51
|
Ferreri C, Sansone A, Chatgilialoglu C, Ferreri R, Amézaga J, Burgos MC, Arranz S, Tueros I. Critical Review on Fatty Acid-Based Food and Nutraceuticals as Supporting Therapy in Cancer. Int J Mol Sci 2022; 23:ijms23116030. [PMID: 35682708 PMCID: PMC9181022 DOI: 10.3390/ijms23116030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/02/2023] Open
Abstract
Fatty acids have an important place in both biological and nutritional contexts and, from a clinical point of view, they have known consequences for diseases’ onset and development, including cancer. The use of fatty acid-based food and nutraceuticals to support cancer therapy is a multidisciplinary subject, involving molecular and clinical research. Knowledge regarding polyunsaturated fatty acids essentiality/oxidizability and the role of lipogenesis-desaturase pathways for cell growth, as well as oxidative reactivity in cancer cells, are discussed, since they can drive the choice of fatty acids using their multiple roles to support antitumoral drug activity. The central role of membrane fatty acid composition is highlighted for the application of membrane lipid therapy. As fatty acids are also known as biomarkers of cancer onset and progression, the personalization of the fatty acid-based therapy is also possible, taking into account other important factors such as formulation, bioavailability and the distribution of the supplementation. A holistic approach emerges combining nutra- and pharma-strategies in an appropriate manner, to develop further knowledge and applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
- Correspondence:
| | - Anna Sansone
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy; (A.S.); (C.C.)
| | - Rosaria Ferreri
- Department of Integrated Medicine, Tuscany Reference Centre for Integrated Medicine in the Hospital Pathway, Pitigliano Hospital, ASL Sudest Toscana, 58017 Pitigliano, Italy;
| | - Javier Amézaga
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Mercedes Caro Burgos
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (J.A.); (M.C.B.); (S.A.); (I.T.)
| |
Collapse
|
52
|
Cascading Crypthecodinium cohnii Biorefinery: Global Warming Potential and Techno-Economic Assessment. ENERGIES 2022. [DOI: 10.3390/en15103784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prior to the commissioning of a new industrial biorefinery it is deemed necessary to evaluate if the new project will be beneficial or detrimental to climate change, one of the main drivers for the sustainable development goals (SDG) of the United Nations. In particular, how SDG 7, Clean and Efficient Energy, SDG 3, Good Health and Well Being, SDG 9, Industry Innovation and Infrastructure, and SDG 12, Responsible Production and Consumption, would engage in a new biorefinery design, beneficial to climate change, i.e., fostering SDG 13, Climate Action. This study uses life cycle assessment methodology (LCA) to delve in detail into the Global Warming Impact category, project scenario GHG savings, using a conventional and a dynamic emission flux approach until 2060 (30-year lifetime). Water, heat and electricity circularity are in place by using a water recirculation process and a combined heat and power unit (CHP). A new historical approach to derive low and higher-end commodity prices (chemicals, electricity, heat, jet/maritime fuel, DHA, N-fertilizer) is used for the calculation of the economic indicators: Return of investment (ROI) and inflation-adjusted return (IAR), based upon the consumer price index (CPI). Main conclusions are: supercritical fluid extraction is the hotspot of energy consumption; C. cohnii bio-oil without DHA has higher sulfur concentration than crude oil based jet fuel requiring desulfurization, however the sulfur levels are compatible with maritime fuels; starting its operation in 2030, by 2100 an overall GHG savings of 73% (conventional LCA approach) or 85% (dynamic LCA approach) is projected; economic feasibility for oil productivity and content of 0.14 g/L/h and 27% (w/w) oil content, respectively (of which 31% is DHA), occurs for DHA-cost 100 times higher than reference fish oil based DHA; however future genetic engineering achieving 0.4 g/L/h and 70% (w/w) oil content (of which 31% is DHA), reduces the threshold to 20 times higher cost than reference fish oil based DHA; N-fertilizer, district heating and jet fuel may have similar values then their fossil counterparts.
Collapse
|
53
|
Preethika A, Sonkusare S, Suchetha Kumari N. Single nucleotide polymorphism of fatty acid desaturase gene and breast cancer risk in estrogen receptor subtype. Gene X 2022; 823:146330. [PMID: 35182678 DOI: 10.1016/j.gene.2022.146330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer of women and the second most common cancer overall globally. Data suggest that the plasma concentration of omega fatty acids (n-3 and n-6) and the impact of the genetic variant are associated with diet-related inflammatory disease, BC. This study was aimed to find an association between genetic variant rs174537 of fatty acid desaturase gene 1(FADS 1) and breast cancer estrogen receptor subtype. METHODOLOGY Hundred and two blood samples from women were quantified for fatty acids by gas chromatography. SNP rs 174537(G > T) showed maximum variability and the strongest genetic determinant in the Genome-wide association study were genotyped using Sanger sequencing. RESULTS The highest tertile of ALA showed a significantly reduced risk of BC compared to the lowest tertile (OR = 0.2, 95 %CL = 0.1-1.14, P = 0.03). Median values of ALA were higher in GT/TT genotype in ER +ve molecular subtype (P = 0.03) and DPA was higher in GG genotype of ER-ve molecular subtype (P = 0.037). When both the groups were put together the highest tertile of GG tertile showed significantly reduced risk of BC compared with the other lowest tertiles of GG and GT/TT genotypes (OR, 95% CL = 0.45(0.2-0.9). CONCLUSION The high levels of arachidonic acid and low levels of n-3 fatty acids result in a pro-inflammatory milieu and that these pro-inflammatory effects might contribute to BC. We conclude that the individuals with genetically determined lower activity of FADS1(minor allele T) will derive greater advantage from n-3 FAs than those with higher FADS1 activity (G allele) and reduce the BC risk.
Collapse
Affiliation(s)
- A Preethika
- SRM Medical College Hospital and Research Center, Kattankalathur, Tamil Nadu 603203, India
| | - Shipra Sonkusare
- Department of OBG, K S Hegde Medical Academy, Deralakatte, Karnataka 575018, India
| | - N Suchetha Kumari
- Department of Biochemistry, K S Hegde Medical Academy, Deralakatte, Karnataka 575018, India.
| |
Collapse
|
54
|
Petermann AB, Reyna-Jeldes M, Ortega L, Coddou C, Yévenes GE. Roles of the Unsaturated Fatty Acid Docosahexaenoic Acid in the Central Nervous System: Molecular and Cellular Insights. Int J Mol Sci 2022; 23:5390. [PMID: 35628201 PMCID: PMC9141004 DOI: 10.3390/ijms23105390] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Ana B. Petermann
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| | - Mauricio Reyna-Jeldes
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Lorena Ortega
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica Del Norte, Coquimbo 1781421, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile; (M.R.-J.); (L.O.)
| |
Collapse
|
55
|
Shang X, Dai L, He J, Yang X, Wang Y, Li B, Zhang J, Pan H, Gulnaz I. A high-value-added application of the stems of Rheum palmatum L. as a healthy food: the nutritional value, chemical composition, and anti-inflammatory and antioxidant activities. Food Funct 2022; 13:4901-4913. [PMID: 35388820 DOI: 10.1039/d1fo04214a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rhubarb has edible stems or stalks. In this paper, we investigated the nutritional value, chemical composition, and bioactivities of Rheum palmatum stems (SRP) and analyzed the mode of action. SRP exhibited biosafety and had nutritional value, with abundant essential amino acids and minerals. Based on network pharmacology and western blot tests, we found that it showed anti-inflammatory activity via the PI3K-Akt-mediated NF-κB pathway. Out of 20 compounds identified using UPLC-ESI-Q-TOF/MS analysis, cirsiliol and hydrangenol were active compounds and they inhibited NO production in RAW264.7 cells induced by LPS. The alleviation of an inflammatory response is combined with a decrease in oxidative stress, and SRP showed antioxidant activity via attenuating antioxidant enzymes, scavenging free radicals, improving the mitochondrial membrane potential, and decreasing the reactive oxygen species level. These results indicated that SRP, with abundant flavonoids and a good nutritional composition, could be used as a dietary supplement for food applications.
Collapse
Affiliation(s)
- Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Jian He
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Bing Li
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Hu Pan
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Ilgekbayeva Gulnaz
- Department of Biological Safety, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| |
Collapse
|
56
|
Newell M, Goruk S, Schueler J, Mazurak V, Postovit LM, Field CJ. Docosahexaenoic acid enrichment of tumor phospholipid membranes increases tumor necroptosis in mice bearing triple negative breast cancer patient-derived xenografts. J Nutr Biochem 2022; 107:109018. [PMID: 35489658 DOI: 10.1016/j.jnutbio.2022.109018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA) reduces breast cancer tumor growth in preclinical models. To better understand how DHA amplifies the actions of docetaxel (TXT) chemotherapy, we examined the effects of two doses of dietary DHA on tumor size, membrane DHA content and necroptosis using a drug resistant triple negative breast cancer (TNBC) patient derived xenograft (PDX) model. Female NSG mice bearing TNBC PDXs were randomized to one of three nutritionally complete diets (20% w/w fat): control (0% DHA), high DHA (3.8% HDHA), or low DHA (1.6% LDHA) with or without intraperitoneal injections of 5 mg/kg TXT, twice weekly for 6 weeks (n=8 per group). Tumors from mice fed either HDHA+TXT or LDHA+TXT were similar in size to each other, but were 36% and 32% smaller than tumors from mice fed control+TXT, respectively (P<0.05). A dose effect of DHA incorporation was observed in plasma total phospholipids and in phosphatidylethanolamine and phosphatidylinositol. Both doses of DHA resulted in similarly increased necrotic tissue and decreased NFκB protein expression compared to control tumors, however only the HDHA+TXT had increased expression of necroptosis related proteins: RIPK1, RIPK3 and MLKL (P<0.05). Increased MLKL was observed in the lipid raft portion of HDHA+TXT tumor extracts. This work confirms the efficacy of a combination therapy consisting of DHA supplementation and TXT chemotherapy using two doses of DHA as indicated by reduced tumor growth in a TNBC PDX model. Moreover, the results suggest that decreased growth may occur through increased DHA incorporation into tumor phospholipid membranes and necroptosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.
| |
Collapse
|
57
|
Dai L, Li B, Yang X, Wang Y, Pan H, Zhang J, Shang X. The Nutritional Properties, Chemical Compositions, and Functional Characteristics of the Aerial Parts of Adonis coerulea. Front Nutr 2022; 9:850714. [PMID: 35495930 PMCID: PMC9053748 DOI: 10.3389/fnut.2022.850714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
The nutrition and active compounds from plants are very important to regulate the immunity of the body by improving the oxidant and inflammatory response. In this article, we aimed to investigate the nutritional profile and the phytochemical compositions of Adonis coerulea; the functional characteristics and its possible mechanism were studied. Results showed that the aerial parts of Adonis coerulea (ACAP) contained the abundant of proteins (16.15%) and the minerals (31.02.09 mg/100 g dried ACAP); promisingly, the content of essential amino acids (8.25%) and fatty acids (13,220.45 mg/100 g) also were obtained to regulate the immunity and prevent some chronic diseases. The methanol extract of ACAP played the anti-inflammatory activity via peroxisome proliferators-activated receptor (PPAR)-γ-mediated nuclear factor kappa B (NF-κB) pathway. Among the 18 identified compounds, linolenic acid from fatty acids and licochalcone A were active compounds by inhibiting nitric oxide (NO) production of RAW264.7 cells induced by lipopolysaccharide (LPS). The alleviation of inflammatory response results in the decrease of oxidative stress; ACAP showed the antioxidant activity by attenuating antioxidant enzymes, improving mitochondrial membrane potential and reactive oxygen species. These results highlight the potential of A. coerulea as a source of active ingredients in pharmaceutical industries.
Collapse
|
58
|
Díaz C, González-Olmedo C, Díaz-Beltrán L, Camacho J, Mena García P, Martín-Blázquez A, Fernández-Navarro M, Ortega-Granados AL, Gálvez-Montosa F, Marchal JA, Vicente F, Pérez Del Palacio J, Sánchez-Rovira P. Predicting dynamic response to neoadjuvant chemotherapy in breast cancer: a novel metabolomics approach. Mol Oncol 2022; 16:2658-2671. [PMID: 35338693 PMCID: PMC9297806 DOI: 10.1002/1878-0261.13216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) outcomes vary according to breast cancer (BC) subtype. Since pathologic complete response is one of the most important target endpoints of NACT, further investigation of NACT outcomes in BC is crucial. Thus, identifying sensitive and specific predictors of treatment response for each phenotype would enable early detection of chemoresistance and residual disease, decreasing exposures to ineffective therapies and enhancing overall survival rates. We used liquid chromatography−high‐resolution mass spectrometry (LC‐HRMS)‐based untargeted metabolomics to detect molecular changes in plasma of three different BC subtypes following the same NACT regimen, with the aim of searching for potential predictors of response. The metabolomics data set was analyzed by combining univariate and multivariate statistical strategies. By using ANOVA–simultaneous component analysis (ASCA), we were able to determine the prognostic value of potential biomarker candidates of response to NACT in the triple‐negative (TN) subtype. Higher concentrations of docosahexaenoic acid and secondary bile acids were found at basal and presurgery samples, respectively, in the responders group. In addition, the glycohyocholic and glycodeoxycholic acids were able to classify TN patients according to response to treatment and overall survival with an area under the curve model > 0.77. In relation to luminal B (LB) and HER2+ subjects, it should be noted that significant differences were related to time and individual factors. Specifically, tryptophan was identified to be decreased over time in HER2+ patients, whereas LysoPE (22:6) appeared to be increased, but could not be associated with response to NACT. Therefore, the combination of untargeted‐based metabolomics along with longitudinal statistical approaches may represent a very useful tool for the improvement of treatment and in administering a more personalized BC follow‐up in the clinical practice.
Collapse
Affiliation(s)
- Caridad Díaz
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | | | | | - José Camacho
- Department of Signal Theory, Networking and Communications, University of Granada, 18071, Granada, Spain
| | - Patricia Mena García
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | - Ariadna Martín-Blázquez
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | | | | | | | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, E-18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18100, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18012, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | - José Pérez Del Palacio
- Fundación MEDINA; Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain
| | | |
Collapse
|
59
|
Preethika A, Suchetha Kumari N, Sandeep A, Shetty J. Alpha1-antitrypsin combined fatty acids induced angiopoietin-like protein 4, expression in breast cancer: A pilot study. Chem Phys Lipids 2022; 243:105175. [PMID: 35063423 DOI: 10.1016/j.chemphyslip.2022.105175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The effect of nutrition on inflammation and breast cancer (BC) prognosis is still inconclusive. Mechanism of data suggests that different types of fatty acids (FAs) play an essential role in carcinogenesis, and binding of alpha 1 antitrypsin (A1AT) may modulate carcinogenesis. The increased expression in the bound form of A1AT and release of Angiopoietin-like protein 4 (Angptl4) targets the gene of peroxisome proliferator-activated receptor-gamma (PPAR-γ). Our aim of the study was to compare the effect of FA-free (A1AT-0) and FAs bound forms of A1AT on levels of IL-1β, PPAR-gamma, and Angplt4 in breast cancer and control women. METHODOLOGY 10 women with breast cancer and ten control women within the age group 25-60 years with normal (Pi) M allele A1AT were recruited. Mononuclear cells were isolated and treated with different A1AT and FAs on the various combinations (linoleic acid, alpha-linolenic acid) for time-dependent study (2,4,18 and 24 h) and analyzed for the interleukin -1 beta(IL-1b), PPAR-gamma, and Angiopoietin-like protein 4 (Angptl4) expression by using ELISA method and gas chromatography for analyzing FAs. One-way ANOVA combined with multiple comparisons is used to compare the means. RESULTS 100% of the study subjects were homozygous for the normal allele of A1AT. Time-dependent effects of A1AT and A1AT conjugated fatty acids on IL-I b, PPAR-g and Angptl4 showed statistically significant P = 0.07, P = 0.001, and P = 0.02 respectively, compared to those of the former study subjects. But within the groups, PPAR-g levels in case group (F(15,40)1.606, P = 0.003) and Angptl4 in the control group (F(15,32)0.64, P = 0.043) differed significantly. CONCLUSION To the best of our knowledge, it's the first kind of study, and we speculate that the A1AT complex with different types of FAs results in a new form of A1AT having a solid capability to regulate the inflammation-induced synthesis, processing, and release of an active form of IL-1β. Our experimental data shows that the anti-inflammatory property of A1AT combined FAs likely to be mediated PPAR γand Angptl4 activation, thereby inhibiting the IL-1b. These findings may be worth assessing BC's biological effects and therapeutic effectiveness.
Collapse
Affiliation(s)
- A Preethika
- BIRAC-SRM Medical College, and Research Center, Potheri, TN 600099, India
| | - N Suchetha Kumari
- Department of Biochemistry, K S Hegde Medical Academy, Deralakatte, Karnataka 575018, India
| | - Ail Sandeep
- Department of Oncology, K S Hegde Medical Academy, Deralakatte, Karnataka 575018, India
| | - Jayarama Shetty
- Department of Oncology, K S Hegde Medical Academy, Deralakatte, Karnataka 575018, India.
| |
Collapse
|
60
|
Dai LX, Miao X, Yang XR, Zuo LP, Lan ZH, Li B, Shang XF, Yan FY, Guo X, Wang Y, Zhang JY. High Value-Added Application of Two Renewable Sources as Healthy Food: The Nutritional Properties, Chemical Compositions, Antioxidant, and Antiinflammatory Activities of the Stalks of Rheum officinale Baill. and Rheum tanguticum Maxim. ex Regel. Front Nutr 2022; 8:770264. [PMID: 35141263 PMCID: PMC8819138 DOI: 10.3389/fnut.2021.770264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Rhubarb plants (Rheum officinale and R. tanguticum) have edible stalks. In this work, we aimed to compare the nutritional properties, chemical compositions, and bioactivities of R. officinale (SRO) and R. tanguticum (SRT) stalks and to analyze the composition–function relationship. Results showed that the two stalks were good sources of fiber, as well as minerals. They contained abundant essential amino acids and essential fatty acids to regulate the immunity and prevent some chronic diseases; the contents of polyunsaturated fatty acids were 2,244.32 mg/100 g and 2,844.69 mg/100 g, respectively. The antioxidant activity were also proved. Metabolomics showed that SRO and SRT contained abundant phenolic acids. Due to the higher concentrations of flavones, SRT has better antiinflammatory activities than SRO by inhibiting NF-κB signaling pathway. Rhubarb stalks exhibited good safety in acute toxicity and cytotoxicity tests. This work indicated that the two stalks have nutritional value, safety, and bioactivities, and could be used as sources of nutritional ingredients for regulating the immunity of body in food industry.
Collapse
Affiliation(s)
- Li-Xia Dai
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Rong Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li-Ping Zuo
- The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Zhi-Hui Lan
- The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Fei Shang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Tibetan Medicine Research and Development, Qinghai University, Xining, China
- *Correspondence: Xiao-Fei Shang
| | - Feng-Yuan Yan
- The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Xiao Guo
- State Key Laboratory of Tibetan Medicine Research and Development, Qinghai University, Xining, China
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ji-Yu Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
61
|
Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies — exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Deliv Transl Res 2022; 12:2303-2334. [DOI: 10.1007/s13346-021-01104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
62
|
Wang M, Yu F, Zhang Y, Zhang L, Chang W, Wang K. The Emerging Roles of Circular RNAs in the Chemoresistance of Gastrointestinal Cancer. Front Cell Dev Biol 2022; 10:821609. [PMID: 35127685 PMCID: PMC8814461 DOI: 10.3389/fcell.2022.821609] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancer represents a major global health problem due to its aggressive characteristics and poor prognosis. Despite the progress achieved in the development of treatment regimens, the clinical outcomes and therapeutic responses of patients with GI cancer remain unsatisfactory. Chemoresistance arising throughout the clinical intervention is undoubtedly a critical barrier for the successful treatment of GI cancer. However, the precise mechanisms associated with chemoresistance in GI cancer remain unclear. In the past decade, accumulating evidence has indicated that circular RNAs (circRNAs) play a key role in regulating cancer progression and chemoresistance. Notably, circRNAs function as molecular sponges that sequester microRNAs (miRNAs) and/or proteins, and thus indirectly control the expression of specific genes, which eventually promote or suppress drug resistance in GI cancer. Therefore, circRNAs may represent potential therapeutic targets for overcoming drug resistance in patients with GI cancer. This review comprehensively summarizes the regulatory roles of circRNAs in the development of chemoresistance in different GI cancers, including colorectal cancer, gastric cancer and esophageal cancer, as well as deciphers the underlying mechanisms and key molecules involved. Increasing knowledge of the important functions of circRNAs underlying drug resistance will provide new opportunities for developing efficacious therapeutic strategies against GI cancer.
Collapse
Affiliation(s)
- Man Wang
- *Correspondence: Man Wang, ; Kun Wang,
| | | | | | | | | | - Kun Wang
- *Correspondence: Man Wang, ; Kun Wang,
| |
Collapse
|
63
|
Li J, Xie Q, Liu L, Cheng Y, Han Y, Chen X, Lin J, Li Z, Liu H, Zhang X, Chen H, Peng J, Shen A. Swimming Attenuates Muscle Wasting and Mediates Multiple Signaling Pathways and Metabolites in CT-26 Bearing Mice. Front Mol Biosci 2022; 8:812681. [PMID: 35127824 PMCID: PMC8811507 DOI: 10.3389/fmolb.2021.812681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: To investigate the effects of swimming on cancer induced muscle wasting and explore its underlying mechanism in CT-26 bearing mice.Methods: BALB/c mice (n = 16) injected with CT-26 cells were divided into two groups, including Tumor group (n = 8) and Swimming group (n = 8). Another 8 un-injected mice were set as Control group. Mice in Swimming group were subjected to physical training for swimming twice per day for 30 min intervals and 6 days per week for a total of 4 weeks. The tumor volume was monitored every 3 days and tumor weight was measured at the end of experiment. The changes of muscle function, pathological and cell apoptosis of quadriceps muscles were further assessed, and its underlying mechanisms were further explored using multiple biological technologies.Results: Swimming obviously alleviated tumor volume and weight in CT-26 bearing mice. Moreover, swimming attenuated the decrease of muscle tension, autonomic activities, and increase of muscle atrophy, pathological ultrastructure, as well as cell apoptosis of quadriceps muscles in CT-26 bearing mice. Furthermore, swimming significantly down-regulated the protein expression of NF-κB, p-NF-κB, TNF-α, IL-1β, IL-6 and Bax, while up-regulated the expression of Bcl-2. Further differential expressed metabolites (DEMs) analysis identified a total of 76 (in anion mode) and 330 (in cationic mode) DEMs in quadriceps muscles of CT-26 bearing mice after swimming, including taurochenodeoxycholic acid, taurocholic acid, ascorbic acid and eicosapentaenoic acid.Conclusion: Swimming attenuates tumor growth and muscle wasting, and by suppressing the activation of NF-κB signaling pathway mediated inflammation, reducing the level of Bax medicated cell apoptosis, as well as modulating multiple metabolites might be the importantly underlying mechanisms.
Collapse
Affiliation(s)
- Jiapeng Li
- The Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
| | - Liya Liu
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
| | - Yuying Han
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
| | - Jia Lin
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
| | - Huixin Liu
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
| | - Xiuli Zhang
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
| | - Haichun Chen
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Jun Peng
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
- *Correspondence: Jun Peng, ; Aling Shen,
| | - Aling Shen
- Academy of Integrative Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou, China
- *Correspondence: Jun Peng, ; Aling Shen,
| |
Collapse
|
64
|
The Effect of Fatty Acids on Ciprofloxacin Cytotoxic Activity in Prostate Cancer Cell Lines. Does Lipid Component Enhance Anticancer Ciprofloxacin Potential? Cancers (Basel) 2022; 14:cancers14020409. [PMID: 35053570 PMCID: PMC8773529 DOI: 10.3390/cancers14020409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Most prostate cancers are initially hormone-dependent but later gain a hormone-independent phenotype associated with changes in lipid metabolism, including enhanced absorption of extracellular fatty acids. The aim of our study was to assess the effect of ciprofloxacin conjugates with fatty acids on different type of prostate cancer (LNCaP and DU-145) and normal (RWPE-1) cells, as well as their influence on cell lipid metabolism by proteomic analysis. All tested conjugates exhibited cytotoxic potential, the most powerful for oleic, elaidic and docosahexaenoic acids. The hormone-independent DU145 line was more sensitive to derivatives than the hormone-dependent LNCaP line. These results are consistent with previously observed pronounced cytotoxic effect of conjugates on a hormone-insensitive PC3 line. Tested derivatives decreased intensity of proteins involved in prostate cancer lipid metabolism. Our findings confirm the involvement of lipid metabolism in prostate carcinogenesis indicating a target for fatty acids as drug carriers. Abstract Purpose: To assess cytotoxic effect of ciprofloxacin conjugates with fatty acids on prostate cancer cells (LNCaP and DU-145) with different hormone sensitivity, based on previous promising results from the PC3 cells. Methods: Cytotoxicity were estimated using MTT and LDH tests, whereas its mechanisms were estimated by apoptosis and IL-6 assays. The intensity of proteins involved in lipid metabolism was determined using ML-CS assay. Results: The hormone insensitive DU-145 cells were more vulnerable than the hormone sensitive LNCaP cells. The IC50 values for oleic (4), elaidic (5) and docosahexaenoic acid (8) conjugates were 20.2 µM, 17.8 µM and 16.5 µM, respectively, in DU-145 cells, whereas in LNCaP cells IC50 exceeded 20 µM. The strong conjugate cytotoxicity was confirmed in the LDH test, the highest (70.8%) for compound (5) and 64.2% for compound (8) in DU-145 cells. This effect was weaker for LNCaP cells (around 60%). The cytotoxic effect of unconjugated ciprofloxacin and fatty acids was weaker. The early apoptosis was predominant in LNCaP while in DU-145 cells both early and late apoptosis was induced. The tested conjugates decreased IL-6 release in both cancer cell lines by almost 50%. Proteomic analysis indicated influence of the ciprofloxacin conjugates on lipid metabolic proteins in prostatic cancer. Conclusion: Our findings suggested the cytotoxic potential of ciprofloxacin conjugates with reduction in proteins involved in prostate cancer progress.
Collapse
|
65
|
Dong P, Liu J, Lv H, Wu J, Zhang N, Wang S, Li X, Hu J, Wang A, Li DJ, Wang D, Cao S, Xie L, Shi YK. The enhanced antitumor activity of the polymeric conjugate covalently coupled with docetaxel and docosahexaenoic acid. Biomater Sci 2022; 10:3454-3465. [DOI: 10.1039/d2bm00337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Docetaxel (DTX) has been widely used for treatment of many types of cancer. However, DTX is poor water soluble and commercial DTX is formulated in nonionic surfactant polysorbate 80 and...
Collapse
|
66
|
Sano CD, D'Anna C, Scurria A, Lino C, Pagliaro M, Ciriminna R, Pace E. Mesoporous silica particles functionalized with newly extracted fish oil (Omeg@Silica) inhibit lung cancer cell growth. Nanomedicine (Lond) 2021; 16:2061-2074. [PMID: 34533057 DOI: 10.2217/nnm-2021-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To assess whether Omeg@Silica microparticles - fish oil from anchovy fillet leftovers (AnchoisOil) encapsulated within mesoporous silica particles - are effective in promoting antitumor effects in lung cancer cells. Methods: Three human non-small-cell lung cancer cell lines (A549, Colo 699 and SK-MES-1) were used. Cells were treated with AnchoisOil dispersed in ethanol (10 and 15 μg/ml) or encapsulated in silica and further formulated in aqueous ethanol. Cell cycle, reactive oxygen species, mitochondrial stress and long-term proliferation were assessed. Results & conclusion: Omeg@Silica microparticles were more effective than fish oil in increasing reactive oxygen species and mitochondrial damage, and in altering the cell cycle and reducing cell proliferation, in lung cancer cells. These in vitro antitumor effects of Omeg@Silica support its investigation in lung cancer therapy.
Collapse
Affiliation(s)
- Caterina Di Sano
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Claudia D'Anna
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Claudia Lino
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Elisabetta Pace
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| |
Collapse
|
67
|
Augimeri G, Bonofiglio D. The Mediterranean Diet as a Source of Natural Compounds: Does It Represent a Protective Choice against Cancer? Pharmaceuticals (Basel) 2021; 14:ph14090920. [PMID: 34577620 PMCID: PMC8467442 DOI: 10.3390/ph14090920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet (MD), characterized by a high intake of fruits, vegetables, legumes, nuts and grains, a moderate intake of red wine and a reduced consumption of meat, has been considered one of the healthiest dietary patterns worldwide. Growing evidence suggests an inverse relationship between high adherence to the MD and cancer, as well as other chronic degenerative diseases. The beneficial effects elicited by the MD pattern on cancer are due to the high contents of bioactive compounds contained in many foods of MD, which protect cells by oxidative and inflammatory processes and inhibit carcinogenesis by targeting the various hallmarks of cancer with different mechanisms of action. Although over the past decades numerous dietary and phytochemical compounds from Mediterranean food that have anticancer potential have been identified, a clear association between the MD eating pattern and cancer needs to be established. While we wait for answers to this question from well-conducted research, the empowering of the MD as a protective choice against cancer should represent the priority for public health policies.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy;
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy;
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: ; Tel.: +39-0984-496208
| |
Collapse
|
68
|
Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, Bastien E, Dessy C, Larondelle Y, Feron O. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab 2021; 33:1701-1715.e5. [PMID: 34118189 DOI: 10.1016/j.cmet.2021.05.016] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Tumor acidosis promotes disease progression through a stimulation of fatty acid (FA) metabolism in cancer cells. Instead of blocking the use of FAs by acidic cancer cells, we examined whether excess uptake of specific FAs could lead to antitumor effects. We found that n-3 but also remarkably n-6 polyunsaturated FA (PUFA) selectively induced ferroptosis in cancer cells under ambient acidosis. Upon exceeding buffering capacity of triglyceride storage into lipid droplets, n-3 and n-6 PUFA peroxidation led to cytotoxic effects in proportion to the number of double bonds and even more so in the presence of diacylglycerol acyltransferase inhibitors (DGATi). Finally, an n-3 long-chain PUFA-rich diet significantly delayed mouse tumor growth when compared with a monounsaturated FA-rich diet, an effect further accentuated by administration of DGATi or ferroptosis inducers. These data point out dietary PUFA as a selective adjuvant antitumor modality that may efficiently complement pharmacological approaches.
Collapse
Affiliation(s)
- Emeline Dierge
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium; Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Elena Debock
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Céline Guilbaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Louise Mignard
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate B1.5704, 1200 Brussels, Belgium.
| |
Collapse
|
69
|
Cheng M, Zhang S, Ning C, Huo Q. Omega-3 Fatty Acids Supplementation Improve Nutritional Status and Inflammatory Response in Patients With Lung Cancer: A Randomized Clinical Trial. Front Nutr 2021; 8:686752. [PMID: 34395492 PMCID: PMC8362886 DOI: 10.3389/fnut.2021.686752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 01/27/2023] Open
Abstract
Background and Aims: Clinical studies have reported positive results with omega-3 supplements in patients with cancer. This study aimed to evaluate the efficacy of omega-3 fatty acid supplementation in improving the nutritional status and inflammatory markers of patients with lung cancer. Methods: In a randomized, double-blind, parallel design trial, 60 patients with lung cancer at nutritional status/risk based on the Nutrition Risk Screening 2002 were randomized to be allocated to two study groups, receiving omega-3 fatty acid supplements [eicosapentaenoic acid (EPA) 1.6 g and docosahexaenoic acid (DHA) 0.8 g] or placebo for 12 weeks. Anthropometric measurements [weight, body mass index (BMI), the circumference of the upper arm, and skinfold thickness of triceps], nutrition-based laboratory indices (hemoglobin, albumin, triglyceride, and cholesterol), and inflammatory markers [C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6)] were measured before and after the intervention as study outcomes. Results: No significant difference between the two study groups was observed regarding basic characteristics and study outcomes. Compared with placebo group, omega-3 fatty acid supplementation group showed significant higher weight (66.71 ± 9.17 vs. 61.33 ± 8.03, p = 0.021), albumin (4.74 ± 0.80 vs. 4.21 ± 0.77, p = 0.013), and triglyceride (130.90 ± 25.17 vs. 119.07 ± 14.44, p = 0.032). Inflammatory markers were significantly reduced in omega-3 group compared to placebo (CRP 1.42 ± 0.63 vs. 3.00 ± 1.05, p = 0.001 and TNF-α 1.92 ± 0.65 vs. 4.24 ± 1.19, p = 0.001). No significant difference was observed between the two study groups regarding changes in BMI, the circumference of the upper arm, skinfold thickness of triceps, triglyceride, cholesterol, and IL-6 (p > 0.05). Conclusions: Omega-3 fatty acid supplementation can improve nutritional status and suppress the systemic inflammatory response in patients with lung cancer. Clinical Trial Registration:www.socialscienceregistry.org, identifier: AEARCTR-0007165.
Collapse
Affiliation(s)
- Mingjin Cheng
- Department of Cardiothoracic Surgery, The Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China.,Department of Cardiothoracic Surgery, The Lu'an People's Hospital, Lu'an, China
| | - Shengqiang Zhang
- Department of Cardiothoracic Surgery, The Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China.,Department of Cardiothoracic Surgery, The Lu'an People's Hospital, Lu'an, China
| | - Chengdong Ning
- Department of Cardiothoracic Surgery, The Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China.,Department of Cardiothoracic Surgery, The Lu'an People's Hospital, Lu'an, China
| | - Qianlun Huo
- Department of Cardiothoracic Surgery, The Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, China.,Department of Cardiothoracic Surgery, The Lu'an People's Hospital, Lu'an, China
| |
Collapse
|
70
|
Augimeri G, Montalto FI, Giordano C, Barone I, Lanzino M, Catalano S, Andò S, De Amicis F, Bonofiglio D. Nutraceuticals in the Mediterranean Diet: Potential Avenues for Breast Cancer Treatment. Nutrients 2021; 13:2557. [PMID: 34444715 PMCID: PMC8400469 DOI: 10.3390/nu13082557] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
The traditional Mediterranean Diet constitutes a food model that refers to the dietary patterns of the population living in countries bordering the Mediterranean Sea in the early 1960s. A huge volume of literature data suggests that the Mediterranean-style diet provides several dietary compounds that have been reported to exert beneficial biological effects against a wide spectrum of chronic illnesses, such as cardiovascular and neurodegenerative diseases and cancer including breast carcinoma. Among bioactive nutrients identified as protective factors for breast cancer, natural polyphenols, retinoids, and polyunsaturated fatty acids (PUFAs) have been reported to possess antioxidant, anti-inflammatory, immunomodulatory and antitumoral properties. The multiple anticancer mechanisms involved include the modulation of molecular events and signaling pathways associated with cell survival, proliferation, differentiation, migration, angiogenesis, antioxidant enzymes and immune responses. This review summarizes the anticancer action of some polyphenols, like resveratrol and epigallocatechin 3-gallate, retinoids and omega-3 PUFAs by highlighting the important hallmarks of cancer in terms of (i) cell cycle growth arrest, (ii) apoptosis, (iii) inflammation and (iv) angiogenesis. The data collected from in vitro and in vivo studies strongly indicate that these natural compounds could be the prospective candidates for the future anticancer therapeutics in breast cancer disease.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
71
|
Bilyk O, Hamedi B, Dutta I, Newell M, Bukhari AB, Gamper AM, McVea RC, Liu J, Schueler J, Siegers GM, Field CJ, Postovit LM. Docosahexaenoic Acid in the Inhibition of Tumor Cell Growth in Preclinical Models of Ovarian Cancer. Nutr Cancer 2021; 74:1431-1445. [PMID: 34286635 DOI: 10.1080/01635581.2021.1952453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a strong rationale for investigating nutritional interventions with docosahexaenoic acid (DHA) in cancer prevention and therapy; however, the effects of DHA on ovarian cancer (OC) have not been well studied. Here, we investigated if DHA alone and in combination with carboplatin reduces OC cell growth in vitro. In vivo, we used a high-grade serous OC patient-derived xenograft (PDX) mouse model to investigate if DHA affects OC growth and enhances the anticancer actions of carboplatin. We showed synergistic cell killing by DHA and carboplatin in DHA-resistant Kuramochi and SKOV3 OC cells, which corresponded with increased DHA incorporation into whole-cell membrane phospholipids (P < 0.05). In vivo, feeding mice a diet supplemented with 3.9% (w/w of fat) DHA resulted in a significant reduction in PDX growth with and without carboplatin (P < 0.05). This reduction in tumor growth was accompanied by an increased tumor necrotic region (P < 0.05) and improved survival. Plasma membranes in tumors and livers excised from mice fed a DHA diet had ∼ twofold increase in DHA incorporation as compared with mice fed a control diet. Our findings indicate that DHA supplementation reduces cancer cell growth and enhances the efficacy of carboplatin in preclinical models of OC through increased apoptosis and necrosis.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1952453.
Collapse
Affiliation(s)
- Olena Bilyk
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Bahareh Hamedi
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Indrani Dutta
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Marnie Newell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Amirali B Bukhari
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Armin M Gamper
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rojine C McVea
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiahui Liu
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Gabrielle M Siegers
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Lynne-Marie Postovit
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
72
|
Xiao F, Han W, Yue Q, Ke J, Jia B, Fu X. Perioperative omega-3 fatty acids for liver surgery: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e25743. [PMID: 34232163 PMCID: PMC8270594 DOI: 10.1097/md.0000000000025743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/18/2020] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The effect of perioperative omega-3 fatty acids for liver surgery remained controversial. We conducted a systematic review and meta-analysis to explore the influence of omega-3 fatty acids versus placebo in patients undergoing liver surgery. METHODS We have searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through May 2020, and included randomized controlled trials (RCTs) assessing the effect of omega-3 fatty acids versus placebo for liver surgery. This meta-analysis was performed using the random-effect model. RESULTS Five RCTs were included in the meta-analysis. Overall, compared with control group for liver surgery, omega-3 fatty acids were associated with substantially reduced incidence of infection (odd ratio [OR]=0.56; 95% confidence interval [CI] =0.34-0.91; P = .02), but revealed no remarkable influence on complications (OR = 0.60; 95% CI = 0.29-1.24; P = .17), mortality (OR = 0.76; 95% CI = 0.06-9.37; P = .83), liver failure (OR = 0.72; 95% CI = 0.10 to 5.00; P = 0.74), biliary leakage (OR=1.24; 95% CI = 0.41 to 3.76; P = .70), bleeding (OR = 1.76; 95% CI = 0.63-4.95; P = .28), or ileus (OR = 0.39; 95% CI = 0.07-2.05; P = .27). CONCLUSION Perioperative omega-3 fatty acids may be beneficial to reduce the incidence of infection after liver surgery.
Collapse
Affiliation(s)
- Fubin Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of BeiHua University, Jilin, Jilin, P.R. China
| | - Wei Han
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of BeiHua University, Jilin, Jilin, P.R. China
| | - Qing Yue
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of BeiHua University, Jilin, Jilin, P.R. China
| | - Jianji Ke
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of BeiHua University, Jilin, Jilin, P.R. China
| | - Baoxing Jia
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of BeiHua University, Jilin, Jilin, P.R. China
| | - Xiaojuan Fu
- Chongqing Medical and Pharmaceutical College, Chongqing, P.R. China
| |
Collapse
|
73
|
Sahin D. Effect of Oil Extract from Microalgae (Schizochytrium sp.) on the Viability and Apoptosis of Human Osteosarcoma Cells. Curr Pharm Biotechnol 2021; 22:1099-1105. [PMID: 32988350 DOI: 10.2174/1389201021666200928101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/30/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteosarcoma is a malignant tumor type that starts in bone and occurs most frequently in adolescents. Traditional techniques are insufficient, especially for metastatic ones. As alternative treatment techniques, natural products are worthy of examining due to being safe and innovative. Essential polyunsaturated fatty acids, mainly omega-3 and omega-6 fatty acids, have various positive effects on human health and growth. In addition, some PUFAs show anti-cancer activity by inducing apoptosis, specifically in cancer cells. OBJECTIVE Here, the study aims to investigate the time and dose-dependent effects of oil extract from Schizochytrium sp. against the osteosarcoma cell line. MATERIALS AND METHODS Human Fetal Osteoblast Cells (hFOB) and osteosarcoma cells (SAOS-2) were treated with different concentrations of fatty acid samples. GC-FID was performed for fatty acid composition analysis of Schizochytrium sp. MTT-cell viability and Annexin V-apoptosis assays were performed to investigate the time and dose-dependent effects of the samples on cell lines. RESULTS The oil extract sample has a specific activity against the SAOS-2 cancer line and decreases cell proliferation, especially at high dose treatments. Apoptosis assay results indicate that the oil extract sample causes a significant increase in the number of apoptotic cells in the SAOS-2 cell line (71.7% of SAOS-2 cells), which shows its selective activity against bone cancer cell line as a natural anti-cancer molecule. CONCLUSION It was observed that Schizochytrium sp. extract has a time and dose-dependent ability to induce apoptosis, specifically in SAOS-2 cells.
Collapse
Affiliation(s)
- Deniz Sahin
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
74
|
Atowa CO, Okoro BC, Umego EC, Atowa AO, Emmanuel O, Ude VC, Ugbogu EA. Nutritional values of Zonocerus variegatus, Macrotermes bellicosus and Cirina forda insects: Mineral composition, fatty acids and amino acid profiles. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
75
|
Ljungblad L, Gleissman H, Hedberg G, Wickström M, Eissler N, Pickova J, Johnsen JI, Tedroff K, Strandvik B, Kogner P. Body surface area-based omega-3 fatty acids supplementation strongly correlates to blood concentrations in children. Prostaglandins Leukot Essent Fatty Acids 2021; 169:102285. [PMID: 33964665 DOI: 10.1016/j.plefa.2021.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Omega-3 fatty acids have been suggested as a complement in cancer treatment, but doses are not established. We performed a dose-finding study in 33 children in remission from cancer. Participants were allocated to a body surface area (BSA) adjusted dose (mg/m2) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (40:60), ranging 233-3448 mg/m2 daily for 90 days. Fatty acid concentration in plasma phospholipids and red blood cells were determined by GC. Supplementation was well tolerated and correlated strongly with blood ω3-fatty acid concentrations and EPA showed the highest increase. Using the ω3-index disregards docosapentaenoic acid (DPA), which increased 30-43% in our study motivating an EDD-index (∑EPA,DPA,DHA). The ratio between arachidonic acid and EPA or DHA showed negative exponential trends. Dose per BSA enabled an individualized omega-3 supplementation decreasing the variation referred to interindividual differences. Based on our results, we suggest a dose of 1500 mg/m2 BSA for further studies.
Collapse
Affiliation(s)
- L Ljungblad
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - H Gleissman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - G Hedberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - M Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - N Eissler
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - J Pickova
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J I Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - K Tedroff
- Neuropediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - B Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Flemingsberg, Stockholm, Sweden
| | - P Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Oncology, Astrid Lindgrens Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
76
|
Guardiola JJ, Hardesty JE, Beier JI, Prough RA, McClain CJ, Cave MC. Plasma Metabolomics Analysis of Polyvinyl Chloride Workers Identifies Altered Processes and Candidate Biomarkers for Hepatic Hemangiosarcoma and Its Development. Int J Mol Sci 2021; 22:5093. [PMID: 34065028 PMCID: PMC8150673 DOI: 10.3390/ijms22105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND High-level occupational vinyl chloride (VC) exposures have been associated with hepatic hemangiosarcoma, which typically develops following a long latency period. Although VC is genotoxic, a more comprehensive mode of action has not been determined and diagnostic biomarkers have not been established. The purpose of this study is to address these knowledge gaps through plasma metabolomics. METHODS Plasma samples from polyvinyl chloride polymerization workers who developed hemangiosarcoma (cases, n = 15) and VC exposure-matched controls (n = 17) underwent metabolomic analysis. Random forest and bioinformatic analyses were performed. RESULTS Cases and controls had similar demographics and routine liver biochemistries. Mass spectroscopy identified 606 known metabolites. Random forest analysis had an 82% predictive accuracy for group classification. 60 metabolites were significantly increased and 44 were decreased vs. controls. Taurocholate, bradykinin and fibrin degradation product 2 were up-regulated by greater than 80-fold. The naturally occurring anti-angiogenic phenol, 4-hydroxybenzyl alcohol, was down-regulated 5-fold. Top affected ontologies involved: (i) metabolism of bile acids, taurine, cholesterol, fatty acids and amino acids; (ii) inflammation and oxidative stress; and (iii) nicotinic cholinergic signaling. CONCLUSIONS The plasma metabolome was differentially regulated in polyvinyl chloride workers who developed hepatic hemangiosarcoma. Ontologies potentially involved in hemangiosarcoma pathogenesis and candidate biomarkers were identified.
Collapse
Affiliation(s)
- John J. Guardiola
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
| | - Josiah E. Hardesty
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
| | - Juliane I. Beier
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- University of Pittsburgh Liver Research Center (PLRC), Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Russell A. Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA;
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The UofL Health—Jewish Hospital Trager Transplant Center, Louisville, KY 40202, USA
- The University of Louisville Superfund Research Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Matthew C. Cave
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
- University of Pittsburgh Liver Research Center (PLRC), Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The UofL Health—Jewish Hospital Trager Transplant Center, Louisville, KY 40202, USA
| |
Collapse
|
77
|
Anelli L, Di Nardo A, Bonucci M. Integrative Treatment of Lung Cancer Patients: Observational Study of 57 Cases. ASIAN JOURNAL OF ONCOLOGY 2021. [DOI: 10.1055/s-0040-1722380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Introduction A retrospective clinical study was performed to identify the characteristics of patients with lung cancer treated with integrative cancer treatment in addition to conventional medicine.
Materials and Methods We reviewed medical records for lung cancer patients who visited a single integrative setting in Rome, Italy. A total of 57 patients were included, and the majority had advanced-stage cancer. All of them underwent integrative therapy with nutrition and phytotherapy indications. The diet was designed to reduce most of possible factors promoting cancer proliferation, inflammation, and obesity. Foods with anti-inflammatory, prebiotic, antioxidant, and anticancer properties had been chosen. Herbal supplements with known effects on lung cancer were prescribed. In particular, astragal, apigenine, fucosterol, polydatin, epigallocatechin gallate, cannabis, curcumin, and inositol were used. Furthermore, medical mushrooms and other substances were used to improve the immune system and to reduce chemotherapy side effects. Five key parameters have been evaluated for 2 years starting at the first surgery: nutritional status, immune status, discontinuation of therapy, quality of life, and prognosis of the disease.
Results A relevant improvement in parameters relative to nutritional status, immune status, and quality of life has been observed after integrative therapy compared with the same parameters at the first medical visit before starting such approach.
Conclusion The results suggest that integrative therapy may have benefits in patients with lung cancer. Even though there are limitations, the study suggests that integrative therapy could improve nutritional status and quality of life, with possible positive effect on overall survival.
Collapse
Affiliation(s)
- Lorenzo Anelli
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| | | | - Massimo Bonucci
- Integrative Oncology Ambulatory, Nuova Villa Claudia, Rome, Italy
- ARTOI, Rome, Italy
| |
Collapse
|
78
|
Zakany F, Szabo M, Batta G, Kárpáti L, Mándity IM, Fülöp P, Varga Z, Panyi G, Nagy P, Kovacs T. An ω-3, but Not an ω-6 Polyunsaturated Fatty Acid Decreases Membrane Dipole Potential and Stimulates Endo-Lysosomal Escape of Penetratin. Front Cell Dev Biol 2021; 9:647300. [PMID: 33912562 PMCID: PMC8074792 DOI: 10.3389/fcell.2021.647300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Although the largely positive intramembrane dipole potential (DP) may substantially influence the function of transmembrane proteins, its investigation is deeply hampered by the lack of measurement techniques suitable for high-throughput examination of living cells. Here, we describe a novel emission ratiometric flow cytometry method based on F66, a 3-hydroxiflavon derivative, and demonstrate that 6-ketocholestanol, cholesterol and 7-dehydrocholesterol, saturated stearic acid (SA) and ω-6 γ-linolenic acid (GLA) increase, while ω-3 α-linolenic acid (ALA) decreases the DP. These changes do not correlate with alterations in cell viability or membrane fluidity. Pretreatment with ALA counteracts, while SA or GLA enhances cholesterol-induced DP elevations. Furthermore, ALA (but not SA or GLA) increases endo-lysosomal escape of penetratin, a cell-penetrating peptide. In summary, we have developed a novel method to measure DP in large quantities of individual living cells and propose ALA as a physiological DP lowering agent facilitating cytoplasmic entry of penetratin.
Collapse
Affiliation(s)
- Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mate Szabo
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Levente Kárpáti
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Lendület-Artificial Chloride Ion Transporter Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Budapest, Hungary
| | - Péter Fülöp
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
79
|
Newell M, Ghosh S, Goruk S, Pakseresht M, Vena JE, Dummer TJB, Field CJ. A Prospective Analysis of Plasma Phospholipid Fatty Acids and Breast Cancer Risk in 2 Provinces in Canada. Curr Dev Nutr 2021; 5:nzab022. [PMID: 33889794 PMCID: PMC8049855 DOI: 10.1093/cdn/nzab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Studies suggest that fatty acid status influences breast cancer etiology, yet the roles of individual fatty acids in breast cancer risk are unclear, specifically when central adiposity and menopausal status are considered. OBJECTIVES This study examined the associations of fatty acid status with breast cancer risk including location, menopausal status, and waist-to-hip ratio as key variables. METHODS Prediagnostic plasma phospholipid fatty acids were measured in women with breast cancer (n = 393) and age-matched controls (n = 786) from a nested case-control prospective study within Alberta's Tomorrow Project (ATP) and British Columbia Generations Project (BCGP) cohorts. Binary logistic regression models were used to evaluate associations of fatty acids and breast cancer risk with subgroup analysis for menopausal status and waist-to-hip ratio. RESULTS Women from BCGP had a higher n-3 (ɷ-3) fatty acid status compared with the ATP (6.4% ± 0.08% vs. 5.3% ± 0.06%; P < 0.001), so subsequent analysis was blocked by cohort. Overall, fatty acids had inconsistent associations with risk. In the ATP among premenopausal women, total long-chain n-3 fatty acids (ORQ4vsQ1 = 1.78; 95% CI: 0.58, 5.43; P-trend = 0.007, P-interaction = 0.07) were positively associated with breast cancer risk, whereas in BCGP, DHA (ORQ4vsQ1 = 0.66; 95% CI: 0.28, 1.53; P-trend = 0.03, P-interaction = 0.05) and total long-chain n-3 fatty acids (ORQ4vsQ1 = 0.66; 95% CI: 0.28, 1.54; P-trend = 0.03) were associated with decreased cancer risk when the waist-to-hip ratio was <0.85. CONCLUSIONS Our findings suggest that regional variations in fatty acid status influence breast cancer risk, resulting in positive associations of total long-chain n-3 fatty acids in premenopausal ATP women and negative associations of these fatty acids in BCGP women with a waist-to-hip ratio below guidelines. This study highlights the complexity and difficulty in using fatty acid status to predict breast cancer risk in diverse populations without the consideration of other risk factors.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, University of Alberta, Edmonton, Canada
| | - Susan Goruk
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Mohammedreza Pakseresht
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jennifer E Vena
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
- Alberta's Tomorrow Project, CancerCare Alberta, Alberta Health Services, Calgary, Canada
| | - Trevor J B Dummer
- School of Population and Public Health, University of British Columbia, Vancouver, Canada
- Cancer Control Research, BC Cancer, Vancouver, Canada
| | - Catherine J Field
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
80
|
Newell M, Mazurak V, Postovit LM, Field CJ. N-3 Long-Chain Polyunsaturated Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acid, and the Role of Supplementation during Cancer Treatment: A Scoping Review of Current Clinical Evidence. Cancers (Basel) 2021; 13:1206. [PMID: 33801979 PMCID: PMC8000768 DOI: 10.3390/cancers13061206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 01/07/2023] Open
Abstract
This scoping review examines the evidence for n-3 long-chain polyunsaturated fatty acid [LCPUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation in clinical cancer therapy. A comprehensive literature search was performed to identify relevant clinical intervention studies conducted through August 2020. Fifty-seven unique cancer trials, assessing EPA and/or DHA supplementation pre- or post-treatment, concomitant with neoadjuvant chemotherapy, radiation or surgery, or in palliative therapy were included. Breast, head and neck, gastrointestinal, gastric, colorectal/rectal, esophageal, leukemia/lymphoma, lung, multiple myeloma and pancreatic cancers were investigated. Across the spectrum of cancers, the evidence suggests that supplementation increased or maintained body weight, increased progression-free and overall survival, improved overall quality of life, resulted in beneficial change in immune parameters and decreased serious adverse events. Taken together, the data support that EPA and/or DHA could be used to improve outcomes important to the patient and disease process. However, before incorporation into treatment can occur, there is a need for randomized clinical trials to determine the dose and type of n-3 LCPUFA intervention required, and expansion of outcomes assessed and improved reporting of outcomes.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.N.); (V.M.)
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.N.); (V.M.)
| | - Lynne M. Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (M.N.); (V.M.)
| |
Collapse
|
81
|
Shan C, Wang R, Wang S, Zhang Z, Xing C, Feng W, Zhao Z, Zhou S, Zhao AZ, Mu Y, Li F. Endogenous production of n-3 polyunsaturated fatty acids protects mice from carbon tetrachloride-induced liver fibrosis by regulating mTOR and Bcl-2/Bax signalling pathways. Exp Physiol 2021; 106:983-993. [PMID: 33605486 DOI: 10.1113/ep089328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the protective benefit of n-3 polyunsaturated fatty acids (PUFAs) on liver fibrosis and what are the relevant signalling pathways in a transgenic mouse model overexpressing the mfat-1 enzyme? What is the main finding and its importance? n-3 PUFA elevation strongly prevented carbon tetrachloride (CCl4 )-induced hepatic damage and inhibited the activation of hepatic stellate cells. n-3 PUFAs suppressed CCl4 -induced activation of mTOR, elevated Bcl-2 expression, and reduced Bax level, suggesting that n-3 PUFAs can render strong protective effects against liver fibrosis and point to the potential of mfat-1 gene therapy as a treatment modality. ABSTRACT Liver fibrosis is a reversible wound healing response with excessive accumulation of extracellular matrix proteins. It is a globally prevalent disease with ultimately severe pathological consequences. However, very few current clinical therapeutic options are available. Nutritional addition of n-3 polyunsaturated fatty acids (PUFAs) can delay and lessen the development of liver fibrosis. Herein, this study examined the protective benefit of n-3 PUFAs on liver fibrosis and the relevant signalling pathways using a transgenic mouse model overexpressing the mfat-1 enzyme that converts n-6 to n-3 PUFAs. Male C57BL/6 wild-type and mfat-1 transgenic mice were administered carbon tetrachloride (CCl4 ) or control corn oil by intraperitoneal injection. Blood alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were subsequently measured. CCl4 -induced hepatic damage and fibrosis were assessed using haematoxylin-eosin and Masson's trichrome staining. Western blot assays were used to detect and quantify fibrosis-related proteins and mechanistic target of rapamycin (mTOR) and B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) signalling components. The direct effect of docosahexaenoic acid (DHA) on primary hepatic stellate cells (HSCs) was also investigated in a co-culture experiment. n-3 PUFAs, as a result of mfat-1 activity, had a strong protective effect on liver fibrosis. The elevation of ALT and AST induced by CCl4 was significantly lessened in the mfat-1 mice. Histological determination revealed the protective effects of n-3 PUFAs on liver inflammation and collagen deposition. Co-incubation with DHA reduced the expression of profibrogenic factors in the primary HSCs. Moreover, mfat-1 transgenic mice showed significant reduction of proteins that are involved in mTOR and Bcl-2/Bax signalling pathways. Collectively, these results suggest that n-3 PUFA elevation strongly prevents CCl4 -induced hepatic damage by directly inhibiting the activation of HSCs and regulating the basal activity of the mTOR and Bcl-2/Bax signalling pathways. Gene therapy applying mfat-1 and elevating n-3 PUFAs represents a promising treatment strategy to prevent liver fibrosis.
Collapse
Affiliation(s)
- Changfeng Shan
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Ronghua Wang
- Rural Work Office of Longmen County Committee of the Communist Party of China, Longmen County Agricultural and Rural Bureau, Huizhou, Guangdong Province, People's Republic of China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Chaofeng Xing
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Wenbin Feng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
82
|
DHA Abolishes the Detrimental Effect of Docetaxel on Downregulation of the MICA via Decreasing the Expression Level of MicroRNA-20a in Gastric Cancer. J Gastrointest Cancer 2021; 51:545-551. [PMID: 31368060 DOI: 10.1007/s12029-019-00280-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND MHC class I chain-related protein A (MICA) is a membrane glycoprotein expressed abnormally on some malignant cells including gastric cancer (GC) cell and elicits anti-tumor immune responses. Downregulation of MICA expression could lead to immune-evasion of cancer cells. OBJECTIVE(S) In this study, we aimed to investigate the effect of docosahexaenoic acid (DHA) and docetaxel alone or in combination on the expression level of MICA and its regulating microRNA (miRNA), miR-20a in MKN45 GC cell line. METHOD(S) MKN45 GC cell line was cultured and MTT assay was performed to determine IC50 of docetaxel. Cells were treated by 18.5 μM docetaxel and 100 μM DHA. After that, RNA extraction and cDNA synthesis were done and the expression level of MICA and miR-20a were determined by quantitative real-time PCR for both treated and untreated cell lines. RESULTS Our findings showed less downregulation of the expression level of MICA by the combination of docetaxel/DHA (5.34-fold) compared with docetaxel (45.45-fold) and DHA (55.55-fold). Consistently, combination therapy led to the more downregulation of the expression level of the miR-20a (5.20-fold) in comparison to docetaxel (2.38-fold) and DHA (1.60-fold). CONCLUSION(S) As an unwanted effect of docetaxel therapy in GC, downregulation of MICA expression could lead to weak anti-tumor immune responses. By increasing the expression level of MICA, combination therapy of docetaxel with DHA would be useful to overcome this side effect.
Collapse
|
83
|
Ibrahim EH, Ghramh HA, Alshehri A, Kilany M, Khalofah A, El-Mekkawy HI, Sayed MA, Alothaid H, Taha R. Lepidium sativum and Its Biogenic Silver Nanoparticles Activate Immune Cells and Induce Apoptosis and Cell Cycle Arrest in HT-29 Colon Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is an increased demand for plants with antioxidants and anticancer properties. Lepidium sativum L. is an edible plant with medical importance. In this study, we aimed to investigate the anticancer activity; antioxidant capacity and antibacterial impact of Lepidium sativum
L. seed acetone extract (LSSAExt), alone and with its biogenic silver nanoparticles (AgNPs). LSSAExt-produced AgNPs were characterized using SEM, XRD and Vis/UV analysis. Biomolecules in LSSAExt and LSSAExt + AgNPs were explored utilizing FTIR. The ability of LSSAExt and LSSAExt + AgNPs to
induce apoptosis and mitotic cell arrest in the HT-29 colon cancer cells, compared to normal and repeated cell division activated splenic cells was determined by florescent stains and flow cytometry. Antibacterial power was tested using well diffusion technique. LSSAExt and LSSAExt + AgNPs
showed a good antibacterial impact. LSSAExt contains ROS, which could help in cancer cells apoptosis. LSSAExt and LSSAExt+AgNPs were not toxic to splenic cells and increased the rate of their cell division. LSSAExt and LSSAExt+AgNPs increased p53 expression and could arrest cell division of
HT-29 colon cancer cells but not of normal fast dividing cells. LSSAExt and LSSAExt+AgNPs caused apoptosis in cancer cells rather than necrosis. In conclusion, acetone preparation of the edible plant L. sativum is a good antibacterial agent, good anticancer preparation at least against
colon cancer as it is shown to be targeted, effective and can boost immune cells.
Collapse
Affiliation(s)
- Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ali Alshehri
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mona Kilany
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Haitham I. El-Mekkawy
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mahmoud A. Sayed
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, 4781, Saudi Arabia
| | - Ramadan Taha
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
84
|
Jin H, Kim HS, Yu ST, Shin SR, Lee SH, Seo GS. Synergistic anticancer effect of docosahexaenoic acid and isoliquiritigenin on human colorectal cancer cells through ROS-mediated regulation of the JNK and cytochrome c release. Mol Biol Rep 2021; 48:1171-1180. [PMID: 33502699 DOI: 10.1007/s11033-021-06159-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
A large body of research has demonstrated a synergistic anticancer effect between docosahexaenoic acid (DHA) and standard chemotherapy regimens against colorectal cancer (CRC). In this study, we investigated the chemotherapeutic potential of cotreatment with DHA and isoliquiritigenin (ISL) against CRC HCT-116 cells. Apoptosis was confirmed by Annexin V/PI staining and expression of apoptosis-associated proteins. The synergistic effect of DHA and ISL combination on apoptosis was detected using combination index approaches. Flow cytometry was carried out using fluorescent probes to measure the production of reactive oxygen species (ROS). DHA and ISL in combination synergistically enhanced the decrease in cell viability versus the compounds used alone. Moreover, we demonstrated that the synergistic anti-CRC activity of cotreatment with these two compounds was achieved by inducing the apoptosis caspase-dependently mediated through augmented ROS generation followed by increased Fas ligand mRNA expression and cytochrome c release. Our data also demonstrated that cotreating with DHA and ISL strongly upregulated the phosphorylation of ERK and JNK, which are functionally associated with ROS induced by the two compounds in combination. Interestingly, further study revealed that inhibiting ERK phosphorylation strongly enhanced Fas ligand mRNA expression and the combination of the two compounds induced stronger cytotoxicity, whereas inhibiting JNK phosphorylation significantly reduced the apoptotic signals mediated by cotreatment with these two compounds. Excessive ROS-induced JNK activation and cytochrome c release from mitochondria played a key role in the synergistic anticancer activity of CRC cells by cotreating with DHA and ISL.
Collapse
Affiliation(s)
- Hao Jin
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Hak Sung Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Seung Taek Yu
- Department of Pediatrics, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Sae Ron Shin
- Department of Family Medicine, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Sung Hee Lee
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| | - Geom Seog Seo
- Department of Internal Medicine, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
85
|
Lipoxygenase catalyzed metabolites derived from docosahexaenoic acid are promising antitumor agents against breast cancer. Sci Rep 2021; 11:410. [PMID: 33431978 PMCID: PMC7801725 DOI: 10.1038/s41598-020-79716-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Docosahexaenoic acid (DHA) is known to inhibit breast cancer in the rat. Here we investigated whether DHA itself or select metabolites can account for its antitumor action. We focused on metabolites derived from the lipoxygenase (LOX) pathway since we previously showed that they were superior anti-proliferating agents compared to DHA; 4-OXO-DHA was the most potent. A lipidomics approach detected several LOX-metabolites in plasma and the mammary gland in rats fed DHA; we also identified for the first time, 4-OXO-DHA in rat plasma. In a reporter assay, 4-OXO-DHA and 4-HDHA were more effective activators of PPARɣ than DHA. In breast cancer cell lines, 4-OXO-DHA induced PPARɣ and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) but inhibited the activity of NF-κB and suppressed PI3K and mTOR signaling. Because of the structural characteristics of 4-OXO-DHA (Michael acceptor), not shared by any of the other hydroxylated-DHA, we used MS and showed that it can covalently modify the cysteine residue of NF-κB. We have also shown that the chemopreventive effect of DHA is associated with significant reduction of PGE2 levels, in both rat mammary tumors induced by MNU and non-involved mammary tissues. Collectively, our results indicate that 4-OXO-DHA is the metabolite of choice in future chemoprevention studies.
Collapse
|
86
|
In Vivo Digestion of Egg Products Enriched with DHA: Effect of the Food Matrix on DHA Bioavailability. Foods 2020; 10:foods10010006. [PMID: 33375011 PMCID: PMC7822025 DOI: 10.3390/foods10010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to determine to what extent the food matrix could affect the release of docosahexaenoic acid (DHA) during digestion and its incorporation into systemic circulation. In this aim, three DHA-enriched egg products having the same composition but different structure were developed: omelet, hard-boiled egg, and mousse. Then, nine pigs fitted with T-shape cannulas at duodenal level and a jugular venous catheter were fed with the DHA-enriched egg products, and duodenal effluents and plasma were collected throughout the postprandial period. Results highlighted an undeniable effect of the food matrix on digestion parameters and DHA bioavailability. The transit of DHA and protein through the duodenum was faster after the ingestion of the mousse than after the ingestion of the omelet and hard-boiled egg. While most of the DHA and protein ingested under the form of mousse had already passed through the duodenum 4.5 h after its ingestion, significantly higher quantities were still present in the case of the omelet and hard-boiled egg. In terms of bioavailability, the omelet was the most efficient vector for delivering DHA into systemic circulation. It supplied 56% and 120% more DHA than the hard-boiled egg and the mousse, respectively.
Collapse
|
87
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
88
|
Jayathilake AG, Veale MF, Luwor RB, Nurgali K, Su XQ. Krill oil extract inhibits the migration of human colorectal cancer cells and down-regulates EGFR signalling and PD-L1 expression. BMC Complement Med Ther 2020; 20:372. [PMID: 33287803 PMCID: PMC7720407 DOI: 10.1186/s12906-020-03160-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The currently available treatments for colorectal cancer (CRC) are often associated with serious side-effects. Therefore, the development of a novel nutraceutical agent may provide an alternative complementary therapy for CRC. Overexpression of the epidermal growth factor receptor (EGFR) associates with a range of cancers while downregulation of EGFR signalling can inhibit cancer growth. Our previous studies have shown that the free fatty acid extract (FFAE) of krill oil exhibits anti-proliferative and pro-apoptotic properties. This study determines the effects of krill oil extract on the migration of human CRC cells, and its potential role in modulating EGFR signalling pathway and the expression of programmed death ligand 1 (PD-L1). METHODS Human CRC cells, DLD-1 and HT-29 were treated with FFAE of KO at 0.03 and 0.12 μL/100 μL for 8 or 24 h. Cell migration was determined by Boyden chamber migration assay. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), phosphorylated AKT (pAKT), extracellular signal regulated kinase (ERK1/2), phosphorylated ERK1/2 (pERK1/2) as well as PD-L1 were assessed by western blotting and immunohistochemistry. RESULTS The FFAE of krill oil significantly inhibited cell migration compared to ethanol-treated (vehicle control) cells (P < 0.01 to P < 0.001). At the molecular level, krill oil extract reduced the expression of EGFR, pEGFR (P < 0.001 for both) and their downstream signalling, pERK1/2 and pAKT (P < 0.01 to P < 0.001) without altering total ERK 1/2 and AKT levels. In addition, the expression of PD-L1 was reduced by 67 to 72% (P < 0.001) following the treatment with krill oil extract. CONCLUSION This study has demonstrated that krill oil may be a potential therapeutic/adjunctive agent for CRC attributed to its anti-migratory effects.. The potential anti-cancer properties of krill oil are likely to be associated with the downregulation of EGFR, pEGFR and their downstream pERK/ERK1/2 and pAKT/AKT signalling pathways along with the downregulation of PD-L1.
Collapse
Affiliation(s)
- Abilasha G. Jayathilake
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| | - Margaret F. Veale
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| | - Rodney Brain Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Muscular Skeletal Science (AIMSS), Melbourne, Australia
| | - Xiao Q. Su
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, Vic 8001 Australia
| |
Collapse
|
89
|
Abedi F, Sahmani M, Moghbelinejad S, Azad M, Rahmani B, Pishkhan S, Khoei SG, Goldar ZM, Gheibi N. Changes of WIF-1 and WT-1 genes expression following the anti-cancer effects of omega-3 and omega-6 on gastric cancer cells. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
90
|
Saleh D, Abdelbaset M, Hassan A, Sharaf O, Mahmoud S, Hegazy R. Omega-3 fatty acids ameliorate doxorubicin-induced cardiorenal toxicity: In-vivo regulation of oxidative stress, apoptosis and renal Nox4, and in-vitro preservation of the cytotoxic efficacy. PLoS One 2020; 15:e0242175. [PMID: 33180794 PMCID: PMC7660507 DOI: 10.1371/journal.pone.0242175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
This study examines the protective effects of omega-3 fatty acids (OMG), a frequently used nutritional therapy in cancer patients, against doxorubicin (DOX)-induced acute cardiorenal toxicity in rats, and evaluates the cytotoxic activity of DOX when used with OMG against breast cancer cell line. Five groups of rats were treated for 4 consecutive weeks with vehicle (groups I & II), or OMG (25, 50 or 100 mg/kg/day, po; groups III, IV & V, respectively). After twenty-four hours, the last four groups were injected with DOX (200 mg/kg, ip). In DOX-treated rats, the altered ECG, serum cardiac and renal function biomarkers, and histopathological features indicated the induction of cardiorenal toxicity. Increased oxidative and apoptotic markers in both organs was observed, with elevated renal contents of NADPH-oxidase-4 (Nox4) and renin. OMG pretreatment improved those DOX-induced impairments in a dose-dependent manner, and showed antioxidant and antiapoptotic effects with regulation of renal Nox4 expression. The in-vitro study showed preservation of the cytotoxic activity of DOX on MCF7 cell line in the presence of OMG. The data suggests OMG for protection against acute DOX-induced cardiorenal damage without affecting the latter antitumor activity. It proposes regulation of oxidative stress, Nox4 activity and apoptosis as contributing protective mechanisms.
Collapse
Affiliation(s)
- Dalia Saleh
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Marawan Abdelbaset
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ola Sharaf
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Sawsan Mahmoud
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab Hegazy
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| |
Collapse
|
91
|
Diclofenac Enhances Docosahexaenoic Acid-Induced Apoptosis in Vitro in Lung Cancer Cells. Cancers (Basel) 2020; 12:cancers12092683. [PMID: 32962236 PMCID: PMC7564004 DOI: 10.3390/cancers12092683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs) have limited anticancer capacities when used alone. We examined whether combining NSAIDs with docosahexaenoic (DHA) would increase their anticancer activity on lung cancer cell lines. Our results indicate that combining DHA and NSAIDs increased their anticancer activities by altering the expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data suggest that DHA combined with low dose diclofenac provides more significant anticancer potential, which can be further developed for chemoprevention and adjunct therapy in lung cancer. Abstract Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs) show anticancer activities through diverse molecular mechanisms. However, the anticancer capacities of either PUFAs or NSAIDs alone is limited. We examined whether combining NSAIDs with docosahexaenoic (DHA), commonly derived from fish oils, would possibly synergize their anticancer activity. We determined the viability of lung cancer cell lines (NCI-H1573, A549, NCI-H1299, and NCI-H1975) after exposure to DHA and various NSAIDs. We further conducted cell apoptosis assays and analyzed apoptosis-associated proteins and some key proteins in the RAS/MEK/ERK and PI3K/Akt pathways using western blot analysis. We also determined the impact of the treatment on the expression of inducible cancer-related genes using nCounter PanCancer Pathways gene expression analysis. The results showed that the combination of DHA and NSAIDs increased suppression of cell viability in all the lung cancer cell lines tested compared to each of the compounds used alone, with diclofenac being the most potent NSAID tested. This synergistic effect is especially significant in A549 and NCI-H1573 cells. The combination treatment was more effective at inhibiting clonogenic cell growth and anchorage-independent growth in soft agar, inducing caspase-dependent apoptosis, and altering expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data from this study demonstrate that DHA combined with low dose diclofenac provides greater anticancer potential, which can be further developed for chemoprevention and adjunct therapy in lung cancer.
Collapse
|
92
|
Umesawa M, Yamagishi K, Iso H. Intake of fish and long-chain n-3 polyunsaturated fatty acids and risk of diseases in a Japanese population: a narrative review. Eur J Clin Nutr 2020; 75:902-920. [PMID: 32939045 DOI: 10.1038/s41430-020-00751-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 11/09/2022]
Abstract
Since the 1970s, the potential benefit of fish intake in terms of noncommunicable diseases has been one of the most important themes in disease prevention. Epidemiological studies have revealed the extent to which fish consumption affects the incidence of and mortality from diseases. Meta-analyses summarized the effect of fish and long-chain n-3 polyunsaturated fatty acid intake on noncommunicable diseases, especially cardiovascular diseases in Western countries. However, few reviews have spotlighted the effect of fish intake in East-Asian countries that have high population levels of fish intake such as Japan. We narratively reviewed the epidemiological studies concerned with the associations of fish and long-chain n-3 polyunsaturated fatty acid intake with risk of noncommunicable diseases, mainly of cardiovascular disease, among Japanese, whose fish intake has been twice or more than that of most Westerners. Overall, fish or long-chain n-3 polyunsaturated fatty acid intake may be beneficial for prevention of noncommunicable diseases, especially coronary heart disease and heart failure in Japanese as well as in Westerners. However, the beneficial effects of their intakes seemed to be nonlinear and varied according to disease severity and culture. Studies on other noncommunicable disease were also narratively reviewed.
Collapse
Affiliation(s)
- Mitsumasa Umesawa
- Dokkyo Medical University School of Medicine, Mibu, Japan.,Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan. .,Ibaraki Western Medical Center, Chikusei, Japan.
| | - Hiroyasu Iso
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan.,Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
93
|
Wang C, Sun C, Lu W, Gul K, Mata A, Fang Y. Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Compr Rev Food Sci Food Saf 2020; 19:2955-2971. [DOI: 10.1111/1541-4337.12621] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/28/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Chenxi Wang
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Khalid Gul
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Analucia Mata
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
94
|
Cancer diets for cancer patients: Lessons from mouse studies and new insights from the study of fatty acid metabolism in tumors. Biochimie 2020; 178:56-68. [PMID: 32890677 DOI: 10.1016/j.biochi.2020.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Specific diets for cancer patients have the potential to offer an adjuvant modality to conventional anticancer therapy. If the concept of starving cancer cells from nutrients to inhibit tumor growth is quite simple, the translation into the clinics is not straightforward. Several diets have been described including the Calorie-restricted diet based on a reduction in carbohydrate intake and the Ketogenic diet wherein the low carbohydrate content is compensated by a high fat intake. As for other diets that deviate from normal composition only by one or two amino acids, these diets most often revealed a reduction in tumor growth in mice, in particular when associated with chemo- or radiotherapy. By contrast, in cancer patients, the interest of these diets is almost exclusively supported by case reports precluding any conclusions on their real capacity to influence disease outcome. In parallel, the field of tumor lipid metabolism has emerged in the last decade offering a better understanding of how fatty acids are captured, synthesized or stored as lipid droplets in cancers. Fatty acids participate to cancer cell survival in the hypoxic and acidic tumor microenvironment and also support proliferation and invasiveness. Interestingly, while such addiction for fatty acids may account for cancer progression associated with high fat diet, it could also represent an Achilles heel for tumors. In particular n-3 polyunsaturated fatty acids represent a class of lipids that can exert potent cytotoxic effects in tumors and therefore represent an attractive diet supplementation to improve cancer patient outcomes.
Collapse
|
95
|
Liu YM, Wu TH, Chiu YH, Wang H, Li TL, Hsia S, Chan YL, Wu CJ. Positive Effects of Preventive Nutrition Supplement on Anticancer Radiotherapy in Lung Cancer Bearing Mice. Cancers (Basel) 2020; 12:E2445. [PMID: 32872195 PMCID: PMC7565278 DOI: 10.3390/cancers12092445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Radiotherapy (RT) is one of the major treatments for non-small cell lung cancer, but RT-associated toxicities usually impede its anticancer effect. Nutrient supplementation has been applied for cancer prevention or a complementary measure to anticancer therapy. Here, we explored the influence of total nutrition supplementation before and after cancer occurrence on the anticancer benefit and side effects of RT. (2) Methods: C57BL/6JNarl mice were inoculated with Lewis lung carcinoma cells and then treated with radiotherapy. TNuF, a total nutrition formula, was prescribed by oral gavage. In the preventive groups, TNuF supplementation started from seven days before tumor inoculation. In the complementary groups, TNuF supplementation began after tumor inoculation. (3) Results: TNuF successfully enhanced the anticancer effect of RT against primary tumor and lung metastasis. Additionally, the complementary supplement improved the high serum TNF-α level and the wasting of sartorius muscle in mice receiving RT. In histologic and molecular analysis, TNuF was observed to modulate EGFR, apoptosis, and VEGF and PD-1/PD-L1 pathways. Furthermore, the anticancer benefit of the preventive supplement was comparable to that of the complementary administration. (4) Conclusions: Our results demonstrated that the prescription of the TNuF total nutrition formula before and after cancer diagnosis attains similar benefits in testing subjects with typical anticancer RT. TNuF is also a potential sensitizer to anti-PD-1 immune therapy.
Collapse
Affiliation(s)
- Yu-Ming Liu
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang Ming University, Taipei 11221, Taiwan
| | - Tsung-Han Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Division of Hemato-oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33320, Taiwan
| | - Yi-Han Chiu
- Department of Nursing, St. Mary’s Junior College, Yilan 26647, Taiwan;
- Institute of Long-term Care, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Hang Wang
- Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 43302, Taiwan;
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Simon Hsia
- Taiwan Nutraceutical Association, Taipei 104, Taiwan;
| | - Yi-Lin Chan
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan
| | - Chang-Jer Wu
- Department of Food Science and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
96
|
Omega-3 Fatty Acid-Enriched Fish Oil and Selenium Combination Modulates Endoplasmic Reticulum Stress Response Elements and Reverses Acquired Gefitinib Resistance in HCC827 Lung Adenocarcinoma Cells. Mar Drugs 2020; 18:md18080399. [PMID: 32751169 PMCID: PMC7460277 DOI: 10.3390/md18080399] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC)-carrying specific epidermal growth factor receptor (EGFR) mutations can be effectively treated by a tyrosine kinase inhibitor such as gefitinib. However, the inevitable development of acquired resistance leads to the eventual failure of therapy. In this study, we show the combination effect of omega-3 fatty acid-enriched fish oil (FO) and selenium (Se) on reversing the acquired gefitinib-resistance of HCC827 NSCLC cells. The gefitinib-resistant subline HCC827GR possesses lowered proapoptotic CHOP (CCAAT/enhancer-binding protein homologous protein) and elevated cytoprotective GRP78 (glucose regulated protein of a 78 kDa molecular weight) endoplasmic reticulum (ER) stress response elements, and it has elevated β-catenin and cyclooxygenase-2 (COX-2) levels. Combining FO and Se counteracts the above features of HCC827GR cells, accompanied by the suppression of their raised epithelial-to-mesenchymal transition (EMT) and cancer stem markers, such as vimentin, AXL, N-cadherin, CD133, CD44, and ABCG2. Accordingly, an FO and Se combination augments the gefitinib-mediated growth inhibition and apoptosis of HCC827GR cells, along with the enhanced activation of caspase -3, -9, and ER stress-related caspase-4. Intriguingly, gefitinib further increases the elevated ABCG2 and cancer stem-like side population in HCC827GR cells, which can also be diminished by the FO and Se combination. The results suggest the potential of combining FO and Se in relieving the acquired resistance of NSCLC patients to targeted therapy.
Collapse
|
97
|
Synergistic Beneficial Effect of Docosahexaenoic Acid (DHA) and Docetaxel on the Expression Level of Matrix Metalloproteinase-2 (MMP-2) and MicroRNA-106b in Gastric Cancer. J Gastrointest Cancer 2020; 51:70-75. [PMID: 30680612 DOI: 10.1007/s12029-019-00205-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers with the majority of patients recognized in advanced stages. The efficacy of using docosahexaenoic acid (DHA) as a supplementary agent has been suggested in treatment along with chemotherapeutics including docetaxel. However, the molecular signatures of such beneficial effects are not well-understood. OBJECTIVE(S) We aimed to evaluate the effects of DHA and docetaxel on the expression level of metastasis-related genes, including MMP-2 and talin-2, and their controlling miRNAs, miR-106b and miR-194, in metastatic GC cell line, MKN45. METHOD(S) GC cell line, MKN45, was cultured, and determination of IC50 of DHA was done by MTT test. Cells were treated with docetaxel, DHA, and their combination for 24 h, and then total RNA was extracted and cDNA synthesis was done using standard protocols. The expression level of target genes, MMP-2 and talin-2, and miR-106b and miR-194 were determined by using quantitative real-time PCR. RESULTS The expression level of MMP-2 was decreased significantly in all treated cells. However, talin-2 showed significant downregulation only after treatment with docetaxel. In contrary to increased expression after treatment with docetaxel, DHA led to a significant under-expression of miR-106b. The similar effect was seen for miR-194. CONCLUSION(S) Combination of docetaxel and DHA led to the significant downregulation of MMP-2. Also, DHA lowered the docetaxel-mediated upregulation of miR-106b oncomiR. In conclusion, supplementation of docetaxel therapy with DHA in GC patients would be considered as a beneficial approach in cancer treatment.
Collapse
|
98
|
Newell M, Patel D, Goruk S, Field CJ. Docosahexaenoic Acid Incorporation Is Not Affected by Doxorubicin Chemotherapy in either Whole Cell or Lipid Raft Phospholipids of Breast Cancer Cells in vitro and Tumor Phospholipids in vivo. Lipids 2020; 55:549-565. [PMID: 32588470 DOI: 10.1002/lipd.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/07/2022]
Abstract
To better understand how docosahexaenoic acid (DHA) improves the effects of doxorubicin (DOX), we examined DHA ± DOX on changes in whole cell and lipid raft phospholipids (PL) of MDA-MB-231 and MCF-7 breast cancer cells. We sought to confirm whether the relative changes in PL DHA content of MDA-MB-231 cells could be extended to PL from MDA-MB-231 tumors grown in mice fed a DHA supplemented diet ±DOX. Treatment with DHA did not change PL composition yet DOX increased the proportion of phosphatidylserine in MCF-7 cell lipid rafts by two-fold (p < 0.001). Regardless of DOX, the relative percent incorporation of DHA was higher in MDA-MB-231 cells compared to MCF-7 cells in phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (whole cell and lipid rafts); and higher in phosphatidylethanolamine vs. phosphatidylcholine (4.4-fold in MCF-7 and 6-fold in MDA-MB-231 cells respectively). DHA treatment increased eicosapentaenoic acid and docosapentaenoic acid in MDA-MB-231 cells but not MCF-7 cells. Increased DHA content in MDA-MB-231 cells, MCF-7 cells, and MDA-MB-231 tumors in all PL moieties (except sphingomyelin) corresponded with reduced arachidonic acid (p < 0.05). Feeding mice 2.8% (w/w of fat) DHA ± DOX increased tumor necrotic regions (p < 0.05). This study established differential incorporation of DHA into whole cell and lipid rafts between human breast cancer cell lines. However, within each cell line, this incorporation was not altered by DOX confirming that DOX does not change membrane lipid composition. Furthermore, our findings indicate that membrane changes observed in vitro are translatable to in vivo changes and that DHA + DOX could contribute to the anticancer effects through increased necrosis.
Collapse
Affiliation(s)
- Marnie Newell
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
99
|
Cai Y, Liu J, Cai SK, Miao EY, Jia CQ, Fan YZ, Li YB. Eicosapentaenoic acid's metabolism of 15-LOX-1 promotes the expression of miR-101 thus inhibits Cox2 pathway in colon cancer. Onco Targets Ther 2020; 13:5605-5616. [PMID: 32606775 PMCID: PMC7305347 DOI: 10.2147/ott.s237562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose It is well known that diet Eicosapentaenoic acid (EPA) is beneficial to colon cancer (CC). However, the underlying molecular mechanisms of EPA-relating miRNAs on genesis and development of this area is still unclear. Materials and Methods This study tries to find the function and specific role of EPA in CC through quantitative PCR (qPCR), Western blotting, immunofluorescence (IF), mass spectrometry, and immunohistochemistry (IHC) assays. By these methods, the enrichment of 15-LOX-1 metabolites of EPA, the expression of miR-101 and Cox2, and the relationship among them in CC are measured. Results The quantity of miR-101 was obviously suppressed in CC tissues and SW480 cells. After application of miR-101 mimics in CC cell lines, the Cox2 expression was inhibited too. Next, we confirmed that EPA could increase the expression of miR-101 induced by 15-LOX-1. Finally, we tested whether EPA functions as a regulator of miR-101 via the production of resolvin E3. Conclusion Our data demonstrate that the EPA–15-LOX-1–miR-101-Cox2 signaling pathway owns a crucial position in the pathogenesis and development of diet-related CC. These findings exert exciting meanings for presenting new therapeutic angles in CC.
Collapse
Affiliation(s)
- Yi Cai
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jie Liu
- Department of Pathology, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shao-Kang Cai
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Er-Ya Miao
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Cheng-Qian Jia
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yong-Zhi Fan
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ying-Bo Li
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
100
|
Bojková B, Winklewski PJ, Wszedybyl-Winklewska M. Dietary Fat and Cancer-Which Is Good, Which Is Bad, and the Body of Evidence. Int J Mol Sci 2020; 21:ijms21114114. [PMID: 32526973 PMCID: PMC7312362 DOI: 10.3390/ijms21114114] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A high-fat diet (HFD) induces changes in gut microbiota leading to activation of pro-inflammatory pathways, and obesity, as a consequence of overnutrition, exacerbates inflammation, a known risk factor not only for cancer. However, experimental data showed that the composition of dietary fat has a greater impact on the pathogenesis of cancer than the total fat content in isocaloric diets. Similarly, human studies did not prove that a decrease in total fat intake is an effective strategy to combat cancer. Saturated fat has long been considered as harmful, but the current consensus is that moderate intake of saturated fatty acids (SFAs), including palmitic acid (PA), does not pose a health risk within a balanced diet. In regard to monounsaturated fat, plant sources are recommended. The consumption of plant monounsaturated fatty acids (MUFAs), particularly from olive oil, has been associated with lower cancer risk. Similarly, the replacement of animal MUFAs with plant MUFAs decreased cancer mortality. The impact of polyunsaturated fatty acids (PUFAs) on cancer risk depends on the ratio between ω-6 and ω-3 PUFAs. In vivo data showed stimulatory effects of ω-6 PUFAs on tumour growth while ω-3 PUFAs were protective, but the results of human studies were not as promising as indicated in preclinical reports. As for trans FAs (TFAs), experimental data mostly showed opposite effects of industrially produced and natural TFAs, with the latter being protective against cancer progression, but human data are mixed, and no clear conclusion can be made. Further studies are warranted to establish the role of FAs in the control of cell growth in order to find an effective strategy for cancer prevention/treatment.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 041 54 Košice, Slovakia;
| | - Pawel J. Winklewski
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Anatomy and Physiology, Pomeranian University of Slupsk, 76-200 Slupsk, Poland
- Correspondence: ; Tel./Fax: +48-58-3491515
| | | |
Collapse
|