51
|
Sorrentino L, Toscanelli W, Fracella M, De Angelis M, Frasca F, Scagnolari C, Petrarca L, Nenna R, Midulla F, Palamara AT, Nencioni L, Pierangeli A. NRF2 Antioxidant Response and Interferon-Stimulated Genes Are Differentially Expressed in Respiratory-Syncytial-Virus- and Rhinovirus-Infected Hospitalized Children. Pathogens 2023; 12:pathogens12040577. [PMID: 37111463 PMCID: PMC10144743 DOI: 10.3390/pathogens12040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory diseases caused by respiratory syncytial virus (RSV) and human rhinovirus (HRV) are frequent causes of the hospitalization of children; nonetheless, RSV is responsible for the most severe and life-threatening illnesses. Viral infection triggers an inflammatory response, activating interferon (IFN)-mediated responses, including IFN-stimulated genes (ISG) expression with antiviral and immunomodulatory activities. In parallel, the reactive oxygen species (ROS) production activates nuclear factor erythroid 2-related factor 2 (NRF2), whose antioxidant activity can reduce inflammation by interacting with the NF-kB pathway and the IFN response. To clarify how the interplay of IFN and NRF2 may impact on clinical severity, we enrolled children hospitalized for bronchiolitis and pneumonia, and measured gene expression of type-I and III IFNs, of several ISGs, of NRF2 and antioxidant-related genes, i.e., glucose-6-phosphate dehydrogenase (G6PD), heme oxygenase 1 (HO1), and NAD(P)H dehydrogenase [Quinone] 1 (NQO1) in RSV- (RSV-A N = 33 and RSV-B N = 30) and HRV (N = 22)-positive respiratory samples. NRF2 and HO1 expression is significantly elevated in children with HRV infection compared to RSV (p = 0.012 and p = 0.007, respectively), whereas ISG15 and ISG56 expression is higher in RSV-infected children (p = 0.016 and p = 0.049, respectively). Children admitted to a pediatric intensive care unit (PICU) had reduced NRF2 expression (p = 0.002). These data suggest, for the first time, that lower activation of the NRF2 antioxidant response in RSV-infected infants may contribute to bronchiolitis severity.
Collapse
Affiliation(s)
- Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | - Walter Toscanelli
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | - Laura Petrarca
- Department of Maternal Infantile and Urological Sciences, Sapienza University, 00185 Rome, Italy
| | - Raffaella Nenna
- Department of Maternal Infantile and Urological Sciences, Sapienza University, 00185 Rome, Italy
| | - Fabio Midulla
- Department of Maternal Infantile and Urological Sciences, Sapienza University, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
52
|
Rust P, Ekmekcioglu C. The Role of Diet and Specific Nutrients during the COVID-19 Pandemic: What Have We Learned over the Last Three Years? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5400. [PMID: 37048015 PMCID: PMC10093865 DOI: 10.3390/ijerph20075400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nutrients and diets have an important impact on our immune system and infection risk and a huge number of papers have been published dealing with various aspects of nutrition in relation to SARS-CoV-2 infection risk or COVID-19 severity. This narrative review aims to give an update on this association and tries to summarize some of the most important findings after three years of pandemic. The analysis of major studies and systematic reviews leads to the conclusion that a healthy plant-based diet reduces the risks for SARS-CoV-2 infection and especially COVID-19 severity. Regarding micronutrients, vitamin D is to the fore, but also zinc, vitamin C and, to some extent, selenium may play a role in COVID-19. Furthermore, omega-3-fatty acids with their anti-inflammatory effects also deserve attention. Therefore, a major aim of societal nutritional efforts in future should be to foster a high quality plant-based diet, which not only exerts beneficial effects on the immune system but also reduces the risk for non-communicable diseases such as type 2 diabetes or obesity which are also primary risk factors for worse COVID-19 outcomes. Another aim should be to focus on a good supply of critical immune-effective nutrients, such as vitamin D and zinc.
Collapse
Affiliation(s)
- Petra Rust
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
53
|
Alomair BM, Al‐Kuraishy HM, Al‐Gareeb AI, Al‐Buhadily AK, Alexiou A, Papadakis M, Alshammari MA, Saad HM, Batiha GE. Mixed storm in SARS-CoV-2 infection: A narrative review and new term in the Covid-19 era. Immun Inflamm Dis 2023; 11:e838. [PMID: 37102645 PMCID: PMC10132185 DOI: 10.1002/iid3.838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19) is caused by a novel severe acute respiratory syndrome coronavirus virus type 2 (SARS-CoV-2) leading to the global pandemic worldwide. Systemic complications in Covid-19 are mainly related to the direct SARS-CoV-2 cytopathic effects, associated hyperinflammation, hypercytokinemia, and the development of cytokine storm (CS). As well, Covid-19 complications are developed due to the propagation of oxidative and thrombotic events which may progress to a severe state called oxidative storm and thrombotic storm (TS), respectively. In addition, inflammatory and lipid storms are also developed in Covid-19 due to the activation of inflammatory cells and the release of bioactive lipids correspondingly. Therefore, the present narrative review aimed to elucidate the interrelated relationship between different storm types in Covid-19 and the development of the mixed storm (MS). In conclusion, SARS-CoV-2 infection induces various storm types including CS, inflammatory storm, lipid storm, TS and oxidative storm. These storms are not developing alone since there is a close relationship between them. Therefore, the MS seems to be more appropriate to be related to severe Covid-19 than CS, since it develops in Covid-19 due to the intricate interface between reactive oxygen species, proinflammatory cytokines, complement activation, coagulation disorders, and activated inflammatory signaling pathway.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Department of Medicine, College of Medicine, Internal Medicine and EndocrinologyJouf UniversityAl‐JoufSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine, and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Majed Ayed Alshammari
- Department of MedicinePrince Mohammed Bin Abdulaziz Medical CitySakakaAl‐JoufSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsaMatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
54
|
Zhou R, Hu J, Qiu J, Lu S, Lin H, Huang R, Zhou S, Huang G, He J. Phenolic compound SG-1 from Balanophora harlandii and its derivatives exert anti-influenza A virus activity via activation of the Nrf2/HO-1 pathway. Biochem Pharmacol 2023; 210:115495. [PMID: 36918045 DOI: 10.1016/j.bcp.2023.115495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Influenza A virus (IAV) is one of the leading causes of respiratory illness and continues to cause pandemics around the world. Against this backdrop, drug resistance poses a challenge to existing antiviral drugs, and hence, there is an urgent need for developing new antiviral drugs. In this study, we obtained a phenolic compound SG-7, a derivative of natural compound 2-hydroxymethyl-1,4-hydroquinone, which exhibits inhibitory activity toward a panel of influenza viruses and has low cellular toxicity. Mechanistic studies have shown that SG-7 exerts its anti-IAV properties by acting on the virus itself and modulating host signaling pathways. Namely, SG-7 targets the HA2 subunit of hemagglutinin (HA) to block the fusion of viral-cellular membranes and inhibits IAV-induced oxidative stress and overexpression of pro-inflammatory factors by activating the Nrf2/HO-1 pathway and reducing NF-κB activation. In addition, SG-7 can enhance type I IFN antiviral response by inducing Nrf2 expression. Importantly, SG-7 showed the ability to inhibit viral replication in the lungs of IAV-infected mice and reduce their mortality. Therefore, SG-7 may be a promising lead compound for anti-influenza drug development.
Collapse
Affiliation(s)
- Runhong Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jianan Hu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jingnan Qiu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Haixing Lin
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ruifeng Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shaofen Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Guoqing Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China.
| |
Collapse
|
55
|
Kurajoh M, Hiura Y, Numaguchi R, Ihara Y, Imai T, Morioka T, Emoto M, Nishiguchi Y. Inflammation Related to Association of Low Uric Acid and Progression to Severe Disease in Patients Hospitalized for Non-Severe Coronavirus Disease 2019. Biomedicines 2023; 11:biomedicines11030854. [PMID: 36979833 PMCID: PMC10044977 DOI: 10.3390/biomedicines11030854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Uric acid has antioxidant properties. To examine whether a low uric acid level is associated with severe coronavirus disease 2019 (COVID-19) progression via inflammation, alveolar damage, and/or coagulation abnormality, a retrospective observational study of 488 patients with non-severe COVID-19 and serum uric acid level ≤7 mg/dL at admission was conducted. Serum C-reactive protein (CRP), serum Krebs von den Lungen 6 (KL-6), and plasma D-dimer levels were also measured as markers of inflammation, alveolar damage, and coagulation abnormality, respectively. Median values for uric acid, CRP, KL-6, and D-dimer at admission were 4.4 mg/dL, 3.33 mg/dL, 252.0 U/mL, and 0.8 µg/mL, respectively. Among the total cohort, 95 (19.5%) progressed to severe COVID-19 with a median (interquartile range) time of 7 (4–14) days. Multivariable Cox proportional hazards regression analysis showed that low uric acid level was associated with a higher rate of severe COVID-19 progression. However, uric acid level was inversely associated with CRP level, and the association between the level of uric acid and severe COVID-19 progression was significantly different with and without CRP level inclusion. In contrast, no such association was found for KL-6 or D-dimer level. Low uric acid may contribute to severe COVID-19 progression via increased inflammation in subjects without hyperuricemia.
Collapse
Affiliation(s)
- Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Correspondence: ; Tel.: +81-6-6645-3806
| | - Yoshikazu Hiura
- Department of Diabetes and Endocrinology, Osaka City Juso Hospital, Osaka 532-0034, Japan
| | - Ryutaro Numaguchi
- Department of Diabetes and Endocrinology, Osaka City Juso Hospital, Osaka 532-0034, Japan
| | - Yasutaka Ihara
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takumi Imai
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yukio Nishiguchi
- Department of Surgery, Osaka City Juso Hospital, Osaka 532-0034, Japan
- Directors Office, Osaka City General Hospital, Osaka 534-0021, Japan
| |
Collapse
|
56
|
Tepebaşı MY, İlhan İ, Temel EN, Sancer O, Öztürk Ö. Investigation of inflammation, oxidative stress, and DNA damage in COVID-19 patients. Cell Stress Chaperones 2023; 28:191-199. [PMID: 36797451 PMCID: PMC9936118 DOI: 10.1007/s12192-023-01330-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
COVID-19 disease, which spreads worldwide, is a disease characterized by widespread inflammation and affects many organs, especially the lungs. The resulting inflammation can lead to reactive oxygen radicals, leading to oxidative DNA damage. The pneumonia severity of 95 hospitalized patients with positive RT-PCR test was determined and divided into three groups: mild, moderate, and severe/critical. Inflammation markers (neutrophil-lymphocyte ratio, serum reactive protein, procalcitonin, etc.) were determined, and IL-10 and IFN-γ measurements were analyzed using the enzyme-linked immunosorbent assay method. In evaluating oxidative damage, total thiol, native thiol, disulfide, and ischemia-modified albumin (IMA) levels were determined by measuring spectrophotometrically. The comet assay method's percentage of tail DNA obtained was used to determine oxidative DNA damage. As a result, when the mild and severe/critical groups were compared, we found that total thiol, native thiol, and disulfide levels decreased significantly in the severe/critical group due to the increase in inflammation markers and cytokine levels (p < 0.05). We could not detect any significance in IMA levels between the groups (p > 0.05). At the same time, we determined an increase in the tail DNA percent level, that is, DNA damage, due to the increased oxidative effect. As a result, we determined that inflammation and oxidative stress increased in patients with severe pneumonia, and there was DNA damage in these patients.
Collapse
Affiliation(s)
| | - İlter İlhan
- Department of Biochemistry, University of Süleyman Demirel, Isparta, Turkey
| | - Esra Nurlu Temel
- Department of Infectious Diseases, University of Süleyman Demirel, Isparta, Turkey
| | - Okan Sancer
- Department of Medical Biology, University of Süleyman Demirel, Isparta, Turkey
| | - Önder Öztürk
- Department of Chest Diseases, University of Süleyman Demirel, Isparta, Turkey
| |
Collapse
|
57
|
Weber ADAP, Bulegon JS, de Souza MD, Vendrame SA, Venturini L, Mombaque dos Santos W, Gonçalves TDL. Clinical, demographic and oxidative profile of patients with COVID-19 and disease severity. Diagn Microbiol Infect Dis 2023; 105:115886. [PMID: 36657361 PMCID: PMC9801695 DOI: 10.1016/j.diagmicrobio.2022.115886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
This study aimed to profile the clinical progression, demographics, and oxidative status of COVID-19 patients, correlating with disease severity. The study included 143 participants: 93 patients with COVID-19 (28 outpatients, 65 inpatients), and 50 control participants. Thiobarbituric acid reactive substance (TBARS) was used as an oxidative damage marker. Antioxidant activity was assessed via quantification of Vitamin C, sulfhydryl groups, ferric reduction ability of plasma (FRAP), Uric acid (UA), and evaluation of delta-aminolevulinate dehydratase (δ-ALA-D) enzymatic activity. Geriatric patients, especially men, with comorbidities such as obesity and/or chronic diseases were more likely to develop the most severe form of COVID-19. The activity of the δ-ALA-D was lower in inpatients, and there was no significant difference with the outpatient. Antioxidants decreased in COVID-19 groups, while lipid peroxidation increased. FRAP and Vitamin C decreased with evolution of the disease. Oxidative stress could be used as a predictor of worsening clinical condition.
Collapse
Affiliation(s)
- Andressa de Azambuja Pias Weber
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicology Analysis, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil,Corresponding author. Tel.: +55 55 32208749; fax: +55 55 3220 8018
| | - Jovana Simonetti Bulegon
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicology Analysis, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Manoela Dias de Souza
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicology Analysis, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Silmara Ana Vendrame
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicology Analysis, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | | | - Thissiane de Lima Gonçalves
- Postgraduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicology Analysis, Center of Healthy Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
58
|
Golikov MV, Bartosch B, Smirnova OA, Ivanova ON, Ivanov AV. Plasma-Like Culture Medium for the Study of Viruses. mBio 2023; 14:e0203522. [PMID: 36515528 PMCID: PMC9973327 DOI: 10.1128/mbio.02035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viral infections attract more and more attention, especially after the emergence of novel zoonotic coronaviruses and the monkeypox virus over the last 2 decades. Research on viruses is based to a great extent on mammalian cell lines that are permissive to the respective viruses. These cell lines are usually cultivated according to the protocols established in the 1950s to 1970s, although it is clear that classical media have a significant imprint on cell growth, phenotype, and especially metabolism. So, recently in the field of biochemistry and metabolomics novel culture media have been developed that resemble human blood plasma. As perturbations in metabolic and redox pathways during infection are considered significant factors of viral pathogenesis, these novel medium formulations should be adapted by the virology field. So far, there are only scarce data available on viral propagation efficiencies in cells cultivated in plasma-like media. But several groups have presented convincing data on the use of such media for cultivation of uninfected cells. The aim of the present review is to summarize the current state of research in the field of plasma-resembling culture media and to point out the influence of media on various cellular processes in uninfected cells that may play important roles in viral replication and pathogenesis in order to sensitize virology research to the use of such media.
Collapse
Affiliation(s)
- Mikhail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
59
|
Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023; 28:1981. [PMID: 36838969 PMCID: PMC9967002 DOI: 10.3390/molecules28041981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Rocío Borges-Argáez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Chuburná de Hidalgo, Merida 97205, Mexico
| | - Guadalupe Ayora-Talavera
- Departamento de Virología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Paseo de Las Fuentes, Merida 97225, Mexico
| |
Collapse
|
60
|
Layton R, Layton D, Beggs D, Fisher A, Mansell P, Stanger KJ. The impact of stress and anesthesia on animal models of infectious disease. Front Vet Sci 2023; 10:1086003. [PMID: 36816193 PMCID: PMC9933909 DOI: 10.3389/fvets.2023.1086003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Stress and general anesthesia have an impact on the functional response of the organism due to the detrimental effects on cardiovascular, immunological, and metabolic function, which could limit the organism's response to an infectious event. Animal studies have formed an essential step in understanding and mitigating infectious diseases, as the complexities of physiology and immunity cannot yet be replicated in vivo. Using animals in research continues to come under increasing societal scrutiny, and it is therefore crucial that the welfare of animals used in disease research is optimized to meet both societal expectations and improve scientific outcomes. Everyday management and procedures in animal studies are known to cause stress, which can not only cause poorer welfare outcomes, but also introduces variables in disease studies. Whilst general anesthesia is necessary at times to reduce stress and enhance animal welfare in disease research, evidence of physiological and immunological disruption caused by general anesthesia is increasing. To better understand and quantify the effects of stress and anesthesia on disease study and welfare outcomes, utilizing the most appropriate animal monitoring strategies is imperative. This article aims to analyze recent scientific evidence about the impact of stress and anesthesia as uncontrolled variables, as well as reviewing monitoring strategies and technologies in animal models during infectious diseases.
Collapse
Affiliation(s)
- Rachel Layton
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia,*Correspondence: Rachel Layton ✉
| | - Daniel Layton
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - David Beggs
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Fisher
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Mansell
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Kelly J. Stanger
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| |
Collapse
|
61
|
Fraternale A, De Angelis M, De Santis R, Amatore D, Masini S, Monittola F, Menotta M, Biancucci F, Bartoccini F, Retini M, Fiori V, Fioravanti R, Magurano F, Chiarantini L, Lista F, Piersanti G, Palamara AT, Nencioni L, Magnani M, Crinelli R. Targeting SARS-CoV-2 by synthetic dual-acting thiol compounds that inhibit Spike/ACE2 interaction and viral protein production. FASEB J 2023; 37:e22741. [PMID: 36583713 PMCID: PMC9880737 DOI: 10.1096/fj.202201157rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
The SARS-CoV-2 life cycle is strictly dependent on the environmental redox state that influences both virus entry and replication. A reducing environment impairs the binding of the spike protein (S) to the angiotensin-converting enzyme 2 receptor (ACE2), while a highly oxidizing environment is thought to favor S interaction with ACE2. Moreover, SARS-CoV-2 interferes with redox homeostasis in infected cells to promote the oxidative folding of its own proteins. Here we demonstrate that synthetic low molecular weight (LMW) monothiol and dithiol compounds induce a redox switch in the S protein receptor binding domain (RBD) toward a more reduced state. Reactive cysteine residue profiling revealed that all the disulfides present in RBD are targets of the thiol compounds. The reduction of disulfides in RBD decreases the binding to ACE2 in a cell-free system as demonstrated by enzyme-linked immunosorbent and surface plasmon resonance (SPR) assays. Moreover, LMW thiols interfere with protein oxidative folding and the production of newly synthesized polypeptides in HEK293 cells expressing the S1 and RBD domain, respectively. Based on these results, we hypothesize that these thiol compounds impair both the binding of S protein to its cellular receptor during the early stage of viral infection, as well as viral protein folding/maturation and thus the formation of new viral mature particles. Indeed, all the tested molecules, although at different concentrations, efficiently inhibit both SARS-CoV-2 entry and replication in Vero E6 cells. LMW thiols may represent innovative anti-SARS-CoV-2 therapeutics acting directly on viral targets and indirectly by inhibiting cellular functions mandatory for viral replication.
Collapse
Affiliation(s)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | - Sofia Masini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Monittola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Raoul Fioravanti
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Magurano
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Chiarantini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Anna T Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
62
|
Checconi P, Coni C, Limongi D, Baldelli S, Ciccarone F, De Angelis M, Mengozzi M, Ghezzi P, Ciriolo MR, Nencioni L, Palamara AT. Influenza virus replication is affected by glutaredoxin1-mediated protein deglutathionylation. FASEB J 2023; 37:e22729. [PMID: 36583688 DOI: 10.1096/fj.202201239rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.
Collapse
Affiliation(s)
- Paola Checconi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Cristiana Coni
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Dolores Limongi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Sara Baldelli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.,Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy
| | - Fabio Ciccarone
- Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Marta De Angelis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Pietro Ghezzi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Maria Rosa Ciriolo
- Laboratory of Biochemistry of Aging, IRCCS San Raffaele Roma, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Nencioni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
63
|
Abstract
Selenium is found at the active centre of twenty-five selenoproteins which have a variety of roles, including the well-characterised function of antioxidant defense, but it also is claimed to be involved in the immune system. However, due to limited and conflicting data for different parameters of immune function, intakes of selenium that have an influence on immune function are uncertain. This review covers the relationship between selenium and immune function in man, focusing on the highest level of evidence, namely that generated by randomised controlled trials (RCT), in which the effect of selective administration of selenium, in foods or a supplement, on immune function was assessed. A total of nine RCT were identified from a systematic search of the literature, and some of these trials reported effects on T and natural killer cells, which were dependent on the dose and form of selenium administered, but little effect of selenium on humoral immunity. There is clearly a need to undertake dose-response analysis of cellular immunity data in order to derive quantitative relationships between selenium intake and measures of immune function. Overall, limited effects on immunity emerged from experimental studies in human subjects, though additional investigation on the potential influence of selenium status on cellular immunity appears to be warranted.
Collapse
|
64
|
Abstract
Acute rhinopharyngitis, usually called common cold, is a widespread disease, mainly in childhood and adolescence. The use of common cold relievers is, therefore, prevalent as documented by the market data. A well-established tradition considers natural remedies an effective and safe way to relieve the common cold. Hundreds of products for treating the common cold contain non-pharmacological components. Nevertheless, a few studies investigated the role of non-pharmacologic remedies for the common cold. The current study reported the most common non-pharmacological remedies for the common cold, including herbal medicines and other substances. As ancient people used traditional herbs to treat and prevent the common cold, various herbs are widely used to clear viral infections. The herbal agents include polyphenols, flavonoids, saponins, glucosides, and alkaloids. Moreover, other non-pharmacological agents are widely used in real-life. Many multi- or monocomponent dietary supplements or medical devices contain these substances and are available in the market as tablets, syrups, drops, nasal or oral sprays, and nebulization solutions. Many products are available in the market. However, there is some evidence only for some substances. Consequently, further rigorous studies should confirm natural products' efficacy and safety to relieve the common cold.
Collapse
Affiliation(s)
- Giorgio Ciprandi
- Outpatients Department, Allergy Clinic, Casa di Cura Villa Montallegro, Genoa, Italy -
| | - Maria A Tosca
- Department of Pediatrics, Allergy Center, Istituto G. Gaslini, Genoa, Italy
| |
Collapse
|
65
|
Kasumba DM, Huot S, Caron E, Fortin A, Laflamme C, Zamorano Cuervo N, Lamontagne F, Pouliot M, Grandvaux N. DUOX2 regulates secreted factors in virus-infected respiratory epithelial cells that contribute to neutrophil attraction and activation. FASEB J 2023; 37:e22765. [PMID: 36607642 PMCID: PMC10107641 DOI: 10.1096/fj.202201205r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.
Collapse
Affiliation(s)
- Dacquin M Kasumba
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sandrine Huot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Elise Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Audray Fortin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Cynthia Laflamme
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Natalia Zamorano Cuervo
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Felix Lamontagne
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marc Pouliot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
66
|
Shrivastava AK, Sahu PK, Cecchi T, Shrestha L, Shah SK, Gupta A, Palikhey A, Joshi B, Gupta PP, Upadhyaya J, Paudel M, Koirala N. An emerging natural antioxidant therapy for COVID‐19 infection patients: Current and future directions. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Amit Kumar Shrivastava
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Prafulla Kumar Sahu
- School of Pharmacy Centurion University of Technology and Management Bhubaneswar Odisha India
| | | | - Laxmi Shrestha
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Sanjay Kumar Shah
- Department of Reproductive MedicineJoint Inter‐national Research Laboratory of Reproduction and DevelopmentChongquing Medical University ChongqingPeople's Republic of China
| | - Anamika Gupta
- Sharjah Institute for Medical Sciences University of Sharjah Sharjah United Arab Emirates
| | - Anjan Palikhey
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Bishal Joshi
- Department of Physiology, Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Pramodkumar P. Gupta
- School of Biotechnology and Bioinformatics D. Y. Patil Deemed to be University, CBD Belapur Navi Mumbai India
| | - Jitendra Upadhyaya
- Institute of Agriculture and Animal Science Tribhuvan University Chitwan Nepal
| | - Mahendra Paudel
- Department of Agri‐Botany and Ecology Institute of Agriculture and Animal Science Tribhuvan University Mahendranagar Nepal
| | - Niranjan Koirala
- Natural Products Research FacilityGandaki Province Academy of Science and Technology Pokhara, Gandaki Province Nepal
| |
Collapse
|
67
|
Gain C, Song S, Angtuaco T, Satta S, Kelesidis T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front Microbiol 2023; 13:1111930. [PMID: 36713204 PMCID: PMC9880066 DOI: 10.3389/fmicb.2022.1111930] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses can cause serious respiratory tract infections and may also impact other end organs such as the central nervous system, the lung and the heart. The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. Understanding the mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation for development of new treatments to attenuate the impact of infections with coronaviruses on host cells and tissues. During infection of host cells, coronaviruses trigger an imbalance between increased production of reactive oxygen species (ROS) and reduced antioxidant host responses that leads to increased redox stress. Subsequently, increased redox stress contributes to reduced antiviral host responses and increased virus-induced inflammation and apoptosis that ultimately drive cell and tissue damage and end organ disease. However, there is limited understanding how different coronaviruses including SARS-CoV-2, manipulate cellular machinery that drives redox responses. This review aims to elucidate the redox mechanisms involved in the replication of coronaviruses and associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction and tissue damage that collectively contribute to multiorgan damage.
Collapse
Affiliation(s)
| | | | | | | | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
68
|
Kwon EB, Li W, Kim YS, Kim B, Chung HS, Go Y, Ko HJ, Song JH, Kim YH, Choi CW, Choi JG. Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress. Acta Pharm Sin B 2023; 13:174-191. [PMID: 36815046 PMCID: PMC9939323 DOI: 10.1016/j.apsb.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Buyun Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| |
Collapse
|
69
|
Wang Y, Ma J, Jiang Y. Transcription factor Nrf2 as a potential therapeutic target for COVID-19. Cell Stress Chaperones 2023; 28:11-20. [PMID: 36417098 PMCID: PMC9685020 DOI: 10.1007/s12192-022-01296-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Critically ill patients with SARS-COV-2 infection frequently exhibit signs of high oxidative stress and systemic inflammation, which accounts for most of the mortality. Antiviral strategies to inhibit the pathogenic consequences of COVID-19 are urgently required. The nuclear factor erythroid 2-related transcription factor (Nrf2) is a transcription factor that is involved in antioxidant and anti-inflammatory defense in several tissues and cells. This review tries to present an overview of the role of Nrf2 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jing Ma
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
70
|
Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.80376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in maintaining the health of the body becomes more and more obvious.
The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angiogenesis, vascular tone, and permeability.
Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is considered the most significant risk factor for endothelial dysfunction.
Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endothelial dysfunction.
Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.
Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage to the vascular wall are briefly described.
Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug without such an effect.
Collapse
|
71
|
Oladele JO, Adewole TS, Ogundepo GE, Oyeleke OM, Kuku A. Efficacy of selected Nigerian tropical plants in the treatment of COVID-19: in silico and in vitro investigations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89295-89339. [PMID: 35849237 PMCID: PMC9289936 DOI: 10.1007/s11356-022-22025-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The whole world is still challenged with COVID-19 pandemic caused by Coronavirus-2 (SARS-CoV-2) which has affected millions of individuals around the globe. Although there are prophylactic vaccines being used, till now, there is ongoing research into discovery of drug candidates for total eradication of all types of coronaviruses. In this context, this study sought to investigate the inhibitory effects of six selected tropical plants against four pathogenic proteins of Coronavirus-2. The medicinal plants used in this study were selected based on their traditional applications in herbal medicine to treat COVID-19 and related symptoms. The biological activities (antioxidant, free radical scavenging, and anti-inflammatory activities) of the extracts of the plants were assessed using different standard procedures. The phytochemicals present in the extracts were identified using GCMS and further screened via in silico molecular docking. The data from this study demonstrated that the phytochemicals of the selected tropical medicinal plants displayed substantial binding affinity to the binding pockets of the four main pathogenic proteins of Coronavirus-2 indicating them as putative inhibitors of Coronavirus-2 and as potential anti-coronavirus drug candidates. The reaction between these phytocompounds and proteins of Coronavirus-2 could alter the pathophysiology of COVID-19, thus mitigating its pathogenic reactions/activities. In conclusion, phytocompounds of these plants exhibited promising binding efficiency with target proteins of SARS-COV-2. Nevertheless, in vitro and in vivo studies are important to potentiate these findings. Other drug techniques or models are vital to elucidate their compatibility and usage as adjuvants in vaccine development against the highly contagious COVID-19 infection.
Collapse
Affiliation(s)
- Johnson Olaleye Oladele
- Department of Chemical Sciences, Biochemistry Unit, Kings University Ode-Omu, PMB 555, Ode-Omu, Nigeria
| | - Taiwo Scholes Adewole
- Department of Chemical Sciences, Biochemistry Unit, Kings University Ode-Omu, PMB 555, Ode-Omu, Nigeria
| | - Gbenga Emmanuel Ogundepo
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, PMB 13, Ile-Ife, Nigeria
| | - Oyedotun Moses Oyeleke
- Department of Chemical Sciences, Biochemistry Unit, Kings University Ode-Omu, PMB 555, Ode-Omu, Nigeria
| | - Adenike Kuku
- Department of Chemical Sciences, Biochemistry Unit, Kings University Ode-Omu, PMB 555, Ode-Omu, Nigeria.
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University Ile-Ife, PMB 13, Ile-Ife, Nigeria.
| |
Collapse
|
72
|
Dey S, Murmu N, Mondal T, Saha I, Chatterjee S, Manna R, Haldar S, Dash SK, Sarkar TR, Giri B. Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother 2022; 156:113801. [DOI: 10.1016/j.biopha.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
|
73
|
Khongthaw B, Dulta K, Chauhan PK, Kumar V, Ighalo JO. Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID- 19). Inflammopharmacology 2022; 30:1955-1976. [PMID: 36050507 PMCID: PMC9436159 DOI: 10.1007/s10787-022-01061-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Lycopene is a group of phytochemicals found in nature, primarily in fruits and vegetables. Lycopene is thought to protect against a variety of diseases attributed to its antioxidant capabilities. Lycopene has anti-inflammatory, anti-cancer, and immunity-boosting qualities, among other biological and pharmacological benefits. COVID-19 (coronavirus disease 19) is an infectious disease caused by the SARS-CoV-2 virus, which has recently emerged as one of the world's leading causes of death. Patients may be asymptomatic or show signs of respiratory, cytokine release syndrome, gastrointestinal, or even multiple organ failure, all of which can lead to death. In COVID-19, inflammation, and cytokine storm are the key pathogenic mechanisms, according to SARS-CoV-2 infection symptoms. ARDS develops in some vulnerable hosts, which is accompanied by an inflammatory "cytokine syndrome" that causes lung damage. Immunological and inflammatory markers were linked to disease severity in mild and severe COVID-19 cases, implying that inflammatory markers, including IL-6, CRP, ESR, and PCT were significantly linked with COVID-19 severity. Patients with severe illness have reduced levels of several immune subsets, including CD4 + T, NK, and CD8 + cells. As a result, lycopene can be commended for bolstering physiological defenses against COVID-19 infections.
Collapse
Affiliation(s)
- Banlambhabok Khongthaw
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Kumar Chauhan
- Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
74
|
Bertran O, Martí D, Torras J, Turon P, Alemán C. Computer simulations on oxidative stress-induced reactions in SARS-CoV-2 spike glycoprotein: a multi-scale approach. Mol Divers 2022; 26:3143-3155. [PMID: 35179698 PMCID: PMC8854484 DOI: 10.1007/s11030-021-10373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs.
Collapse
Affiliation(s)
- Oscar Bertran
- Departament de Física EETAC, Universitat Politècnica de Catalunya, c/Esteve Terrades, 7, 08860, Castelldefels, Spain.
| | - Didac Martí
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Juan Torras
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
| | - Pau Turon
- B. Braun Surgical, S.A.U. Carretera de Terrasa 121, 08191, Rubí, Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química (DEQ) and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019, Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
75
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
76
|
Kopel J, Fralick J, Reid TW. The Potential Antiviral Effects of Selenium Nanoparticles and Coated Surfaces. Antibiotics (Basel) 2022; 11:antibiotics11121683. [PMID: 36551339 PMCID: PMC9774352 DOI: 10.3390/antibiotics11121683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Modern epidemics quickly spread across borders and continents with devastating effects on both human health and the world economy. This issue is made worse by the various ways that infections are spread, including through aerosol, droplets, and fomites. The antibacterial qualities of various surface materials and coatings have been the subject of much research. However, the antiviral activity of metal coatings can be heavily influenced by imbalances in metal distribution and the presence of other metal impurities. As such, there is interest in developing novel surface coatings that can reduce the transmission of active viral particles in healthcare facilities. In recent years, the non-metals, such as selenium and nanoparticles, have acquired greater interest from the medical and scientific community for their antiviral surface activity. In this review, we will discuss the cellular and physiological functions of selenium in mammalian cells and against viral infections. We then discuss the mechanism behind selenium coated surfaces and their efficacy against bacterial infections. Lastly, we examine the antiviral activity of selenium, and the potential antiviral activity of selenium nanoparticles and coatings.
Collapse
Affiliation(s)
- Jonathan Kopel
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence:
| | - Joe Fralick
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ted W. Reid
- Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
77
|
Pourmasumi S, Nazari A, Ahmadi Z, Kouni SN, de Gregorio C, Koniari I, Dousdampanis P, Mplani V, Plotas P, Assimakopoulos S, Gogos C, Aidonisdis G, Roditis P, Matsas N, Velissaris D, Calogiuri G, Hung MY, Altay S, Kounis NG. The Effect of Long COVID-19 Infection and Vaccination on Male Fertility; A Narrative Review. Vaccines (Basel) 2022; 10:1982. [PMID: 36560392 PMCID: PMC9783106 DOI: 10.3390/vaccines10121982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Earlier research has suggested that the male reproductive system could be particularly vulnerable to SARS-CoV-2 (COVID-19) infection, and infections involving this novel disease not only pose serious health threats but could also cause male infertility. Data from multi-organ research during the recent outbreak indicate that male infertility might not be diagnosed as a possible consequence of COVID-19 infection. Several review papers have summarized the etiology factors on male fertility, but to date no review paper has been published defining the effect of COVID-19 infection on male fertility. Therefore, the aim of this study is to review the published scientific evidence regarding male fertility potential, the risk of infertility during the COVID-19 pandemic, and the impact of COVID-19 vaccination on the male reproductive system. The effects of COVID-19 infection and the subsequent vaccination on seminal fluid, sperm count, sperm motility, sperm morphology, sperm viability, testes and sex hormones are particularly reviewed.
Collapse
Affiliation(s)
- Soheila Pourmasumi
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Alireza Nazari
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Zahra Ahmadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | | | - Cesare de Gregorio
- Department of Clinical and Experimental Medicine, University of Messina Medical School, 98122 Messina, Italy
| | - Ioanna Koniari
- Department of Internal Medicine, Division of Cardiology, University Hospital of South Manchester NHS Foundation Trust, Manchester M23 9LT, UK
| | - Periklis Dousdampanis
- Department of Nephrology, Saint Andrews State General Hospital, 26221 Patras, Greece
| | - Virginia Mplani
- Intensive Care Unit, Patras University Hospital, 26500 Patras, Greece
| | - Panagiotis Plotas
- Department of Speech Therapy, University of Patras, 26500 Patras, Greece
| | - Stelios Assimakopoulos
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Christos Gogos
- COVID-19 Unit, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | | | - Pavlos Roditis
- Department of Cardiology, Mamatsio Kozanis General Hospital, 50100 Kozani, Greece
| | - Nikos Matsas
- Cardiology Private Practice, 30131 Agrinion, Greece
| | | | - Gianfranco Calogiuri
- Pneumonology Department, Civil Hospital “Ninetto Melli”, Pietro Vernoti, 72027 Brindisi, Italy
- Department of Internal Medicine, Immunology and Infectious Diseases, Section of Allergology and Clinical Immunology, University of Bari Medical School, 70121 Bari, Italy
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Servet Altay
- Department of Cardiology, Faculty of Medicine Trakya University, Edirne 22030, Turkey
| | - Nicholas G. Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, 26500 Patras, Greece
| |
Collapse
|
78
|
Georgieva E, Karamalakova Y, Arabadzhiev G, Atanasov V, Kostandieva R, Mitev M, Tsoneva V, Yovchev Y, Nikolova G. Site-Directed Spin Labeling EPR Spectroscopy for Determination of Albumin Structural Damage and Hypoalbuminemia in Critical COVID-19. Antioxidants (Basel) 2022; 11:antiox11122311. [PMID: 36552520 PMCID: PMC9774111 DOI: 10.3390/antiox11122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
The main factors in the COVID-19 pathology, which can initiate extensive structural changes at the cellular and molecular levels, are the generation of free radicals in abnormal amounts, and oxidative stress. Under "oxidative shock" conditions, the proteins undergo various modifications that affect their function and activity, and as a result distribute malfunctioning protein derivatives in the body. Human serum albumin is a small globular protein characterized by a high overall binding capacity for neutral lipophilic and acidic dosage forms. The albumin concentration is crucial for the maintenance of plasma oncotic pressure, the transport of nutrients, amino acids, and drugs, the effectiveness of drug therapy, and the prevention of drug toxicity. Hypoalbuminemia and structural defects molecule in the protein suggest a risk of changed metabolism and increased plasma concentration of unbound drugs. Therefore, the albumin structural and functional changes accompanied by low protein levels can be a serious prerequisite for ineffective therapy, frequent complications, and high mortality in patients with SARS-CoV-2 infection. The current opinion aims the research community the application of Site-Directed Spin Labeling Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) and 3-Maleimido-PROXYL radical in determining abnormalities of the albumin dynamics and protein concentrations in COVID-19 critical patients.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of “General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Georgi Arabadzhiev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Mitko Mitev
- Department of “Diagnostic Imaging”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yovcho Yovchev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Galina Nikolova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Correspondence: ; Tel.: +359-897771301
| |
Collapse
|
79
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|
80
|
Wang ZP, Hua M, Jiu T, Ge RL, Bai Z. Biofunctional roles of estrogen in coronavirus disease 2019: Beyond a steroid hormone. Front Pharmacol 2022; 13:1003469. [PMID: 36339571 PMCID: PMC9626865 DOI: 10.3389/fphar.2022.1003469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 09/26/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), epidemic poses a major global public health threat with more than one million daily new infections and hundreds of deaths. To combat this global pandemic, efficient prevention and management strategies are urgently needed. Together with the main characteristics of COVID-19, impaired coagulation with dysfunctions of the immune response in COVID-19 pathophysiology causes high mortality and morbidity. From recent clinical observations, increased expression of specific types of estrogen appears to protect patients from SARS-CoV-2 infection, thereby, reducing mortality. COVID-19 severity is less common in women than in men, particularly in menopausal women. Furthermore, estrogen levels are negatively correlated with COVID-19 severity and mortality. These findings suggest that estrogen plays a protective role in the pathophysiology of COVID-19. In this review, we discuss the potential roles of estrogen in blocking the SARS-CoV-2 from invading alveolar cells and replicating, and summarize the potential mechanisms of anti-inflammation, immune modulation, reactive oxygen species resistance, anti-thrombosis, vascular dilation, and vascular endothelium protection. Finally, the potential therapeutic effects of estrogen against COVID-19 are reviewed. This review provides insights into the role of estrogen and its use as a potential strategy to reduce the mortality associated with COVID-19, and possibly other viral infections and discusses the possible challenges and pertinent questions.
Collapse
Affiliation(s)
- Zhong-Ping Wang
- Clinical Medicine, School of Medicine, Qinghai University, Xining, China
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Mao Hua
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Tai Jiu
- Department of Respiratory and Critical Diseases, Affiliated Hospital of Qinghai University, Xining, China
| | - Ri-Li Ge
- Research Center of High-Altitude Medicine, School of Medicine, Qinghai University, Xining, China
- Joint Lab of Qinghai-Utah for High Altitude Medicine, School of Medicine, Qinghai University, Xining, China
| | - Zhenzhong Bai
- Clinical Medicine, School of Medicine, Qinghai University, Xining, China
- Research Center of High-Altitude Medicine, School of Medicine, Qinghai University, Xining, China
- Joint Lab of Qinghai-Utah for High Altitude Medicine, School of Medicine, Qinghai University, Xining, China
| |
Collapse
|
81
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
82
|
Golikov MV, Valuev-Elliston VT, Smirnova OA, Ivanov AV. Physiological Media in Studies of Cell Metabolism. Mol Biol 2022; 56:629-637. [PMID: 36217338 PMCID: PMC9534458 DOI: 10.1134/s0026893322050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Changes in cell metabolism accompany the development of a wide spectrum of pathologies including cancer, autoimmune, and inflammatory diseases. Therefore, usage of inhibitors of metabolic enzymes are considered a promising strategy for the development of therapeutic agents. However, the investigation of cellular metabolism is hampered by the significant impact of culture media, which interfere with many cellular processes, thus making cellular models irrelevant. There are numerous reports that show that the results from in vitro systems are not reproduced in in vivo models and patients. Over the last decade a novel approach has emerged, which consists of adaptation of the culture medium composition to that closer to the composition of blood plasma. In 2017‒2019, two plasma-like media were proposed, Plasmax and HPLM. In the review, we have summarized the drawbacks of common media and have analyzed changes in the metabolism of cells cultivated in common and plasma-like media in normal and pathological conditions.
Collapse
Affiliation(s)
- M. V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - O. A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
83
|
Hong KS, Pagan K, Whalen W, Harris R, Yang J, Stout-Delgado H, Cho SJ. The Role of Glutathione Reductase in Influenza Infection. Am J Respir Cell Mol Biol 2022; 67:438-445. [PMID: 35767671 PMCID: PMC9753556 DOI: 10.1165/rcmb.2021-0372oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Influenza infection induces lung epithelial cell injury via programmed cell death. Glutathione, a potent antioxidant, has been reported to be associated with influenza infection. We hypothesized that lung epithelial cell death during influenza infection is regulated by glutathione metabolism. Eight-week-old male and female BALB/c mice were infected with influenza (PR8: A/PR/8/34 [H1N1]) via intranasal instillation. Metabolomic analyses were performed on whole lung lysate after influenza infection. For in vitro analysis, Beas-2B cells were infected with influenza. RNA was extracted, and QuantiTect Primer Assay was used to assess gene expression. Glutathione concentrations were assessed by colorimetric assay. Influenza infection resulted in increased inflammation and epithelial cell injury in our murine model, leading to increased morbidity and mortality. In both our in vivo and in vitro models, influenza infection was found to induce apoptosis and necroptosis. Influenza infection led to decreased glutathione metabolism and reduced glutathione reductase activity in lung epithelial cells. Genetic inhibition of glutathione reductase suppressed apoptosis and necroptosis of lung epithelial cells. Pharmacologic inhibition of glutathione reductase reduced airway inflammation, lung injury, and cell death in our murine influenza model. Our results demonstrate that glutathione reductase activity is suppressed during influenza. Glutathione reductase inhibition prevents epithelial cell death and morbidity in our murine influenza model. Our results suggest that glutathione reductase-dependent glutathione metabolism may play an important role in the host response to viral infection by regulating lung epithelial cell death.
Collapse
Affiliation(s)
- Kyung Sook Hong
- Division of Critical Care Medicine, Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea; and
| | - Kassandra Pagan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - William Whalen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Rebecca Harris
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jianjun Yang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Heather Stout-Delgado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Soo Jung Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
84
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
85
|
Anwar MM, Sah R, Shrestha S, Ozaki A, Roy N, Fathah Z, Rodriguez-Morales AJ. Disengaging the COVID-19 Clutch as a Discerning Eye Over the Inflammatory Circuit During SARS-CoV-2 Infection. Inflammation 2022; 45:1875-1894. [PMID: 35639261 PMCID: PMC9153229 DOI: 10.1007/s10753-022-01674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the cytokine release syndrome (CRS) and leads to multiorgan dysfunction. Mitochondrial dynamics are fundamental to protect against environmental insults, but they are highly susceptible to viral infections. Defective mitochondria are potential sources of reactive oxygen species (ROS). Infection with SARS-CoV-2 damages mitochondria, alters autophagy, reduces nitric oxide (NO), and increases both nicotinamide adenine dinucleotide phosphate oxidases (NOX) and ROS. Patients with coronavirus disease 2019 (COVID-19) exhibited activated toll-like receptors (TLRs) and the Nucleotide-binding and oligomerization domain (NOD-), leucine-rich repeat (LRR-), pyrin domain-containing protein 3 (NLRP3) inflammasome. The activation of TLRs and NLRP3 by SARS-CoV-2 induces interleukin 6 (IL-6), IL-1β, IL-18, and lactate dehydrogenase (LDH). Herein, we outline the inflammatory circuit of COVID-19 and what occurs behind the scene, the interplay of NOX/ROS and their role in hypoxia and thrombosis, and the important role of ROS scavengers to reduce COVID-19-related inflammation.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Ranjit Sah
- Tribhuvan University Institute of Medicine, Kathmandu, Nepal
| | - Sunil Shrestha
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, Lalitpur, Nepal
| | - Akihiko Ozaki
- Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki, Japan
- Medical Governance Research Institute, Tokyo, Japan
| | - Namrata Roy
- SRM University, SRM Nagar, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Zareena Fathah
- Kings College London, London, UK
- College of Medicine and Health Sciences, United Arab University, Abu Dhabi, United Arab Emirates
| | - Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de Las Americas, Pereira, Risaralda, Colombia.
- Institución Universitaria Visión de Las Americas, Pereira, Risaralda, Colombia.
- Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru.
- School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.
| |
Collapse
|
86
|
Majumder N, Deepak V, Hadique S, Aesoph D, Velayutham M, Ye Q, Mazumder MHH, Lewis SE, Kodali V, Roohollahi A, Guo NL, Hu G, Khramtsov VV, Johnson RJ, Wen S, Kelley EE, Hussain S. Redox imbalance in COVID-19 pathophysiology. Redox Biol 2022; 56:102465. [PMID: 36116160 PMCID: PMC9464257 DOI: 10.1016/j.redox.2022.102465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background The pathophysiologic significance of redox imbalance is unquestionable as numerous reports and topic reviews indicate alterations in redox parameters during corona virus disease 2019 (COVID-19). However, a more comprehensive understanding of redox-related parameters in the context of COVID-19-mediated inflammation and pathophysiology is required. Methods COVID-19 subjects (n = 64) and control subjects (n = 19) were enrolled, and blood was drawn within 72 h of diagnosis. Serum multiplex assays and peripheral blood mRNA sequencing was performed. Oxidant/free radical (electron paramagnetic resonance (EPR) spectroscopy, nitrite-nitrate assay) and antioxidant (ferrous reducing ability of serum assay and high-performance liquid chromatography) were performed. Multivariate analyses were performed to evaluate potential of indicated parameters to predict clinical outcome. Results Significantly greater levels of multiple inflammatory and vascular markers were quantified in the subjects admitted to the ICU compared to non-ICU subjects. Gene set enrichment analyses indicated significant enhancement of oxidant related pathways and biochemical assays confirmed a significant increase in free radical production and uric acid reduction in COVID-19 subjects. Multivariate analyses confirmed a positive association between serum levels of VCAM-1, ICAM-1 and a negative association between the abundance of one electron oxidants (detected by ascorbate radical formation) and mortality in COVID subjects while IL-17c and TSLP levels predicted need for intensive care in COVID-19 subjects. Conclusion Herein we demonstrate a significant redox imbalance during COVID-19 infection affirming the potential for manipulation of oxidative stress pathways as a new therapeutic strategy COVID-19. However, further work is requisite for detailed identification of oxidants (O2•-, H2O2 and/or circulating transition metals such as Fe or Cu) contributing to this imbalance to avoid the repetition of failures using non-specific antioxidant supplementation.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Vishal Deepak
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sarah Hadique
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Drake Aesoph
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA; Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV, USA
| | - Murugesan Velayutham
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Qing Ye
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA; Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV, USA
| | - Md Habibul Hasan Mazumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sara E Lewis
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Vamsi Kodali
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Anthony Roohollahi
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Nancy Lan Guo
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA; Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV, USA
| | - Gangqing Hu
- WVU Cancer Institute, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Valery V Khramtsov
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Richard J Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sijin Wen
- Department of Epidemiology and Biostatistics, West Virginia University, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
87
|
Notarbartolo V, Montante C, Ferrante G, Giuffrè M. Antioxidant Effects of Dietary Supplements on Adult COVID-19 Patients: Why Do We Not Also Use Them in Children? Antioxidants (Basel) 2022; 11:antiox11091638. [PMID: 36139712 PMCID: PMC9495518 DOI: 10.3390/antiox11091638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory tract infections (RTIs) are very common in children, especially in the first five years of life, and several viruses, such as the influenza virus, Respiratory Syncytial Virus, and Rhinovirus, are triggers for symptoms that usually affect the upper airways. It has been known that during respiratory viral infections, a condition of oxidative stress (OS) occurs, and many studies have suggested the potential use of antioxidants as complementary components in prophylaxis and/or therapy of respiratory viral infections. Preliminary data have demonstrated that antioxidants may also interfere with the new coronavirus 2’s entry and replication in human cells, and that they have a role in the downregulation of several pathogenetic mechanisms involved in disease severity. Starting from preclinical data, the aim of this narrative review is to evaluate the current evidence about the main antioxidants that are potentially useful for preventing and treating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in adults and to speculate on their possible use in children by exploring the most relevant issues affecting their use in clinical practice, as well as the associated evidence gaps and research limitations.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90128 Palermo, Italy
- Correspondence:
| | - Claudio Montante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90128 Palermo, Italy
| | - Giuliana Ferrante
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Pediatric Division, University of Verona, 37134 Verona, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
88
|
Žarković N, Jastrząb A, Jarocka-Karpowicz I, Orehovec B, Baršić B, Tarle M, Kmet M, Lukšić I, Łuczaj W, Skrzydlewska E. The Impact of Severe COVID-19 on Plasma Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165323. [PMID: 36014561 PMCID: PMC9416063 DOI: 10.3390/molecules27165323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Several studies suggested the association of COVID-19 with systemic oxidative stress, in particular with lipid peroxidation and vascular stress. Therefore, this study aimed to evaluate the antioxidant signaling in the plasma of eighty-eight patients upon admission to the Clinical Hospital Dubrava in Zagreb, of which twenty-two died within a week, while the other recovered. The differences between the deceased and the survivors were found, especially in the reduction of superoxide dismutases (SOD-1 and SOD-2) activity, which was accompanied by the alteration in glutathione-dependent system and the intensification of the thioredoxin-dependent system. Reduced levels of non-enzymatic antioxidants, especially tocopherol, were also observed, which correlated with enhanced lipid peroxidation (determined by 4-hydroxynonenal (4-HNE) and neuroprostane levels) and oxidative modifications of proteins assessed as 4-HNE-protein adducts and carbonyl groups. These findings confirm the onset of systemic oxidative stress in patients with severe SARS-CoV-2, especially those who died from COVID-19, as manifested by strongly reduced tocopherol level and SOD activity associated with lipid peroxidation. Therefore, we propose that preventive and/or supplementary use of antioxidants, especially of lipophilic nature, could be beneficial for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Biserka Orehovec
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Bruno Baršić
- Department of Internal Medicine, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marko Tarle
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marta Kmet
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
89
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
90
|
Deng H, Li Y, Li J, Shen W, Chen Q, Weng S, He J, Xu X. Neomycin inhibits Megalocytivirus infection in fish by antagonizing the increase of intracellular reduced glutathione. FISH & SHELLFISH IMMUNOLOGY 2022; 127:148-154. [PMID: 35714896 DOI: 10.1016/j.fsi.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus that infects a number of marine and freshwater fishes, causing huge economic losses in aquaculture. The ISKNV infection leads to increase of reducing power in cells. As the antibiotic neomycin can promote the production of reactive oxygen species (ROS) in animal cells, in the current study, the potential therapeutic effect of neomycin on ISKNV infection was explored. We showed that neomycin could decrease the reducing power in cultured MFF-1 cells and inhibit ISKNV infection by antagonizing the shift of the cellular redox balance toward reduction. In vivo experiments further demonstrated that neomycin treatment significantly suppresses ISKNV infection in mandarin fish. Expression of the major capsid protein (MCP) and the proportion of infected cells in tissues were down-regulated after neomycin treatment. Furthermore, neomycin showed complex effects on expression of a set of antiviral related genes of the host. Taking together, the current study suggested that the viral-induced redox imbalance in the infected cells could be used as a target for suppressing ISKNV infection. Neomycin can be potentially utilized for therapeutic treatment of Megalocytivirus diseases by antagonizing intracellular redox changes.
Collapse
Affiliation(s)
- Hengwei Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Yeyu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jinling Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wenjie Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Qiankang Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
91
|
Abstract
The first appearance of SARS-CoV-2 is dated back to 2019. This new member of the coronavirus family has caused more than 5 million deaths worldwide up until the end of January 2022. At the moment, and after intensive vaccination programmes throughout the world, the pandemic is still active, whilst new mutations constantly appear. Researchers are working intensively to discover antiviral drugs to combat the severe cases in intensive care units, giving the overloaded hospital units a breather. Alongside various research projects focusing on developing small pharmaceutical molecules, a significant proportion of the research community has shifted towards paying attention to metal drugs. In this small review, we make brief reference to the use of metal drugs in therapeutics and provide some examples of metal drugs that are of extreme interest in the current pandemic. At the same time, we will also examine some of their promising mechanisms of action and possible effectiveness against COVID-19.
Collapse
Affiliation(s)
- Kyriacos Ioannou
- Department of Life and Health Sciences, University of Nicosia, 2417, Nicosia, Cyprus
| | - Manos C Vlasiou
- Department of Life and Health Sciences, University of Nicosia, 2417, Nicosia, Cyprus.
| |
Collapse
|
92
|
Clark NF, Taylor-Robinson AW, Heimann K. Could chlorophyllins improve the safety profile of beta-d-N4-hydroxycytidine versus N-hydroxycytidine, the active ingredient of the SARS-CoV-2 antiviral molnupiravir? Ther Adv Drug Saf 2022; 13:20420986221107753. [PMID: 35898799 PMCID: PMC9309465 DOI: 10.1177/20420986221107753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Could natural plant pigment (chlorophyll) derivatives (chlorophyllins) improve the
safety of the antiviral Molnupiravir, used to treat COVID-19 disease?
Molnupiravir, a specific SARS-CoV-2 antiviral, may cause adverse genetic changes and
thereby create potential host cell damage (through genotoxicity and DNA stressors). In our
opinion, this side effect of treatment could be reduced if the antiviral was taken as a
combined therapy with chlorophyllins. Specifically, we hypothesise that chlorophyllins
might improve the overall effectiveness of molnupiravir, typically used to treat patients
suffering from COVID-19. Chlorophyllins, antioxidants derived from natural plant
chlorophyll, are safe, effective and non-toxic antioxidants that could combat possible
genotoxic flow-on effects of molnupiravir. In addition, as they possess antiviral
properties, treatment with chlorophyllins may enhance the overall antiviral effect via a
mechanism different to molnupiravir.
Collapse
Affiliation(s)
- Nicole F Clark
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA, 5042 Australia
| | | | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
93
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
94
|
de Mello AH, Liu T, Garofalo RP, Casola A. Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection. Antioxidants (Basel) 2022; 11:1410. [PMID: 35883901 PMCID: PMC9311616 DOI: 10.3390/antiox11071410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), and decreased antioxidant enzymes (AOEs), leading to oxidative damage and lung injury. Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays a physiological role in numerous cellular processes and a protective role in multiple pathological conditions, displaying vasoactive, cytoprotective, anti-inflammatory, and antioxidant activities. H2S can promote NRF2 activation through the sulfhydration of Kelch-like ECH-associated protein 1, the cytoplasmic repressor of NRF2. Here we investigated whether increasing cellular H2S levels could rescue NRF2 and NRF2-dependent gene expression in RSV-infected primary airway epithelial cells. We found that treatment with the H2S donor GYY4137 significantly increased NRF2 levels and AOEs gene expression by decreasing KEAP1 levels, and by modulating pathways involved in RSV-induced NRF2 degradation, such as NRF2 ubiquitination, and promyelocytic leukemia (PML) protein levels. These results suggest that the administration of exogenous H2S can positively impact the altered redox balance associated with RSV infection, which represents an important determinant of RSV-induced lung disease.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
95
|
Geng F, Chen J, Tang S, Azzam E, Zhang J, Zhang S. Additional Evidence for Commonalities between COVID-19 and Radiation Injury: Novel Insight into COVID-19 Candidate Drugs. Radiat Res 2022; 198:306-317. [PMID: 35834824 DOI: 10.1667/rade-22-00058.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
COVID-19 is a challenge to biosecurity and public health. The speed of vaccine development lags behind that of virus evolution and mutation. To date, no agent has been demonstrated to be fully effective against COVID-19. Therefore, it remains of great urgency to rapidly develop promising therapeutic and diagnostic candidates. Intriguingly, mounting evidence hints at parallel etiologies between SARS-CoV-2 infection and radiation injury. Herein, from the perspectives of immunogenic pathway activation and metabolic alterations, we provide novel evidence of commonalities between these two pathological conditions based on the most recent findings. Since numerous agents have been developed to prevent or reverse radiation injury in the past 70 years to ensure nuclear safety, we also advocate investigating the promising function of radioprotectors and radiomitigators against COVID-19 in clinical settings.
Collapse
Affiliation(s)
- Fenghao Geng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhui Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shaokai Tang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Edouard Azzam
- Radiobiology and Health, Isotopes, Radiobiology & Environment Directorate (IRED), Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
| | - Jie Zhang
- Institute of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Shuyu Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.,West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621099, China
| |
Collapse
|
96
|
How Aging and Oxidative Stress Influence the Cytopathic and Inflammatory Effects of SARS-CoV-2 Infection: The Role of Cellular Glutathione and Cysteine Metabolism. Antioxidants (Basel) 2022; 11:antiox11071366. [PMID: 35883857 PMCID: PMC9311797 DOI: 10.3390/antiox11071366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection can cause a severe respiratory distress syndrome with inflammatory and thrombotic complications, the severity of which increases with patients’ age and presence of comorbidity. The reasons for an age-dependent increase in the risk of severe COVID-19 could be many. These include defects in the homeostatic processes that control the cellular redox and its pivotal role in sustaining the immuno-inflammatory response to the host and the protection against oxidative stress and tissue degeneration. Pathogens may take advantage of such age-dependent abnormalities. Alterations of the thiol redox balance in the lung tissue and lining fluids may influence the risk of infection, and the host capability to respond to pathogens and to avoid severe complications. SARS-CoV-2, likewise other viruses, such as HIV, influenza, and HSV, benefits in its replication cycle of pro-oxidant conditions that the same viral infection seems to induce in the host cell with mechanisms that remain poorly understood. We recently demonstrated that the pro-oxidant effects of SARS-CoV-2 infection are associated with changes in the cellular metabolism and transmembrane fluxes of Cys and GSH. These appear to be the consequence of an increased use of Cys in viral protein synthesis and to ER stress pathway activation that interfere with transcription factors, as Nrf2 and NFkB, important to coordinate the metabolism of GSH with other aspects of the stress response and with the pro-inflammatory effects of this virus in the host cell. This narrative review article describes these cellular and molecular aspects of SARS-CoV-2 infection, and the role that antivirals and cytoprotective agents such as N-acetyl cysteine may have to limit the cytopathic effects of this virus and to recover tissue homeostasis after infection.
Collapse
|
97
|
He J, Zhang Y, Hu Z, Zhang L, Shao G, Xie Z, Nie Y, Li W, Li Y, Chen L, Huang B, Chu F, Feng K, Lin W, Li H, Chen W, Zhang X, Xie Q. Recombinant Muscovy Duck Parvovirus Led to Ileac Damage in Muscovy Ducklings. Viruses 2022; 14:v14071471. [PMID: 35891451 PMCID: PMC9315717 DOI: 10.3390/v14071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Waterfowl parvovirus (WPFs) has multiple effects on the intestinal tract, but the effects of recombinant Muscovy duck parvovirus (rMDPV) have not been elucidated. In this study, 48 one-day-old Muscovy ducklings were divided into an infected group and a control group. Plasma and ileal samples were collected from both groups at 2, 4, 6, and 8 days post-infection (dpi), both six ducklings at a time. Next, we analyzed the genomic sequence of the rMDPV strain. Results showed that the ileal villus structure was destroyed seriously at 4, 6, 8 dpi, and the expression of ZO-1, Occludin, and Claudin-1 decreased at 4, 6 dpi; 4, 6, 8 dpi; and 2, 6 dpi, respectively. Intestinal cytokines IFN-α, IL-1β and IL-6 increased at 6 dpi; 8 dpi; and 6, 8 dpi, respectively, whereas IL-2 decreased at 6, 8 dpi. The diversity of ileal flora increased significantly at 4 dpi and decreased at 8 dpi. The bacteria Ochrobactrum and Enterococcus increased and decreased at 4, 8 dpi; 2, 4 dpi, respectively. Plasma MDA increased at 2 dpi, SOD, CAT, and T-AOC decreased at 2, 4, 8 dpi; 4, 8 dpi; and 4, 6, 8 dpi, respectively. These results suggest that rMDPV infection led to early intestinal barrier dysfunction, inflammation, ileac microbiota disruption, and oxidative stress.
Collapse
Affiliation(s)
- Jiahui He
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yukun Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Zezhong Hu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Luxuan Zhang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China;
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yu Nie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Wenxue Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yajuan Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Liyi Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Benli Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Fengsheng Chu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Wencheng Lin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Correspondence: (X.Z.); (Q.X.)
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.H.); (Y.Z.); (Z.H.); (G.S.); (Z.X.); (Y.N.); (W.L.); (Y.L.); (L.C.); (B.H.); (F.C.); (K.F.); (W.L.); (H.L.); (W.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Correspondence: (X.Z.); (Q.X.)
| |
Collapse
|
98
|
Bidgood SR, Samolej J, Novy K, Collopy A, Albrecht D, Krause M, Burden JJ, Wollscheid B, Mercer J. Poxviruses package viral redox proteins in lateral bodies and modulate the host oxidative response. PLoS Pathog 2022; 18:e1010614. [PMID: 35834477 PMCID: PMC9282662 DOI: 10.1371/journal.ppat.1010614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/24/2022] [Indexed: 01/23/2023] Open
Abstract
All poxviruses contain a set of proteinaceous structures termed lateral bodies (LB) that deliver viral effector proteins into the host cytosol during virus entry. To date, the spatial proteotype of LBs remains unknown. Using the prototypic poxvirus, vaccinia virus (VACV), we employed a quantitative comparative mass spectrometry strategy to determine the poxvirus LB proteome. We identified a large population of candidate cellular proteins, the majority being mitochondrial, and 15 candidate viral LB proteins. Strikingly, one-third of these are VACV redox proteins whose LB residency could be confirmed using super-resolution microscopy. We show that VACV infection exerts an anti-oxidative effect on host cells and that artificial induction of oxidative stress impacts early and late gene expression as well as virion production. Using targeted repression and/or deletion viruses we found that deletion of individual LB-redox proteins was insufficient for host redox modulation suggesting there may be functional redundancy. In addition to defining the spatial proteotype of VACV LBs, these findings implicate poxvirus redox proteins as potential modulators of host oxidative anti-viral responses and provide a solid starting point for future investigations into the role of LB resident proteins in host immunomodulation.
Collapse
Affiliation(s)
- Susanna R. Bidgood
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jerzy Samolej
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Karel Novy
- Swiss Federal Institute of Technology (ETH Zürich), Department of Health Sciences and Technology (D-HEST), Institute of Translational Medicine (ITM), Zürich, Switzerland
| | - Abigail Collopy
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - David Albrecht
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Melanie Krause
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jemima J. Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Bernd Wollscheid
- Swiss Federal Institute of Technology (ETH Zürich), Department of Health Sciences and Technology (D-HEST), Institute of Translational Medicine (ITM), Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
99
|
Yang CP, Chang CM, Yang CC, Pariante CM, Su KP. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain Behav Immun 2022; 103:19-27. [PMID: 35390469 PMCID: PMC8977215 DOI: 10.1016/j.bbi.2022.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the lasting pandemic of coronavirus disease 2019 (COVID-19) and the post-acute phase sequelae of heterogeneous negative impacts in multiple systems known as the "long COVID." The mechanisms of neuropsychiatric complications of long COVID are multifactorial, including long-term tissue damages from direct CNS viral involvement, unresolved systemic inflammation and oxidative stress, maladaptation of the renin-angiotensin-aldosterone system and coagulation system, dysregulated immunity, the dysfunction of neurotransmitters and hypothalamus-pituitaryadrenal (HPA) axis, and the psychosocial stress imposed by societal changes in response to this pandemic. The strength of safety, well-acceptance, and accumulating scientific evidence has now afforded nutritional medicine a place in the mainstream of neuropsychiatric intervention and prophylaxis. Long chain omega-3 polyunsaturated fatty acids (omega-3 or n-3 PUFAs) might have favorable effects on immunity, inflammation, oxidative stress and psychoneuroimmunity at different stages of SARS-CoV-2 infection. Omega-3 PUFAs, particularly EPA, have shown effects in treating mood and neurocognitive disorders by reducing pro-inflammatory cytokines, altering the HPA axis, and modulating neurotransmission via lipid rafts. In addition, omega-3 PUFAs and their metabolites, including specialized pro-resolvin mediators, accelerate the process of cleansing chronic inflammation and restoring tissue homeostasis, and therefore offer a promising strategy for Long COVID. In this article, we explore in a systematic review the putative molecular mechanisms by which omega-3 PUFAs and their metabolites counteract the negative effects of long COVID on the brain, behavior, and immunity.
Collapse
Affiliation(s)
- Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Department of Nutrition, HungKuang University, Taichung, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | | | - Kuan-Pin Su
- King's College London, London, UK; Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
100
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|