51
|
Won G, Lee JH. Antigenic and functional profiles of a Lawsonia intracellularis protein that shows a flagellin-like trait and its immuno-stimulatory assessment. Vet Res 2018; 49:17. [PMID: 29448958 PMCID: PMC5815190 DOI: 10.1186/s13567-018-0515-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
The obligate intracellular Lawsonia intracellularis (LI), the etiological agent of proliferative enteropathy (PE), is an economically important disease in the swine industry. Due to extreme difficulty of in vitro culture of the pathogen, molecular characterization of protein components of LI that are targets of the immune system, is difficult; thus, the scientific evidence to drive the development of preventive measures is lacking. In this work, we investigated the antigenic and functional characteristics of a putative flagellar-associated protein, LI0570, using in silico computational approaches for epitope prediction and an in vitro protein-based molecular assay. The amino acid sequence of LI0570 exhibited similarities to flagellar-associated proteins in four different bacterial strains. The presence of B cell linear confirmative epitopes of the protein predicted by a bioinformatics tool was validated by western blot analysis using anti-LI mouse hyperimmune serum, which implied that LI0570 induced production of antigen-specific antibodies in vivo. Further, TLR5-stimulating activity and IL-8 cytokine expression produced via downstream signaling were observed in HEK-Blue™-hTLR5 cells stimulated with LI0570. This result indicates that the LI0570 protein can trigger an innate immune response followed by a T-cell-related adaptive immune response in an infected host. Collectively, the data presented here support that the LI0570 protein which shows the antigenic potential could be a useful component of a recombinant vaccine against PE, providing progress toward an effective prevention strategy.
Collapse
Affiliation(s)
- Gayeon Won
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596 Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Gobong-ro 79, Iksan, 54596 Republic of Korea
| |
Collapse
|
52
|
Habibi M, Asadi Karam MR, Bouzari S. Construction and evaluation of the immune protection of a recombinant divalent protein composed of the MrpA from MR/P fimbriae and flagellin of Proteus mirabilis strain against urinary tract infection. Microb Pathog 2018; 117:348-355. [PMID: 29452195 DOI: 10.1016/j.micpath.2018.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Urinary tract infections (UTI) caused by Proteus mirabilis are prevalent among the catheterized patients. There is no effective vaccine to reduce the frequency of UTIs caused by P. mirabilis. In the present study, the immune responses and effectiveness of different combinations of MrpA and flagellin (FliC) of P. mirabilis were assessed intranasally in the mice model. The addition of FliC as adjuvant to MrpA in fusion form significantly raised the mucosal IgA and cellular (IFN-γ and IL-17) responses and maintained the serum IgG responses for 180 days after the first vaccination. Furthermore, MrpA in fusion form with FliC significantly increased the systemic, mucosal and IFN-γ responses of the FliC alone. In a bladder challenge assay with P. mirabilis, the fusion MrpA.FliC and the mixture of MrpA and FliC significantly decreased the colony count of the bacteria in the bladder and kidneys of mice in comparison to the control mice. It suggests a complex of the systemic, mucosal and cellular responses are needed for protection of the bladder and kidneys against P. mirabilis UTI. In our knowledge, the adjuvant property of the recombinant P. mirabilis flagellin was evaluated for the first time in a vaccine combination administered by an intranasal route. Our results suggest the recombinant flagellin of P. mirabilis could be used as an intranasal adjuvant in combination with other potential antigens against UTIs.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| |
Collapse
|
53
|
Wang D, Huang XF, Hong B, Song XT, Hu L, Jiang M, Zhang B, Ning H, Li Y, Xu C, Lou X, Li B, Yu Z, Hu J, Chen J, Yang F, Gao H, Ding G, Liao L, Rollins L, Jones L, Chen SY, Chen H. Efficacy of intracellular immune checkpoint-silenced DC vaccine. JCI Insight 2018; 3:98368. [PMID: 29415891 PMCID: PMC5821183 DOI: 10.1172/jci.insight.98368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/28/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND DC-based tumor vaccines have had limited clinical success thus far. SOCS1, a key inhibitor of inflammatory cytokine signaling, is an immune checkpoint regulator that limits DC immunopotency. METHODS We generated a genetically modified DC (gmDC) vaccine to perform immunotherapy. The adenovirus (Ad-siSSF) delivers two tumor-associated antigens (TAAs), survivin and MUC1; secretory bacterial flagellin for DC maturation; and an RNA interference moiety to suppress SOCS1. A 2-stage phase I trial was performed for patients with relapsed acute leukemia after allogenic hematopoietic stem cell transplantation: in stage 1, we compared the safety and efficacy between gmDC treatment (23 patients) and standard donor lymphocyte infusion (25 patients); in stage 2, we tested the efficacy of the gmDC vaccine for 12 acute myeloid leukemia (AML) patients with early molecular relapse. RESULTS gmDCs elicited potent TAA-specific CTL responses in vitro, and the immunostimulatory activity of gmDC vaccination was demonstrated in rhesus monkeys. A stage 1 study established that this combinatory gmDC vaccine is safe in acute leukemia patients and yielded improved survival rate. In stage 2, we observed a complete remission rate of 83% in 12 relapsed AML patients. Overall, no grade 3 or grade 4 graft-versus-host disease incidence was detected in any of the 35 patients enrolled. CONCLUSIONS This study, with combinatory modifications in DCs, demonstrates the safety and efficacy of SOCS1-silenced DCs in treating relapsed acute leukemia. TRIAL REGISTRATION ClinicalTrials.gov NCT01956630. FUNDING National Institute of Health (R01CA90427); the Key New Drug Development and Manufacturing Program of the "Twelfth Five-Year Plan" of China (2011ZX09102-001-29); and Clinical Application Research of Beijing (Z131107002213148).
Collapse
MESH Headings
- Adenoviridae/genetics
- Adolescent
- Adult
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/adverse effects
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Engineering/methods
- Child
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Female
- Follow-Up Studies
- Genetic Vectors/genetics
- Graft vs Host Disease/epidemiology
- Graft vs Host Disease/immunology
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Transfusion
- Male
- Middle Aged
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Survival Analysis
- Transplantation, Autologous
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Danhong Wang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xue F. Huang
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Bangxing Hong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Xiao-Tong Song
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Liangding Hu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Min Jiang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hongmei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Yuhang Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Chen Xu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xiao Lou
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Botao Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Zhiyong Yu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Jiangwei Hu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Jianlin Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Fan Yang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Haiyan Gao
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Guoliang Ding
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Lianming Liao
- Department of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lisa Rollins
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsey Jones
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
54
|
Li Q, Peng O, Wu T, Xu Z, Huang L, Zhang Y, Xue C, Wen Z, Zhou Q, Cao Y. PED subunit vaccine based on COE domain replacement of flagellin domain D3 improved specific humoral and mucosal immunity in mice. Vaccine 2018; 36:1381-1388. [PMID: 29426660 DOI: 10.1016/j.vaccine.2018.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Porcine epidemic diarrhea (PED) is an important re-emergent infectious disease and inflicts huge economic losses to the swine industry worldwide. To meet the pressing need of developing a safe and cost-efficient PED maternal vaccine, we generated three PED subunit vaccine candidates, using recombined Salmonella flagellin (rSF) as a mucosal molecular adjuvant. Domain D3 in rSF was replaced with COE domain of PEDV to generate rSF-COE-3D. COE fused to the flanking C'/N' terminal of rSF yielded rSF-COE-C and rSF-COE-N. As a result, rSF-COE-3D could significantly improve COE specific antibody production including serum IgG, serum IgA, mucosal IgA and PEDV neutralizing antibody. Furthermore, rSF-COE-3D elicited more CD3+CD8+ T cell and cytokine production of IFN-γ and IL-4 in mouse splenocytes. In summary, our data showed that rSF-COE-3D could improve specific humoral and mucosal immunity in mice, thus suggesting that rSF-COE-3D could be applied as a novel efficient maternal PED vaccine.
Collapse
Affiliation(s)
- Qianniu Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingting Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Licheng Huang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhifen Wen
- Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China
| | - Qingfeng Zhou
- Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Wen's Foodstuffs Group Co, Ltd, Yunfu 527300, China.
| |
Collapse
|
55
|
Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen IC. Modulating inflammation through the negative regulation of NF-κB signaling. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0817-346RRR. [PMID: 29389019 PMCID: PMC6135699 DOI: 10.1002/jlb.3mir0817-346rrr] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022] Open
Abstract
Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Daniel E. Rothschild
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
| | - Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
| | - Veronica M. Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
56
|
Antonialli R, Sulczewski FB, Amorim KNDS, Almeida BDS, Ferreira NS, Yamamoto MM, Soares IS, Ferreira LCDS, Rosa DS, Boscardin SB. CpG Oligodeoxinucleotides and Flagellin Modulate the Immune Response to Antigens Targeted to CD8α + and CD8α - Conventional Dendritic Cell Subsets. Front Immunol 2017; 8:1727. [PMID: 29255470 PMCID: PMC5723008 DOI: 10.3389/fimmu.2017.01727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells essential for the induction of adaptive immune responses. Their unprecedented ability to present antigens to T cells has made them excellent targets for vaccine development. In the last years, a new technology based on antigen delivery directly to different DC subsets through the use of hybrid monoclonal antibodies (mAbs) to DC surface receptors fused to antigens of interest opened new perspectives for the induction of robust immune responses. Normally, the hybrid mAbs are administered with adjuvants that induce DC maturation. In this work, we targeted an antigen to the CD8α+ or the CD8α− DC subsets in the presence of CpG oligodeoxinucleotides (ODN) or bacterial flagellin, using hybrid αDEC205 or αDCIR2 mAbs, respectively. We also accessed the role of toll-like receptors (TLRs) 5 and 9 signaling in the induction of specific humoral and cellular immune responses. Wild-type and TLR5 or TLR9 knockout mice were immunized with two doses of the hybrid αDEC205 or αDCIR2 mAbs, as well as with an isotype control, together with CpG ODN 1826 or flagellin. A chimeric antigen containing the Plasmodium vivax 19 kDa portion of the merozoite surface protein (MSP119) linked to the Pan-allelic DR epitope was fused to each mAb. Specific CD4+ T cell proliferation, cytokine, and antibody production were analyzed. We found that CpG ODN 1826 or flagellin were able to induce CD4+ T cell proliferation, CD4+ T cells producing pro-inflammatory cytokines, and specific antibodies when the antigen was targeted to the CD8α+ DC subset. On the other hand, antigen targeting to CD8α− DC subset promoted specific antibody responses and proliferation, but no detectable pro-inflammatory CD4+ T cell responses. Also, specific antibody responses after antigen targeting to CD8α+ or CD8α− DCs were reduced in the absence of TLR9 or TLR5 signaling, while CD4+ T cell proliferation was mainly affected after antigen targeting to CD8α+ DCs and in the absence of TLR9 signaling. These results extend our understanding of the modulation of specific immune responses induced by antigen targeting to DCs in the presence of different adjuvants. Such knowledge may be useful for the optimization of DC-based vaccines.
Collapse
Affiliation(s)
- Renan Antonialli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Bianca da Silva Almeida
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natália Soares Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Márcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene Silva Soares
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
57
|
Han C, Li Q, Zhang Z, Huang J. Characterization, expression, and evolutionary analysis of new TLR3 and TLR5M genes cloned from the spiny eel Mastacembelus armatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:174-187. [PMID: 28821419 DOI: 10.1016/j.dci.2017.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/12/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptors (TLRs) play an important role in innate and adaptive immunity. Here, we identify two new TLRs from the spiny eel Mastacembelus armatus (TLR3 and membrane TLR5M). Both MaTLR3 and MaTLR5M were expressed in all tested tissues; expression was highest in liver and spleen, respectively. After infection with Vibrio parahaemolyticus, expression of both TLRs fluctuated and differed significantly from controls at several time points. The predicted three-dimensional model of the MaTLR3 and MaTLR5M proteins indicates that most sites under positive selection were located in the extracellular domains of TLRs. Evolutionary analysis detected positively selected sites in the ancestral lineages of vertebrates, amphibians and reptiles. Multiple ML methods recovered 10 positively selected sites in teleost TLR3 and 24 in TLR5M, and most sites were located in leucine-rich repeat domain, possibly related to an "arms-race" co-evolution with pathogens.
Collapse
Affiliation(s)
- Chong Han
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou, PR China
| | - Zhipeng Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
58
|
Yuan L, Li M, Meng F, Gong Y, Qian Y, Shi G, Wang R. Growth, blood health, antioxidant status, immune response and resistance to Aeromonas hydrophila of juvenile yellow catfish exposed to di-2-ethylhexyl phthalate (DEHP). Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:79-84. [PMID: 28851534 DOI: 10.1016/j.cbpc.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/25/2017] [Accepted: 08/20/2017] [Indexed: 12/18/2022]
Abstract
Triplicate groups of juvenile yellow catfish Pelteobagrus fulvidraco were exposed to three levels of DEHP (0, 0.1 and 0.5mgL-1) for 56days. Fish survival (100%) was not affected by different levels of ambient DEHP. Final body weight, weight gain, specific growth rate and feed intake of fish exposed to 0.5mgL-1 DEHP were the highest. On the contrary, hepatosomatic index of fish exposed to 0.1 and 0.5mgL-1 DEHP were the lowest. Serum total protein, glutamic-pyruvic transaminase, glutamic-oxaloacetic transaminase, glucose and triglycerides increased with the increasing concentrations of DEHP exposure. Superoxide dismutase and glutathione peroxidase activities of fish exposed to 0.5mgL-1 DEHP were the lowest, but malondialdehyde contents of fish exposed to 0.1 and 0.5mgL-1 DEHP were higher than that of control fish. Phagocytic indices of the control group were the highest. After being intraperitoneally injected with Aeromonas hydrophila, fish in the control group had the highest expression of toll like receptor 5, and the expression of myeloid differentiation factor 88 of fish exposed to 0.5mgL-1 DEHP was the lowest. This study indicates that DEHP exerts its toxic effects by interfering with hepatic metabolism, inducing ROS generation and malondialdehyde accumulation, leading to blood deterioration and immunosuppression.
Collapse
Affiliation(s)
- Lixia Yuan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yifu Gong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ge Shi
- College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
59
|
Dai X, He J, Zhang R, Wu G, Xiong F, Zhao B. Co-delivery of polyinosinic:polycytidylic acid and flagellin by poly(lactic- co-glycolic acid) MPs synergistically enhances immune response elicited by intranasally delivered hepatitis B surface antigen. Int J Nanomedicine 2017; 12:6617-6632. [PMID: 28924346 PMCID: PMC5595363 DOI: 10.2147/ijn.s146912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of the present work was to investigate the synergistic effect between toll-like receptor (TLR) 3 ligand polyinosinic:polycytidylic acid (pI:C) and TLR5 ligand flagellin (FLN) on immune responses induced by nasally delivered hepatitis B virus surface antigen (HBsAg). Mannan and chitosan oligosaccharide-modified, pH-responsive poly(lactic-co-glycolic acid) (MC-PLGA) microparticles (MPs) containing HBsAg, FLN, pI:C or both ligands were prepared with a double-emulsion method. In vitro uptake experiments show that cellular uptake of MC-PLGA MPs by macrophages was through energy-dependent, receptor-mediated endocytosis mechanism. After uptake of MPs by macrophages, MC-PLGA MPs existed both in the endo-some and in the cytoplasm. FLN and pI:C in solution or MP formulation could synergize to activate macrophages and induce higher pro-inflammatory cytokines interleukin (IL)-6, IL-12, interferon-γ and anti-inflammatory cytokines IL-10 compared to single TLR ligand (P<0.05). In vivo immunogenicity studies indicated that co-delivery of FLN and pI:C within MC-PLGA MPs synergistically induced higher serum anti-HBsAg IgG levels and Th1 cytokine levels compared with MC-PLGA MPs encapsulated single TLR ligand plus MPs encapsulated HBsAg (P<0.05). These results suggest that synergic TLR3 and TLR5 stimulation might be a promising novel tool for nasally delivered HBsAg.
Collapse
Affiliation(s)
- Xiaojing Dai
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Jintian He
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Ruxia Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Guanghao Wu
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Fangfang Xiong
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang City, Hebei Province, People's Republic of China
| |
Collapse
|
60
|
Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med 2017; 49:e373. [PMID: 28860663 PMCID: PMC5628280 DOI: 10.1038/emm.2017.172] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023] Open
Abstract
Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests.
Collapse
|
61
|
Lee SJ, Benoun J, Sheridan BS, Fogassy Z, Pham O, Pham QM, Puddington L, McSorley SJ. Dual Immunization with SseB/Flagellin Provides Enhanced Protection against Salmonella Infection Mediated by Circulating Memory Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1353-1361. [PMID: 28710253 PMCID: PMC5548602 DOI: 10.4049/jimmunol.1601357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 06/19/2017] [Indexed: 01/09/2023]
Abstract
The development of a subunit Salmonella vaccine has been hindered by the absence of detailed information about antigenic targets of protective Salmonella-specific T and B cells. Recent studies have identified SseB as a modestly protective Ag in susceptible C57BL/6 mice, but the mechanism of protective immunity remains undefined. In this article, we report that simply combining Salmonella SseB with flagellin substantially enhances protective immunity, allowing immunized C57BL/6 mice to survive for up to 30 d following challenge with virulent bacteria. Surprisingly, the enhancing effect of flagellin did not require flagellin Ag targeting during secondary responses or recognition of flagellin by TLR5. Although coimmunization with flagellin did not affect SseB-specific Ab responses, it modestly boosted CD4 responses. In addition, protective immunity was effectively transferred in circulation to parabionts of immunized mice, demonstrating that tissue-resident memory is not required for vaccine-induced protection. Finally, protective immunity required host expression of IFN-γR but was independent of induced NO synthase expression. Taken together, these data indicate that Salmonella flagellin has unique adjuvant properties that improve SseB-mediated protective immunity provided by circulating memory.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Joseph Benoun
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Brian S Sheridan
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Zachary Fogassy
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Oanh Pham
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| | - Quynh-Mai Pham
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Stephen J McSorley
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616;
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616; and
| |
Collapse
|
62
|
A recombinant protein of Salmonella Typhi induces humoral and cell-mediated immune responses including memory responses. Vaccine 2017; 35:4523-4531. [PMID: 28739115 DOI: 10.1016/j.vaccine.2017.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022]
Abstract
Gram negative enteric bacteria, Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever is a major public health problem in developing countries. While a permanent solution to the problem would require improved sanitation, food and water hygiene, controlling the infection by vaccination is urgently required due to the emergence of multidrug resistant strains in multiple countries. The currently licensed vaccines are moderately efficacious with limited applicability, and no recommended vaccines exist for younger children. We had previously reported that a candidate vaccine based on recombinant outer membrane protein (rT2544) of S. Typhi is highly immunogenic and protective in mice. Here we show that rT2544-specific antiserum is capable of mediating bacterial lysis by the splenocytes through Antibody-Dependent Cellular Cytotoxicity (ADCC). Increased populations of rT2544-specific IgA and IgG secreting plasma cells are found in the spleen, mesenteric lymph nodes and peyer's patches. Cell-Mediated Immune Responses (CMIR) induced by rT2544 consist of Th1 cell differentiation and generation of cytotoxic T lymphocytes (CTL), which produce IFN-γ and are capable of destroying cells displaying T2544-derived antigens. rT2544 elicits pro-inflammatory cytokines (TNF-α, IL-6) from Bone Marrow-Derived Dendritic cells (BMDCs), while in vitro re-stimulation of rT2544-primed CD4+ T cells induces cell proliferation and generates higher amounts of Th1 cytokines, such as IFN-gamma, TNF-α and IL-2. Finally, the candidate vaccine induces immunological memory in the form of memory B and T lymphocytes. Taken together, the study further supports the potential of rT2544 as a novel and improved vaccine candidate against S. Typhi.
Collapse
|
63
|
The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol 2017; 32:62-73. [PMID: 28687194 DOI: 10.1016/j.smim.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
Commensal microbes inhabit barrier surfaces, providing a first line of defense against invading pathogens, aiding in metabolic function of the host, and playing a vital role in immune development and function. Several recent studies have demonstrated that commensal microbes influence systemic immune function and homeostasis. For patients with extramucosal cancers, or cancers occurring distal to barrier surfaces, the role of commensal microbes in influencing tumor progression is beginning to be appreciated. Extrinsic factors such as chronic inflammation, antibiotics, and chemotherapy dysregulate commensal homeostasis and drive tumor-promoting systemic inflammation through a variety of mechanisms, including disruption of barrier function and bacterial translocation, release of soluble inflammatory mediators, and systemic changes in metabolic output. Conversely, it has also been demonstrated that certain immune therapies, immunogenic chemotherapies, and checkpoint inhibitors rely on the commensal microbiota to facilitate anti-tumor immune responses. Thus, it is evident that the mechanisms associated with commensal microbe facilitation of both pro- and anti-tumor immune responses are context dependent and rely upon a variety of factors present within the tumor microenvironment and systemic periphery. The goal of this review is to highlight the various contexts during which commensal microbes orchestrate systemic immune function with a focus on describing possible scenarios where the loss of microbial homeostasis enhances tumor progression.
Collapse
|
64
|
Xiao X, Zhang Y, Wei Q, Yin X. Flagellin FljB as an adjuvant to the recombinant adenovirus rabies glycoprotein vaccine increases immune responses against rabies in mice. Arch Virol 2017; 162:2655-2665. [PMID: 28550434 DOI: 10.1007/s00705-017-3413-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/12/2017] [Indexed: 12/25/2022]
Abstract
Rabies virus (RABV) causes an acute progressive viral encephalitis. Although currently licensed vaccines have an excellent safety and efficacy record, the development of a safer and more cost-effective vaccine is still being sought. An E1-deleted, replication-defective human adenovirus type 5 (HAd5) vector expressing RABV glycoprotein (HAd5-G) is thought to be a promising candidate vaccine for immune prophylaxis against rabies. Salmonella enterica serovar Typhimurium (S. Typhimurium) flagellin is a well-known immune adjuvant. In this work, we have researched the adjuvant effect of flagellins (FljB and FliC) for HAd5 in mice for the first time. We found that the recombinant HAd5 expressing RABV glycoprotein and FljB (HAd5-GB), if administered intramuscularly, but not orally, could induce stronger immune responses and provide better protection against rabies than HAd5-G or the recombinant HAd5 expressing glycoprotein and FliC (HAd5-GC). These results suggest that the recombinant HAd5-GB has potential for development as a promising rabies vaccine.
Collapse
Affiliation(s)
- Xingxing Xiao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Qiaolin Wei
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| |
Collapse
|
65
|
Jayaramu PK, Tripathi G, Pavan Kumar A, Keezhedath J, Pathan MK, Kurcheti PP. Studies on expression pattern of toll-like receptor 5 (TLR5) in Edwardsiella tarda infected Pangasianodon hypophthalmus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:68-73. [PMID: 28159691 DOI: 10.1016/j.fsi.2017.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
TLR5 is one of the important PRR (pathogen recognition receptors) and plays a fundamental role in pathogen recognition and activation of innate immune responses. It recognizes bacterial flagellin and stimulates the production of proinflammatory cytokines, through signalling via the adaptor protein MyD88. In this study, we characterized partial TLR5 (soluble form) gene from Pangasianodon hypophthalmus and analysed its expression profile upon challenge by Edwardsiella tarda. Bioinformatic analysis of gene sequence revealed a putative protein of 266 amino acids with four Leucine rich repeats. Quantitative expression analysis of TLR 5S showed its wide distribution in various organs and tissues. However, significant expression of TLR5S was observed in liver and spleen at 12 h (∼207.8 fold, p < 0.05). Significant upregulation was observed in kidney at 72 h.p.i. (50 folds, p < 0.05) indicating that the kidney provides longer protection almost till the activation of the adaptive immune system. This study enriches the knowledge of TLR5S in boosting the innate immunity against bacterial invasion in fish.
Collapse
Affiliation(s)
| | - Gayatri Tripathi
- Division of Aquatic Environment and Health Management, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - A Pavan Kumar
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Jeena Keezhedath
- Division of Aquatic Environment and Health Management, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Mujahid Khan Pathan
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Pani Prasad Kurcheti
- Division of Aquatic Environment and Health Management, ICAR-Central Institute of Fisheries Education, Mumbai, India.
| |
Collapse
|
66
|
Determinants of Divergent Adaptive Immune Responses after Airway Sensitization with Ligands of Toll-Like Receptor 5 or Toll-Like Receptor 9. PLoS One 2016; 11:e0167693. [PMID: 27977701 PMCID: PMC5157987 DOI: 10.1371/journal.pone.0167693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/22/2016] [Indexed: 01/09/2023] Open
Abstract
Excessive type 2 helper T cell responses to environmental antigens can cause immunopathology such as asthma and allergy, but how such immune responses are induced remains unclear. We studied this process in the airways by immunizing mice intranasally with the antigen ovalbumin together with either of two Toll-like receptor (TLR) ligands. We found the TLR5 ligand flagellin promoted a type 2 helper T cell response, whereas, a TLR9 ligand CpG oligodeoxyribonucleotide (ODN) promoted a type 1 helper T cell response. CpG ODN induced mRNA encoding interleukin (IL)-12 p40, whereas, flagellin caused IL-33 secretion and induced mRNAs encoding IL-1 and thymic stromal lymphopoietin (TSLP). By using mice deficient in the TLR and IL-1R signaling molecule, myeloid differentiation primary response 88 (MyD88), in conventional dendritic cells (cDCs) and alveolar macrophages (AMs), and by cell sorting different lung populations after 2 hours of in vivo stimulation, we characterized the cell types that rapidly produced inflammatory cytokines in response to TLR stimulation. CpG ODN was likely recognized by TLR9 on cDCs and AMs, which made mRNA encoding IL-12. IL-12 was necessary for the subsequent innate and adaptive interferon-γ production. In contrast, flagellin stimulated multiple cells of hematopoietic and non-hematopoietic origin, including AMs, DCs, monocytes, and lung epithelial cells. AMs were largely responsible for IL-1α, whereas lung epithelial cells made TSLP. Multiple hematopoietic cells, including AMs, DCs, and monocytes contributed to other cytokines, including IL-1β and TNFα. MyD88-dependent signals, likely through IL-1R and IL-33R, and MyD88-independent signals, likely from TSLP, were necessary in cDCs for promotion of the early IL-4 response by CD4 T cells in the draining lymph node. Thus, the cell types that responded to TLR ligands were a critical determinant of the innate cytokines produced and the character of the resulting adaptive immune response in the airways.
Collapse
|
67
|
Won G, Lee JH. Multifaceted immune responses and protective efficacy elicited by a recombinant autolyzed Salmonella expressing FliC flagellar antigen of F18+ Escherichia coli. Vaccine 2016; 34:6335-6342. [DOI: 10.1016/j.vaccine.2016.10.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022]
|
68
|
Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016; 120:1-14. [PMID: 27157411 PMCID: PMC5079805 DOI: 10.1016/j.bcp.2016.05.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Allergy and Immunology/history
- Allergy and Immunology/trends
- Animals
- Antigens/adverse effects
- Antigens/chemistry
- Antigens/immunology
- Antigens/therapeutic use
- Biopharmaceutics/history
- Biopharmaceutics/methods
- Biopharmaceutics/trends
- Chemistry, Pharmaceutical/history
- Chemistry, Pharmaceutical/trends
- Communicable Disease Control/history
- Communicable Disease Control/trends
- Communicable Diseases/immunology
- Communicable Diseases/veterinary
- Drug Delivery Systems/adverse effects
- Drug Delivery Systems/trends
- Drug Delivery Systems/veterinary
- Drug Design
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Nanoparticles/adverse effects
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Protein Engineering/trends
- Protein Engineering/veterinary
- Protein Folding
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Vaccines/adverse effects
- Vaccines/chemistry
- Vaccines/immunology
- Vaccines/therapeutic use
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Veterinary Drugs/adverse effects
- Veterinary Drugs/chemistry
- Veterinary Drugs/immunology
- Veterinary Drugs/therapeutic use
Collapse
Affiliation(s)
- Christopher P Karch
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States
| | - Peter Burkhard
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States; Department of Molecular and Cell Biology, 93 North Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
69
|
Carlier FM, Sibille Y, Pilette C. The epithelial barrier and immunoglobulin A system in allergy. Clin Exp Allergy 2016; 46:1372-1388. [PMID: 27684559 DOI: 10.1111/cea.12830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Airway and intestinal epithelial layers represent first-line physical barriers, playing a key role in mucosal immunity. Barrier dysfunction, characterized by alterations such as disruption of cell-cell apical junctions and aberrant epithelial responses, probably constitutes early and key events for chronic immune responses to environmental antigens in the skin and in the gut. For instance, barrier dysfunction drives Th2 responses in atopic disorders or eosinophilic esophagitis. Such epithelial impairment is also a salient feature of allergic asthma and growing evidence indicates that barrier alterations probably play a driving role in this disease. IgA has been identified as the most abundant immunoglobulin in mucosa, where it acts as an active barrier through immune exclusion of inhaled or ingested antigens or pathogens. Historically, it has been thought to represent the serum factor underlying reaginic activity before IgE was discovered. Despite several studies about regulation and major functions of IgA at mucosal surfaces, its role in allergy remains largely unclear. This review aims at summarizing findings about epithelial functions and IgA biology that are relevant to allergy, and to integrate the emerging concepts and the recent developments in mucosal immunology, and how these could translate to clinical observations in allergy.
Collapse
Affiliation(s)
- F M Carlier
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium. .,Department of Internal Medicine, Division of Pneumology, Cliniques Universitaires Saint-Luc, Brussels, Belgium. .,Department of Internal Medicine, Division of Pneumology, Centre Hospitalier Universitaire Dinant-Godinne UCL Namur, Yvoir, Belgium.
| | - Y Sibille
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium.,Department of Internal Medicine, Division of Pneumology, Centre Hospitalier Universitaire Dinant-Godinne UCL Namur, Yvoir, Belgium
| | - C Pilette
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium.,Department of Internal Medicine, Division of Pneumology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology, Wavre, Belgium
| |
Collapse
|
70
|
Immunogenicity and protective efficacy of Pseudomonas aeruginosa type a and b flagellin vaccines in a burned mouse model. Mol Immunol 2016; 74:71-81. [DOI: 10.1016/j.molimm.2016.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
|
71
|
Korpi F, Hashemi FB, Irajian G, Fatemi MJ, Laghaei P, Behrouz B. Flagellin and pilin immunization against multi-drug resistant Pseudomonas aeruginosa protects mice in the burn wound sepsis model. Immunol Lett 2016; 176:8-17. [PMID: 27210422 DOI: 10.1016/j.imlet.2016.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/26/2016] [Accepted: 04/02/2016] [Indexed: 01/15/2023]
Abstract
Pseudomonas aeruginosa is a formidable pathogen and a major threat to burn patients. Antimicrobial therapy is often unsuccessful because P. aeruginosa can develop multi-drug resistance; thus, immunotherapy and vaccine can be a rational alternative. Flagella and type IV pili have been identified as important virulence factors in the colonization and pathogenesis of P. aeruginosa in burn wound infections. Immunogenicity and efficacy of mixed recombinant full-length type b flagellin (r-b-flagellin) and recombinant PilA (r-PilA) as candidate vaccines were assessed by measuring humoral and cellular responses, using an experimental burned mouse model. Primary immunization with "r-b-flagellin+r-PilA" followed by two booster shots was sufficient to generate a robust humoral response, which was predominantly a Th2 response consisting mainly of subtype IgG1 and low levels of IgG2a. Analysis of the cytokine response among immunized mice showed an increased production of IL-4, INF-γ and IL-17 by splenocytes upon stimulation by "r-b-flagellin+r-PilA". Opsonophagocytosis assays confirmed the enhanced killing of bacteria by anti "r-b-flagellin+r-PilA" immune sera. These antibodies were also able to reduce bacterial load in the site of original infection into the liver and spleen of challenged mice. The reduction of systemic bacterial spread resulted in an increased survival rate of challenged immunized mice. In conclusion, immunization with "r-b-flagellin+r-PilA" proteins provides a better protective response against P. aeruginosa infection in the burn mouse model.
Collapse
Affiliation(s)
- Fatemeh Korpi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javad Fatemi
- Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Laghaei
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahador Behrouz
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
72
|
Verma V, Tan W, Puth S, Cho KO, Lee SE, Rhee JH. Norovirus (NoV) specific protective immune responses induced by recombinant P dimer vaccine are enhanced by the mucosal adjuvant FlaB. J Transl Med 2016; 14:135. [PMID: 27184355 PMCID: PMC4869196 DOI: 10.1186/s12967-016-0899-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/07/2016] [Indexed: 12/12/2022] Open
Abstract
Background Noroviruses (NoVs) are a major cause of childhood gastroenteritis and foodborne diseases worldwide. Lack of appropriate animal models or cell-based culture systems makes the development and evaluation of NoV-specific vaccines a daunting task. VP1 is the major capsid protein of the NoVs that acts as a binding motif to human histo-blood group antigens (HBGAs) through its protruding 2 (P2) domain and can serve as a protective antigen candidate for vaccine development. Methods Recombinantly produced NoV specific P domain (Pd) vaccine was inoculated into groups of mice either alone or in conjugation with mucosal adjuvant FlaB, the flagellar protein from Vibrio vulnificus. Antigen specific humoral and cell mediated immune responses were assessed by enzyme linked immunosorbent assay (ELISA) or fluorescent activated cell sorting (FACS). A comparative analysis of various routes of vaccination viz. intranasal, sublingual and subcutaneous, was also done. Results In this study, we show that a recombinant Pd-vaccine administered through intranasal route induced a robust TH2-dependent humoral immune response and that the combination of vaccine with FlaB significantly enhanced the antibody response. Interestingly, FlaB induced a mixed TH1/TH2 type of immune response with a significant induction of IgG1 as well as IgG2a antibodies. FlaB also induced strong IgA responses in serum and feces. FlaB mediated antibody responses were toll like receptor 5 (TLR5) dependent, since the FlaB adjuvanticity was lost in TLR5−/− mice. Further, though the Pd-vaccine by itself failed to induce a cell mediated immune response, the Pd-FlaB combination stimulated a robust CD4+IFNγ+ and CD8+IFNγ+ T cell response in spleen and mesenteric lymph nodes. We also compared the adjuvant effects of FlaB with that of alum and complete Freund’s adjuvant (CFA). We found that subcutaneously inoculated FlaB induced more significant levels of IgG and IgA in both serum and feces compared to alum or CFA in respective samples. Conclusion We validate the use of TLR5 agonist as a strong mucosal adjuvant that would facilitate the development of NoV specific vaccines for humans and veterinary use. This study also highlights the importance of route of immunization in inducing the appropriate immune responses in mucosal compartments.
Collapse
Affiliation(s)
- Vivek Verma
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea.,Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, 30912, Georgia, USA
| | - Wenzhi Tan
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea
| | - Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea. .,Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea.
| |
Collapse
|
73
|
Chen YL, Chen YS, Hung YC, Liu PJ, Tasi HY, Ni WF, Hseuh PT, Lin HH. Improvement in T helper 1-related immune responses in BALB/c mice immunized with an HIV-1 gag plasmid combined with a chimeric plasmid encoding interleukin-18 and flagellin. Microbiol Immunol 2016; 59:483-94. [PMID: 26094825 DOI: 10.1111/1348-0421.12274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
Both flagellin (fliC) and IL-18 (INF-γ-inducing factor) have been developed as adjuvants for improving immunogenicity in DNA-vaccinated hosts. An HIV-1 gag plasmid encodes a protein harboring broad epitopes for cytotoxic T-lymphocytes. In this study, the immunogenicity of BALB/c mice immunized with an HIV-1 gag plasmid (pVAX/gag) combined with a chimeric plasmid encoding IL-18 fused to flagellin (pcDNA3/IL-18_fliC) or a single plasmid encoding IL-18 (pcDNA3/IL-18) and/or flagellin (pcDNA3/fliC) was assessed. Through in vitro transcription and translation, it was demonstrated that both mRNA and protein were appropriately expressed by each construct. The IL-18 and flagellin fusion protein, which could be detected in supernatants from transfected cells, was effective in inducing IFN-γ by lymphocytes. Following i.m. immunization, expressions of flagellin or IL-18 were detected in muscle cells by immunohistochemistry analysis from 72 hr. At 12 weeks post-immunization, both gag-specific IgG in sera and spleen cell proliferation were high in all murine groups. However, the IgG2a/IgG1 ratio, Th1 cytokine (IL-2 and IFN-γ) production and proportion of gag-specific CD3(+) CD8(+) IFN-γ-secreting cells were significantly higher in the murine group co-immunized with pVAX/gag plasmid and pcDNA3/IL-18_fliC than in the mice immunized with pVAX/gag plasmid combined with either pcDNA3/fliC or pcDNA3/IL-18 plasmid or both. These findings suggest that a chimeric plasmid encoding IL-18 fused to flagellin can be used as an adjuvant-like plasmid to improve the Th1 immune response, particularly for induction of CD3(+) CD8(+) IFN-γ-secreting cells in gag plasmid-vaccinated mice.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung/National Yang-Ming University, Taipei
| | - Yi-Chien Hung
- Department of Medicine, Section of Infectious Disease, E-Da Hospital/I-Shou University, Kaohsiung
| | - Pei-Ju Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hsi-Ying Tasi
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Wei-Feng Ni
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Pei-Tan Hseuh
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- Department of Medicine, Section of Infectious Disease, E-Da Hospital/I-Shou University, Kaohsiung
| |
Collapse
|
74
|
Behrouz B, Mahdavi M, Amirmozafari N, Fatemi MJ, Irajian G, Bahroudi M, Hashemi FB. Immunogenicity of Pseudomonas aeruginosa recombinant b-type fagellin as a vaccine candidate: Protective efficacy in a murine burn wound sepsis model. Burns 2016:S0305-4179(16)30028-6. [PMID: 27156804 DOI: 10.1016/j.burns.2016.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa (PA) is a formidable opportunistic pathogen among patients with burn wound infections. Antimicrobial therapy is often unsuccessful because PA can develop multi-drug resistance; thus, immunotherapy can be a rational alternative. The goal of this study was to evaluate the immunogenicity recombinant type b flagellin (r-b-flagellin) as a potential vaccine against P. aeruginosa in a mouse model for burn wound sepsis. Primary immunization with r-b-flagellin (10μg) followed by two booster shots was sufficient to generate a robust humoral response, which was predominantly a T helper 2 (Th2) type response consisting mainly of subtype IgG1 and low levels of IgG2a. Analysis of the Th1-Th2 response among immunized mice showed an increased production of IL-4, INF-γ and IL-17 by splenocytes upon stimulation by r-b-flagellin. Opsono-phagocytosis assays confirmed the enhanced killing of bacteria by anti r-b-flagellin immune sera. These antibodies were also able to inhibit motility of P. aeruginosa and afforded protection to immunized mice by reducing bacterial load in the site of original infection into the liver of challenged mice. The reduction of systemic bacterial spread resulted in an increase in the survival rate of challenged immunized mice. In conclusion, immunization of mice with r-b-flagellin protein increased the level of humoral and cellular immune response and led to an efficacious protection against P. aeruginosa infection in the burn mouse model.
Collapse
Affiliation(s)
- Bahador Behrouz
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Fatemi
- Department of Plastic and Reconstructive Surgery, Burn Research Center, Hazrat Fatima Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahbubeh Bahroudi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
75
|
Kim EH, Kim JH, Samivel R, Bae JS, Chung YJ, Chung PS, Lee SE, Mo JH. Intralymphatic treatment of flagellin-ovalbumin mixture reduced allergic inflammation in murine model of allergic rhinitis. Allergy 2016; 71:629-39. [PMID: 26752101 DOI: 10.1111/all.12839] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Bacterial flagellin, a Toll-like receptor 5 agonist, is used as an adjuvant for immunomodulation. In this study, we aimed to evaluate the effect and its mechanism following intralymphatic administration of OVA-flagellin (FlaB) mixture in the mouse model of allergic rhinitis. MATERIALS AND METHODS BALB/c mice were sensitized with OVA and treated with an OVA-FlaB mixture via intranasal, sublingual, and intralymphatic routes to evaluate the effect of each treatment. Several parameters for allergic inflammation and its underlying mechanisms were then evaluated. RESULTS Intralymphatic injection of the OVA-FlaB mixture reduced symptom scores, eosinophil infiltration in the nasal mucosa, and total and OVA-specific IgE levels more significantly than intranasal and sublingual administration. Systemic cytokine (IL-4, IL-5, IL-6, IL-17, and IFN-γ) production and local cytokine (IL-4 and IL-5) production were also reduced significantly after intralymphatic injection with OVA-FlaB. Double intralymphatic injection of the mixture was more effective than single injection. Moreover, the expression of innate cytokines such as IL-25 and IL-33 in nasal epithelial cells was reduced, and the expression of chemokines such as CCL24 (eotaxin-2), CXCL1, and CXCL2 was decreased in the nasal mucosa, suggesting the underlying mechanism for intralymphatic administration of the OVA-FlaB mixture. CONCLUSION Intralymphatic administration of an OVA-FlaB mixture was more effective in alleviating allergic inflammation than intranasal and sublingual administration in a mouse model of allergic rhinitis. This effect may be attributed to the reduced expression of innate cytokines and chemokines. This treatment modality can be considered as a new therapeutic method and agent.
Collapse
Affiliation(s)
- E. H. Kim
- Department of Otorhinolaryngology; Dankook University College of Medicine; Cheonan Korea
- Beckman Laser Institute Korea; Dankook University; Cheonan Korea
| | - J. H. Kim
- Department of Otorhinolaryngology; Dankook University College of Medicine; Cheonan Korea
- Beckman Laser Institute Korea; Dankook University; Cheonan Korea
| | - R. Samivel
- Department of Otorhinolaryngology; Dankook University College of Medicine; Cheonan Korea
- Beckman Laser Institute Korea; Dankook University; Cheonan Korea
| | - J.-S. Bae
- Beckman Laser Institute Korea; Dankook University; Cheonan Korea
- Department of Premedical Course; Dankook University College of Medicine; Cheoan Korea
| | - Y.-J. Chung
- Department of Otorhinolaryngology; Dankook University College of Medicine; Cheonan Korea
- Beckman Laser Institute Korea; Dankook University; Cheonan Korea
| | - P.-S. Chung
- Department of Otorhinolaryngology; Dankook University College of Medicine; Cheonan Korea
- Beckman Laser Institute Korea; Dankook University; Cheonan Korea
| | - S. E. Lee
- Clinical Vaccine R&D Center; Chonnam National University Medical School; Hwasun Korea
| | - J.-H. Mo
- Department of Otorhinolaryngology; Dankook University College of Medicine; Cheonan Korea
- Beckman Laser Institute Korea; Dankook University; Cheonan Korea
- Clinical mucosal immunology study group; Seoul Korea
| |
Collapse
|
76
|
Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice. PLoS One 2016; 11:e0150678. [PMID: 26930068 PMCID: PMC4773109 DOI: 10.1371/journal.pone.0150678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/16/2016] [Indexed: 11/19/2022] Open
Abstract
In spring 2013, human infections with a novel avian influenza A (H7N9) virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC) and polyethyleneimine (PEI), through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza.
Collapse
|
77
|
Induction of humoral immune response against Pseudomonas aeruginosa flagellin(1-161) using gold nanoparticles as an adjuvant. Vaccine 2016; 34:1472-9. [DOI: 10.1016/j.vaccine.2016.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/11/2016] [Accepted: 01/17/2016] [Indexed: 01/25/2023]
|
78
|
Rady HF, Dai G, Huang W, Shellito JE, Ramsay AJ. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant. PLoS One 2016; 11:e0148701. [PMID: 26844553 PMCID: PMC4742079 DOI: 10.1371/journal.pone.0148701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.
Collapse
Affiliation(s)
- Hamada F. Rady
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Louisiana Vaccine Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Guixiang Dai
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Louisiana Vaccine Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Weitao Huang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Judd E. Shellito
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Louisiana Vaccine Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alistair J. Ramsay
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Louisiana Vaccine Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
79
|
Liu R, Luo F, Liu X, Wang L, Yang J, Deng Y, Huang E, Qian J, Lu Z, Jiang X, Zhang D, Chu Y. Biological Response Modifier in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:69-138. [PMID: 27240457 DOI: 10.1007/978-94-017-7555-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Zhang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
80
|
Mardanova ES, Kotlyarov RY, Kuprianov VV, Stepanova LA, Tsybalova LM, Lomonossoff GP, Ravin NV. High immunogenicity of plant-produced candidate influenza vaccine based on the M2e peptide fused to flagellin. Bioengineered 2015; 7:28-32. [PMID: 26710263 PMCID: PMC4878292 DOI: 10.1080/21655979.2015.1126017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022] Open
Abstract
The ectodomain of the conserved influenza matrix protein M2 (M2e) is a promising target for the development of a universal influenza vaccines. Immunogenicity of M2e could be enhanced by its fusion to bacterial flagellin, the ligand for Toll-like receptor 5. Previously we reported the transient expression in plants of a recombinant protein Flg-4M comprising flagellin fused to 4 tandem copies of the M2e. The use of self-replicating recombinant vector based on the potato virus X allowed expression of Flg-4M in Nicotiana benthaminana leaves at a very high level, up to about 1 mg/g of fresh leaf tissue. Intranasal immunization of mice with Flg-4M induced M2e-specific serum antibodies and provided protection against lethal challenge with different strains of influenza A virus. Here we show that immunization with Flg-4M not only generates a strong immune response, but also redirects the response from the carrier flagellin toward the M2e epitopes. Significant IgG response to M2e was also developed in bronchoalveolar lavages of immunized mice. Protective activity of Flg-4M upon lethal influenza challenge correlated with a decrease of virus titers in lungs relative to the control. Overall these data show the potential for the development of a plant-produced M2e-flagellin universal influenza vaccine.
Collapse
MESH Headings
- Administration, Intranasal
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Epitopes/chemistry
- Epitopes/genetics
- Filaggrin Proteins
- Flagellin/genetics
- Flagellin/immunology
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Immunogenicity, Vaccine
- Immunoglobulin G/biosynthesis
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/biosynthesis
- Influenza Vaccines/genetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plants, Genetically Modified
- Potexvirus/genetics
- Protein Domains
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccination
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Roman Y. Kotlyarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Victor V. Kuprianov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Liudmila A. Stepanova
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - Liudmila M. Tsybalova
- Research Institute of Influenza, Russian Federation Ministry of Health, St. Petersburg, Russia
| | - George P. Lomonossoff
- Department of Biological Chemistry, John Innes Center, Norwich Research Park, Norwich, UK
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
81
|
Song L, Xiong D, Kang X, Yang Y, Wang J, Guo Y, Xu H, Chen S, Peng D, Pan Z, Jiao X. An avian influenza A (H7N9) virus vaccine candidate based on the fusion protein of hemagglutinin globular head and Salmonella typhimurium flagellin. BMC Biotechnol 2015; 15:79. [PMID: 26286143 PMCID: PMC4544785 DOI: 10.1186/s12896-015-0195-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023] Open
Abstract
Background A novel influenza virus, subtype H7N9, circulated through China in 2013–2014. Its higher rates of human infection in a wide range of locations within China and the associated increased likelihood of human-to-human transmission have caused global concern. Recombinant subunit vaccines provide safe and targeted protection against viral infections. However, the protective efficacy of recombinant subunit vaccines tends to be less potent than vaccines made from whole viruses. Studies have shown that bacterial flagellin has strong adjuvant activity and induces protective immune responses. Results In this study, we used overlap-PCR to generate an H7N9 influenza recombinant subunit vaccine that fused the globular head domain (HA1-2, aa 62–284) of the protective hemagglutinin (HA) antigen with the potent TLR5 ligand, Salmonella typhimurium flagellin (fliC). The resulting fusion protein, HA1-2-fliC, was efficiently expressed in an Escherichia coli prokaryotic expression system, and Western blotting and TLR5-stimulating activity analysis confirmed that the HA1-2-fliC moiety could be faithfully refolded to take on the native HA and fliC conformations. In a C3H/HeJ mouse model of intraperitoneal vaccination, the fusion protein elicited significant and robust HA1-2-specific serum IgG titers, maintaining high levels for at least 3 months in the vaccinated animals, and induced similar levels of HA1-2-specific IgG1 and IgG2a that were detectable 12 days after the third immunization. HA1-2-fliC was also found to be capable of triggering the production of neutralizing antibodies, as assessed by measuring hemagglutination inhibition titers. Conclusions We conclude that immunization with HA1-2-fliC induces potent HA1-2-specific responses, offering significant promise for the development of a successful recombinant subunit vaccine for avian influenza A (H7N9).
Collapse
Affiliation(s)
- Li Song
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Dan Xiong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Xilong Kang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yun Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Jing Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yaxin Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Hui Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Sujuan Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Daxin Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Zhiming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| | - Xinan Jiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
82
|
Flores‐Langarica A, Bobat S, Marshall JL, Yam‐Puc JC, Cook CN, Serre K, Kingsley RA, Flores‐Romo L, Uematsu S, Akira S, Henderson IR, Toellner KM, Cunningham AF. Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. Eur J Immunol 2015; 45:2299-311. [PMID: 26036767 PMCID: PMC4973836 DOI: 10.1002/eji.201545564] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/01/2015] [Accepted: 05/29/2015] [Indexed: 12/25/2022]
Abstract
Soluble flagellin (sFliC) from Salmonella Typhimurium (STm) can induce a Th2 response to itself and coadministered antigens through ligation of TLR5. These properties suggest that sFliC could potentially modulate responses to Th1 antigens like live STm if both antigens are given concurrently. After coimmunization of mice with sFliC and STm there was a reduction in Th1 T cells (T-bet(+) IFN-γ(+) CD4 T cells) compared to STm alone and there was impaired clearance of STm. In contrast, there was no significant defect in the early extrafollicular B-cell response to STm. These effects are dependent upon TLR5 and flagellin expression by STm. The mechanism for these effects is not related to IL-4 induced to sFliC but rather to the effects of sFliC coimmunization on DCs. After coimmunization with STm and sFliC, splenic DCs had a lower expression of costimulatory molecules and profoundly altered kinetics of IL-12 and TNFα expression. Ex vivo experiments using in vivo conditioned DCs confirmed the effects of sFliC were due to altered DC function during a critical window in the coordinated interplay between DCs and naïve T cells. This has marked implications for understanding how limits in Th1 priming can be achieved during infection-induced, Th1-mediated inflammation.
Collapse
Affiliation(s)
- Adriana Flores‐Langarica
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Saeeda Bobat
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Jennifer L. Marshall
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | | | - Charlotte N. Cook
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Karine Serre
- Instituto de Medicina MolecularFaculdade de Medicina, Universidade de LisboaLisbonPortugal
| | | | | | - Satoshi Uematsu
- International Research and Development Centre for Mucosal VaccineInstitute for Medical ScienceThe University of TokyoTokyoJapan
| | - Shizuo Akira
- Laboratory of Host DefenseWorld Premier International Immunology Frontier Research CenterOsaka UniversitySuita OsakaJapan
- Department of Host DefenseResearch Institute for Microbial DiseasesOsaka UniversitySuita OsakaJapan
| | - Ian R. Henderson
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Kai M. Toellner
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| | - Adam F. Cunningham
- Division of Immunity and InfectionInstitute of Biomedical ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
83
|
Tran NT, Gao ZX, Zhao HH, Yi SK, Chen BX, Zhao YH, Lin L, Liu XQ, Wang WM. Transcriptome analysis and microsatellite discovery in the blunt snout bream (Megalobrama amblycephala) after challenge with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2015; 45:72-82. [PMID: 25681750 DOI: 10.1016/j.fsi.2015.01.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
The blunt snout bream, Megalobrama amblycephala, is a herbivorous freshwater fish species native to China and a major aquaculture species in Chinese freshwater polyculture systems. In recent years, the bacterium Aeromonas hydrophila has been reported to be its pathogen causing great losses of farmed fish. To understand the immune response of the blunt snout bream to A. hydrophila infection, we used the Solexa/Illumina technology to analyze the transcriptomic profile after artificial bacterial infection. Two nonnormalized cDNA libraries were synthesized from tissues collected from control blunt snout bream or those injected with A. hydrophila. After assembly, 155,052 unigenes (average length 692.8 bp) were isolated. All unigenes were annotated using BLASTX relative to several public databases: the National Center for Biotechnology Information nonreduntant (Nr) database, SwissProt, Eukaryotic Orthologous Groups of proteins (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO). The sequence similarity (86%) of the assembled unigenes was to zebrafish based on the Nr database. A number of unigenes (n = 30,482) were assigned to three GO categories: biological processes (25,242 unigenes), molecular functions (26,096 unigenes), and cellular components (22,778 unigenes). 20,909 unigenes were classified into 25 KOG categories and 28,744 unigenes were assigned into 315 specific signaling pathways. In total, 238 significantly differentially expressed unigenes (mapped to 125 genes) were identified: 101 upregulated genes and 24 downregulated genes. Another 303 unigenes were mapped to unknown or novel genes. Among the known expressed genes identified, 53 were immune-related genes and were distributed in 71 signaling pathways. The expression patterns of selected up- and downregulated genes from the control and injected groups were determined with reverse transcription-quantitative PCR (RT-qPCR). Microsatellites (n = 10,877), including di-to pentanucleotide repeat motifs, were also identified in the blunt snout bream transcriptome profiles. This study extends our understanding of the immune defense mechanisms of the blunt snout bream against A. hydrophila and provides useful data for further studies of the immunogenetics of this species.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Ze-Xia Gao
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Hong-Hao Zhao
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Shao-Kui Yi
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Bo-Xiang Chen
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Animal Husbandry and Fisheries Research Center of Haid Group Co., Ltd, Guangzhou 511400, China.
| | - Yu-Hua Zhao
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Li Lin
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xue-Qin Liu
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Wei-Min Wang
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
84
|
Fougeron D, Van Maele L, Songhet P, Cayet D, Hot D, Van Rooijen N, Mollenkopf HJ, Hardt WD, Benecke AG, Sirard JC. Indirect Toll-like receptor 5-mediated activation of conventional dendritic cells promotes the mucosal adjuvant activity of flagellin in the respiratory tract. Vaccine 2015; 33:3331-41. [PMID: 26003491 DOI: 10.1016/j.vaccine.2015.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 01/17/2023]
Abstract
The Toll-like receptor 5 (TLR5) agonist flagellin is an effective adjuvant for vaccination. Recently, we demonstrated that the adaptive responses stimulated by intranasal administration of flagellin and antigen were linked to TLR5 signaling in the lung epithelium. The present study sought to identify the antigen presenting cells involved in this adjuvant activity. We first found that the lung dendritic cells captured antigen very efficiently in a process independent of TLR5. However, TLR5-mediated signaling specifically enhanced the maturation of lung dendritic cells. Afterward, the number of antigen-bound and activated conventional dendritic cells (both CD11b(+) and CD103(+)) increased in the mediastinal lymph nodes in contrast to monocyte-derived dendritic cells. These data suggested that flagellin-activated lung conventional dendritic cells migrate to the draining lymph nodes. The lymph node dendritic cells, in particular CD11b(+) cells, were essential for induction of CD4 T-cell response. Lastly, neutrophils and monocytes were recruited into the lungs by flagellin administration but did not contribute to the adjuvant activity. The functional activation of conventional dendritic cells was independent of direct TLR5 signaling, thereby supporting the contribution of maturation signals produced by flagellin-stimulated airway epithelium. In conclusion, our results demonstrated that indirect TLR5-dependent stimulation of airway conventional dendritic cells is essential to flagellin's mucosal adjuvant activity.
Collapse
Affiliation(s)
- Delphine Fougeron
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France
| | - Laurye Van Maele
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France
| | - Pascal Songhet
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Delphine Cayet
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France
| | - David Hot
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, VU Medical Center, NL-1007 Amsterdam, The Netherlands
| | | | - Wolf-Dietrich Hardt
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Arndt G Benecke
- Institut des Hautes Études Scientifiques and Centre National de la Recherche Scientifique, F-91440 Bures-sur-Yvette, France
| | - Jean-Claude Sirard
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France.
| |
Collapse
|
85
|
Jiang Y, He L, Ju C, Pei Y, Ji M, Li Y, Liao L, Jang S, Zhu Z, Wang Y. Isolation and expression of grass carp toll-like receptor 5a (CiTLR5a) and 5b (CiTLR5b) gene involved in the response to flagellin stimulation and grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 44:88-99. [PMID: 25665802 DOI: 10.1016/j.fsi.2015.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/25/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
Toll-like receptor 5 (TLR5), a member of Toll-like receptors (TLRs) family and is responsible for the bacterial flagellin recognition in vertebrates, play an important role in innate immunity. In the study, two TLR5 genes of grass carp (Ctenopharyngodon idellus), named CiTLR5a and CiTLR5b, were cloned and analyzed. Both CiTLR5a and CiTLR5b are typical TLR proteins, including LRR motif, transmembrane region and TIR domain. The full-length cDNA of CiTLR5a is 3054 bp long, with a 2646 bp open reading frame (ORF), 78 bp 5' untranslated regions (UTR), and 330 bp 3' UTR. The full-length cDNA of CiTLR5b is 3326 bp, with a 2627 bp ORF, 95 bp 5' UTR, and 594 bp 3' UTR. Phylogenetic analysis showed that CiTLR5a and CiTLR5b were closed to the TLR5 of cirrhinus mrigala, cyprinus_carpio, and danio rerio. Subcellular localization indicated that CiTLR5a and CiTLR5b shared similar localization pattern and may locate in the plasma membrane of transfected cells. Real-time quantitative PCR revealed CiTLR5a and CiTLR5b were constitutively expressed in all examined tissues, whereas the highest expressed tissue differed. Following exposure to flagellin and GCRV, CiTLR5a and CiTLR5b were up-regulated significantly. Moreover, the downstream genes of TLR5 signal pathway such as MyD88, NF-κB, IRF7, IL-1β, and TNF-α also up-regulated significantly, whereas the IκB gene was down-regulated, suggesting that CiTLR5a and CiTLR5b involved in response to flagellin stimulation and GCRV infection. The results obtained in the study would provide a new insight for further understand the function of TLR5 in teleost fish.
Collapse
Affiliation(s)
- Yao Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Changsong Ju
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Department of Zoology, College of Life Sciences, Kim Il Song University, Pyongyang, Democratic People's Republic of Korea
| | - Yongyan Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Myonghuan Ji
- Department of Zoology, College of Life Sciences, Kim Il Song University, Pyongyang, Democratic People's Republic of Korea
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Songhun Jang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Department of Zoology, College of Life Sciences, Kim Il Song University, Pyongyang, Democratic People's Republic of Korea
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
86
|
Stepanova LA, Kotlyarov RY, Kovaleva AA, Potapchuk MV, Korotkov AV, Sergeeva MV, Kasianenko MA, Kuprianov VV, Ravin NV, Tsybalova LM, Skryabin KG, Kiselev OI. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin. PLoS One 2015; 10:e0119520. [PMID: 25799221 PMCID: PMC4370815 DOI: 10.1371/journal.pone.0119520] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/29/2015] [Indexed: 02/02/2023] Open
Abstract
Matrix 2 protein ectodomain (M2e) is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek). Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1) and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1) and A/Chicken/Kurgan/05/05 RG (H5N1) to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2) and avian influenza virus (H5N1). Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins.
Collapse
Affiliation(s)
- Liudmila A. Stepanova
- Department of Influenza Vaccines, Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- * E-mail:
| | | | - Anna A. Kovaleva
- Department of Influenza Vaccines, Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Marina V. Potapchuk
- Department of Influenza Vaccines, Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Alexandr V. Korotkov
- Department of Influenza Vaccines, Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Mariia V. Sergeeva
- Department of Influenza Vaccines, Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Marina A. Kasianenko
- Department of Influenza Vaccines, Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | | | - Nikolai V. Ravin
- Centre “Bioengineering”, Russian Academy of Sciences, Moscow, Russia
- GenNanotech Ltd, St. Petersburg, Russia
| | - Liudmila M. Tsybalova
- Department of Influenza Vaccines, Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | | | - Oleg I. Kiselev
- Department of Influenza Vaccines, Research Institute of Influenza, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
87
|
Qi Y, Kang H, Zheng X, Wang H, Gao Y, Yang S, Xia X. Incorporation of membrane-anchored flagellin or Escherichia coli heat-labile enterotoxin B subunit enhances the immunogenicity of rabies virus-like particles in mice and dogs. Front Microbiol 2015; 6:169. [PMID: 25784906 PMCID: PMC4347500 DOI: 10.3389/fmicb.2015.00169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 01/20/2023] Open
Abstract
Rabies remains an important worldwide public health threat, so safe, effective, and affordable vaccines are still being sought. Virus-like particle-based vaccines targeting various viral pathogens have been successfully produced, licensed, and commercialized. Here, we designed and constructed two chimeric rabies virus-like particles (cRVLPs) containing rabies virus (RABV) glycoprotein (G), matrix (M) protein, and membrane-anchored flagellin (EVLP-F) or Escherichia coli heat-labile enterotoxin B subunit (EVLP-L) as molecular adjuvants to enhance the immune response against rabies. The immunogenicity and potential of cRVLPs as novel rabies vaccine were evaluated by intramuscular vaccination in mouse and dog models. Mouse studies demonstrated that both EVLP-F and EVLP-L induced faster and larger virus-neutralizing antibodies (VNAs) responses and elicited greater numbers of CD4+ and CD8+ T cells secreting IFN-γ or IL-4 compared with a standard rabies VLP (sRVLP) containing only G and M. Moreover, cRVLPs recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. EVLP-F induced a strong, specific IgG2a response but not an IgG1 response, suggesting the activation of Th1 class immunity; in contrast, Th2 class immunity was observed with EVLP-L. The significantly enhanced humoral and cellular immune responses induced by cRVLPs provided complete protection against lethal challenge with RABV. Most importantly, dogs vaccinated with EVLP-F or EVLP-L exhibited increased VNA titers in sera and enhanced IFN-γ and IL-4 secretion from peripheral blood mononuclear cells. Taken together, these results illustrate that when incorporated into sRVLP, membrane-anchored flagellin, and heat-labile enterotoxin B subunit possess strong adjuvant activity. EVLP-F and EVLP-L induce significantly enhanced RABV-specific humoral and cellular immune responses in both mouse and dog. Therefore, these cRVLPs may be developed as safe and more efficacious rabies vaccine candidate for animals.
Collapse
Affiliation(s)
- Yinglin Qi
- College of Veterinary Medicine, Jilin University Changchun, China ; Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Hongtao Kang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China ; College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Xuexing Zheng
- Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Hualei Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Songtao Yang
- College of Veterinary Medicine, Jilin University Changchun, China ; Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University Changchun, China ; Institute of Military Veterinary Medicine, Academy of Military Medical Science Changchun, China
| |
Collapse
|
88
|
Lockner JW, Eubanks LM, Choi JL, Lively JM, Schlosburg JE, Collins KC, Globisch D, Rosenfeld-Gunn RJ, Wilson IA, Janda KD. Flagellin as carrier and adjuvant in cocaine vaccine development. Mol Pharm 2015; 12:653-62. [PMID: 25531528 PMCID: PMC4319694 DOI: 10.1021/mp500520r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cocaine abuse is problematic, directly and indirectly impacting the lives of millions, and yet existing therapies are inadequate and usually ineffective. A cocaine vaccine would be a promising alternative therapeutic option, but efficacy is hampered by variable production of anticocaine antibodies. Thus, new tactics and strategies for boosting cocaine vaccine immunogenicity must be explored. Flagellin is a bacterial protein that stimulates the innate immune response via binding to extracellular Toll-like receptor 5 (TLR5) and also via interaction with intracellular NOD-like receptor C4 (NLRC4), leading to production of pro-inflammatory cytokines. Reasoning that flagellin could serve as both carrier and adjuvant, we modified recombinant flagellin protein to display a cocaine hapten termed GNE. The resulting conjugates exhibited dose-dependent stimulation of anti-GNE antibody production. Moreover, when adjuvanted with alum, but not with liposomal MPLA, GNE-FliC was found to be better than our benchmark GNE-KLH. This work represents a new avenue for exploration in the use of hapten-flagellin conjugates to elicit antihapten immune responses.
Collapse
Affiliation(s)
- Jonathan W Lockner
- Departments of Chemistry, Integrative Structural and Computational Biology, and Immunology and Microbial Science, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Deifl S, Kitzmüller C, Steinberger P, Himly M, Jahn‐Schmid B, Fischer GF, Zlabinger GJ, Bohle B. Differential activation of dendritic cells by toll-like receptors causes diverse differentiation of naïve CD4+ T cells from allergic patients. Allergy 2014; 69:1602-9. [PMID: 25093709 PMCID: PMC4245478 DOI: 10.1111/all.12501] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND To avert the differentiation of allergen-specific Th2 cells in atopic individuals is a major goal in the prevention and therapy of IgE-mediated allergy. We aimed to compare different toll-like receptor (TLR) agonists regarding their effects on antigen-presenting cells and the differentiation of naïve T cells from allergic patients. METHODS Monocytes and monocyte-derived dendritic cells (mdDC) from allergic patients were stimulated with Pam3CSK4 (TLR1/2 ligand), FSL-1 (TLR2/6 ligand), monophosphoryl lipid (MPL)-A, lipopolysaccharide (LPS, both TLR4 ligands), and flagellin (TLR5 ligand). Allergen uptake and upregulation of CD40, CD80, CD83, CD86, CD58, CCR7 and PD-L1 were analyzed by flow cytometry. Functional maturation of mdDC was tested in mixed leukocyte reactions, and the synthesis of proinflammatory cytokines, IL-10 and members of the IL-12 family was assessed. TLR-ligand-activated mdDC were used to stimulate naïve CD4(+) T cells, and cytokine responses were assessed in supernatants and intracellularly. RESULTS All TLR ligands except flagellin enhanced allergen uptake. All TLR ligands induced functional maturation of mdDC with differential expression of surface molecules and cytokines and promoted the differentiation of IFN-γ-producing T cells. LPS-matured mdDC exclusively induced Th1-like responses, whereas mdDC stimulated with the other TLR ligands induced both Th1- and Th0-like cells. Pam3CSK4 and flagellin additionally induced Th2-like cells. Th1-like responses were associated with higher expression levels of co-stimulatory molecules, PD-L1, IL-6, TNF-α, and IL-12p70. None of the TLR-ligand-stimulated mdDC induced IL-10- or IL-17-producing T cells. CONCLUSION Different TLR ligands differently influence T-cell responses due to varying activation of the three signals relevant for T-cell activation, that is, antigen presentation, co-stimulation and cytokine milieu.
Collapse
Affiliation(s)
- S. Deifl
- Christian Doppler Laboratory for Immunomodulation Medical University of ViennaVienna Austria
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - C. Kitzmüller
- Christian Doppler Laboratory for Immunomodulation Medical University of ViennaVienna Austria
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - P. Steinberger
- Institute of Immunology Medical University of Vienna Vienna Austria
| | - M. Himly
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy Department of Molecular Biology University of Salzburg Salzburg Austria
| | - B. Jahn‐Schmid
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - G. F. Fischer
- Department of Blood Group Serology and Transfusion Medicine Medical University of Vienna Vienna Austria
| | - G. J. Zlabinger
- Institute of Immunology Medical University of Vienna Vienna Austria
| | - B. Bohle
- Christian Doppler Laboratory for Immunomodulation Medical University of ViennaVienna Austria
- Department of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| |
Collapse
|
90
|
Girard A, Roques E, Massie B, Archambault D. Flagellin in fusion with human rotavirus structural proteins exerts an adjuvant effect when delivered with replicating but non-disseminating adenovectors through the intrarectal route. Mol Biotechnol 2014; 56:394-407. [PMID: 24271565 DOI: 10.1007/s12033-013-9723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human rotavirus (HRV) is the worldwide leading cause of gastroenteritis in young children. Two live attenuated HRV vaccines have been approved since 2006. However, these live vaccines still have potential risks including reversion of virulence. Adenoviruses are suitable vectors for mucosal administration of subunit vaccines. In addition to the adjuvant effect of certain adenovirus components, the use of an adjuvant like flagellin is also another means to increase the immune response to the immunogen. The aim of this study was to determine whether flagellin in fusion with HRV structural proteins stimulates the innate immune response and enhances the HRV-specific immune response when delivered through the intrarectal route with replicating but non-disseminating adenovector (R-AdV). Salmonella typhimurium flagellin B (FljB) in fusion with HRV VP4Δ::VP7 protein induced IL-1β production in J774A.1 macrophages exposed to the R-AdV. Intrarectal administration of R-AdVs expressing either VP4Δ::VP7 or VP4Δ::VP7::FljB in BALB/c mice resulted in HRV-specific mixed Th1/Th2 immune responses. The HRV-specific antibody response elicited with the use of R-AdV expressing VP4Δ::VP7::FljB was higher than that with R-AdV expressing VP4Δ::VP7. The results also show that the replication capability of R-AdVs contributed to enhance the HRV-specific immune response as compared with that obtained with non-replicative AdVs. This work lays the foundation for using the R-AdV system and FljB-adjuvanted formulation to elicit a mucosal immune response specific to HRV.
Collapse
Affiliation(s)
- Aurélie Girard
- Department of Biological Sciences, University of Québec at Montréal, P.O. Box 8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | | | | | | |
Collapse
|
91
|
Leifer CA, McConkey C, Li S, Chassaing B, Gewirtz AT, Ley RE. Linking genetic variation in human Toll-like receptor 5 genes to the gut microbiome's potential to cause inflammation. Immunol Lett 2014; 162:3-9. [PMID: 25284610 DOI: 10.1016/j.imlet.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 01/19/2023]
Abstract
Immunodeficiencies can lead to alterations of the gut microbiome that render it pathogenic and capable of transmitting disease to naïve hosts. Here, we review the role of Toll-like receptor (TLR) 5, the innate receptor for bacterial flagellin, in immune responses to the normal gut microbiota with a focus its role on adaptive immunity. Loss of TLR5 has profound effects on the microbiota that include greater temporal instability of major lineages and upregulation of flagellar motility genes that may be linked to the reduced levels of anti-flagellin antibodies in the TLR5(-/-) host. A variety of human TLR5 gene alleles exist that also associated with inflammatory conditions and may do so via effects on the gut microbiome and altered host-microbial crosstalk.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States.
| | - Cameron McConkey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Sha Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303, United States
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
92
|
Cheng Y, Sun Y, Wang H, Shi S, Yan Y, Li J, Ding C, Sun J. Cloning, expression and functional analysis of the duck Toll-like receptor 5 (TLR5) gene. J Vet Sci 2014; 16:37-46. [PMID: 25269719 PMCID: PMC4367148 DOI: 10.4142/jvs.2015.16.1.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/27/2014] [Indexed: 01/06/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is responsible for the recognition of bacterial flagellin in vertebrates. In the present study, the first TLR5 gene in duck was cloned. The open reading frame (ORF) of duck TLR5 (dTLR5) cDNA is 2580 bp and encodes a polypeptide of 859 amino acids. We also cloned partial sequences of myeloid differentiation factor 88, 2'-5'-oligoadenylate synthetase (OAS), and myxovirus resistance (Mx) genes from duck. dTLR5 mRNA was highly expressed in the bursa of Fabricius, spleen, trachea, lung, jejunum, rectum, and skin; moderately expressed in the muscular and glandular tissues, duodenum, ileum, caecum, and pancreas; and minimally expressed in the heart, liver, kidney, and muscle. DF-1 or HeLa cells transfected with DNA constructs encoding dTLR5 can activate NF-κB leading to the activation of interleukin-6 (IL-6) promoter. When we challenged ducks with a Herts33 Newcastle disease virus (NDV), mRNA transcription of the antiviral molecules Mx, Double stranded RNA activated protein kinase (PKR), and OAS was up-regulated in the liver, lung, and spleen 1 and 2 days post-inoculation.
Collapse
Affiliation(s)
- Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, China
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, Hakimpour P, Gill KP, Nakaya HI, Yarovinsky F, Sartor RB, Gewirtz AT, Pulendran B. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 2014; 41:478-492. [PMID: 25220212 PMCID: PMC4169736 DOI: 10.1016/j.immuni.2014.08.009] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/06/2014] [Indexed: 11/16/2022]
Abstract
Systems biological analysis of immunity to the trivalent inactivated influenza vaccine (TIV) in humans revealed a correlation between early expression of TLR5 and the magnitude of the antibody response. Vaccination of Trl5(-/-) mice resulted in reduced antibody titers and lower frequencies of plasma cells, demonstrating a role for TLR5 in immunity to TIV. This was due to a failure to sense host microbiota. Thus, antibody responses in germ-free or antibiotic-treated mice were impaired, but restored by oral reconstitution with a flagellated, but not aflagellated, strain of E. coli. TLR5-mediated sensing of flagellin promoted plasma cell differentiation directly and by stimulating lymph node macrophages to produce plasma cell growth factors. Finally, TLR5-mediated sensing of the microbiota also impacted antibody responses to the inactivated polio vaccine, but not to adjuvanted vaccines or the live-attenuated yellow fever vaccine. These results reveal an unappreciated role for gut microbiota in promoting immunity to vaccination.
Collapse
Affiliation(s)
- Jason Z Oh
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Center, Emory University, Atlanta, GA 30329, USA
| | - Rajesh Ravindran
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Center, Emory University, Atlanta, GA 30329, USA
| | - Benoit Chassaing
- Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta, GA 30302, USA
| | - Frederic A Carvalho
- Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta, GA 30302, USA; INSERM U1107, Universite d'Auvergne, 63001 Clermont-Ferrand Cedex 1, France
| | - Mohan S Maddur
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Center, Emory University, Atlanta, GA 30329, USA
| | - Maureen Bower
- National Gnotobiotic Rodent Resource Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Paul Hakimpour
- Yerkes National Primate Center, Emory University, Atlanta, GA 30329, USA
| | - Kiran P Gill
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Center, Emory University, Atlanta, GA 30329, USA
| | - Helder I Nakaya
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA 30329, USA; Department of Clinical and Toxicological Analyses, Institute of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Felix Yarovinsky
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - R Balfour Sartor
- National Gnotobiotic Rodent Resource Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Georgia State University, Atlanta, GA 30302, USA
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA; Yerkes National Primate Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology, School of Medicine, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
94
|
Anti‐metastatic immunotherapy based on mucosal administration of flagellin and immunomodulatory P10. Immunol Cell Biol 2014; 93:86-98. [DOI: 10.1038/icb.2014.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023]
|
95
|
Airway structural cells regulate TLR5-mediated mucosal adjuvant activity. Mucosal Immunol 2014; 7:489-500. [PMID: 24064672 DOI: 10.1038/mi.2013.66] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/16/2013] [Accepted: 08/13/2013] [Indexed: 02/04/2023]
Abstract
Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin's mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.
Collapse
|
96
|
Native flagellin does not protect mice against an experimental Proteus mirabilis ascending urinary tract infection and neutralizes the protective effect of MrpA fimbrial protein. Antonie van Leeuwenhoek 2014; 105:1139-48. [PMID: 24771125 DOI: 10.1007/s10482-014-0175-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/11/2014] [Indexed: 12/15/2022]
Abstract
Proteus mirabilis expresses several virulence factors including MR/P fimbriae and flagella. Bacterial flagellin has frequently shown interesting adjuvant and protective properties in vaccine formulations. However, native P. mirabilis flagellin has not been analyzed so far. Native P. mirabilis flagellin was evaluated as a protective antigen and as an adjuvant in co-immunizations with MrpA (structural subunit of MR/P fimbriae) using an ascending UTI model in the mouse. Four groups of mice were intranasally treated with either MrpA, native flagellin, both proteins and PBS. Urine and blood samples were collected before and after immunization for specific antibodies determination. Cytokine production was assessed in immunized mice splenocytes cultures. Mice were challenged with P. mirabilis, and bacteria quantified in kidneys and bladders. MrpA immunization induced serum and urine specific anti-MrpA antibodies while MrpA coadministered with native flagellin did not. None of the animals developed significant anti-flagellin antibodies. Only MrpA-immunized mice showed a significant decrease of P. mirabilis in bladders and kidneys. Instead, infection levels in MrpA-flagellin or flagellin-treated mice showed no significant differences with the control group. IL-10 was significantly induced in splenocytes of mice that received native flagellin or MrpA-flagellin. Native P. mirabilis flagellin did not protect mice against an ascending UTI. Moreover, it showed an immunomodulatory effect, neutralizing the protective role of MrpA. P. mirabilis flagellin exhibits particular immunological properties compared to other bacterial flagellins.
Collapse
|
97
|
Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands. Vaccines (Basel) 2014; 2:323-53. [PMID: 26344622 PMCID: PMC4494261 DOI: 10.3390/vaccines2020323] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/07/2023] Open
Abstract
Vaccine efficacy is optimized by addition of immune adjuvants. However, although adjuvants have been used for over a century, to date, only few adjuvants are approved for human use, mostly aimed at improving vaccine efficacy and antigen-specific protective antibody production. The mechanism of action of immune adjuvants is diverse, depending on their chemical and molecular nature, ranging from non-specific effects (i.e., antigen depot at the immunization site) to specific activation of immune cells leading to improved host innate and adaptive responses. Although the detailed molecular mechanism of action of many adjuvants is still elusive, the discovery of Toll-like receptors (TLRs) has provided new critical information on immunostimulatory effect of numerous bacterial components that engage TLRs. These ligands have been shown to improve both the quality and the quantity of host adaptive immune responses when used in vaccine formulations targeted to infectious diseases and cancer that require both humoral and cell-mediated immunity. The potential of such TLR adjuvants in improving the design and the outcomes of several vaccines is continuously evolving, as new agonists are discovered and tested in experimental and clinical models of vaccination. In this review, a summary of the recent progress in development of TLR adjuvants is presented.
Collapse
|
98
|
López-Yglesias AH, Zhao X, Quarles EK, Lai MA, VandenBos T, Strong RK, Smith KD. Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1587-96. [PMID: 24442437 PMCID: PMC3925749 DOI: 10.4049/jimmunol.1301893] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flagellin is a potent immunogen that activates the innate immune system via TLR5 and Naip5/6, and generates strong T and B cell responses. The adaptor protein MyD88 is critical for signaling by TLR5, as well as IL-1Rs and IL-18Rs, major downstream mediators of the Naip5/6 Nlrc4-inflammasome. In this study, we define roles of known flagellin receptors and MyD88 in Ab responses generated toward flagellin. We used mice genetically deficient in flagellin recognition pathways to characterize innate immune components that regulate isotype-specific Ab responses. Using purified flagellin from Salmonella, we dissected the contribution of innate flagellin recognition pathways to promote Ab responses toward flagellin and coadministered OVA in C57BL/6 mice. We demonstrate IgG2c responses toward flagellin were TLR5 and inflammasome dependent; IgG1 was the dominant isotype and partially TLR5 and inflammasome dependent. Our data indicate a substantial flagellin-specific IgG1 response was induced through a TLR5-, inflammasome-, and MyD88-independent pathway. IgA anti-FliC responses were TLR5 and MyD88 dependent and caspase-1 independent. Unlike C57BL/6 mice, flagellin-immunized A/J mice induced codominant IgG1 and IgG2a responses. Furthermore, MyD88-independent, flagellin-induced Ab responses were even more pronounced in A/J MyD88(-/-) mice, and IgA anti-FliC responses were suppressed by MyD88. Flagellin also worked as an adjuvant toward coadministered OVA, but it only promoted IgG1 anti-OVA responses. Our results demonstrate that a novel pathway for flagellin recognition contributes to Ab production. Characterization of this pathway will be useful for understanding immunity to flagellin and the rationale design of flagellin-based vaccines.
Collapse
|
99
|
Prevention of intestinal allergy in mice by rflaA:Ova is associated with enforced antigen processing and TLR5-dependent IL-10 secretion by mDC. PLoS One 2014; 9:e87822. [PMID: 24516564 PMCID: PMC3917841 DOI: 10.1371/journal.pone.0087822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/30/2013] [Indexed: 12/19/2022] Open
Abstract
Conjugated vaccines consisting of flagellin and antigen activate TLR5 and induce strong innate and adaptive immune responses. Objective of the present study was to gain further insight into the mechanisms by which flagellin fusion proteins mediate their immune modulating effects. In a mouse model of Ova-induced intestinal allergy a fusion protein of flagellin and Ova (rflaA:Ova) was used for intranasal and intraperitoneal vaccination. Aggregation status of flaA, Ova and flaA:Ova were compared by light scattering, uptake of fluorescence labeled proteins into mDC was analyzed, processing was investigated by microsomal digestion experiments. Mechanism of DC-activation was investigated using proteasome and inflammasome inhibitors. Immune responses of wildtype, IL-10−/−, TLR5−/− mDCs and Ova-transgenic T cells were investigated. Mucosal and i.p.-application of rflaA:Ova were able to prevent allergic sensitization, suppress disease-related symptoms, prevent body weight loss and reduction in food uptake. Intranasal vaccination resulted in strongest suppression of Ova-specific IgE production. These protective effects were associated with increased aggregation of rflaA:Ova and accompanied by tenfold higher uptake rates into mDC compared to the mixture of both proteins. Microsomal digestion showed that stimulation with rflaA:Ova resulted in faster degradation and the generation of different peptides compared to rOva. rflaA:Ova-mediated activation of mDC could be suppressed in a dose-dependent manner by the application of both inflammasome and proteasome inhibitors. Using TLR5−/− mDC the rflaA:Ova induced IL-10 secretion was shown to be TLR5 dependent. In co-cultures of IL-10−/− mDC with DO11.10 T cells the lack of rflaA:Ova-mediated IL-10 secretion resulted in enhanced levels of both TH2 (IL-4, IL-5) and TH1 (IL-2 and IFN-y) cytokines. In summary, mucosal vaccination with flaA:Ova showed strongest preventive effect. Stimulation with rflaA:Ova results in strong immune modulation mediated by enhanced uptake of the aggregated fusion protein, likely resulting in a different processing by DC as well as stronger TLR5 mediated cell activation.
Collapse
|
100
|
Leigh ND, Bian G, Ding X, Liu H, Aygun-Sunar S, Burdelya LG, Gudkov AV, Cao X. A flagellin-derived toll-like receptor 5 agonist stimulates cytotoxic lymphocyte-mediated tumor immunity. PLoS One 2014; 9:e85587. [PMID: 24454895 PMCID: PMC3891810 DOI: 10.1371/journal.pone.0085587] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/29/2013] [Indexed: 01/06/2023] Open
Abstract
Toll-like receptor (TLR) mediated recognition of pathogen associated molecular patterns allows the immune system to rapidly respond to a pathogenic insult. The "danger context" elicited by TLR agonists allows an initially non-immunogenic antigen to become immunogenic. This ability to alter environment is highly relevant in tumor immunity, since it is inherently difficult for the immune system to recognize host-derived tumors as immunogenic. However, immune cells may have encountered certain TLR ligands associated with tumor development, yet the endogenous stimulation is typically not sufficient to induce spontaneous tumor rejection. Of special interest are TLR5 agonists, because there are no endogenous ligands that bind TLR5. CBLB502 is a pharmacologically optimized TLR5 agonist derived from Salmonella enterica flagellin. We examined the effect of CBLB502 on tumor immunity using two syngeneic lymphoma models, both of which do not express TLR5, and thus do not directly respond to CBLB502. Upon challenge with the T-cell lymphoma RMAS, CBLB502 treatment after tumor inoculation protects C57BL/6 mice from death caused by tumor growth. This protective effect is both natural killer (NK) cell- and perforin-dependent. In addition, CBLB502 stimulates clearance of the B-cell lymphoma A20 in BALB/c mice in a CD8(+) T cell-dependent fashion. Analysis on the cellular level via ImageStream flow cytometry reveals that CD11b(+) and CD11c(+) cells, but neither NK nor T cells, directly respond to CBLB502 as determined by NFκB nuclear translocation. Our findings demonstrate that CBLB502 stimulates a robust antitumor response by directly activating TLR5-expressing accessory immune cells, which in turn activate cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Nicholas D. Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Guanglin Bian
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Xilai Ding
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Hong Liu
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Semra Aygun-Sunar
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lyudmila G. Burdelya
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|