51
|
Cattaneo AM. Reviewing findings on the polypeptide sequence of the SARS-CoV-2 S-protein to discuss the origins of the virus. Future Virol 2022; 0. [PMID: 35419073 PMCID: PMC8982992 DOI: 10.2217/fvl-2021-0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/18/2022] [Indexed: 12/16/2022]
Abstract
Several investigations suggested origins of SARS-CoV-2 from the recombination of coronaviruses of various animals, including the bat Rhinolophus affinis and the pangolin Manis javanica, despite the processes describing the adaptation from a reservoir of animals to human are still debated. In this perspective, I will remark two main inconsistencies on the origins of SARS-CoV-2: polypeptide sequence alignment of the S-proteins does not return the expected identity of the receptor-binding motif among most of pangolin-CoVs and SARS-CoV-2; accurate referencing for samplings and sequencing deposition of the ancestral bat coronavirus named RaTG13 was missing since the first reports on the SARS-CoV-2 coronavirus. This contribution aims to stimulate discussion about the origins of SARS-CoV-2 and considers other intermediate hosts as a reservoir for coronavirus.
Collapse
Affiliation(s)
- Alberto Maria Cattaneo
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Chemical Ecology Group, Lomma, Box 190 234 22, Sweden
- University of Lausanne, Center for Integrative Genomics, Lausanne, CH-1015, Switzerland
| |
Collapse
|
52
|
He WT, Hou X, Zhao J, Sun J, He H, Si W, Wang J, Jiang Z, Yan Z, Xing G, Lu M, Suchard MA, Ji X, Gong W, He B, Li J, Lemey P, Guo D, Tu C, Holmes EC, Shi M, Su S. Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell 2022; 185:1117-1129.e8. [PMID: 35298912 PMCID: PMC9942426 DOI: 10.1016/j.cell.2022.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.
Collapse
Affiliation(s)
- Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.,These authors contributed equally
| | - Xin Hou
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.,These authors contributed equally
| | - Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.,These authors contributed equally
| | - Jiumeng Sun
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijian He
- Agricultural College, Jinhua Polytechnic, Jinhua 320017, China
| | - Wei Si
- MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhiwen Jiang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Xing
- MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou 310058, China
| | - Meng Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, the United States
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Wenjie Gong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven 3000, Belgium
| | - Deyin Guo
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Senior authors,Correspondence: Shuo Su (); Mang Shi (); and Edward C. Holmes ()
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
53
|
Hassan SS, Basu P, Redwan EM, Lundstrom K, Choudhury PP, Serrano-Aroca Á, Azad GK, Aljabali AAA, Palu G, Abd El-Aziz TM, Barh D, Uhal BD, Adadi P, Takayama K, Bazan NG, Tambuwala MM, Lal A, Chauhan G, Baetas-da-Cruz W, Sherchan SP, Uversky VN. Periodically aperiodic pattern of SARS-CoV-2 mutations underpins the uncertainty of its origin and evolution. ENVIRONMENTAL RESEARCH 2022; 204:112092. [PMID: 34562480 PMCID: PMC8457672 DOI: 10.1016/j.envres.2021.112092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/20/2023]
Abstract
Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein 2000, 721140, South Africa.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| | | | - Pabitra Pal Choudhury
- Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, Kolkata, 700108, India.
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia 46001, Spain.
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Faculty of Pharmacy, Irbid, 566, Jordan.
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121, Padova, Italy.
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt; Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India; Departamento de Geńetica, Ecologia e Evolucao, Instituto de Cîencias Bioĺogicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 6068507, Japan.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA, 70112, USA.
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849, Monterrey, Nuevo Léon, Mexico.
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, 70112, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| |
Collapse
|
54
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|
55
|
Hassanin A, Rambaud O, Klein D. Genomic Bootstrap Barcodes and Their Application to Study the Evolution of Sarbecoviruses. Viruses 2022; 14:440. [PMID: 35216033 PMCID: PMC8879460 DOI: 10.3390/v14020440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 01/22/2023] Open
Abstract
Recombination creates mosaic genomes containing regions with mixed ancestry, and the accumulation of such events over time can complicate greatly many aspects of evolutionary inference. Here, we developed a sliding window bootstrap (SWB) method to generate genomic bootstrap (GB) barcodes to highlight the regions supporting phylogenetic relationships. The method was applied to an alignment of 56 sarbecoviruses, including SARS-CoV and SARS-CoV-2, responsible for the SARS epidemic and COVID-19 pandemic, respectively. The SWB analyses were also used to construct a consensus tree showing the most reliable relationships and better interpret hidden phylogenetic signals. Our results revealed that most relationships were supported by just a few genomic regions and confirmed that three divergent lineages could be found in bats from Yunnan: SCoVrC, which groups SARS-CoV related coronaviruses from China; SCoV2rC, which includes SARS-CoV-2 related coronaviruses from Southeast Asia and Yunnan; and YunSar, which contains a few highly divergent viruses recently described in Yunnan. The GB barcodes showed evidence for ancient recombination between SCoV2rC and YunSar genomes, as well as more recent recombination events between SCoVrC and SCoV2rC genomes. The recombination and phylogeographic patterns suggest a strong host-dependent selection of the viral RNA-dependent RNA polymerase. In addition, SARS-CoV-2 appears as a mosaic genome composed of regions sharing recent ancestry with three bat SCoV2rCs from Yunnan (RmYN02, RpYN06, and RaTG13) or related to more ancient ancestors in bats from Yunnan and Southeast Asia. Finally, our results suggest that viral circular RNAs may be key molecules for the mechanism of recombination.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, Centre National de la Recherche Scientifique, École Pratique des Hautes Études, Muséum National d’Histoire Naturelle, Université des Antilles, 75231 Paris, France; (O.R.); (D.K.)
| | | | | |
Collapse
|
56
|
Song C, Li Z, Li C, Huang M, Liu J, Fang Q, Cao Z, Zhang L, Gao P, Nie W, Luo X, Kang J, Xie S, Lyu J, Zhu X. SARS-CoV-2: The Monster Causes COVID-19. Front Cell Infect Microbiol 2022; 12:835750. [PMID: 35211423 PMCID: PMC8861077 DOI: 10.3389/fcimb.2022.835750] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses are viruses whose particles look like crowns. SARS-CoV-2 is the seventh member of the human coronavirus family to cause COVID-19 which is regarded as a once-in-a-century pandemic worldwide. It holds has the characteristics of a pandemic, which has broy -55ught many serious negative impacts to human beings. It may take time for humans to fight the pandemic. In addition to humans, SARS-CoV-2 also infects animals such as cats. This review introduces the origins, structures, pathogenic mechanisms, characteristics of transmission, detection and diagnosis, evolution and variation of SARS-CoV-2. We summarized the clinical characteristics, the strategies for treatment and prevention of COVID-19, and analyzed the problems and challenges we face.
Collapse
Affiliation(s)
- Chang Song
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
- Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Meiying Huang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Jianhong Liu
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Qiuping Fang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Zitong Cao
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Lin Zhang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Pengbo Gao
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Wendi Nie
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Xueyao Luo
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Jianhao Kang
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Shimin Xie
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiao Zhu, ; Jianxin Lyu,
| | - Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu’s Team, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Xiao Zhu, ; Jianxin Lyu,
| |
Collapse
|
57
|
Lytras S, Hughes J, Martin D, Swanepoel P, de Klerk A, Lourens R, Kosakovsky Pond SL, Xia W, Jiang X, Robertson DL. Exploring the Natural Origins of SARS-CoV-2 in the Light of Recombination. Genome Biol Evol 2022; 14:evac018. [PMID: 35137080 PMCID: PMC8882382 DOI: 10.1093/gbe/evac018] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
The lack of an identifiable intermediate host species for the proximal animal ancestor of SARS-CoV-2, and the large geographical distance between Wuhan and where the closest evolutionary related coronaviruses circulating in horseshoe bats (members of the Sarbecovirus subgenus) have been identified, is fueling speculation on the natural origins of SARS-CoV-2. We performed a comprehensive phylogenetic study on SARS-CoV-2 and all the related bat and pangolin sarbecoviruses sampled so far. Determining the likely recombination events reveals a highly reticulate evolutionary history within this group of coronaviruses. Distribution of the inferred recombination events is nonrandom with evidence that Spike, the main target for humoral immunity, is beside a recombination hotspot likely driving antigenic shift events in the ancestry of bat sarbecoviruses. Coupled with the geographic ranges of their hosts and the sampling locations, across southern China, and into Southeast Asia, we confirm that horseshoe bats, Rhinolophus, are the likely reservoir species for the SARS-CoV-2 progenitor. By tracing the recombinant sequence patterns, we conclude that there has been relatively recent geographic movement and cocirculation of these viruses' ancestors, extending across their bat host ranges in China and Southeast Asia over the last 100 years. We confirm that a direct proximal ancestor to SARS-CoV-2 has not yet been sampled, since the closest known relatives collected in Yunnan shared a common ancestor with SARS-CoV-2 approximately 40 years ago. Our analysis highlights the need for dramatically more wildlife sampling to: 1) pinpoint the exact origins of SARS-CoV-2's animal progenitor, 2) the intermediate species that facilitated transmission from bats to humans (if there is one), and 3) survey the extent of the diversity in the related sarbecoviruses' phylogeny that present high risk for future spillovers.
Collapse
Affiliation(s)
- Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Phillip Swanepoel
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Arné de Klerk
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Rentia Lourens
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, South Africa
| | | | - Wei Xia
- National School of Agricultural Institution and Development, South China Agricultural University, Guangzhou, China
| | - Xiaowei Jiang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
58
|
C S, S. DK, Ragunathan V, Tiwari P, A. S, P BD. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn 2022; 40:585-611. [PMID: 32897178 PMCID: PMC7573242 DOI: 10.1080/07391102.2020.1815584] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022]
Abstract
The study aims to evaluate the potency of two hundred natural antiviral phytocompounds against the active site of the Severe Acquired Respiratory Syndrome - Coronavirus - 2 (SARS-CoV-2) Main-Protease (Mpro) using AutoDock 4.2.6. The three- dimensional crystal structure of the Mpro (PDB Id: 6LU7) was retrieved from the Protein Data Bank (PDB), the active site was predicted using MetaPocket 2.0. Food and Drug Administration (FDA) approved viral protease inhibitors were used as standards for comparison of results. The compounds theaflavin-3-3'-digallate, rutin, hypericin, robustaflavone, and (-)-solenolide A with respective binding energy of -12.41 (Ki = 794.96 pM); -11.33 (Ki = 4.98 nM); -11.17 (Ki = 6.54 nM); -10.92 (Ki = 9.85 nM); and -10.82 kcal/mol (Ki = 11.88 nM) were ranked top as Coronavirus Disease - 2019 (COVID-19) Mpro inhibitors. The interacting amino acid residues were visualized using Discovery Studio 3.5 to elucidate the 2-dimensional and 3-dimensional interactions. The study was validated by i) re-docking the N3-peptide inhibitor-Mpro and superimposing them onto co-crystallized complex and ii) docking decoy ligands to Mpro. The ligands that showed low binding energy were further predicted for and pharmacokinetic properties and Lipinski's rule of 5 and the results are tabulated and discussed. Molecular dynamics simulations were performed for 50 ns for those compounds using the Desmond package, Schrödinger to assess the conformational stability and fluctuations of protein-ligand complexes during the simulation. Thus, the natural compounds could act as a lead for the COVID-19 regimen after in-vitro and in- vivo clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivanika C
- Department of Bio-Engineering, School of
Engineering, Vels Institute of Science Technology and Advanced Studies,
Chennai, Tamil Nadu, India
| | - Deepak Kumar S.
- Department of Biotechnology, Rajalakshmi
Engineering College, Thandalam, Tamil Nadu,
India
| | - Venkataraghavan Ragunathan
- Department of Chemical Engineering, Alagappa
College of Technology, Anna University, Chennai, Tamil
Nadu, India
| | - Pawan Tiwari
- Department of Pharmaceutical Science, Kumaun
University, Nainital, Uttarakhand,
India
| | - Sumitha A.
- Department of Pharmacology, ACS Medical
College and Hospital, Chennai, Tamil Nadu,
India
| | - Brindha Devi P
- Department of Bio-Engineering, School of
Engineering, Vels Institute of Science Technology and Advanced Studies,
Chennai, Tamil Nadu, India
| |
Collapse
|
59
|
Lohrasbi-Nejad A. Detection of homologous recombination events in SARS-CoV-2. Biotechnol Lett 2022; 44:399-414. [PMID: 35037234 PMCID: PMC8761517 DOI: 10.1007/s10529-021-03218-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE The COVID-19 disease with acute respiratory symptoms emerged in 2019. The causal agent of the disease, the SARS-CoV-2 virus, is classified into the Betacoronaviruses family. Coronaviruses (CoVs) are a huge family of viruses. Therefore, homologous recombination studies can help recognize the phylogenetic relationships among these viruses. METHODS In order to detect possible recombination events in SASRS-CoV-2, the genome sequences of Betacoronaviruses were obtained from the GenBank. The nucleotide sequences with the identity ≥ 60% to SARS-CoV-2 genome sequence were selected and then analyzed using different algorithms. RESULTS The results showed two recombination events at the beginning and the end of the genome sequence of SARS-CoV-2. Bat-SL-CoVZC21 (GenBank accession number MG772934) was specified as the minor parent for both events with p-values of 8.66 × 10-87 and 3.29 × 10-48, respectively. Furthermore, two recombination regions were detected at the beginning and the middle of the SARS-CoV-2 spike gene. Pangolin-CoV (PCoV_GX-P4L) and Rattus CoV (ChRCoV-HKU24) were determined as the potential parents with the GenBank accession number MT040333 and KM349742, respectively. Analysis of the spike gene revealed more similarity and less nucleotide diversity between SARS-CoV-2 and pangolin-CoVs. CONCLUSION Detection of the ancestors of SARS-CoV-2 in the coronaviruses family can help identify and define the phylogenetic relationships of the family Coronaviridae. Furthermore, constructing a phylogenetic tree based on the recombination regions made changes in the phylogenetic relationships of Betacoronaviruses.
Collapse
Affiliation(s)
- Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
60
|
Gorshkov K, Morales Vasquez D, Chiem K, Ye C, Nguyen Tran B, Carlos de la Torre J, Moran T, Chen CZ, Martinez-Sobrido L, Zheng W. SARS-CoV-2 Nucleocapsid Protein TR-FRET Assay Amenable to High Throughput Screening. ACS Pharmacol Transl Sci 2022; 5:8-19. [PMID: 35036857 PMCID: PMC8751018 DOI: 10.1021/acsptsci.1c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/24/2022]
Abstract
![]()
Drug
development for specific antiviral agents against coronavirus
disease 2019 (COVID-19) is still an unmet medical need as the pandemic
continues to spread globally. Although huge efforts for drug repurposing
and compound screens have been put forth, only a few compounds are
in late-stage clinical trials. New approaches and assays are needed
to accelerate COVID-19 drug discovery and development. Here, we report
a time-resolved fluorescence resonance energy transfer-based assay
that detects the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
nucleocapsid protein (NP) produced in infected cells. It uses two
specific anti-NP monoclonal antibodies conjugated to donor and acceptor
fluorophores that produce a robust ratiometric signal for high throughput
screening of large compound collections. Using this assay, we measured
a half maximal inhibitory concentration (IC50) for remdesivir
of 9.3 μM against infection with SARS-CoV-2 USA/WA1/2020 (WA-1).
The assay also detected SARS-CoV-2 South African (Beta, β),
Brazilian/Japanese P.1 (Gamma, γ), and Californian (Epsilon,
ε) variants of concern (VoC). Therefore, this homogeneous SARS-CoV-2
NP detection assay can be used for accelerating lead compound discovery
for drug development and for evaluating drug efficacy against emerging
SARS-CoV-2 VoC.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Desarey Morales Vasquez
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Kevin Chiem
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Chengjin Ye
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Bruce Nguyen Tran
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, IMM6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Thomas Moran
- Icahn School of Medicine, Mt. Sinai, 1 Gustave L. Levy Place, New York, New York 10029, United States
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
61
|
Zhang F, Wu S, Cen P. The past, present and future of the pangolin in Mainland China. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
62
|
Abstract
SARS-CoV-2 cannot use fish ACE2 to entry cells. Fish cell lines (EPC, CIK, BF-2) were not susceptible to SARS-CoV-2 infection. Proper disinfection of frozen food surfaces could prevent cold-chain transimission of SARS-CoV-2.
Collapse
|
63
|
Abstract
The arrival of the most recent coronavirus in 2019, SARS-CoV-2, caught the entire world by surprise, and as a result has caused more anguish due to its rapid spread and serious health consequences for the elderly and those with underlying health conditions, and its ability to generate variants of ever increasing contagiousness. But this was not the first coronavirus to infect humans. This chapter explores the history of this virus family, the emergence of the first serious infection in 2003–04 (SARS-CoV), and the related virus MERS in 2012, and the possible origins of SARS-CoV-2. The lessons of those two outbreaks that never developed into pandemics may not all have been learnt by the world health leaders of today. Nevertheless, the rapidity of vaccine development and the conventional health measure introduced during 2020, not always in good time, has almost certainly led to lower morbidities and mortalities that would otherwise have been the case. This chapter will inevitably be out of date by time this book goes to press. Nevertheless, it is to be hoped that the origin of SARS-CoV-2 will eventually be established, but sadly not without the cooperation of the major countries having the resources to carry out such complex investigations. If such a cooperation did happen, maybe future pandemics of this will be more controllable, and even never progress beyond local outbreaks.
Collapse
|
64
|
Artiga-Sainz LM, Ibáñez-Navarro A, Morante-Ruiz M, Bilbao JSV, Rodríguez de Lema-Tapetado G, Sarria-Santamera A, Quintana-Díaz M. Overview of coronavirus pandemic. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300555 DOI: 10.1016/b978-0-323-91172-6.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the last months of 2019, numerous cases of respiratory illness such as pneumonia and acute respiratory distress syndrome were described in Wuhan, the capital city of Hubei province in China. At the same time, several research groups identified and reported the etiological agent, that included within the Coronaviridae family and the order Nidovirales, named SARS-CoV-2. Subsequently, the pathological and clinical status caused by the pathogen is commonly known as Coronavirus disease 2019 (COVID-19). In a short period, the outbreak of emerging spread across the world. Therefore the World Health Organization declared a public health emergency of international concern on January 30, 2020, and as a pandemic on March 11, 2020. Many different public health and epidemiological studies have been published since the COVID-19 outbreak, but fatality rates (those that relate the number of cases to mortality) are difficult to assess with certainty. Mean and median case-fatality rates worldwide are near to 3% and 2%, respectively. The median infection fatality calculated from serologic prevalence varies from 0.00% to 1.63% but is mostly estimated between 0.27% and 0.9%. These indexes are influenced by geographic location, socioeconomic status, sex, age, and health conditions, among others.
Collapse
|
65
|
Song S, Ma L, Xu X, Shi H, Li X, Liu Y, Hao P. Rapid screening and identification of viral pathogens in metagenomic data. BMC Med Genomics 2021; 14:289. [PMID: 34903237 PMCID: PMC8668262 DOI: 10.1186/s12920-021-01138-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Virus screening and viral genome reconstruction are urgent and crucial for the rapid identification of viral pathogens, i.e., tracing the source and understanding the pathogenesis when a viral outbreak occurs. Next-generation sequencing (NGS) provides an efficient and unbiased way to identify viral pathogens in host-associated and environmental samples without prior knowledge. Despite the availability of software, data analysis still requires human operations. A mature pipeline is urgently needed when thousands of viral pathogen and viral genome reconstruction samples need to be rapidly identified. RESULTS In this paper, we present a rapid and accurate workflow to screen metagenomics sequencing data for viral pathogens and other compositions, as well as enable a reference-based assembler to reconstruct viral genomes. Moreover, we tested our workflow on several metagenomics datasets, including a SARS-CoV-2 patient sample with NGS data, pangolins tissues with NGS data, Middle East Respiratory Syndrome (MERS)-infected cells with NGS data, etc. Our workflow demonstrated high accuracy and efficiency when identifying target viruses from large scale NGS metagenomics data. Our workflow was flexible when working with a broad range of NGS datasets from small (kb) to large (100 Gb). This took from a few minutes to a few hours to complete each task. At the same time, our workflow automatically generates reports that incorporate visualized feedback (e.g., metagenomics data quality statistics, host and viral sequence compositions, details about each of the identified viral pathogens and their coverages, and reassembled viral pathogen sequences based on their closest references). CONCLUSIONS Overall, our system enabled the rapid screening and identification of viral pathogens from metagenomics data, providing an important piece to support viral pathogen research during a pandemic. The visualized report contains information from raw sequence quality to a reconstructed viral sequence, which allows non-professional people to screen their samples for viruses by themselves (Additional file 1).
Collapse
Affiliation(s)
- Shiyang Song
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liangxiao Ma
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 20031, China
| | - Xintian Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Han Shi
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuanhua Liu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
66
|
Chen D, Sun J, Zhu J, Ding X, Lan T, Wang X, Wu W, Ou Z, Zhu L, Ding P, Wang H, Luo L, Xiang R, Wang X, Qiu J, Wang S, Li H, Chai C, Liang L, An F, Zhang L, Han L, Zhu Y, Wang F, Yuan Y, Wu W, Sun C, Lu H, Wu J, Sun X, Zhang S, Sahu SK, Liu P, Xia J, Zhang L, Chen H, Fang D, Zeng Y, Wu Y, Cui Z, He Q, Jiang S, Ma X, Feng W, Xu Y, Li F, Liu Z, Chen L, Chen F, Jin X, Qiu W, Wang T, Li Y, Xing X, Yang H, Xu Y, Hua Y, Liu Y, Liu H, Xu X. Single cell atlas for 11 non-model mammals, reptiles and birds. Nat Commun 2021; 12:7083. [PMID: 34873160 PMCID: PMC8648889 DOI: 10.1038/s41467-021-27162-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.
Collapse
Affiliation(s)
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiacheng Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangning Ding
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianming Lan
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Xiran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | | | - Zhihua Ou
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Peiwen Ding
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyu Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Xiang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoling Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaying Qiu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyou Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haimeng Li
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaochao Chai
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Langchao Liang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuyu An
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Le Zhang
- College of Wildlife Resources Northeast Forestry University, Harbin, 150040, China
| | - Lei Han
- College of Wildlife Resources Northeast Forestry University, Harbin, 150040, China
| | - Yixin Zhu
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | - Wendi Wu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Chengcheng Sun
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haorong Lu
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jihong Wu
- Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Xinghuai Sun
- Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Shenghai Zhang
- Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | | | - Ping Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jun Xia
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Lijing Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haixia Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Yuying Zeng
- BGI-Shenzhen, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiquan Wu
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1868, USA
| | - Zehua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qian He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | | | - Xiaoyan Ma
- Department of Biochemistry, University of Cambridge, Cambridge, CB21QW, UK
| | | | - Yan Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Fang Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tianjiao Wang
- Institute of Special Animal and Plant Sciences (ISAPS) of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yang Li
- Institute of Special Animal and Plant Sciences (ISAPS) of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiumei Xing
- Institute of Special Animal and Plant Sciences (ISAPS) of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Yanchun Xu
- College of Wildlife Resources Northeast Forestry University, Harbin, 150040, China
- College of Wildlife and Protected Areas, Northeast Forestry University, No. 26, Hexing Road, Xiangfang District, Harbin, 150040, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, 518083, Shenzhen, China.
| |
Collapse
|
67
|
Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, Li N, Guo Y, Li X, Shen X, Zhang Z, Shu F, Huang W, Li Y, Zhang Z, Chen RA, Wu YJ, Peng SM, Huang M, Xie WJ, Cai QH, Hou FH, Chen W, Xiao L, Shen Y. Author Correction: Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 2021; 600:E8-E10. [PMID: 34764480 PMCID: PMC8582334 DOI: 10.1038/s41586-021-03838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kangpeng Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Junqiong Zhai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Niu Zhou
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xu Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie-Jian Zou
- Guangdong Provincial Wildlife Rescue Center, Guangzhou, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaobing Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhipeng Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanfan Shu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui-Ai Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Shi-Ming Peng
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Mian Huang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Wei-Jun Xie
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Qin-Hui Cai
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Fang-Hui Hou
- Guangdong Provincial Wildlife Rescue Center, Guangzhou, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
68
|
Zarei M, Sahebi Vaighan N, Ziai SA. Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19. Immunopharmacol Immunotoxicol 2021; 43:633-643. [PMID: 34647511 PMCID: PMC8544669 DOI: 10.1080/08923973.2021.1988102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Pamplona J, Solano R, Soler C, Sabat M. Epidemiological approximation of the enteric manifestation and possible fecal-oral transmission in COVID-19: a preliminary systematic review. Eur J Gastroenterol Hepatol 2021; 33:e21-e29. [PMID: 32956179 DOI: 10.1097/meg.0000000000001934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recent appearance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has led to the publication of the first evidence on gastrointestinal symptoms (GIS), the possible enteric involvement of the virus and the detection of RNA in stool, with its possible implication in the fecal-oral transmission of coronavirus disease 2019 (COVID-19). We aimed to conduct a systematic review to describe the epidemiological scientific evidence on GIS, enteric involvement and fecal excretion of SARS-CoV-2 viral RNA and to discuss the possible fecal-oral transmission pathway of COVID-19.
Collapse
Affiliation(s)
| | | | - Cristina Soler
- Internal Medicine Service, Santa Caterina Hospital, Girona, Spain
| | - Miriam Sabat
- Gastroenterology Service, Santa Caterina Hospital, Girona
| |
Collapse
|
70
|
Tang X, Ying R, Yao X, Li G, Wu C, Tang Y, Li Z, Kuang B, Wu F, Chi C, Du X, Qin Y, Gao S, Hu S, Ma J, Liu T, Pang X, Wang J, Zhao G, Tan W, Zhang Y, Lu X, Lu J. Evolutionary analysis and lineage designation of SARS-CoV-2 genomes. Sci Bull (Beijing) 2021; 66:2297-2311. [PMID: 33585048 PMCID: PMC7864783 DOI: 10.1016/j.scib.2021.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022]
Abstract
The pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has caused immense global disruption. With the rapid accumulation of SARS-CoV-2 genome sequences, however, thousands of genomic variants of SARS-CoV-2 are now publicly available. To improve the tracing of the viral genomes' evolution during the development of the pandemic, we analyzed single nucleotide variants (SNVs) in 121,618 high-quality SARS-CoV-2 genomes. We divided these viral genomes into two major lineages (L and S) based on variants at sites 8782 and 28144, and further divided the L lineage into two major sublineages (L1 and L2) using SNVs at sites 3037, 14408, and 23403. Subsequently, we categorized them into 130 sublineages (37 in S, 35 in L1, and 58 in L2) based on marker SNVs at 201 additional genomic sites. This lineage/sublineage designation system has a hierarchical structure and reflects the relatedness among the subclades of the major lineages. We also provide a companion website (www.covid19evolution.net) that allows users to visualize sublineage information and upload their own SARS-CoV-2 genomes for sublineage classification. Finally, we discussed the possible roles of compensatory mutations and natural selection during SARS-CoV-2's evolution. These efforts will improve our understanding of the temporal and spatial dynamics of SARS-CoV-2's genome evolution.
Collapse
Affiliation(s)
- Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruochen Ying
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xinmin Yao
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Guanghao Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changcheng Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yiyuli Tang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhida Li
- Yuxi Rongjian Information Technology Co., Ltd., Yuxi 653100, China
| | - Bishan Kuang
- Yuxi Rongjian Information Technology Co., Ltd., Yuxi 653100, China
| | - Feng Wu
- Yuxi Rongjian Information Technology Co., Ltd., Yuxi 653100, China
| | - Changsheng Chi
- Yuxi Rongjian Information Technology Co., Ltd., Yuxi 653100, China
| | - Xiaoman Du
- Yuxi Rongjian Information Technology Co., Ltd., Yuxi 653100, China
| | - Yi Qin
- Yuxi Rongjian Information Technology Co., Ltd., Yuxi 653100, China
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources (SKLMR), The Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources (SKLMR), The Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juncai Ma
- The Microresource and Big Data Center, The Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xinghuo Pang
- Beijing Center for Disease Prevention and Control (CDC) & Research Center for Preventive Medicine of Beijing, Beijing 100013, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Xuemei Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
71
|
Peng MS, Li JB, Cai ZF, Liu H, Tang X, Ying R, Zhang JN, Tao JJ, Yin TT, Zhang T, Hu JY, Wu RN, Zhou ZY, Zhang ZG, Yu L, Yao YG, Shi ZL, Lu XM, Lu J, Zhang YP. The high diversity of SARS-CoV-2-related coronaviruses in pangolins alerts potential ecological risks. Zool Res 2021; 42:834-844. [PMID: 34766482 PMCID: PMC8645874 DOI: 10.24272/j.issn.2095-8137.2021.334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 11/07/2022] Open
Abstract
Understanding the zoonotic origin and evolution history of SARS-CoV-2 will provide critical insights for alerting and preventing future outbreaks. A significant gap remains for the possible role of pangolins as a reservoir of SARS-CoV-2 related coronaviruses (SC2r-CoVs). Here, we screened SC2r-CoVs in 172 samples from 163 pangolin individuals of four species, and detected positive signals in muscles of four Manis javanica and, for the first time, one M. pentadactyla. Phylogeographic analysis of pangolin mitochondrial DNA traced their origins from Southeast Asia. Using in-solution hybridization capture sequencing, we assembled a partial pangolin SC2r-CoV (pangolin-CoV) genome sequence of 22 895 bp (MP20) from the M. pentadactyla sample. Phylogenetic analyses revealed MP20 was very closely related to pangolin-CoVs that were identified in M. javanica seized by Guangxi Customs. A genetic contribution of bat coronavirus to pangolin-CoVs via recombination was indicated. Our analysis revealed that the genetic diversity of pangolin-CoVs is substantially higher than previously anticipated. Given the potential infectivity of pangolin-CoVs, the high genetic diversity of pangolin-CoVs alerts the ecological risk of zoonotic evolution and transmission of pathogenic SC2r-CoVs.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Jian-Bo Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Zheng-Fei Cai
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Hang Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruochen Ying
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Nan Zhang
- Molbreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Jia-Jun Tao
- Molbreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Jing-Yang Hu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Ru-Nian Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhong-Yin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhi-Gang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Yong-Gang Yao
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650201, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Xue-Mei Lu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China. E-mail:
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| |
Collapse
|
72
|
Sarker MT, Hasan AQF, Rafi MO, Hossain MJ, El-Mageed HRA, Elsapagh RM, Capasso R, Emran TB. A Comprehensive Overview of the Newly Emerged COVID-19 Pandemic: Features, Origin, Genomics, Epidemiology, Treatment, and Prevention. BIOLOGICS 2021; 1:357-383. [DOI: 10.3390/biologics1030021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The coronavirus disease 2019 (COVID-19), a life-threatening pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has resulted in massive destruction and is still continuously adding to its death toll. The advent of this global outbreak has not yet been confirmed; however, investigation for suitable prophylaxis against this lethal virus is being carried out by experts all around the globe. The SARS-CoV-2 belongs to the Coronaviridae superfamily, like the other previously occurring human coronavirus variants. To better understand a new virus variant, such as the SARS-CoV-2 delta variant, it is vital to investigate previous virus strains, including their genomic composition and functionality. Our study aimed at addressing the basic overview of the virus’ profile that may provide the scientific community with evidence-based insights into COVID-19. Therefore, this study accomplished a comprehensive literature review that includes the virus’ origin, classification, structure, life cycle, genome, mutation, epidemiology, and subsequent essential factors associated with host–virus interaction. Moreover, we summarized the considerable diagnostic measures, treatment options, including multiple therapeutic approaches, and prevention, as well as future directions that may reduce the impact and misery caused by this devastating pandemic. The observations and data provided here have been screened and accumulated through extensive literature study, hence this study will help the scientific community properly understand this new virus and provide further leads for therapeutic interventions.
Collapse
|
73
|
Zhu D, Lu L, Zhang Z, Qi D, Zhang M, O'Connor P, Wei F, Zhu YG. Insights into the roles of fungi and protist in the giant panda gut microbiome and antibiotic resistome. ENVIRONMENT INTERNATIONAL 2021; 155:106703. [PMID: 34139588 DOI: 10.1016/j.envint.2021.106703] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
The mammal gut is a rich reservoir of antibiotic resistance genes (ARGs), and the relationship between bacterial communities and ARGs has been widely studied. Despite ecological significance of microeukaryotes (fungi and protists), our understanding of their roles in the mammal gut microbiome and antibiotic resistome is still limited. Here, we used amplicon sequencing, metagenomic sequencing and high-throughput quantitative PCR to examine microbiomes and antibiotic resistomes of 41 giant panda fecal samples from individuals with different genders, ages, sampling sites and diet. Our results show that diverse protists inhabit in the giant panda gut ecosystem, dominated by consumers. Higher abundance of protistan consumers was detected in the elder compared to sub-adult and adult giant pandas. Diet is the main driving factor of variation in ARGs in the giant panda gut microbiome. Weighted correlation network analysis identified two key microbial modules from multitrophic communities, which all contributed to the variation in ARGs in the giant panda gut. Protists occupied an important position in the two modules which were dominated by fungal taxa. Deterministic processes made a more important contribution to microbial community assembly of the two modules than to bacterial, fungal and protistan communities. This study sheds new light on how key microbial modules contribute to the variation in ARGs, which is crucial in understanding dynamics of antibiotic resistome in the mammal gut, particularly endangered species.
Collapse
Affiliation(s)
- Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Zejun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Dunwu Qi
- Chengdu Research Base of Giant Panda Breeding, Chengdu 611081, China
| | - Mingchun Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Patrick O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide 5005, Australia
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
74
|
Drzewnioková P, Festa F, Panzarin V, Lelli D, Moreno A, Zecchin B, De Benedictis P, Leopardi S. Best Molecular Tools to Investigate Coronavirus Diversity in Mammals: A Comparison. Viruses 2021; 13:1975. [PMID: 34696405 PMCID: PMC8538982 DOI: 10.3390/v13101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Coronaviruses (CoVs) are widespread and highly diversified in wildlife and domestic mammals and can emerge as zoonotic or epizootic pathogens and consequently host shift from these reservoirs, highlighting the importance of veterinary surveillance. All genera can be found in mammals, with α and β showing the highest frequency and diversification. The aims of this study were to review the literature for features of CoV surveillance in animals, to test widely used molecular protocols, and to identify the most effective one in terms of spectrum and sensitivity. We combined a literature review with analyses in silico and in vitro using viral strains and archive field samples. We found that most protocols defined as pan-coronavirus are strongly biased towards α- and β-CoVs and show medium-low sensitivity. The best results were observed using our new protocol, showing LoD 100 PFU/mL for SARS-CoV-2, 50 TCID50/mL for CaCoV, 0.39 TCID50/mL for BoCoV, and 9 ± 1 log2 ×10-5 HA for IBV. The protocol successfully confirmed the positivity for a broad range of CoVs in 30/30 field samples. Our study points out that pan-CoV surveillance in mammals could be strongly improved in sensitivity and spectrum and propose the application of a new RT-PCR assay, which is able to detect CoVs from all four genera, with an optimal sensitivity for α-, β-, and γ-.
Collapse
Affiliation(s)
- Petra Drzewnioková
- Laboratory of Emerging Viral Zoonoses, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (P.D.); (F.F.); (B.Z.); (P.D.B.)
| | - Francesca Festa
- Laboratory of Emerging Viral Zoonoses, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (P.D.); (F.F.); (B.Z.); (P.D.B.)
| | - Valentina Panzarin
- Innovative Virology Laboratory, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Davide Lelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (D.L.); (A.M.)
| | - Ana Moreno
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (D.L.); (A.M.)
| | - Barbara Zecchin
- Laboratory of Emerging Viral Zoonoses, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (P.D.); (F.F.); (B.Z.); (P.D.B.)
| | - Paola De Benedictis
- Laboratory of Emerging Viral Zoonoses, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (P.D.); (F.F.); (B.Z.); (P.D.B.)
| | - Stefania Leopardi
- Laboratory of Emerging Viral Zoonoses, Research and Innovation Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy; (P.D.); (F.F.); (B.Z.); (P.D.B.)
| |
Collapse
|
75
|
Cavalcanti IDL, de Fátima Ramos Dos Santos Medeiros SM, Dos Santos Macêdo DC, Ferro Cavalcanti IM, de Britto Lira Nogueira MC. Nanocarriers in the Delivery of Hydroxychloroquine to the Respiratory System: An Alternative to COVID-19. Curr Drug Deliv 2021; 18:583-595. [PMID: 32860358 DOI: 10.2174/1567201817666200827110445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
In response to the global outbreak caused by SARS-CoV-2, this article aims to propose the development of nanosystems for the delivery of hydroxychloroquine in the respiratory system to the treatment of COVID-19. A descriptive literature review was conducted, using the descriptors "COVID-19", "Nanotechnology", "Respiratory Syndrome" and "Hydroxychloroquine", in the PubMed, ScienceDirect and SciElo databases. After analyzing the articles according to the inclusion and exclusion criteria, they were divided into 3 sessions: Coronavirus: definitions, classifications and epidemiology, pharmacological aspects of hydroxychloroquine and pharmaceutical nanotechnology in targeting of drugs. We used 131 articles published until July 18, 2020. Hydroxychloroquine seems to promote a reduction in viral load, in vivo studies, preventing the entry of SARS-CoV-2 into lung cells, and the safety of its administration is questioned due to the toxic effects that it can develop, such as retinopathy, hypoglycemia and even cardiotoxicity. Nanosystems for the delivery of drugs in the respiratory system may be a viable alternative for the administration of hydroxychloroquine, which may enhance the therapeutic effect of the drug with a consequent decrease in its toxicity, providing greater safety for implementation in the clinic in the treatment of COVID-19.
Collapse
|
76
|
Devaux CA, Pinault L, Delerce J, Raoult D, Levasseur A, Frutos R. Spread of Mink SARS-CoV-2 Variants in Humans: A Model of Sarbecovirus Interspecies Evolution. Front Microbiol 2021; 12:675528. [PMID: 34616371 PMCID: PMC8488371 DOI: 10.3389/fmicb.2021.675528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid spread of SARS-CoV-2 variants has quickly spanned doubts and the fear about their ability escape vaccine protection. Some of these variants initially identified in caged were also found in humans. The claim that these variants exhibited lower susceptibility to antibody neutralization led to the slaughter of 17 million minks in Denmark. SARS-CoV-2 prevalence tests led to the discovery of infected farmed minks worldwide. In this study, we revisit the issue of the circulation of SARS-CoV-2 variants in minks as a model of sarbecovirus interspecies evolution by: (1) comparing human and mink angiotensin I converting enzyme 2 (ACE2) and neuropilin 1 (NRP-1) receptors; (2) comparing SARS-CoV-2 sequences from humans and minks; (3) analyzing the impact of mutations on the 3D structure of the spike protein; and (4) predicting linear epitope targets for immune response. Mink-selected SARS-CoV-2 variants carrying the Y453F/D614G mutations display an increased affinity for human ACE2 and can escape neutralization by one monoclonal antibody. However, they are unlikely to lose most of the major epitopes predicted to be targets for neutralizing antibodies. We discuss the consequences of these results for the rational use of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
- Fondation IHU–Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Jérémy Delerce
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
| | | |
Collapse
|
77
|
Doody JS, Reid JA, Bilali K, Diaz J, Mattheus N. In the post-COVID-19 era, is the illegal wildlife trade the most serious form of trafficking? CRIME SCIENCE 2021; 10:19. [PMID: 34540528 PMCID: PMC8436868 DOI: 10.1186/s40163-021-00154-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/18/2021] [Indexed: 05/05/2023]
Abstract
Despite the immense impact of wildlife trafficking, comparisons of the profits, costs, and seriousness of crime consistently rank wildlife trafficking lower relative to human trafficking, drug trafficking and weapons trafficking. Using the published literature and current events, we make the case, when properly viewed within the context of COVID-19 and other zoonotic diseases transmitted from wildlife, that wildlife trafficking is the most costly and perhaps the most serious form of trafficking. Our synthesis should raise awareness of the seriousness of wildlife trafficking for humans, thereby inducing strategic policy decisions that boost criminal justice initiatives and resources to combat wildlife trafficking.
Collapse
Affiliation(s)
- J. Sean Doody
- Department of Integrative Biology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Joan A. Reid
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Klejdis Bilali
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Jennifer Diaz
- Department of Criminology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| | - Nichole Mattheus
- Department of Integrative Biology, University of South Florida-St. Petersburg Campus, 140 7th Ave. South, St. Petersburg, FL 33705 USA
| |
Collapse
|
78
|
Ghorbani A, Samarfard S, Eskandarzade N, Afsharifar A, Eskandari MH, Niazi A, Izadpanah K, Karbanowicz TP. Comparative phylogenetic analysis of SARS-CoV-2 spike protein-possibility effect on virus spillover. Brief Bioinform 2021; 22:bbab144. [PMID: 33885726 PMCID: PMC8083239 DOI: 10.1093/bib/bbab144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 has developed into a dramatic pandemic with tremendous global impact. The receptor-binding motif (RBM) region of the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to host angiotensin-converting enzyme 2 (ACE2) receptors for infection. As ACE2 receptors are highly conserved within vertebrate species, SARS-CoV-2 can infect significant animal species as well as human populations. An analysis of SARS-CoV-2 genotypes isolated from human and significant animal species was conducted to compare and identify mutation and adaptation patterns across different animal species. The phylogenetic data revealed seven distinct phylogenetic clades with no significant relationship between the clades and geographical locations. A high rate of variation within SARS-CoV-2 mink isolates implies that mink populations were infected before human populations. Positions of most single-nucleotide polymorphisms (SNPs) within the spike (S) protein of SARS-CoV-2 genotypes from the different hosts are mostly accumulated in the RBM region and highlight the pronounced accumulation of variants with mutations in the RBM region in comparison with other variants. These SNPs play a crucial role in viral transmission and pathogenicity and are keys in identifying other animal species as potential intermediate hosts of SARS-CoV-2. The possible roles in the emergence of new viral strains and the possible implications of these changes, in compromising vaccine effectiveness, deserve urgent considerations.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Samira Samarfard
- Queensland Biosciences Precinct, The University of Queensland, St Lucia 4072, Queensland, Australia
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Neda Eskandarzade
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Afsharifar
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Thomas P Karbanowicz
- Queensland Biosciences Precinct, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
79
|
Vittor AY, Laporta GZ, Sallum MAM, Walker RT. The COVID-19 crisis and Amazonia's indigenous people: Implications for conservation and global health. WORLD DEVELOPMENT 2021; 145:105533. [PMID: 36570383 PMCID: PMC9758534 DOI: 10.1016/j.worlddev.2021.105533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ecosystem health and zoonotic diseases are closely interwoven. Even as we grapple with the SARS-Coronavirus-2 pandemic, which may have its origins in wildlife, weakening environmental policies in the Brazilian Amazon are elevating the risk of additional zoonotic spillover events. We examine the links between deforestation and disease emergence in the Amazon, as illustrated by outbreaks of yellow fever virus, Venezuelan equine encephalitis virus, and Oropouche virus. It has been well established that in Brazil, indigenous territories exhibit lower rates of forest conversion and degradation than in areas designated for sustainable use. In this way, Amazonia's indigenous tribes promote public health while sustaining ecosystem services. However, indigenous land rights are under attack due to current policies enabling illegal land grabbing, mining and logging. Further adding to the existential struggle of indigenous tribes, malaria and SARS-Coronavirus-2 are wreaking havoc on these vulnerable populations. There is a critical need for protection of indigenous people's rights and health, as well as a sustained effort to support the study of mechanisms underlying anthropogenic land use change and zoonotic disease risk.
Collapse
Affiliation(s)
- Amy Y Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, FL, USA
| | - Gabriel Zorello Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC (FMABC), Fundação do ABC, Santo André, SP, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert T Walker
- Department of Geography, University of Florida, Gainesville, FL, USA
| |
Collapse
|
80
|
Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021; 13:1687. [PMID: 34578269 PMCID: PMC8473168 DOI: 10.3390/v13091687] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 has rapidly become a public health emergency of international concern. Although remarkable scientific achievements have been reached since the beginning of the pandemic, the knowledge behind this novel coronavirus, in terms of molecular and pathogenic characteristics and zoonotic potential, is still relatively limited. Today, there is a vaccine, or rather several vaccines, which, for the first time in the history of highly contagious infectious diseases that have plagued mankind, has been manufactured in just one year. Currently, four vaccines are licensed by regulatory agencies, and they use RNA or viral vector technologies. The positive effects of the vaccination campaign are being felt in many parts of the world, but the disappearance of this new infection is still far from being a reality, as it is also threatened by the presence of novel SARS-CoV-2 variants that could undermine the effectiveness of the vaccine, hampering the immunization control efforts. Indeed, the current findings indicate that SARS-CoV-2 is adapting to transmission in humans more efficiently, while further divergence from the initial archetype should be considered. In this review, we aimed to provide a collection of the current knowledge regarding the molecular, phylogenetic, and pathogenetic insights into SARS-CoV-2. The most recent findings obtained with respect to the impact of novel emerging SARS-CoV-2 variants as well as the development and implementation of vaccines are highlighted.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Nicole Barp
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Altea Gallerani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.M.); (G.D.M.); (C.L.); (N.B.); (A.G.); (M.T.)
| |
Collapse
|
81
|
Islam MS, Hasib FMY, Nath C, Ara J, Nu MS, Fazal MA, Chowdhury S. Coronavirus disease 2019 and its potential animal reservoirs: A review. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.171-181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the 21st century, the world has been plagued by coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus of the family Coronaviridae epidemiologically suspected to be linked to a wet market in Wuhan, China. The involvement of wildlife and wet markets with the previous outbreaks simultaneously has been brought into sharp focus. Although scientists are yet to ascertain the host range and zoonotic potential of SARS-CoV-2 rigorously, information about its two ancestors, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), is a footprint for research on COVID-19. A 96% genetic similarity with bat coronaviruses and SARS-CoV-2 indicates that the bat might be a potential reservoir of SARS-CoV-2 just like SARS-CoV and MERS-CoV, where civets and dromedary camels are considered the potential intermediate host, respectively. Perceiving the genetic similarity between pangolin coronavirus and SARS-CoV-2, many scientists also have given the scheme that the pangolin might be the intermediate host. The involvement of SARS-CoV-2 with other animals, such as mink, snake, and turtle has also been highlighted in different research articles based on the interaction between the key amino acids of S protein in the receptor-binding domain and angiotensin-converting enzyme II (ACE2). This study highlights the potential animal reservoirs of SARS-CoV-2 and the role of wildlife in the COVID-19 pandemic. Although different causes, such as recurring viral genome recombination, wide genetic assortment, and irksome food habits, have been blamed for this emergence, basic research studies and literature reviews indicate an enormous consortium between humans and animals for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Md. Sirazul Islam
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - F. M. Yasir Hasib
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Chandan Nath
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Jahan Ara
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Mong Sing Nu
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md. Abul Fazal
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
82
|
Cotten M, Robertson DL, Phan MVT. Unique protein features of SARS-CoV-2 relative to other Sarbecoviruses. Virus Evol 2021; 7:veab067. [PMID: 34527286 PMCID: PMC8385934 DOI: 10.1093/ve/veab067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Defining the unique properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein sequences has potential to explain the range of Coronavirus Disease 2019 severity. To achieve this we compared proteins encoded by all Sarbecoviruses using profile Hidden Markov Model similarities to identify protein features unique to SARS-CoV-2. Consistent with previous reports, a small set of bat- and pangolin-derived Sarbecoviruses show the greatest similarity to SARS-CoV-2 but are unlikely to be the direct source of SARS-CoV-2. Three proteins (nsp3, spike, and orf9) showed regions differing between the bat Sarbecoviruses and SARS-CoV-2 and indicate virus protein features that might have evolved to support human infection and/or transmission. Spike analysis identified all regions of the protein that have tolerated change and revealed that the current SARS-CoV-2 variants of concern have sampled only a fraction (∼31 per cent) of the possible spike domain changes which have occurred historically in Sarbecovirus evolution. This result emphasises the evolvability of these coronaviruses and the potential for further change in virus replication and transmission properties over the coming years.
Collapse
Affiliation(s)
- Matthew Cotten
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - My V T Phan
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda
| |
Collapse
|
83
|
Chazal N. Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes? Front Microbiol 2021; 12:682603. [PMID: 34335504 PMCID: PMC8317507 DOI: 10.3389/fmicb.2021.682603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that emerged in late 2019, is the etiologic agent of the current "coronavirus disease 2019" (COVID-19) pandemic, which has serious health implications and a significant global economic impact. Of the seven human coronaviruses, all of which have a zoonotic origin, the pandemic SARS-CoV-2, is the third emerging coronavirus, in the 21st century, highly pathogenic to the human population. Previous human coronavirus outbreaks (SARS-CoV-1 and MERS-CoV) have already provided several valuable information on some of the common molecular and cellular mechanisms of coronavirus infections as well as their origin. However, to meet the new challenge caused by the SARS-CoV-2, a detailed understanding of the biological specificities, as well as knowledge of the origin are crucial to provide information on viral pathogenicity, transmission and epidemiology, and to enable strategies for therapeutic interventions and drug discovery. Therefore, in this review, we summarize the current advances in SARS-CoV-2 knowledges, in light of pre-existing information of other recently emerging coronaviruses. We depict the specificity of the immune response of wild bats and discuss current knowledge of the genetic diversity of bat-hosted coronaviruses that promotes viral genome expansion (accessory gene acquisition). In addition, we describe the basic virology of coronaviruses with a special focus SARS-CoV-2. Finally, we highlight, in detail, the current knowledge of genes and accessory proteins which we postulate to be the major keys to promote virus adaptation to specific hosts (bat and human), to contribute to the suppression of immune responses, as well as to pathogenicity.
Collapse
Affiliation(s)
- Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
84
|
Hassanin A, Tu VT, Curaudeau M, Csorba G. Inferring the ecological niche of bat viruses closely related to SARS-CoV-2 using phylogeographic analyses of Rhinolophus species. Sci Rep 2021; 11:14276. [PMID: 34253798 PMCID: PMC8275577 DOI: 10.1038/s41598-021-93738-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023] Open
Abstract
The Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is the causal agent of the coronavirus disease 2019 (COVID-19) pandemic. To date, viruses closely related to SARS-CoV-2 have been reported in four bat species: Rhinolophus acuminatus, Rhinolophus affinis, Rhinolophus malayanus, and Rhinolophus shameli. Here, we analysed 343 sequences of the mitochondrial cytochrome c oxidase subunit 1 gene (CO1) from georeferenced bats of the four Rhinolophus species identified as reservoirs of viruses closely related to SARS-CoV-2. Haplotype networks were constructed in order to investigate patterns of genetic diversity among bat populations of Southeast Asia and China. No strong geographic structure was found for the four Rhinolophus species, suggesting high dispersal capacity. The ecological niche of bat viruses closely related to SARS-CoV-2 was predicted using the four localities in which bat viruses were recently discovered and the localities where bats showed the same CO1 haplotypes than virus-positive bats. The ecological niche of bat viruses related to SARS-CoV was deduced from the localities where bat viruses were previously detected. The results show that the ecological niche of bat viruses related to SARS-CoV2 includes several regions of mainland Southeast Asia whereas the ecological niche of bat viruses related to SARS-CoV is mainly restricted to China. In agreement with these results, human populations in Laos, Vietnam, Cambodia, and Thailand appear to be much less affected by the COVID-19 pandemic than other countries of Southeast Asia. In the climatic transitional zone between the two ecological niches (southern Yunnan, northern Laos, northern Vietnam), genomic recombination between highly divergent viruses is more likely to occur. Considering the limited data and the risk of recombinant bat-CoVs emergence as the source of new pandemics in humans, the bat populations in these regions should be under surveillance.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Institut de Systématique, Évolution, Biodiversité (ISYEB), SU, MNHN, CNRS, EPHE, UA, Sorbonne Université, Paris, France.
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Manon Curaudeau
- Institut de Systématique, Évolution, Biodiversité (ISYEB), SU, MNHN, CNRS, EPHE, UA, Sorbonne Université, Paris, France
| | - Gabor Csorba
- Department of Zoology, Hungarian Natural History Museum, Baross u. 13, Budapest, H-1088, Hungary
| |
Collapse
|
85
|
Shi Y, Tao J, Li B, Shen X, Cheng J, Liu H. The Gut Viral Metagenome Analysis of Domestic Dogs Captures Snapshot of Viral Diversity and Potential Risk of Coronavirus. Front Vet Sci 2021; 8:695088. [PMID: 34307533 PMCID: PMC8292670 DOI: 10.3389/fvets.2021.695088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
The close relations between dogs (Canis lupus familiaris) and humans lay a foundation for cross species transmissions of viruses. The co-existence of multiplex viruses in the host accelerate viral variations. For effective prediction and prevention of potential epidemic or even pandemic, the metagenomics method was used to investigate the gut virome status of 45 domestic healthy dogs which have extensive contact with human beings. A total of 248.6 GB data (505, 203, 006 valid reads, 150 bp in length) were generated and 325, 339 contigs, which were best matched with viral genes, were assembled from 46, 832, 838 reads. In the aggregate, 9,834 contigs (3.02%) were confirmed for viruses. The top 30 contigs with the most reads abundance were mapped to DNA virus families Circoviridae, Parvoviridae and Herpesviridae; and RNA virus families Astroviridae, Coronaviridae and Picornaviridae, respectively. Numerous sequences were assigned to animal virus families of Astroviridae, Coronaviridae, Circoviridae, etc.; and phage families of Microviridae, Siphoviridae, Ackermannviridae, Podoviridae, Myoviridae and the unclassified phages. Further, several sequences were homologous with the insect and plant viruses, which reflects the diet and habitation of dogs. Significantly, canine coronavirus was uniquely identified in all the samples with high abundance, and the phylogenetic analysis therefore showed close relationship with the human coronavirus strain 229E and NL63, indicating the potential risk of canine coronavirus to infect humans by obtaining the ability of cross-species transmission. This study emphasizes the high detection frequency of virus harbored in the enteric tract of healthy contacted animal, and expands the knowledge of the viral diversity and the spectrum for further disease-association studies, which is meaningful for elucidating the epidemiological and biological role of companion animals in public health.
Collapse
Affiliation(s)
- Ying Shi
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Jie Tao
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Benqiang Li
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Xiaohui Shen
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinghua Cheng
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| | - Huili Liu
- Department of Animal Infectious Diseases, Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, China.,Shanghai Engineering Research Center of Pig Breeding, Shanghai, China
| |
Collapse
|
86
|
Gorshkov K, Vasquez DM, Chiem K, Ye C, Tran BN, de la Torre JC, Moran T, Chen CZ, Martinez-Sobrido L, Zheng W. A SARS-CoV-2 nucleocapsid protein TR-FRET assay amenable to high-throughput screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34268508 PMCID: PMC8282096 DOI: 10.1101/2021.07.03.450938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drug development for specific antiviral agents against coronavirus disease 2019 (COVID-19) is still an unmet medical need as the pandemic continues to spread globally. Although huge efforts for drug repurposing and compound screens have put forth, only few compounds remain in late stage clinical trials. New approaches and assays are needed to accelerate COVID-19 drug discovery and development. Here we report a time-resolved fluorescence resonance energy transfer-based assay that detects the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (NP) produced in infected cells. It uses two specific anti-NP monoclonal antibodies (MAbs) conjugated to donor and acceptor fluorophores that produces a robust ratiometric signal for high throughput screening of large compound collections. Using this assay, we measured a half maximal inhibitory concentration (IC50) for Remdesivir of 9.3 μM against infection with SARS-CoV-2 USA/WA1/2020 (WA-1). The assay also detected SARS-CoV-2 South African (Beta, β), Brazilian/Japanese variant P.1 (Gamma, γ), and Californian (Epsilon, ε), variants of concern or interest (VoC). Therefore, this homogeneous SARS-CoV-2 NP detection assay can be used for accelerating lead compound discovery for drug development and for evaluating drug efficacy against emerging SARS-CoV-2 VoC.
Collapse
|
87
|
Krithika C, Srinath S, Marlecha RB, Sridhar C, Sreedevi J, Jeddy N, Vinod Kumar AC. Knowledge, attitude and practice of dental practitioners, interns and post-graduate trainees about COVID-19 pandemic in Chennai. Indian J Dent Res 2021; 32:330-335. [PMID: 35229772 DOI: 10.4103/ijdr.ijdr_436_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Coronavirus disease-2019 COVID-19) pandemic has been sweeping around the globe and the cases have been reported in India since the second week of March, with Chennai being one of the most affected cities. Healthcare professionals, particularly the dental personnel have a higher risk of infection due to close face-to-face contact and the risk of inhalation of aerosolised particles. Aim The aim of this study was to assess the knowledge, attitude and practice about COVID-19 among interns, post-graduate trainees and dental practitioners. Material and Methods A cross-sectional survey was conducted using Google forms among three groups: interns, post-graduate trainees and dental practitioners. Data obtained was analysed by Chi-square test, Kruskal-Wallis and post hoc test using SPSS IBM software. Results Of total score of 9 for knowledge-based questions, the score obtained by interns, post-graduate trainees and practitioners were 7.2, 7.2 and 7.5, respectively, with no statistically significant difference among the groups (P = 0.24). Of total score of 4 for attitude-based questions, the score obtained by interns, post-graduate trainees and practitioners were 1.6, 2.0, and 1.9, respectively, with statistically significant difference among the groups (0.009). Of total score of 7 for practice-based questions, the score obtained by interns, post-graduate trainees and practitioners were 3.2, 3.3, and 3.1, respectively, with no statistically significant difference among them (P = 0.63). Conclusion Though the knowledge about COVID-19 appeared adequate, the attitude and practice component needs improvement. Continuing dental education programs and webinars can be conducted to update the dental professionals about the protocols to be followed during COVID-19 pandemic.
Collapse
Affiliation(s)
- Chandrasekaran Krithika
- Department of Oral Medicine and Radiology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Srithi Srinath
- Department of Oral Medicine and Radiology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - R Bharath Marlecha
- Department of Oral Medicine and Radiology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Chitathoor Sridhar
- Department of Internal Medicine, Government Stanley Medical College, Chennai, Tamil Nadu, India
| | - J Sreedevi
- Department of Oral Medicine and Radiology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Nadeem Jeddy
- Department of Oral Pathology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| | - A C Vinod Kumar
- Department of Oral Medicine and Radiology, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
88
|
Roy S, Sharma B, Mazid MI, Akhand RN, Das M, Marufatuzzahan M, Chowdhury TA, Azim KF, Hasan M. Identification and host response interaction study of SARS-CoV-2 encoded miRNA-like sequences: an in silico approach. Comput Biol Med 2021; 134:104451. [PMID: 34020131 PMCID: PMC8078050 DOI: 10.1016/j.compbiomed.2021.104451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
COVID-19, a global pandemic caused by an RNA virus named SARS-CoV-2 has brought the world to a standstill in terms of infectivity, casualty, and commercial plummet. RNA viruses can encode microRNAs (miRNAs) capable of modulating host gene expression, and with that notion, we aimed to predict viral miRNA like sequences of MERS-CoV, SARS-CoV and SARS-CoV-2, analyze sequence reciprocity and investigate SARS-CoV-2 encoded potential miRNA-human genes interaction using bioinformatics tools. In this study, we retrieved 206 SARS-CoV-2 genomes, executed phylogenetic analysis, and the selected reference genome (MT434792.1) exhibited about 99% similarities among the retrieved genomes. We predicted 402, 137, and 85 putative miRNAs of MERS-CoV (NC_019843.3), SARS-CoV (NC_004718.3), and SARS-CoV-2 (MT434792.1) genome, respectively. Sequence similarity was analyzed among 624 miRNAs which revealed that the predicted miRNAs of SARS-CoV-2 share a cluster with the clad of miRNAs from MERS-CoV and SARS-CoV. Only SARS-CoV-2 derived 85 miRNAs were encountered for target prediction and 29 viral miRNAs seemed to target 119 human genes. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis suggested the involvement of respective genes in various pathways and biological processes. Finally, we focused on eight putative miRNAs influencing 14 genes that are involved in the adaptive hypoxic response, neuroinvasion and hormonal regulation, and tumorigenic progression in patients with COVID-19. SARS-CoV-2 encoded miRNAs may cause misexpression of some critical regulators and facilitate viral neuroinvasion, altered hormonal axis, and tumorigenic events in the human host. However, these propositions need validation from future studies.
Collapse
Affiliation(s)
- Sawrab Roy
- Department of Microbiology and Immunology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Binayok Sharma
- Department of Medicine, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | | | - Rubaiat Nazneen Akhand
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Moumita Das
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | | | - Tanjia Afrin Chowdhury
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh,Corresponding author. Department of Pharmaceuticals and Industrial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
89
|
Li Z, Jiang J, Ruan X, Tong Y, Xu S, Han L, Xu J. The zoonotic and natural foci characteristics of SARS-CoV-2. JOURNAL OF BIOSAFETY AND BIOSECURITY 2021; 3:51-55. [PMID: 34189426 PMCID: PMC8221912 DOI: 10.1016/j.jobb.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
The origin of SARS-CoV-2 is still an unresolved mystery. In this study, we systematically reviewed the main research progress of wild animals carrying virus highly homologous to SARS-CoV-2 and analyzed the natural foci characteristics of SARS-CoV-2. The complexity of SARS-CoV-2 origin in wild animals and the possibility of SARS-CoV-2 long-term existence in human populations are also discussed. The joint investigation of corona virus carried by wildlife, as well as the ecology and patho-ecology of bats and other wildlife, are key measures to further clarify the characteristics of natural foci of SARS-CoV-2 and actively defend against future outbreaks of emerging zoonotic diseases.
Collapse
Affiliation(s)
- Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Xiangdong Ruan
- Academy of Forest Inventory and Planning, State Forestry and Grassland Administration, Beijing 100714, PR China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shuai Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| |
Collapse
|
90
|
Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, Oyewunmi OD, Camargo C, Nikpour B, Armanfard N, Sagan SM, Jahanshahi-Anbuhi S. Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clin Microbiol Rev 2021; 34:e00228-20. [PMID: 33980687 PMCID: PMC8142517 DOI: 10.1128/cmr.00228-20] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory disease coronavirus 2 (SARS-CoV-2), has led to millions of confirmed cases and deaths worldwide. Efficient diagnostic tools are in high demand, as rapid and large-scale testing plays a pivotal role in patient management and decelerating disease spread. This paper reviews current technologies used to detect SARS-CoV-2 in clinical laboratories as well as advances made for molecular, antigen-based, and immunological point-of-care testing, including recent developments in sensor and biosensor devices. The importance of the timing and type of specimen collection is discussed, along with factors such as disease prevalence, setting, and methods. Details of the mechanisms of action of the various methodologies are presented, along with their application span and known performance characteristics. Diagnostic imaging techniques and biomarkers are also covered, with an emphasis on their use for assessing COVID-19 or monitoring disease severity or complications. While the SARS-CoV-2 literature is rapidly evolving, this review highlights topics of interest that have occurred during the pandemic and the lessons learned throughout. Exploring a broad armamentarium of techniques for detecting SARS-CoV-2 will ensure continued diagnostic support for clinicians, public health, and infection prevention and control for this pandemic and provide advice for future pandemic preparedness.
Collapse
Affiliation(s)
- Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
- Department of Mechanical, Industrial, and Aerospace Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Jason J LeBlanc
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Oyejide Damilola Oyewunmi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| | - Carolina Camargo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Bahareh Nikpour
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
| | - Narges Armanfard
- Department of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
- Mila-Quebec AI Institute, Montréal, Québec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
91
|
Shang Z, Chan SY, Liu WJ, Li P, Huang W. Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infect Dis 2021; 7:1369-1388. [PMID: 33296169 PMCID: PMC7737536 DOI: 10.1021/acsinfecdis.0c00646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 outbreak that emerged at the end of 2019 has affected more than 58 million people with more than 1.38 million deaths and has had an incalculable impact on the world . Extensive prevention and treatment measures have been implemented since the pandemic. In this Review, we summarize current understanding on the source, transmission characteristics, and pathogenic mechanism of SARS-CoV-2. We also detail the recent development of diagnostic methods and potential treatment strategies of COVID-19 with focus on the ongoing clinical trials of antibodies, vaccines, and inhibitors for combating the emerging coronavirus.
Collapse
Affiliation(s)
- Zifang Shang
- Frontiers Science Center for Flexible Electronics
(FSCFE), Xian Institute of Flexible Electronics (IFE) & Xi’an Institute of
Biomedical Materials and Engineering (IBME), Northwestern Polytechnical
University (NPU), Xi’an 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics
(FSCFE), Xian Institute of Flexible Electronics (IFE) & Xi’an Institute of
Biomedical Materials and Engineering (IBME), Northwestern Polytechnical
University (NPU), Xi’an 710072, China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute
for Viral Disease Control and Prevention, Chinese Center for Disease Control
and Prevention, 102206 Beijing, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics
(FSCFE), Xian Institute of Flexible Electronics (IFE) & Xi’an Institute of
Biomedical Materials and Engineering (IBME), Northwestern Polytechnical
University (NPU), Xi’an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
(FSCFE), Xian Institute of Flexible Electronics (IFE) & Xi’an Institute of
Biomedical Materials and Engineering (IBME), Northwestern Polytechnical
University (NPU), Xi’an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) &
Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University
(NanjingTech), Nanjing 211816, China
- Key Laboratory for Organic Electronics and Information
Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing
University of Posts and Telecommunications (NUPT), Nanjing 210023,
China
| |
Collapse
|
92
|
Liu P, Jiang JZ, Wan XF, Hua Y, Li L, Zhou J, Wang X, Hou F, Chen J, Zou J, Chen J. Correction: Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog 2021; 17:e1009664. [PMID: 34106988 PMCID: PMC8189448 DOI: 10.1371/journal.ppat.1009664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
93
|
Abdel-Moneim AS, Abdelwhab EM, Memish ZA. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021; 558:1-12. [PMID: 33691216 PMCID: PMC7898979 DOI: 10.1016/j.virol.2021.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 is a novel coronavirus, spread among humans, and to date, more than 100 million of laboratory-confirmed cases have been reported worldwide. The virus demonstrates 96% similarity to a coronavirus from a horseshoe bat and most probably emerged from a spill over from bats or wild animal(s) to humans. Currently, two variants are circulating in the UK and South Africa and spread to many countries around the world. The impact of mutations on virus replication, virulence and transmissibility should be monitored carefully. Current data suggest recurrent infection with SARS-CoV-2 correlated to the level of neutralising antibodies and with sustained memory responses following infection. Recently, remdesivir was FDA approved for treatment of COVID-19, however many potential antivirals are currently in different clinical trials. Clinical data and experimental studies indicated that licenced vaccines are helpful in controlling the disease. However, the current vaccines should be evaluated against the emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Microbiology Department, Virology Division, College of Medicine, Taif University, Al-Taif, Saudi Arabia.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ziad A Memish
- Research & Innovation Center, King Saud Medical City, Ministry of Health and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
94
|
Kadioglu O, Saeed M, Greten HJ, Efferth T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med 2021; 133:104359. [PMID: 33845270 DOI: 10.2471/blt.20.255943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 05/22/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2'-o-ribose methyltransferase). Supported by the supercomputer MOGON, candidate compounds were predicted as presumable SARS-CoV-2 inhibitors. Interestingly, several approved drugs against hepatitis C virus (HCV), another enveloped (-) ssRNA virus (paritaprevir, simeprevir and velpatasvir) as well as drugs against transmissible diseases, against cancer, or other diseases were identified as candidates against SARS-CoV-2. This result is supported by reports that anti-HCV compounds are also active against Middle East Respiratory Virus Syndrome (MERS) coronavirus. The candidate compounds identified by us may help to speed up the drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
95
|
Deigin Y, Segreto R. SARS-CoV-2's claimed natural origin is undermined by issues with genome sequences of its relative strains: Coronavirus sequences RaTG13, MP789 and RmYN02 raise multiple questions to be critically addressed by the scientific community. Bioessays 2021; 43:e2100015. [PMID: 34046923 PMCID: PMC8209872 DOI: 10.1002/bies.202100015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
RaTG13, MP789, and RmYN02 are the strains closest to SARS‐CoV‐2, and their existence came to light only after the start of the pandemic. Their genomes have been used to support a natural origin of SARS‐CoV‐2 but after a close examination all of them exhibit several issues. We specifically address the presence in RmYN02 and closely related RacCSxxx strains of a claimed natural PAA/PVA amino acid insertion at the S1/S2 junction of their spike protein at the same position where the PRRA insertion in SARS‐CoV‐2 has created a polybasic furin cleavage site. We show that RmYN02/RacCSxxx instead of the claimed insertion carry a 6‐nucleotide deletion in the region and that the 12‐nucleotide insertion in SARS‐CoV‐2 remains unique among Sarbecoviruses. Also, our analysis of RaTG13 and RmYN02's metagenomic datasets found unexpected reads which could indicate possible contamination. Because of their importance to inferring SARS‐CoV‐2′s origin, we call for a careful reevaluation of RaTG13, MP789 and RmYN02 sequencing records and assembly methods.
Collapse
Affiliation(s)
- Yuri Deigin
- Youthereum Genetics Inc., Toronto, Ontario, Canada
| | - Rossana Segreto
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
96
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
97
|
Kaina B. On the Origin of SARS-CoV-2: Did Cell Culture Experiments Lead to Increased Virulence of the Progenitor Virus for Humans? In Vivo 2021; 35:1313-1326. [PMID: 33910809 DOI: 10.21873/invivo.12384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
We are currently in a rapidly expanding pandemic of the SARS-CoV-2 virus, which originated in the city of Wuhan in central China. The disease COVID-19 is now spread worldwide and has tremendous socio-economic consequences. The origin of the virus can be reconstructed through epidemiological studies and, even more so, from genome comparisons. How the evolution of the virus and the transition to humans might have happened is the subject of much speculation. It is considered certain that the virus is of animal origin and very likely passed from bats to humans in a zoonotic event. An intermediate host was postulated, but many SARS-like bat viruses have the ability to infect human cells directly, which has been shown experimentally by scientists in the Wuhan Institute of Virology using collected specimens containing virus material from horseshoe bats. The propagation of SARS-like bat viruses in cell culture allowed experiments aimed at increasing the infectivity of the virus and adaptation to human cells. This article summarizes the unique properties of SARS-CoV-2 and focusses on a specific sequence encoding the spike protein. Possible scenarios of virus evolution are discussed, with particular emphasis on the hypothesis that the virus could have emerged unintentionally through routine culture or gain-of-function experiments in a laboratory, where it was optimally adapted to human cells and caused cryptic infections among workers who finally spread the virus causing the pandemic.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
98
|
Yang R, Peng J, Zhai J, Xiao K, Zhang X, Li X, Chen X, Chen ZJ, Holmes EC, Irwin DM, Shan F, Shen X, Chen W, Shen Y. Pathogenicity and transmissibility of a novel respirovirus isolated from a Malayan pangolin. J Gen Virol 2021; 102. [PMID: 33843572 DOI: 10.1099/jgv.0.001586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification of SARS-CoV-2-like viruses in Malayan pangolins (Manis javanica) has focused attention on these endangered animals and the viruses they carry. We successfully isolated a novel respirovirus from the lungs of a dead Malayan pangolin. Similar to murine respirovirus, the full-length genome of this novel virus was 15 384 nucleotides comprising six genes in the order 3'-(leader)-NP-P-M-F-HN-l-(trailer)-5'. Phylogenetic analysis revealed that this virus belongs to the genus Respirovirus and is most closely related to murine respirovirus. Notably, animal infection experiments indicated that the pangolin virus is highly pathogenic and transmissible in mice, with inoculated mice having variable clinical symptoms and a fatality rate of 70.37 %. The virus was found to replicate in most tissues with the exception of muscle and heart. Contact transmission of the virus was 100 % efficient, although the mice in the contact group displayed milder symptoms, with the virus mainly being detected in the trachea and lungs. The isolation of a novel respirovirus from the Malayan pangolin provides new insight into the evolution and distribution of this important group of viruses and again demonstrates the potential infectious disease threats faced by endangered pangolins.
Collapse
Affiliation(s)
- Rou Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.,Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinyu Peng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Junqiong Zhai
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China
| | - Kangpeng Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xu Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaobing Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoyuan Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Zu-Jin Chen
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - David M Irwin
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S 1A8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Fen Shan
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Wu Chen
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, PR China
| |
Collapse
|
99
|
Chang YC, Lin ZY, Lin YX, Lin KH, Chan FT, Hsiao ST, Liao JW, Chiou HY. Canine Parvovirus Infections in Taiwanese Pangolins ( Manis pentadactyla pentadactyla). Vet Pathol 2021; 58:743-750. [PMID: 33866880 DOI: 10.1177/03009858211002198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Canine parvovirus type 2 (CPV-2) is among the most important and highly contagious pathogens that cause enteric or systemic infections in domestic and nondomestic carnivores. However, the spillover of CPV-2 to noncarnivores is rarely mentioned. Taiwanese pangolins (Manis pentadactyla pentadactyla) are threatened due to habitat fragmentation and prevalent animal trafficking. Interactions between Taiwanese pangolins, humans, and domestic animals have become more frequent in recent years. However, information about the susceptibility of pangolins to common infectious agents of domestic animals has been lacking. From October 2017 to June 2019, 4 pangolins that were rescued and treated in wildlife rescue centers in central and northern Taiwan presented with gastrointestinal signs. Gross and histopathological examination revealed the main pathologic changes to be necrotic enteritis with involvement of the crypts in all intestinal segments in 2 pangolins. By immunohistochemistry for CPV-2, there was positive labeling of cryptal epithelium throughout the intestine, and immunolabeling was also present in epidermal cells adjacent to a surgical amputation site, and in mononuclear cells in lymphoid tissue. The other 2 pangolins had mild enteritis without crypt involvement, and no immunolabeling was detected. The nucleic acid sequences of polymerase chain reaction (PCR) amplicons from these 4 pangolins were identical to a Chinese CPV-2c strain from domestic dogs. Quantitative PCR revealed a higher ratio of CPV-2 nucleic acid to internal control gene in the 2 pangolins with severe intestinal lesions and positive immunoreactivity. Herein, we present evidence of CPV-2 infections in pangolins.
Collapse
Affiliation(s)
| | - Zhi Yi Lin
- 34916National Chung Hsing University, Taichung
| | - Yan Xiu Lin
- 34916National Chung Hsing University, Taichung
| | - Kuei Hsien Lin
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | - Fang Tse Chan
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | - Shun Ting Hsiao
- Endemic Species Research Institute, 56086Council of Agriculture, Chichi
| | | | | |
Collapse
|
100
|
Godoy MG, Kibenge MJT, Kibenge FSB. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 536:736460. [PMID: 33564203 PMCID: PMC7860939 DOI: 10.1016/j.aquaculture.2021.736460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 05/06/2023]
Abstract
Outbreaks of COVID-19 (coronavirus disease 2019) have been reported in workers in fish farms and fish processing plants arising from person-to-person transmission, raising concerns about aquatic animal food products' safety. A better understanding of such incidents is important for the aquaculture industry's sustainability, particularly with the global trade in fresh and frozen aquatic animal food products where contaminating virus could survive for some time. Despite a plethora of COVID-19-related scientific publications, there is a lack of reports on the risk of contact with aquatic food animal species or their products. This review aimed to examine the potential for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) contamination and the potential transmission via aquatic food animals or their products and wastewater effluents. The extracellular viability of SARS-CoV-2 and how the virus is spread are reviewed, supporting the understanding that contaminated cold-chain food sources may introduce SAR-CoV-2 via food imports although the virus is unlikely to infect humans through consumption of aquatic food animals or their products or drinking water; i.e., SARS-CoV-2 is not a foodborne virus and should not be managed as such but instead through strong, multifaceted public health interventions including physical distancing, rapid contact tracing, and testing, enhanced hand and respiratory hygiene, frequent disinfection of high-touch surfaces, isolation of infected workers and their contacts, as well as enhanced screening protocols for international seafood trade.
Collapse
Affiliation(s)
- Marcos G Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt, Chile
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Sede De La Patagonia, Lago Panguipulli 1390, Puerto Montt, 5480000, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Chile
| | - Molly J T Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| | - Frederick S B Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| |
Collapse
|