CD3/CD28 stimulation in comparison to parental sE2 treatment and facilitated isotype switching in B cells, leading to the generation of a broader subclass of antibodies. Cells treated with modified sE2F442NYT displayed an increase in activated Stat3 and extracellular signal-regulated kinase (ERK). Likewise, PBMC-derived naïve B cells upon in vitro stimulation with sE2F442NYT induced an increased proliferation, Stat3 and ERK activation, and protein kinase B (Akt) suppression. Thus, the modified sE2F442NYT antigen from HCV facilitates improved DC, CD4+T, and B cell activation compared to parental sE2 to better induce a robust protective immune response, supporting its selection as an HCV candidate vaccine antigen for preclinical and clinical HCV vaccine trials.IMPORTANCEThe nature of an enhanced immune response induced by sE2F442NYT will help in the selection of a broad cross-protective antigen from hepatitis C virus genotypes, and the inclusion of relatively conserved sE1 with sE2F442NYT may further strengthen the efficacy of the candidate vaccine in evaluating it for human use.
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Erin K. Reagan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA
- Department of Molecular Microbiology & Immunology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
52
|
Curtis BE, Abdo Z, Graham B, LaVoy A, Evans SJM, Santangelo K, Dean GA. An Aptamer-Based Proteomic Analysis of Plasma from Cats ( Felis catus) with Clinical Feline Infectious Peritonitis. Viruses 2024; 16:141. [PMID: 38257841 PMCID: PMC10819688 DOI: 10.3390/v16010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a systemic disease manifestation of feline coronavirus (FCoV) and is the most important cause of infectious disease-related deaths in domestic cats. FIP has a variable clinical manifestation but is most often characterized by widespread vasculitis with visceral involvement and/or neurological disease that is typically fatal in the absence of antiviral therapy. Using an aptamer-based proteomics assay, we analyzed the plasma protein profiles of cats who were naturally infected with FIP (n = 19) in comparison to the plasma protein profiles of cats who were clinically healthy and negative for FCoV (n = 17) and cats who were positive for the enteric form of FCoV (n = 9). We identified 442 proteins that were significantly differentiable; in total, 219 increased and 223 decreased in FIP plasma versus clinically healthy cat plasma. Pathway enrichment and associated analyses showed that differentiable proteins were related to immune system processes, including the innate immune response, cytokine signaling, and antigen presentation, as well as apoptosis and vascular integrity. The relevance of these findings is discussed in the context of previous studies. While these results have the potential to inform diagnostic, therapeutic, and preventative investigations, they represent only a first step, and will require further validation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gregg A. Dean
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (B.E.C.); (A.L.); (S.J.M.E.); (K.S.)
| |
Collapse
|
53
|
Yang S, Fan Z, Lu X, Liu H, Zhou Z, Qi H, Zeng J, Zheng M, Zou X, Fang S, Zhang G. Response of Human Retinal Microvascular Endothelial Cells to Influenza A (H1N1) Infection and the Underlying Molecular Mechanism. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 38252524 PMCID: PMC10810132 DOI: 10.1167/iovs.65.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Purpose Whether H1N1 infection-associated ocular manifestations result from direct viral infections or systemic complications remains unclear. This study aimed to comprehensively elucidate the underlying causes and mechanism. Method TCID50 assays was performed at 24, 48, and 72 hours to verify the infection of H1N1 in human retinal microvascular endothelial cells (HRMECs). The changes in gene expression profiles of HRMECs at 24, 48, and 72 hours were characterized using RNA sequencing technology. Differentially expressed genes (DEGs) were validated using real-time quantitative polymerase chain reaction and Western blotting. CCK-8 assay and scratch assay were performed to evaluate whether there was a potential improvement of proliferation and migration in H1N1-infected cells after oseltamivir intervention. Results H1N1 can infect and replicate within HRMECs, leading to cell rounding and detachment. After H1N1 infection of HRMECs, 2562 DEGs were identified, including 1748 upregulated ones and 814 downregulated ones. These DEGs primarily involved in processes such as inflammation and immune response, cytokine-cytokine receptor interaction, signal transduction regulation, and cell adhesion. The elevated expression levels of CXCL10, CXCL11, CCL5, TLR3, C3, IFNB1, IFNG, STAT1, HLA, and TNFSF10 after H1N1 infection were reduced by oseltamivir intervention, reaching levels comparable to those in the uninfected group. The impaired cell proliferation and migration after H1N1 infection was improved by oseltamivir intervention. Conclusions This study confirmed that H1N1 can infect HRMECs, leading to the upregulation of chemokines, which may cause inflammation and destruction of the blood-retina barrier. Moreover, early oseltamivir administration may reduce retinal inflammation and hemorrhage in patients infected with H1N1.
Collapse
Affiliation(s)
- Shuo Yang
- Jinzhou Medical University, Jinzhou, Liaoning, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Zixin Fan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Xiaofeng Lu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Hui Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ziying Zhou
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Jian Zeng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Mianying Zheng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| |
Collapse
|
54
|
Liu Y, Lu T, Li C, Wang X, Chen F, Yue L, Jiang C. Comparative transcriptome analysis of SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E identifying potential IFN/ISGs targets for inhibiting virus replication. Front Med (Lausanne) 2023; 10:1267903. [PMID: 38143441 PMCID: PMC10739311 DOI: 10.3389/fmed.2023.1267903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Since its outbreak in December 2019, SARS-CoV-2 has spread rapidly across the world, posing significant threats and challenges to global public health. SARS-CoV-2, together with SARS-CoV and MERS-CoV, is a highly pathogenic coronavirus that contributes to fatal pneumonia. Understanding the similarities and differences at the transcriptome level between SARS-CoV-2, SARS-CoV, as well as MERS-CoV is critical for developing effective strategies against these viruses. Methods In this article, we comparatively analyzed publicly available transcriptome data of human cell lines infected with highly pathogenic SARS-CoV-2, SARS-CoV, MERS-CoV, and lowly pathogenic HCoV-229E. The host gene expression profiles during human coronavirus (HCoV) infections were generated, and the pathways and biological functions involved in immune responses, antiviral efficacy, and organ damage were intensively elucidated. Results Our results indicated that SARS-CoV-2 induced a stronger immune response versus the other two highly pathogenic HCoVs. Specifically, SARS-CoV-2 induced robust type I and type III IFN responses, marked by higher upregulation of type I and type III IFNs, as well as numerous interferon-stimulated genes (ISGs). Further Ingenuity Pathway Analysis (IPA) revealed the important role of ISGs for impeding SARS-CoV-2 infection, and the interferon/ISGs could be potential targets for therapeutic interventions. Moreover, our results uncovered that SARS-CoV-2 infection was linked to an enhanced risk of multi-organ toxicity in contrast to the other two highly pathogenic HCoVs. Discussion These findings provided valuable insights into the pathogenic mechanism of SARS-CoV-2, which showed a similar pathological feature but a lower fatality rate compared to SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
- Yuzhuang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianyi Lu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Beijing, China
| | - Cuidan Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Xiaotong Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
55
|
Samra N, Jansen NS, Morani I, Kakun RR, Zaid R, Paperna T, Garcia-Dominguez M, Viner Y, Frankenthal H, Shinwell ES, Portnov I, Bakry D, Shalata A, Shapira Rootman M, Kidron D, Claessens LA, Wevers RA, Mandel H, Vertegaal ACO, Weiss K. Exome sequencing links the SUMO protease SENP7 with fatal arthrogryposis multiplex congenita, early respiratory failure and neutropenia. J Med Genet 2023; 60:1133-1141. [PMID: 37460201 DOI: 10.1136/jmg-2023-109267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/08/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND SUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α). METHODS We performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject. RESULTS We identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant in SENP7 c.1474C>T; p.(Gln492*) as the probable aetiology. The proband's fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1α levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1α, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression. CONCLUSION Our results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans.
Collapse
Affiliation(s)
- Nadra Samra
- Department of Genetics, Ziv Medical Center, Safed, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nicolette S Jansen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilham Morani
- Department of Genetics, Ziv Medical Center, Safed, Israel
| | - Reli Rachel Kakun
- The Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel
| | - Rinat Zaid
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Mario Garcia-Dominguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Yuri Viner
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Pediatric Intensive Care Unit, Ziv Medical Center, Safed, Israel
| | - Hilel Frankenthal
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Pediatric Intensive Care Unit, Ziv Medical Center, Safed, Israel
| | - Eric S Shinwell
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Neonatology, Ziv Medical Center, Safed, Israel
| | - Igor Portnov
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Neonatology, Ziv Medical Center, Safed, Israel
| | - Doua Bakry
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Pediatric Hematology, Ziv Medical Center, Safed, Israel
| | - Adel Shalata
- Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, Haifa, Israel
| | | | - Dvora Kidron
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - Laura A Claessens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hanna Mandel
- Metabolic unit, Ziv Medical Center, Safed, Israel
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
56
|
Danastas K, Guo G, Merjane J, Hong N, Larsen A, Miranda-Saksena M, Cunningham AL. Interferon inhibits the release of herpes simplex virus-1 from the axons of sensory neurons. mBio 2023; 14:e0181823. [PMID: 37655893 PMCID: PMC10653907 DOI: 10.1128/mbio.01818-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Herpes simplex virus-1 (HSV-1) is a human pathogen known to cause cold sores and genital herpes. HSV-1 establishes lifelong infections in our sensory neurons, with no cure or vaccine available. HSV-1 can reactivate sporadically and travel back along sensory nerves, where it can form lesions in the oral and genital mucosa, eye, and skin, or be shed asymptomatically. New treatment options are needed as resistance is emerging to current antiviral therapies. Here, we show that interferons (IFNs) are capable of blocking virus release from nerve endings, potentially stopping HSV-1 transmission into the skin. Furthermore, we show that IFNγ has the potential to have widespread antiviral effects in the neuron and may have additional effects on HSV-1 reactivation. Together, this study identifies new targets for the development of immunotherapies to stop the spread of HSV-1 from the nerves into the skin.
Collapse
Affiliation(s)
- Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Gerry Guo
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jessica Merjane
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Nathan Hong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Ava Larsen
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
57
|
Gao C, Ouyang W, Kutza J, Grimm TA, Fields K, Lankford CSR, Schwartzkopff F, Paciga M, Stantchev T, Tiffany L, Strebel K, Clouse KA. Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1. Viruses 2023; 15:2160. [PMID: 38005838 PMCID: PMC10674259 DOI: 10.3390/v15112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 11/26/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) is known to be less pathogenic than HIV-1. However, the mechanism(s) underlying the decreased HIV-2 pathogenicity is not fully understood. Herein, we report that β-chemokine CCL2 expression was increased in HIV-1-infected human monocyte-derived macrophages (MDM) but decreased in HIV-2-infected MDM when compared to uninfected MDM. Inhibition of CCL2 expression following HIV-2 infection occurred at both protein and mRNA levels. By microarray analysis, quantitative PCR, and Western blotting, we identified that Signal Transducer and Activator of Transcription 1 (STAT1), a critical transcription factor for inducing CCL2 gene expression, was also reduced in HIV-2-infected MDM. Blockade of STAT1 in HIV-infected MDM using a STAT1 inhibitor significantly reduced the production of CCL2. In contrast, transduction of STAT1-expressing pseudo-retrovirus restored CCL2 production in HIV-2-infected MDM. These findings support the concept that CCL2 inhibition in HIV-2-infected MDM is meditated by reduction of STAT1. Furthermore, we showed that STAT1 reduction in HIV-2-infected MDM was regulated by the CUL2/RBX1 ubiquitin E3 ligase complex-dependent proteasome pathway. Knockdown of CUL2 or RBX1 restored the expression of STAT1 and CCL2 in HIV-2-infected MDM. Taken together, our findings suggest that differential regulation of the STAT1-CCL2 axis may be one of the mechanisms underlying the different pathogenicity observed for HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Chunling Gao
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Weiming Ouyang
- Division of Biotechnology Review and Research 2, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Joseph Kutza
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Tobias A. Grimm
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Karen Fields
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Carla S. R. Lankford
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Franziska Schwartzkopff
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Mark Paciga
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Linda Tiffany
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA;
| | - Kathleen A. Clouse
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA; (C.G.); (J.K.); (T.A.G.); (C.S.R.L.); (F.S.); (M.P.); (T.S.); (L.T.)
| |
Collapse
|
58
|
Raev SA, Raque M, Kick MK, Saif LJ, Vlasova AN. Differential transcriptome response following infection of porcine ileal enteroids with species A and C rotaviruses. Virol J 2023; 20:238. [PMID: 37848925 PMCID: PMC10580564 DOI: 10.1186/s12985-023-02207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Rotavirus C (RVC) is the major causative agent of acute gastroenteritis in suckling piglets, while most RVAs mostly affect weaned animals. Besides, while most RVA strains can be propagated in MA-104 and other continuous cell lines, attempts to isolate and culture RVC strains remain largely unsuccessful. The host factors associated with these unique RVC characteristics remain unknown. METHODS In this study, we have comparatively evaluated transcriptome responses of porcine ileal enteroids infected with RVC G1P[1] and two RVA strains (G9P[13] and G5P[7]) with a focus on innate immunity and virus-host receptor interactions. RESULTS The analysis of differentially expressed genes regulating antiviral immune response indicated that in contrast to RVA, RVC infection resulted in robust upregulation of expression of the genes encoding pattern recognition receptors including RIG1-like receptors and melanoma differentiation-associated gene-5. RVC infection was associated with a prominent upregulation of the most of glycosyltransferase-encoding genes except for the sialyltransferase-encoding genes which were downregulated similar to the effects observed for G9P[13]. CONCLUSIONS Our results provide novel data highlighting the unique aspects of the RVC-associated host cellular signalling and suggest that increased upregulation of the key antiviral factors maybe one of the mechanisms responsible for RVC age-specific characteristics and its inability to replicate in most cell cultures.
Collapse
Affiliation(s)
- Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA.
| | - Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, 44677, USA.
| |
Collapse
|
59
|
Rao SS, Nelson PA, Lunde HS, Haugland GT. Evolutionary, comparative, and functional analyses of STATs and regulation of the JAK-STAT pathway in lumpfish upon bacterial and poly(I:C) exposure. Front Cell Infect Microbiol 2023; 13:1252744. [PMID: 37808912 PMCID: PMC10556531 DOI: 10.3389/fcimb.2023.1252744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background The Janus kinase/signal transducers and activators of transcription (JAK-STAT) system regulates several biological processes by affecting transcription of genes as a response to cytokines and growth factors. In the present study, we have characterized the STAT genes in lumpfish (Cyclopterus lumpus L.), belonging to the order Perciformes, and investigated regulation of the JAK-STAT signaling pathway upon exposure to bacteria (Vibrio anguillarum) and poly(I:C), the latter mimicking antiviral responses. Methods Characterization and evolutionary analyses of the STATs were performed by phylogeny, protein domain, homology similarity and synteny analyses. Antibacterial and antiviral responses were investigated by performing KEGG pathway analysis. Results We observed that lumpfish have stat1a, 2, 3, 4, 5a, 5b, and 6. Transcriptome-wide analyses showed that most components of the JAK-STAT pathway were present in lumpfish. il-6, il-10, il-21, iκBα and stat3 were upregulated 6 hours post exposure (hpe) against bacteria while type I interferons (IFNs), irf1, irf3, irf10, stat1 and 2 were upregulated 24 hpe against poly(I:C). Conclusions Our findings shed light on the diversity and evolution of the STATs and the data show that the STAT genes are highly conserved among fish, including lumpfish. The transcriptome-wide analyses lay the groundwork for future research into the functional significance of these genes in regulating critical biological processes and make an important basis for development of prophylactic measure such as vaccination, which is highly needed for lumpfish since it is vulnerable for both bacterial and viral diseases.
Collapse
Affiliation(s)
- Shreesha S Rao
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Patrick A Nelson
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Harald S Lunde
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| | - Gyri T Haugland
- Department of Biological Sciences, Bergen High-Technology Centre, University of Bergen, Bergen, Norway
| |
Collapse
|
60
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
61
|
Wei ZK, Zhao YC, Wang ZD, Sui LY, Zhao YH, Liu Q. Animal models of mpox virus infection and disease. INFECTIOUS MEDICINE 2023; 2:153-166. [PMID: 38073883 PMCID: PMC10699680 DOI: 10.1016/j.imj.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 01/07/2025]
Abstract
Mpox (monkeypox) virus (MPXV), which causes a mild smallpox-like disease, has been endemic in Africa for several decades, with sporadic cases occurring in other parts of the world. However, the most recent outbreak of mpox mainly among men that have sex with men has affected several continents, posing serious global public health concerns. The infections exhibit a wide spectrum of clinical presentation, ranging from asymptomatic infection to mild, severe disease, especially in immunocompromised individuals, young children, and pregnant women. Some therapeutics and vaccines developed for smallpox have partial protective and therapeutic effects against MPXV historic isolates in animal models. However, the continued evolution of MPXV has produced multiple lineages, leading to significant gaps in the knowledge of their pathogenesis that constrain the development of targeted antiviral therapies and vaccines. MPXV infections in various animal models have provided a central platform for identification and comparison of diseased pathogenesis between the contemporary and historic isolates. In this review, we discuss the susceptibility of various animals to MPXV, and describe the key pathologic features of rodent, rabbit and nonhuman primate models. We also provide application examples of animal models in elucidating viral pathogenesis and evaluating effectiveness of vaccine and antiviral drugs. These animal models are essential to understand the biology of MPXV contemporary isolates and to rapidly test potential countermeasures. Finally, we list some remaining scientific questions of MPXV that can be resolved by animal models.
Collapse
Affiliation(s)
- Zheng-Kai Wei
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, China
| | - Yi-Cheng Zhao
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Ze-Dong Wang
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Li-Yan Sui
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Ying-Hua Zhao
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Quan Liu
- Department of Infectious Diseases, Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
62
|
Vaseghi-Shanjani M, Yousefi P, Sharma M, Samra S, Sifuentes E, Turvey SE, Biggs CM. Transcription factor defects in inborn errors of immunity with atopy. FRONTIERS IN ALLERGY 2023; 4:1237852. [PMID: 37727514 PMCID: PMC10505736 DOI: 10.3389/falgy.2023.1237852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
Transcription factors (TFs) are critical components involved in regulating immune system development, maintenance, and function. Monogenic defects in certain TFs can therefore give rise to inborn errors of immunity (IEIs) with profound clinical implications ranging from infections, malignancy, and in some cases severe allergic inflammation. This review examines TF defects underlying IEIs with severe atopy as a defining clinical phenotype, including STAT3 loss-of-function, STAT6 gain-of-function, FOXP3 deficiency, and T-bet deficiency. These disorders offer valuable insights into the pathophysiology of allergic inflammation, expanding our understanding of both rare monogenic and common polygenic allergic diseases. Advances in genetic testing will likely uncover new IEIs associated with atopy, enriching our understanding of molecular pathways involved in allergic inflammation. Identification of monogenic disorders profoundly influences patient prognosis, treatment planning, and genetic counseling. Hence, the consideration of IEIs is essential for patients with severe, early-onset atopy. This review highlights the need for continued investigation into TF defects to enhance our understanding and management of allergic diseases.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pariya Yousefi
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Mehul Sharma
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Simran Samra
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Erika Sifuentes
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E. Turvey
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M. Biggs
- British Columbia Children’s Hospital, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
63
|
Pandey N, Singh SK. MicroRNA-155 triggers a cellular antiviral immune response against Chandipura virus in human microglial cells. Microbes Infect 2023; 25:105173. [PMID: 37327858 DOI: 10.1016/j.micinf.2023.105173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Chandipura virus (CHPV) belongs to the family Rhabdoviridae and has a single-stranded RNA genome that causes encephalitis among children in India's tropical states. Activation of the antiviral immune response upon viral infection is important for the host's defense. In response to CHPV infection, the brain resident macrophages (microglial cells) control the pathogenic insults. The microRNAs (miRNAs) are 22 nts non-coding RNAs that serve as delicate regulators of their target genes at the post-transcriptional level. In this study, we explored miR-155 mediated antiviral response in CHPV infected human microglial cells. The gene and protein expression patterns were studied through quantitative real-time PCR (qPCR) and immunoblotting, respectively. Additionally, miRNA target validation was done by overexpression and knockdown of miR-155. We observed an increased expression of miR-155 in CHPV infected human microglial cells. The upregulated miR-155 suppresses the Suppressor of Cytokine Signalling 1 (SOCS1). Reduced SOCS1, in turn, led to enhanced phosphorylation of Signal Transducer and Activator of Transcription 1 (STAT1) and induction of Interferon-β (IFN-β), which promoted the expression of IFN-stimulated gene 54 (ISG54) and IFN-stimulated gene 56 (ISG56). In this study, miR-155 positively modulated the cellular antiviral response by enhancing type I IFN signalling through inhibition of SOCS1 in CHPV infected microglial cells.
Collapse
Affiliation(s)
- Neha Pandey
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India; Dr. B R Ambedkar Center for Biomedical Research (ACBR), New Delhi 110007, India.
| |
Collapse
|
64
|
Pouwels SD, Sigaeva A, de Boer S, Eichhorn IA, Koll L, Kuipers J, Schirhagl R, Heijink IH, Burgess JK, Slebos DJ. Host-device interactions: exposure of lung epithelial cells and fibroblasts to nickel, titanium, or nitinol affect proliferation, reactive oxygen species production, and cellular signaling. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:38. [PMID: 37486435 PMCID: PMC10366254 DOI: 10.1007/s10856-023-06742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Endoscopic implantation of medical devices for the treatment of lung diseases, including airway stents, unidirectional valves and coils, is readily used to treat central airway disease and emphysema. However, granulation and fibrotic tissue formation impairs treatment effectiveness. To date little is known about the interaction between implanted devices, often made from metals, such as nickel, titanium or nitinol, and cells in the airways. Here, we study the response of lung epithelial cells and fibroblasts to implant device materials. The adhesion and proliferation of bronchial epithelial cells and lung fibroblasts upon exposure to 10 × 3 × 1 mm pieces of nickel, titanium or nitinol is examined using light and scanning electron microscopy. Pro-inflammatory cytokine mRNA expression and release, signaling kinase activity and intracellular free radical production are assessed. Nitinol, and to a lesser extent nickel and titanium, surfaces support the attachment and growth of lung epithelial cells. Nitinol induces a rapid and significant alteration of kinase activity. Cells directly exposed to nickel or titanium produce free radicals, but those exposed to nitinol do not. The response of lung epithelial cells and fibroblasts depends on the metal type to which they are exposed. Nitinol induces cellular surface growth and the induction of kinase activity, while exposure of lung epithelial cells to nickel and titanium induces free radical production, but nitinol does not.
Collapse
Affiliation(s)
- Simon D Pouwels
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Alina Sigaeva
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands
| | - Shanna de Boer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ilse A Eichhorn
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Lisanne Koll
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands
| | - Irene H Heijink
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
65
|
Zhao Y, Jia N, Xie X, Chen Q, Hu T. Whole Transcriptome Analysis of Intervention Effect of Sophora subprostrate Polysaccharide on Inflammation in PCV2 Infected Murine Splenic Lymphocytes. Curr Issues Mol Biol 2023; 45:6067-6084. [PMID: 37504299 PMCID: PMC10377888 DOI: 10.3390/cimb45070383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
(1) Background: Sophora subprostrate, is the dried root and rhizome of Sophora tonkinensis Gagnep. Sophora subprostrate polysaccharide (SSP1) was extracted from Sophora subprostrate, which has shown good anti-inflammatory and antioxidant effects. Previous studies showed SSP1 could modulate inflammatory damage induced by porcine circovirus type 2 (PCV2) in murine splenic lymphocytes, but the specific regulatory mechanism is unclear. (2) Methods: Whole transcriptome analysis was used to characterize the differentially expressed mRNA, lncRNA, and miRNA in PCV2-infected cells and SSP1-treated infected cells. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and other analyses were used to screen for key inflammation-related differentially expressed genes. The sequencing results were verified by RT-qPCR, and western blot was used to verify the key protein in main enriched signal pathways. (3) Results: SSP1 can regulate inflammation-related gene changes induced by PCV2, and its interventional mechanism is mainly involved in the key differential miRNA including miR-7032-y, miR-328-y, and miR-484-z. These inflammation-related genes were mainly enriched in the TNF signal pathway and NF-κB signal pathway, and SSP1 could significantly inhibit the protein expression levels of p-IκB, p-p65, TNF-α, IRF1, GBP2 and p-SAMHD1 to alleviate inflammatory damage. (4) Conclusions: The mechanism of SSP1 regulating PCV2-induced murine splenic lymphocyte inflammation was explored from a whole transcriptome perspective, which provides a theoretical basis for the practical application of SSP1.
Collapse
Affiliation(s)
- Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Nina Jia
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiaodong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Qi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tingjun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
66
|
Hu Y, Chen X, Ling Y, Zhou K, Han M, Wang X, Yue M, Li Y. Influenza A virus inhibits TET2 expression by endoribonuclease PA-X to attenuate type I interferon signaling and promote viral replication. PLoS Pathog 2023; 19:e1011550. [PMID: 37498975 PMCID: PMC10409264 DOI: 10.1371/journal.ppat.1011550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Influenza A virus (IAV) expresses several accessory proteins to limit host anti-viral restriction factors to facilitate viral replication. The Ten-Eleven Translocation 2 (TET2) is a methylcytosine dioxygenase that promotes DNA demethylation by catalyzing the oxidation of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC), which plays a vital role in hematopoiesis and immunity. Here we report that TET2 is a host restriction factor that limits IAV replication. But IAV endoribonuclease PA-X is able to remove the replication restriction by binding to TET2 mRNA and driving TET2 mRNA degradation to reduce TET2 expression during infection. Genetic inactivation of TET2 markedly enhances IAV replication in vitro and in vivo. Mechanistically, we found that TET2 regulates demethylation and transcription of STAT1 and some interferon-stimulated genes (ISGs), including ISG15, ISG20, and IFIT5, so the loss of TET2 greatly impairs type I Interferon signaling. Furthermore, we confirmed that TET2-mediated demethylation of the STAT1 gene is critical for interferon anti-viral activity. Our study demonstrates that the host TET2 is essential to the innate immune response against IAV infection.
Collapse
Affiliation(s)
- Yixiang Hu
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xinru Chen
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Yuehuan Ling
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Kun Zhou
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Meiqing Han
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xingbo Wang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
67
|
Arena A, Romeo MA, Benedetti R, Gilardini Montani MS, Santarelli R, Gonnella R, D'Orazi G, Cirone M. NRF2 and STAT3: friends or foes in carcinogenesis? Discov Oncol 2023; 14:37. [PMID: 37000324 PMCID: PMC10064365 DOI: 10.1007/s12672-023-00644-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
NRF2 is a transcription factor that plays a pivotal role in carcinogenesis, also through the interaction with several pro-survival pathways. NRF2 controls the transcription of detoxification enzymes and a variety of other molecules impinging in several key biological processes. This perspective will focus on the complex interplay of NRF2 with STAT3, another transcription factor often aberrantly activated in cancer and driving tumorigenesis as well as immune suppression. Both NRF2 and STAT3 can be regulated by ER stress/UPR activation and their cross-talk influences and is influenced by autophagy and cytokines, contributing to shape the microenvironment, and both control the execution of DDR, also by regulating the expression of HSPs. Given the importance of these transcription factors, more investigations aimed at better elucidating the outcome of their networking could help to discover new and more efficacious strategies to fight cancer.
Collapse
Affiliation(s)
- Andrea Arena
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Roberta Santarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roberta Gonnella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Gabriella D'Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio", 66013, Chieti, Italy
- School of Medicine, UniCamillus International University, 00131, Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
68
|
Kula A, Makuch E, Lisowska M, Reniewicz P, Lipiński T, Siednienko J. Pellino3 ligase negatively regulates influenza B dependent RIG-I signalling through downregulation of TRAF3-mediated induction of the transcription factor IRF3 and IFNβ production. Immunology 2023. [PMID: 36861386 DOI: 10.1111/imm.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/19/2023] [Indexed: 03/03/2023] Open
Abstract
Viral infection activates the innate immune system, which recognizes viral components by a variety of pattern recognition receptors and initiates signalling cascades leading to the production of pro-inflammatory cytokines. To date, signalling cascades triggered after virus recognition are not fully characterized and are investigated by many research groups. The critical role of the E3 ubiquitin ligase Pellino3 in antibacterial and antiviral response is now widely accepted, but the precise mechanism remains elusive. In this study, we sought to explore Pellino3 role in the retinoic acid-inducible gene I (RIG-I)-dependent signalling pathway. In this work, the molecular mechanisms of the innate immune response, regulated by Pellino3, were investigated in lung epithelial cells during influenza B virus infection. We used wild-type and Pellino3-deficient A549 cells as model cell lines to examine the role of Pellino3 ligase in the type I interferon (IFN) signalling pathway. Our results indicate that Pellino3 is involved in direct ubiquitination and degradation of the TRAF3, suppressing interferon regulatory factor 3 (IRF3) activation and interferon beta (IFNβ) production.
Collapse
Affiliation(s)
- Anna Kula
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland.,Laboratory of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Edyta Makuch
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Marta Lisowska
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Patryk Reniewicz
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Tomasz Lipiński
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Jakub Siednienko
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| |
Collapse
|
69
|
Chicken-derived MERTK protein inhibits Newcastle disease virus replication by increasing STAT1 phosphorylation in DF-1 cells. Virus Res 2023; 326:199065. [PMID: 36754292 DOI: 10.1016/j.virusres.2023.199065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The receptor tyrosine kinases TYRO3, AXL, and MERTK (TAM) are transmembrane proteins associated with the regulation of the innate immune response. In this study, the role of the chicken-derived MERTK protein (chMertk) in the regulation of the type I interferon (IFN) signaling pathway and its antiviral effect were investigated in vitro. Newcastle disease (ND) caused by the Newcastle disease virus (NDV) is able to widely spread in chickens and give rise to massive losses in the poultry industry around the world. We found that the overexpression of the exogenous chMertk upregulated the STAT1 phosphorylation and the expression of IFN-stimulated gene IFITM3 and significantly reduced the NDV titer (p < 0.05). A mutation assay showed that three tyrosine residues (Y739, Y743, and Y744) in chMertk promoted STAT1 phosphorylation and inhibited NDV replication. However, the chicken-derived E3 ubiquitin ligase CBL significantly negatively regulated chMertk expression, thus attenuating STAT1 phosphorylation. chMertk function was restored by the ubiquitin-proteasome inhibitor MG132, demonstrating that chMertk was controlled by Casitas B-lineage proto-oncogene (CBL) ubiquitination and degradation. Together, these results suggested that chMertk participated in regulating the immune responses to NDV infection, and that CBL significantly downregulated the expression of chMertk through its ubiquitination and degradation, to maintain cellular homeostasis. Overall, our study provided new insights into the role of chMertk in regulating the innate immune response and its anti-NDV activity.
Collapse
|
70
|
Zheng Q, Liu L, Wang B, He Y, Zhang M, Shi G. Phosphorylated signal transducer and activator of transcription proteins 1 in salivary glandular tissue: an important histological marker for diagnosis of primary Sjögren's syndrome. RMD Open 2023; 9:rmdopen-2022-002694. [PMID: 36849206 PMCID: PMC9972459 DOI: 10.1136/rmdopen-2022-002694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 03/01/2023] Open
Abstract
OBJECTIVES The pathological diagnostic criteria for primary Sjögren's syndrome (SjS) have certain limitations. We first explored the key pathogenic pathways of SjS through a bioinformatics approach, and then evaluated the diagnostic value of the important biomarker in SjS. METHODS Transcriptome data from non-SjS controls and patients with SjS were analysed using integrated bioinformatics methods. In a case-control study, phosphorylated signal transducer and activator of transcription proteins 1 (p-STAT1), a key biomarker for the activation of interferon (IFN) pathway, was selected to evaluate its diagnostic value by immunohistochemical analyses in salivary gland (SG) tissues. RESULTS The IFN-related pathways were aberrantly activated in patients with SjS. Positive staining of p-STAT1 was detected in the SjS group, but not in non-SjS control group. There was a significant difference in the integrated optical density values of p-STAT1 expressions between the controls and the SjS groups, as well as between the controls and the SjS lymphatic foci-negative groups (p<0.05). The area under the curve of the receiver operating characteristic curve for p-STAT1 was 0.990 (95% CI 0.969 to 1.000). There was a significant difference in both accuracy and sensitivity of p-STAT1 compared with the Focus Score (p<0.05). The Jorden index for p-STAT1 was 0.968 (95% CI 0.586 to 0.999). CONCLUSIONS The IFN pathway is the key pathogenic pathway in SjS. p-STAT1 may serve as an important biomarker, in addition to lymphocytic infiltration, to diagnose SjS. Particularly in SG samples with negative lymphatic foci, p-STAT1 confers pathological diagnostic value.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingyu Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Rheumatology and Clinical Immunology, Xiamen Maluanbay Hospital, Xiamen, Fujian, China
| | - Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengqin Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China .,Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, Fujian, China.,Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, Fujian, China
| |
Collapse
|
71
|
Olech M, Kuźmak J. Genetic Diversity of the LTR Region of Polish SRLVs and Its Impact on the Transcriptional Activity of Viral Promoters. Viruses 2023; 15:v15020302. [PMID: 36851518 PMCID: PMC9967159 DOI: 10.3390/v15020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
A long terminal repeat (LTR) plays an indispensable role in small ruminant lentivirus (SRLV) gene expression. In this study, we present the LTR sequence of Polish SRLVs representing different subtypes, and analyzed their impact on SRLV promoter activity, as measured in transient transfection assays. Although certain nucleotide motifs (AML(vis), TATA box and the polyadenylation site (AATAAA)) were conserved across sequences, numerous mutations within the LTR sequences have been identified. Single nucleotide polymorphisms (SNPs) were detected in both regulatory (AP-1, AP-4, Stat and Gas) and non-regulatory sequences, and subtype-specific genetic diversity in the LTR region of Polish SRLVs was observed. In vitro assays demonstrated subtype-specific functional differences between the LTR regions of distinct SRLV subtypes. Our results revealed that the promoter activity of Polish strains was lower (1.64-10.8-fold) than that noted for the K1514 reference strain; however, the differences in most cases were not statistically significant. The lowest promoter activity was observed for strains representing subtype A5 (mean 69.067) while the highest promoter activity was observed for strain K1514 representing subtype A1 (mean 373.48). The mean LTR activities of strains representing subtypes A12, A17, A23, A18 and A24 were 91.22, 137.21, 178.41, 187.05 and 236.836, respectively. The results of the inter-subtype difference analysis showed that the promoter activity of strains belonging to subtype A5 was significantly lower than that for subtype A12 strains (1.32-fold; p < 0.00). The promoter activities of the A5 strain were 1.98-fold and 2.58-fold less active than that of the A17 and A23 strains, and the promoter activities of A12 strains were 1.955 and 1.5 times lower than the promoter activity of A23 and A17 strains, respectively. Furthermore, the promoter activity of A17 strains was 1.3 lower than the promoter activity of A23 strains. Our findings suggest that subtype-specific genetic diversity, mainly in the transcription factor's binding sites, has an impact on their transcriptional activity, producing a distinct activity pattern for the subtypes. This study provides new information that is important for better understanding the function of the SRLV LTR. However, further research including more strains and subtypes as well as other cell lines is needed to confirm these findings.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland
- Correspondence:
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
72
|
Yang Q, Yu C, Wu Y, Cao K, Li X, Cao W, Cao L, Zhang S, Ba Y, Zheng Y, Zhang H, Wang W. Unusual Talaromyces marneffei and Pneumocystis jirovecii coinfection in a child with a STAT1 mutation: A case report and literature review. Front Immunol 2023; 14:1103184. [PMID: 36891307 PMCID: PMC9986280 DOI: 10.3389/fimmu.2023.1103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Talaromyces marneffei and Pneumocystis jirovecii are the common opportunistic pathogens in immunodeficient patients. There have been no reports of T. marneffei and P. jirovecii coinfection in immunodeficient children. Signal transducer and activator of transcription 1 (STAT1) is a key transcription factor in immune responses. STAT1 mutations are predominately associated with chronic mucocutaneous candidiasis and invasive mycosis. We report a 1-year-2-month-old boy diagnosed with severe laryngitis and pneumonia caused by T. marneffei and P. jirovecii coinfection, which was confirmed by smear, culture, polymerase chain reaction and metagenome next-generation sequencing of bronchoalveolar lavage fluid. He has a known STAT1 mutation at amino acid 274 in the coiled-coil domain of STAT1 according to whole exome sequencing. Based on the pathogen results, itraconazole and trimethoprim-sulfamethoxazole were administered. This patient's condition improved, and he was discharged after two weeks of targeted therapy. In the one-year follow-up, the boy remained symptom-free without recurrence.
Collapse
Affiliation(s)
- Qin Yang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Chendi Yu
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Yue Wu
- Department of Pharmacy, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Ke Cao
- Clinical Laboratory, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Xiaonan Li
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Weiguo Cao
- Department of Radiology, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Lichao Cao
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Shenrui Zhang
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Ying Ba
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Hezi Zhang
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
- *Correspondence: Wenjian Wang, ; Hezi Zhang,
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Hezi Zhang,
| |
Collapse
|
73
|
Sher AA, Lao YT, Coombs KM. HLA-A, HSPA5, IGFBP5 and PSMA2 Are Restriction Factors for Zika Virus Growth in Astrocytic Cells. Viruses 2022; 15:97. [PMID: 36680137 PMCID: PMC9863221 DOI: 10.3390/v15010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
(1) Background: Zika virus (ZIKV), an arbo-flavivirus, is transmitted via Aeges aegyptii mosquitoes Following its major outbreaks in 2013, 2014 and 2016, WHO declared it a Public Health Emergency of International Concern. Symptoms of ZIKV infection include acute fever, conjunctivitis, headache, muscle & joint pain and malaise. Cases of its transmission also have been reported via perinatal, sexual and transfusion transmission. ZIKV pathologies include meningo-encephalitis and myelitis in the central nervous system (CNS) and Guillain-Barré syndrome and acute transient polyneuritis in the peripheral nervous system (PNS). Drugs like azithromycin have been tested as inhibitors of ZIKV infection but no vaccines or treatments are currently available. Astrocytes are the most abundant cells in the CNS and among the first cells in CNS infected by ZIKV; (2) Methods: We previously used SOMAScan proteomics to study ZIKV-infected astrocytic cells. Here, we use mass spectrometric analyses to further explain dysregulations in the cellular expression profile of glioblastoma astrocytoma U251 cells. We also knocked down (KD) some of the U251 cellular proteins using siRNAs and observed the impact on ZIKV replication and infectivity; (3) Results & Conclusions: The top ZIKV dysregulated cellular networks were antimicrobial response, cell death, and energy production while top dysregulated functions were antigen presentation, viral replication and cytopathic impact. Th1 and interferon signaling pathways were among the top dysregulated canonical pathways. siRNA-mediated KD of HLA-A, IGFBP5, PSMA2 and HSPA5 increased ZIKV titers and protein synthesis, indicating they are ZIKV restriction factors. ZIKV infection also restored HLA-A expression in HLA-A KD cells by 48 h post-infection, suggesting interactions between this gene product and ZIKV.
Collapse
Affiliation(s)
- Affan A. Sher
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ying Tenny Lao
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
74
|
Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15). Semin Cell Dev Biol 2022; 132:16-26. [PMID: 35764457 PMCID: PMC9233553 DOI: 10.1016/j.semcdb.2022.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.
Collapse
|
75
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Ahmad S, Hasan H, Ahmad Suhaimi NA, Albakri KA, Abedalbaset Alzyoud A, Kadir R, Mohamud R. Comprehensive literature review of monkeypox. Emerg Microbes Infect 2022; 11:2600-2631. [PMID: 36263798 PMCID: PMC9627636 DOI: 10.1080/22221751.2022.2132882] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
Abstract
The current outbreak of monkeypox (MPX) infection has emerged as a global matter of concern in the last few months. MPX is a zoonosis caused by the MPX virus (MPXV), which is one of the Orthopoxvirus species. Thus, it is similar to smallpox caused by the variola virus, and smallpox vaccines and drugs have been shown to be protective against MPX. Although MPX is not a new disease and is rarely fatal, the current multi-country MPX outbreak is unusual because it is occurring in countries that are not endemic for MPXV. In this work, we reviewed the extensive literature available on MPXV to summarize the available data on the major biological, clinical and epidemiological aspects of the virus and the important scientific findings. This review may be helpful in raising awareness of MPXV transmission, symptoms and signs, prevention and protective measures. It may also be of interest as a basis for performance of studies to further understand MPXV, with the goal of combating the current outbreak and boosting healthcare services and hygiene practices.Trial registration: ClinicalTrials.gov identifier: NCT02977715..Trial registration: ClinicalTrials.gov identifier: NCT03745131..Trial registration: ClinicalTrials.gov identifier: NCT00728689..Trial registration: ClinicalTrials.gov identifier: NCT02080767..
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | | | | | | | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
76
|
Wang Q, Sun Z, Xia W, Sun L, Du Y, Zhang Y, Jia Z. Role of USP13 in physiology and diseases. Front Mol Biosci 2022; 9:977122. [PMID: 36188217 PMCID: PMC9515447 DOI: 10.3389/fmolb.2022.977122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin specific protease (USP)-13 is a deubiquitinase that removes ubiquitin from substrates to prevent protein degradation by the proteasome. Currently, the roles of USP13 in physiology and pathology have been reported. In physiology, USP13 is highly associated with cell cycle regulation, DNA damage repair, myoblast differentiation, quality control of the endoplasmic reticulum, and autophagy. In pathology, it has been reported that USP13 is important in the pathogenesis of infection, inflammation, idiopathic pulmonary fibrosis (IPF), neurodegenerative diseases, and cancers. This mini-review summarizes the most recent advances in USP13 studies involving its pathophysiological roles in different conditions and provides new insights into the prevention and treatment of relevant diseases, as well as further research on USP13.
Collapse
Affiliation(s)
- Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Le Sun
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yue Zhang, ; Zhanjun Jia,
| |
Collapse
|
77
|
Li YJ, Chen CY, Yang JH, Chiu YF. Modulating cholesterol-rich lipid rafts to disrupt influenza A virus infection. Front Immunol 2022; 13:982264. [PMID: 36177026 PMCID: PMC9513517 DOI: 10.3389/fimmu.2022.982264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) is widely disseminated across different species and can cause recurrent epidemics and severe pandemics in humans. During infection, IAV attaches to receptors that are predominantly located in cell membrane regions known as lipid rafts, which are highly enriched in cholesterol and sphingolipids. Following IAV entry into the host cell, uncoating, transcription, and replication of the viral genome occur, after which newly synthesized viral proteins and genomes are delivered to lipid rafts for assembly prior to viral budding from the cell. Moreover, during budding, IAV acquires an envelope with embedded cholesterol from the host cell membrane, and it is known that decreased cholesterol levels on IAV virions reduce infectivity. Statins are commonly used to inhibit cholesterol synthesis for preventing cardiovascular diseases, and several studies have investigated whether such inhibition can block IAV infection and propagation, as well as modulate the host immune response to IAV. Taken together, current research suggests that there may be a role for statins in countering IAV infections and modulating the host immune response to prevent or mitigate cytokine storms, and further investigation into this is warranted.
Collapse
Affiliation(s)
- Yu-Jyun Li
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-How Yang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
78
|
Zhang Y, Chen H, Yu J, Feng R, Chen Z, Zhang X, Ren Y, Yang G, Huang X, Li G. Comparative transcriptomic analysis of porcine epidemic diarrhea virus epidemic and classical strains in IPEC-J2 cells. Vet Microbiol 2022; 273:109540. [PMID: 35987184 DOI: 10.1016/j.vetmic.2022.109540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
In recent years, porcine epidemic diarrhea (PED) has become widespread and caused huge economic losses for the global pig industry. There is growing evidence that frequent outbreaks of diarrhea are caused by the variants of porcine epidemic diarrhea virus (PEDV) with high pathogenicity. Herein, an epidemic strain of PEDV HLJ strain was isolated and characterized from Heilongjiang Province of China, and the whole genomic expression profile of intestinal porcine epithelial cells (IPEC-J2) infected with HLJ strain was investigated in comparison with classical CV777 strain. A total of 26,851 genes were identified, of these, 25,880 were known genes and 971 were novel genes. There were 258 differentially expressed genes (DEGs) identified between PEDV HLJ-infected and uninfected cells at 24 h post infection (hpi), and 201 DEGs between PEDV HLJ and CV777 infection. A comparative analysis revealed that 258 DEGs were enriched in 468 gene ontology (GO) terms and mapped to 179 KEGG pathways, and 201 DEGs in 1120 GO terms and mapped to 115 KEGG pathways for HLJ-infected cells in contrast to the uninfected and CV777-infected cells, respectively. Specifically, PEDV HLJ strain could activate anti-viral innate immune response and inflammation more intensively than CV777, in which mRNA levels of interferon (IFN-β), chemokines (CCL5 and CXCL10) and pro-inflammatory cytokines (IL-8 and TNF-α) were induced earlier and more strongly. Subsequently, 20 DEGs and 5 proteins were selected and validated by real-time fluorescence quantitative PCR (RT-qPCR) and western blot, and the results were consistent with the transcriptomic analysis. Overall, this study may be helpful for understanding the pathogenesis mechanism of PEDV variants, and contribute to the effective prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yue Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Huijie Chen
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China; College of Biological and Pharmaceutical Engineering, Jilin Agriculture Science and Technology University, Jilin, China
| | - Jia Yu
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Feng
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Zhao Chen
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaolin Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yudong Ren
- Department of Computer Science and Technology, College of Electrical and Information Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guijun Yang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaodan Huang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China.
| | - Guangxing Li
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|