51
|
Williams LD, Ofek G, Schätzle S, McDaniel JR, Lu X, Nicely NI, Wu L, Lougheed CS, Bradley T, Louder MK, McKee K, Bailer RT, O'Dell S, Georgiev IS, Seaman MS, Parks RJ, Marshall DJ, Anasti K, Yang G, Nie X, Tumba NL, Wiehe K, Wagh K, Korber B, Kepler TB, Munir Alam S, Morris L, Kamanga G, Cohen MS, Bonsignori M, Xia SM, Montefiori DC, Kelsoe G, Gao F, Mascola JR, Moody MA, Saunders KO, Liao HX, Tomaras GD, Georgiou G, Haynes BF. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci Immunol 2017; 2:2/7/eaal2200. [PMID: 28783671 DOI: 10.1126/sciimmunol.aal2200] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Induction of broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development. Antibody 10E8, reactive with the distal portion of the membrane-proximal external region (MPER) of HIV-1 gp41, is broadly neutralizing. However, the ontogeny of distal MPER antibodies and the relationship of memory B cell to plasma bnAbs are poorly understood. HIV-1-specific memory B cell flow sorting and proteomic identification of anti-MPER plasma antibodies from an HIV-1-infected individual were used to isolate broadly neutralizing distal MPER bnAbs of the same B cell clonal lineage. Structural analysis demonstrated that antibodies from memory B cells and plasma recognized the envelope gp41 bnAb epitope in a distinct orientation compared with other distal MPER bnAbs. The unmutated common ancestor of this distal MPER bnAb was autoreactive, suggesting lineage immune tolerance control. Construction of chimeric antibodies of memory B cell and plasma antibodies yielded a bnAb that potently neutralized most HIV-1 strains.
Collapse
Affiliation(s)
- LaTonya D Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gilad Ofek
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Sebastian Schätzle
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nathan I Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Liming Wu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Caleb S Lougheed
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center and Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dawn J Marshall
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Guang Yang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoyan Nie
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nancy L Tumba
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg 2131, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella 4013, South Africa
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Thomas B Kepler
- Departments of Microbiology and Mathematics & Statistics, Boston University School of Medicine, Boston, MA 02118, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg 2131, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella 4013, South Africa
| | - Gift Kamanga
- University of North Carolina Project-Malawi, Kamuzu Central Hospital, Lilongwe, Malawi
| | - Myron S Cohen
- Departments of Medicine, Epidemiology, and Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA. .,Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
52
|
Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid-dependent immunodominant response overlapping the 2F5 binding motif. Sci Rep 2017; 7:40800. [PMID: 28084464 PMCID: PMC5234007 DOI: 10.1038/srep40800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.
Collapse
|
53
|
Khasnis MD, Halkidis K, Bhardwaj A, Root MJ. Receptor Activation of HIV-1 Env Leads to Asymmetric Exposure of the gp41 Trimer. PLoS Pathog 2016; 12:e1006098. [PMID: 27992602 PMCID: PMC5222517 DOI: 10.1371/journal.ppat.1006098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/09/2017] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Structural rearrangements of HIV-1 glycoprotein Env promote viral entry through membrane fusion. Env is a symmetric homotrimer with each protomer composed of surface subunit gp120 and transmembrane subunit gp41. Cellular CD4- and chemokine receptor-binding to gp120 coordinate conformational changes in gp41, first to an extended prehairpin intermediate (PHI) and, ultimately, into a fusogenic trimer-of-hairpins (TOH). HIV-1 fusion inhibitors target gp41 in the PHI and block TOH formation. To characterize structural transformations into and through the PHI, we employed asymmetric Env trimers containing both high and low affinity binding sites for individual fusion inhibitors. Asymmetry was achieved using engineered Env heterotrimers composed of protomers deficient in either CD4- or chemokine receptor-binding. Linking receptor engagement to inhibitor affinity allowed us to assess conformational changes of individual Env protomers in the context of a functioning trimer. We found that the transition into the PHI could occur symmetrically or asymmetrically depending on the stoichiometry of CD4 binding. Sequential engagement of multiple CD4s promoted progressive exposure of individual fusion inhibitor binding sites in a CD4-dependent fashion. By contrast, engagement of only a single CD4 molecule led to a delayed, but symmetric, exposure of the gp41 trimer. This complex coupling between Env-CD4 interaction and gp41 exposure explained the multiphasic fusion-inhibitor titration observed for a mutant Env homotrimer with a naturally asymmetric gp41. Our results suggest that the spatial and temporal exposure of gp41 can proceed in a nonconcerted, asymmetric manner depending on the number of CD4s that engage the Env trimer. The findings have important implications for the mechanism of viral membrane fusion and the development of vaccine candidates designed to elicit neutralizing antibodies targeting gp41 in the PHI. For HIV, cellular invasion requires merging viral and cellular membranes, an event achieved through the activity of the viral fusion protein Env. Env consists of three gp120 and three gp41 subunits symmetrically arranged on the viral surface. The gp120 subunits bind cellular receptors, which, in turn, coordinate gp41 conformational changes that promote membrane fusion. Understanding these structural rearrangements illuminates the mechanism of viral membrane fusion, and also spurs development of targeted inhibitors of viral entry and vaccine candidates that elicit antiviral immune responses. In this study, we employed a novel strategy to investigate individual subunits in the context of functioning Env complexes. The strategy links distinct gp120-receptor interactions to conformational changes that expose specific gp41 subunits. We found that, despite the initial symmetric arrangement of its subunits, Env conformational changes most often proceed quite asymmetrically, leading to exposure of only one-third of the gp41 trimer for much of the fusion event. This finding might explain why attempts to elicit potent anti-HIV antibodies to a fully exposed gp41 trimer have been largely unsuccessful. The study gives us a glimpse of the early structural transitions leading to Env-mediated membrane fusion and provides a framework for interrogating the fusion proteins of other membrane-encapsulated viruses.
Collapse
Affiliation(s)
- Mukta D. Khasnis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Konstantine Halkidis
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Michael J. Root
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
54
|
Luo K, Liao HX, Zhang R, Easterhoff D, Wiehe K, Gurley TC, Armand LC, Allen AA, Von Holle TA, Marshall DJ, Whitesides JF, Pritchett J, Foulger A, Hernandez G, Parks R, Lloyd KE, Stolarchuk C, Sawant S, Peel J, Yates NL, Dunford E, Arora S, Wang A, Bowman CM, Sutherland LL, Scearce RM, Xia SM, Bonsignori M, Pollara J, Edwards RW, Santra S, Letvin NL, Tartaglia J, Francis D, Sinangil F, Lee C, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Rerks-Ngarm S, Michael NL, Kim JH, Alam SM, Vandergrift NA, Ferrari G, Montefiori DC, Tomaras GD, Haynes BF, Moody MA. Tissue memory B cell repertoire analysis after ALVAC/AIDSVAX B/E gp120 immunization of rhesus macaques. JCI Insight 2016; 1:e88522. [PMID: 27942585 DOI: 10.1172/jci.insight.88522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ALVAC prime/ALVAC + AIDSVAX B/E boost RV144 vaccine trial induced an estimated 31% efficacy in a low-risk cohort where HIV‑1 exposures were likely at mucosal surfaces. An immune correlates study demonstrated that antibodies targeting the V2 region and in a secondary analysis antibody-dependent cellular cytotoxicity (ADCC), in the presence of low envelope-specific (Env-specific) IgA, correlated with decreased risk of infection. Thus, understanding the B cell repertoires induced by this vaccine in systemic and mucosal compartments are key to understanding the potential protective mechanisms of this vaccine regimen. We immunized rhesus macaques with the ALVAC/AIDSVAX B/E gp120 vaccine regimen given in RV144, and then gave a boost 6 months later, after which the animals were necropsied. We isolated systemic and intestinal vaccine Env-specific memory B cells. Whereas Env-specific B cell clonal lineages were shared between spleen, draining inguinal, anterior pelvic, posterior pelvic, and periaortic lymph nodes, members of Env‑specific B cell clonal lineages were absent in the terminal ileum. Env‑specific antibodies were detectable in rectal fluids, suggesting that IgG antibodies present at mucosal sites were likely systemically produced and transported to intestinal mucosal sites.
Collapse
Affiliation(s)
- Kan Luo
- Duke Human Vaccine Institute
| | - Hua-Xin Liao
- Duke Human Vaccine Institute.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mattia Bonsignori
- Duke Human Vaccine Institute.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - R Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Norman L Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Donald Francis
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Carter Lee
- Global Solutions for Infectious Diseases, South San Francisco, California, USA
| | - Jaranit Kaewkungwal
- Center of Excellence for Biomedical and Public Health Informatics BIOPHICS, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Armed Forces Research Institute of Medical Sciences-Royal Thai Army Component, Bangkok, Thailand
| | | | | | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - S Munir Alam
- Duke Human Vaccine Institute.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Department of Pathology
| | - Nathan A Vandergrift
- Duke Human Vaccine Institute.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute.,Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute.,Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA.,Department of Immunology
| | - Barton F Haynes
- Duke Human Vaccine Institute.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Department of Immunology
| | - M Anthony Moody
- Duke Human Vaccine Institute.,Department of Immunology.,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
55
|
Bradley T, Yang G, Ilkayeva O, Holl TM, Zhang R, Zhang J, Santra S, Fox CB, Reed SG, Parks R, Bowman CM, Bouton-Verville H, Sutherland LL, Scearce RM, Vandergrift N, Kepler TB, Moody MA, Liao HX, Alam SM, McLendon R, Everitt JI, Newgard CB, Verkoczy L, Kelsoe G, Haynes BF. HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. THE JOURNAL OF IMMUNOLOGY 2016; 197:4663-4673. [PMID: 27849170 DOI: 10.4049/jimmunol.1601484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 11/19/2022]
Abstract
The HIV-1 envelope protein (Env) has evolved to subvert the host immune system, hindering viral control by the host. The tryptophan metabolic enzyme kynureninase (KYNU) is mimicked by a portion of the HIV Env gp41 membrane proximal region (MPER) and is cross-reactive with the HIV broadly neutralizing Ab (bnAb) 2F5. Molecular mimicry of host proteins by pathogens can lead to autoimmune disease. In this article, we demonstrate that neither the 2F5 bnAb nor HIV MPER-KYNU cross-reactive Abs elicited by immunization with an MPER peptide-liposome vaccine in 2F5 bnAb VHDJH and VLJL knock-in mice and rhesus macaques modified KYNU activity or disrupted tissue tryptophan metabolism. Thus, molecular mimicry by HIV-1 Env that promotes the evasion of host anti-HIV-1 Ab responses can be directed toward nonfunctional host protein epitopes that do not impair host protein function. Therefore, the 2F5 HIV Env gp41 region is a key and safe target for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Todd Bradley
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710; .,Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Guang Yang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Olga Ilkayeva
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - T Matt Holl
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ruijun Zhang
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Jinsong Zhang
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | | | - Steve G Reed
- Infectious Disease Research Institute, Seattle, WA 98102
| | - Robert Parks
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Cindy M Bowman
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | | - Laura L Sutherland
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Richard M Scearce
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Nathan Vandergrift
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710.,Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02215
| | - M Anthony Moody
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - S Munir Alam
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710.,Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Roger McLendon
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Christopher B Newgard
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Laurent Verkoczy
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710.,Department of Medicine, Duke University Medical Center, Durham, NC 27710.,Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Garnett Kelsoe
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710; .,Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Barton F Haynes
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710; .,Department of Medicine, Duke University Medical Center, Durham, NC 27710.,Department of Pathology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
56
|
Engineering Recombinant Reoviruses To Display gp41 Membrane-Proximal External-Region Epitopes from HIV-1. mSphere 2016; 1:mSphere00086-16. [PMID: 27303748 PMCID: PMC4888892 DOI: 10.1128/msphere.00086-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022] Open
Abstract
Vaccines to protect against HIV-1, the causative agent of AIDS, are not approved for use. Antibodies that neutralize genetically diverse strains of HIV-1 bind to discrete regions of the envelope glycoproteins, including the gp41 MPER. We engineered recombinant reoviruses that displayed MPER epitopes in attachment protein σ1 (REO-MPER vectors). The REO-MPER vectors replicated with wild-type efficiency, were genetically stable, and retained native antigenicity. However, we did not detect HIV-1-specific immune responses following inoculation of the REO-MPER vectors into small animals. This work provides proof of principle for engineering reovirus to express antigenic epitopes and illustrates the difficulty in eliciting MPER-specific immune responses. The gp41 membrane-proximal external region (MPER) is a target for broadly neutralizing antibody responses against human immunodeficiency virus type 1 (HIV-1). However, replication-defective virus vaccines currently under evaluation in clinical trials do not efficiently elicit MPER-specific antibodies. Structural modeling suggests that the MPER forms an α-helical coiled coil that is required for function and immunogenicity. To maintain the native MPER conformation, we used reverse genetics to engineer replication-competent reovirus vectors that displayed MPER sequences in the α-helical coiled-coil tail domain of viral attachment protein σ1. Sequences in reovirus strain type 1 Lang (T1L) σ1 were exchanged with sequences encoding HIV-1 strain Ba-L MPER epitope 2F5 or the entire MPER. Individual 2F5 or MPER substitutions were introduced at virion-proximal or virion-distal sites in the σ1 tail. Recombinant reoviruses containing heterologous HIV-1 sequences were viable and produced progeny yields comparable to those with wild-type virus. HIV-1 sequences were retained following 10 serial passages in cell culture, indicating that the substitutions were genetically stable. Recombinant viruses engineered to display the 2F5 epitope or full-length MPER in σ1 were recognized by purified 2F5 antibody. Inoculation of mice with 2F5-containing vectors or rabbits with 2F5- or MPER-containing vectors elicited anti-reovirus antibodies, but HIV-1-specific antibodies were not detected. Together, these findings indicate that heterologous sequences that form α-helices can functionally replace native sequences in the α-helical tail domain of reovirus attachment protein σ1. However, although these vectors retain native antigenicity, they were not immunogenic, illustrating the difficulty of experimentally inducing immune responses to this essential region of HIV-1. IMPORTANCE Vaccines to protect against HIV-1, the causative agent of AIDS, are not approved for use. Antibodies that neutralize genetically diverse strains of HIV-1 bind to discrete regions of the envelope glycoproteins, including the gp41 MPER. We engineered recombinant reoviruses that displayed MPER epitopes in attachment protein σ1 (REO-MPER vectors). The REO-MPER vectors replicated with wild-type efficiency, were genetically stable, and retained native antigenicity. However, we did not detect HIV-1-specific immune responses following inoculation of the REO-MPER vectors into small animals. This work provides proof of principle for engineering reovirus to express antigenic epitopes and illustrates the difficulty in eliciting MPER-specific immune responses.
Collapse
|
57
|
Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F, Joyce MG, Ozorowski G, Chuang GY, Schramm CA, Wiehe K, Alam SM, Bradley T, Gladden MA, Hwang KK, Iyengar S, Kumar A, Lu X, Luo K, Mangiapani MC, Parks RJ, Song H, Acharya P, Bailer RT, Cao A, Druz A, Georgiev IS, Kwon YD, Louder MK, Zhang B, Zheng A, Hill BJ, Kong R, Soto C, Mullikin JC, Douek DC, Montefiori DC, Moody MA, Shaw GM, Hahn BH, Kelsoe G, Hraber PT, Korber BT, Boyd SD, Fire AZ, Kepler TB, Shapiro L, Ward AB, Mascola JR, Liao HX, Kwong PD, Haynes BF. Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell 2016; 165:449-63. [PMID: 26949186 DOI: 10.1016/j.cell.2016.02.022] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 02/08/2016] [Indexed: 01/16/2023]
Abstract
Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.
Collapse
Affiliation(s)
- Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Lei Chen
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Morgan A Gladden
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheelah Iyengar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael C Mangiapani
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongshuo Song
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allen Cao
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Young D Kwon
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brenna J Hill
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rui Kong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael A Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Bette T Korber
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Scott D Boyd
- Department of Pathology, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02118, USA; Department of Mathematics and Statistics, Boston University, Boston, MA 02118, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Global Health Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
58
|
Reichart TM, Baksh MM, Rhee JK, Fiedler JD, Sligar SG, Finn MG, Zwick MB, Dawson PE. Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Timothy M. Reichart
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Michael M. Baksh
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
- School of Chemistry & Biochemistry; Georgia Institute of Technology; 901 Atlantic Drive Atlanta GA 30332 USA
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering; Ewha Womans University; Seoul 03760 Korea
| | - Jason D. Fiedler
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Stephen G. Sligar
- Department of Biochemistry; University of Illinois; Urbana IL 61801 USA
| | - M. G. Finn
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
- School of Chemistry & Biochemistry; Georgia Institute of Technology; 901 Atlantic Drive Atlanta GA 30332 USA
| | - Michael B. Zwick
- Department of Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA USA
| | - Philip E. Dawson
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
59
|
Reichart TM, Baksh MM, Rhee JK, Fiedler JD, Sligar SG, Finn MG, Zwick MB, Dawson PE. Trimerization of the HIV Transmembrane Domain in Lipid Bilayers Modulates Broadly Neutralizing Antibody Binding. Angew Chem Int Ed Engl 2016; 55:2688-92. [PMID: 26799917 PMCID: PMC5405556 DOI: 10.1002/anie.201508421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/04/2015] [Indexed: 12/18/2022]
Abstract
The membrane-proximal external region (MPER) of HIV gp41 is an established target of antibodies that neutralize a broad range of HIV isolates. To evaluate the role of the transmembrane (TM) domain, synthetic MPER-derived peptides were incorporated into lipid nanoparticles using natural and designed TM domains, and antibody affinity was measured using immobilized and solution-based techniques. Peptides incorporating the native HIV TM domain exhibit significantly stronger interactions with neutralizing antibodies than peptides with a monomeric TM domain. Furthermore, a peptide with a trimeric, three-helix bundle TM domain recapitulates the binding profile of the native sequence. These studies suggest that neutralizing antibodies can bind the MPER when the TM domain is a three-helix bundle and this presentation could influence the binding of neutralizing antibodies to the virus. Lipid-bilayer presentation of viral antigens in Nanodiscs is a new platform for evaluating neutralizing antibodies.
Collapse
Affiliation(s)
- Timothy M Reichart
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michael M Baksh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Korea
| | - Jason D Fiedler
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
| | - M G Finn
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Michael B Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
60
|
Abstract
Purpose of review This review highlights recent developments in HIV-1 antibody engineering and discusses the effects of increased polyreactivity on serum half-lives of engineered antibodies. Recent findings Recent studies have uncovered a wealth of information about the relationship between the sequences and efficacies of anti-HIV-1 antibodies through a combination of bioinformatics, structural characterization and in vivo studies. This knowledge has stimulated efforts to enhance antibody breadth and potency for therapeutic use. Although some engineered antibodies have shown increased polyreactivity and short half-lives, promising efforts are circumventing these problems. Summary Antibodies are desirable as therapeutics due to their ability to recognize targets with both specificity and high affinity. Furthermore, the ability of antibodies to stimulate Fc-mediated effector functions can increase their utility. Thus, mAbs have become central to strategies for the treatment of various diseases. Using both targeted and library-based approaches, antibodies can be engineered to improve their therapeutic properties. This article will discuss recent antibody engineering efforts to improve the breadth and potency of anti-HIV-1 antibodies. The polyreactivity of engineered HIV-1 bNAbs and the effect on serum half-life will be explored along with strategies to overcome problems introduced by engineering antibodies. Finally, advances in creating bispecific anti-HIV-1 reagents are discussed.
Collapse
|
61
|
Irimia A, Sarkar A, Stanfield RL, Wilson IA. Crystallographic Identification of Lipid as an Integral Component of the Epitope of HIV Broadly Neutralizing Antibody 4E10. Immunity 2016; 44:21-31. [PMID: 26777395 DOI: 10.1016/j.immuni.2015.12.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/24/2023]
Abstract
Numerous studies of the anti-HIV-1 envelope glycoprotein 41 (gp41) broadly neutralizing antibody 4E10 suggest that 4E10 also interacts with membrane lipids, but the antibody regions contacting lipids and its orientation with respect to the viral membrane are unknown. Vaccine immunogens capable of re-eliciting these membrane proximal external region (MPER)-like antibodies may require a lipid component to be successful. We performed a systematic crystallographic study of lipid binding to 4E10 to identify lipids bound by the antibody and the lipid-interacting regions. We identified phosphatidic acid, phosphatidylglycerol, and glycerol phosphate as specific ligands for 4E10 in the crystal structures. 4E10 used its CDRH1 loop to bind the lipid head groups, while its CDRH3 interacted with the hydrophobic lipid tails. Identification of the lipid binding sites on 4E10 may aid design of immunogens for vaccines that include a lipid component in addition to the MPER on gp41 for generation of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Adriana Irimia
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), and Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), and Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), and Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD), and Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
62
|
N-terminal residues of an HIV-1 gp41 membrane-proximal external region antigen influence broadly neutralizing 2F5-like antibodies. Virol Sin 2015; 30:449-56. [PMID: 26715302 DOI: 10.1007/s12250-015-3664-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
The Human immunodeficiency virus type 1 (HIV-1) gp41 membrane proximal external region (MPER) is targeted by broadly neutralizing antibodies (e.g. 2F5, 4E10, Z13e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However, these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope (amino acids (aa) 662-667 in the MPER) but also several other residues (aa 652-655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.
Collapse
|
63
|
Broadly Neutralizing Anti-HIV Antibodies Prevent HIV Infection of Mucosal Tissue Ex Vivo. Antimicrob Agents Chemother 2015; 60:904-12. [PMID: 26596954 DOI: 10.1128/aac.02097-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/19/2015] [Indexed: 01/16/2023] Open
Abstract
Broadly neutralizing monoclonal antibodies (nAbs) specific for HIV are being investigated for use in HIV prevention. Due to their ability to inhibit HIV attachment to and entry into target cells, nAbs may be suitable for use as topical HIV microbicides. As such, they would present an alternative intervention for individuals who may not benefit from using antiretroviral-based products for HIV prevention. We theorize that nAbs can inhibit viral transmission through mucosal tissue, thus reducing the incidence of HIV infection. The efficacy of the PG9, PG16, VRC01, and 4E10 antibodies was evaluated in an ex vivo human model of mucosal HIV transmission. nAbs reduced HIV transmission, causing 1.5- to 2-log10 reductions in HIV replication in ectocervical tissues and ≈3-log10 reductions in HIV replication in colonic tissues over 21 days. These antibodies demonstrated greater potency in colonic tissues, with a 50-fold higher dose being required to reduce transmission in ectocervical tissues. Importantly, nAbs retained their potency and reduced viral transmission in the presence of whole semen. No changes in tissue viability or immune activation were observed in colonic or ectocervical tissue after nAb exposure. Our data suggest that topically applied nAbs are safe and effective against HIV infection of mucosal tissue and support further development of nAbs as a topical microbicide that could be used for anal as well as vaginal protection.
Collapse
|
64
|
Murira A, Lapierre P, Lamarre A. Evolution of the Humoral Response during HCV Infection: Theories on the Origin of Broadly Neutralizing Antibodies and Implications for Vaccine Design. Adv Immunol 2015; 129:55-107. [PMID: 26791858 DOI: 10.1016/bs.ai.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Similar to human immunodeficiency virus (HIV)-1, vaccine-induced elicitation of broadly neutralizing (bNt) antibodies (Abs) is gaining traction as a key goal toward the eradication of the hepatitis C virus (HCV) pandemic. Previously, the significance of the Ab response against HCV was underappreciated given the prevailing evidence advancing the role of the cellular immune response in clearance and overall control of the infection. However, recent findings have driven growing interest in the humoral arm of the immune response and in particular the role of bNt responses due to their ability to confer protective immunity upon passive transfer in animal models. Nevertheless, the origin and development of bNt Abs is poorly understood and their occurrence is rare as well as delayed with emergence only observed in the chronic phase of infection. In this review, we characterize the interplay between the host immune response and HCV as it progresses from the acute to chronic phase of infection. In addition, we place these events in the context of current hypotheses on the origin of bNt Abs against the HIV-1, whose humoral immune response is better characterized. Based on the increasing significance of the humoral immune response against HCV, characterization of these events may be critical in understanding the development of the bNt responses and, thus, provide strategies toward effective vaccine design.
Collapse
Affiliation(s)
- Armstrong Murira
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| | - Pascal Lapierre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| |
Collapse
|
65
|
Gallerano D, Cabauatan CR, Sibanda EN, Valenta R. HIV-Specific Antibody Responses in HIV-Infected Patients: From a Monoclonal to a Polyclonal View. Int Arch Allergy Immunol 2015; 167:223-41. [PMID: 26414324 DOI: 10.1159/000438484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIV infections represent a major global health threat, affecting more than 35 million individuals worldwide. High infection rates and problems associated with lifelong antiretroviral treatment emphasize the need for the development of prophylactic and therapeutic immune intervention strategies. It is conceivable that insights for the design of new immunogens capable of eliciting protective immune responses may come from the analysis of HIV-specific antibody responses in infected patients. Using sophisticated technologies, several monoclonal neutralizing antibodies were isolated from HIV-infected individuals. However, the majority of polyclonal antibody responses found in infected patients are nonneutralizing. Comprehensive analyses of the molecular targets of HIV-specific antibody responses identified that during natural infection antibodies are mainly misdirected towards gp120 epitopes outside of the CD4-binding site and against regions and proteins that are not exposed on the surface of the virus. We therefore argue that vaccines aiming to induce protective responses should include engineered immunogens, which are capable of focusing the immune response towards protective epitopes.
Collapse
Affiliation(s)
- Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
66
|
Santra S, Tomaras GD, Warrier R, Nicely NI, Liao HX, Pollara J, Liu P, Alam SM, Zhang R, Cocklin SL, Shen X, Duffy R, Xia SM, Schutte RJ, Pemble IV CW, Dennison SM, Li H, Chao A, Vidnovic K, Evans A, Klein K, Kumar A, Robinson J, Landucci G, Forthal DN, Montefiori DC, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Rerks-Ngarm S, Robb ML, Michael NL, Kim JH, Soderberg KA, Giorgi EE, Blair L, Korber BT, Moog C, Shattock RJ, Letvin NL, Schmitz JE, Moody MA, Gao F, Ferrari G, Shaw GM, Haynes BF. Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathog 2015; 11:e1005042. [PMID: 26237403 PMCID: PMC4523205 DOI: 10.1371/journal.ppat.1005042] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.
Collapse
Affiliation(s)
- Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SS); (GDT); (BFH)
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SS); (GDT); (BFH)
| | - Ranjit Warrier
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nathan I. Nicely
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Pinghuang Liu
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Ruijun Zhang
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Sarah L. Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Ryan Duffy
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Robert J. Schutte
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Charles W. Pemble IV
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - S. Moses Dennison
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Hui Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Chao
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kora Vidnovic
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abbey Evans
- Department of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
| | - Katja Klein
- Department of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - James Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - Donald N. Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | | | - Sorachai Nitayaphan
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | - Merlin L. Robb
- US Military Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- US Military Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kelly A. Soderberg
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Elena E. Giorgi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Lily Blair
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette T. Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christiane Moog
- U1109, INSERM University of Strasbourg, Strasbourg, Alsace, France
| | - Robin J. Shattock
- Department of Medicine, St Mary’s Campus, Imperial College London, London, United Kingdom
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joern E. Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - M. A. Moody
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Feng Gao
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
| | - George M. Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (SS); (GDT); (BFH)
| |
Collapse
|
67
|
Nicely NI, Wiehe K, Kepler TB, Jaeger FH, Dennison SM, Rerks-Ngarm S, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Robb ML, O'Connell RJ, Michael NL, Kim JH, Liao HX, Munir Alam S, Hwang KK, Bonsignori M, Haynes BF. Structural analysis of the unmutated ancestor of the HIV-1 envelope V2 region antibody CH58 isolated from an RV144 vaccine efficacy trial vaccinee. EBioMedicine 2015; 2:713-22. [PMID: 26288844 PMCID: PMC4534707 DOI: 10.1016/j.ebiom.2015.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 11/25/2022] Open
Abstract
Human monoclonal antibody CH58 isolated from an RV144 vaccinee binds at Lys169 of the HIV-1 Env gp120 V2 region, a site of vaccine-induced immune pressure. CH58 neutralizes HIV-1 CRF_01 AE strain 92TH023 and mediates ADCC against CD4 + T cell targets infected with CRF_01 AE tier 2 virus. CH58 and other antibodies that bind to a gp120 V2 epitope have a second light chain complementarity determining region (LCDR2) bearing a glutamic acid, aspartic acid (ED) motif involved in forming salt bridges with polar, basic side amino acid side chains in V2. In an effort to learn how V2 responses develop, we determined the crystal structures of the CH58-UA antibody unliganded and bound to V2 peptide. The structures showed an LCDR2 structurally pre-conformed from germline to interact with V2 residue Lys169. LCDR3 was subject to conformational selection through the affinity maturation process. Kinetic analyses demonstrate that only a few contacts were responsible for a 2000-fold increase in KD through maturation, and this effect was predominantly due to an improvement in off-rate. This study shows that preconformation and preconfiguration can work in concert to produce antibodies with desired immunogenic properties. With only 2-3% mutation from germline, the HIV-1 antibody CH58 developed neutralizing and ADCC capabilities. The LCDR2 Glu–Asp motif of the RV144 antibody CH58 is pre-conformed from germline to interact with the gp120 V2 loop. Affinity and neutralization gains resulted from tuning local interactions rather than gross sequence or structure changes. Structural analyses show the second light chain complementarity determining region Glu–Asp motif of the CH58 antibody isolated from an RV144 vaccinee is optimally pre-conformed from germline to interact with the gp120 V2 loop. The increased binding affinity and neutralization capacity of the mature antibody compared to its germline precursor were achieved with only 2–3% mutation from germline, and the fact that these gains appeared to be a result of the tuning of local interactions rather than gross sequential or conformational changes provides hope that a rational immunogen design for HIV-1 treatment may become a reality.
Collapse
Affiliation(s)
- Nathan I Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Thomas B Kepler
- Boston University Department of Microbiology, Boston, MA, USA
| | - Frederick H Jaeger
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - S Moses Dennison
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | | | - Merlin L Robb
- Henry Jackson Foundation HIV Program, US Military HIV Research Program, Bethesda, MD, USA
| | | | - Nelson L Michael
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jerome H Kim
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
68
|
Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies. Cell Host Microbe 2015; 16:304-13. [PMID: 25211073 DOI: 10.1016/j.chom.2014.08.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/10/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022]
Abstract
Induction of HIV-1 broad neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development but has remained challenging partially due to unusual traits of bnAbs, including high somatic hypermutation (SHM) frequencies and in-frame insertions and deletions (indels). Here we examined the propensity and functional requirement for indels within HIV-1 bnAbs. High-throughput sequencing of the immunoglobulin (Ig) VHDJH genes in HIV-1 infected and uninfected individuals revealed that the indel frequency was elevated among HIV-1-infected subjects, with no unique properties attributable to bnAb-producing individuals. This increased indel occurrence depended only on the frequency of SHM point mutations. Indel-encoded regions were generally proximal to antigen binding sites. Additionally, reconstruction of a HIV-1 CD4-binding site bnAb clonal lineage revealed that a large compound VHDJH indel was required for bnAb activity. Thus, vaccine development should focus on designing regimens targeted at sustained activation of bnAb lineages to achieve the required SHM and indel events.
Collapse
|
69
|
Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research. J Virol 2015; 89:7478-93. [PMID: 25972551 DOI: 10.1128/jvi.00412-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected "fan blade" motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. IMPORTANCE At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the well-characterized broad neutralizing MAbs that target conserved Env epitopes, and induce cross-subtype neutralizing antibodies as measured in both cell line and primary cell assays. This subtype C Env gp145 protein is currently undergoing good manufacturing practice production for use as a reagent for preclinical studies and for human clinical research. This product will serve as a reagent for comparative studies and may represent a next-generation candidate HIV immunogen.
Collapse
|
70
|
Caizhen G, Yan G, Ronron C, Lirong Y, Panpan C, Xuemei H, Yuanbiao Q, Qingshan L. Zirconium phosphatidylcholine-based nanocapsules as an in vivo degradable drug delivery system of MAP30, a momordica anti-HIV protein. Int J Pharm 2015; 483:188-99. [PMID: 25681721 DOI: 10.1016/j.ijpharm.2015.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/10/2015] [Indexed: 01/24/2023]
Abstract
An essential in vivo drug delivery system of a momordica anti-HIV protein, MAP30, was developed through encapsulating in chemically synthesized matrices of zirconium egg- and soy-phosphatidylcholines, abbreviated to Zr/EPC and Zr/SPC, respectively. Matrices were characterized by transmission electron microscopy and powder X-ray diffractometry studies. Zr/EPC granule at an approximate diameter of 69.43±7.78 nm was a less efficient encapsulator than the granule of Zr/SPC. Interlayer spacing of the matrices encapsulating MAP30 increased from 8.8 and 9.7 Å to 7.4 and 7.9 nm, respectively. In vivo kinetics on degradation and protein release was performed by analyzing the serum sampling of intravenously injected SPF chickens. The first order and biphasic variations were obtained for in vivo kinetics using equilibrium dialysis. Antimicrobial and anti-HIV assays yielded greatly decreased MIC50 and EC50 values of nanoformulated MAP30. An acute toxicity of MAP30 encapsulated in Zr/EPC occurred at a single intravenous dose above 14.24 mg/kg bw in NIH/KM/ICR mice. The folding of MAP30 from Zr/EPC sustained in vivo chickens for more than 8 days in high performance liquid chromatography assays. These matrices could protect MAP30 efficiently with strong structure retention, lowered toxicity and prolonged in vivo life.
Collapse
Affiliation(s)
- Guo Caizhen
- Department of Bioscience, Luliang University, Shanxi 033001, PR China
| | - Gao Yan
- School of Pharmaceutical Sciences, Shanxi Medical University, Shanxi 030001, PR China
| | - Chang Ronron
- School of Pharmaceutical Sciences, Shanxi Medical University, Shanxi 030001, PR China
| | - Yang Lirong
- Department of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310027, PR China
| | - Chu Panpan
- Department of Bioscience, Luliang University, Shanxi 033001, PR China
| | - Hu Xuemei
- Department of Chemistry and Chemical Engineering, Luliang University, Shanxi 033001, PR China
| | - Qiao Yuanbiao
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Shanxi 033001, PR China.
| | - Li Qingshan
- School of Pharmaceutical Sciences, Shanxi Medical University, Shanxi 030001, PR China.
| |
Collapse
|
71
|
Hassapis KA, Stylianou DC, Kostrikis LG. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines. Viruses 2014; 6:5047-76. [PMID: 25525909 PMCID: PMC4276942 DOI: 10.3390/v6125047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.
Collapse
Affiliation(s)
- Kyriakos A Hassapis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Dora C Stylianou
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| |
Collapse
|
72
|
Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination. Curr Opin HIV AIDS 2014; 9:224-34. [PMID: 24714565 DOI: 10.1097/coh.0000000000000049] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review discusses progress in understanding the impact of immune tolerance on inducing broadly neutralizing antibodies (bnAbs), and how such knowledge can be incorporated into novel immunization approaches. RECENT FINDINGS Over 120 bnAbs have now been isolated, all of which bear unusual features associated with host tolerance controls, but paradoxically may also be required for their function. Evidence that poly/autoreactivity of membrane proximal external region bnAbs can invoke such controls has been demonstrated by knock-in technology, highlighting its potential for studying the impact of tolerance in the generation of bnAb lineages to distinct HIV-1 envelope targets. The requirement for extensive affinity maturation in developing neutralization breadth/potency during infection is being examined, and similar studies in the setting of immunization will be aided by testing novel vaccine approaches in knock-in models that either selectively express reverted V(D)J rearrangements, or unrearranged germline segments, from which bnAb lineages originate. SUMMARY It is increasingly apparent that immune tolerance, sometimes invoked by self-reactivity that overlaps with bnAb epitope specificity, adds to a formidable set of roadblocks impeding bnAb induction. The path to an effective HIV-1 vaccine may thus benefit from a deeper understanding of host controls, including categorizing those that are unique or common at distinct bnAb targets, and ranking those most feasible to overcome by immunization. Ultimately, such emerging information will be critical to incorporate into new vaccine approaches that can be tested in human trials.
Collapse
|
73
|
Bird GH, Irimia A, Ofek G, Kwong PD, Wilson IA, Walensky LD. Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies. Nat Struct Mol Biol 2014; 21:1058-67. [PMID: 25420104 PMCID: PMC4304871 DOI: 10.1038/nsmb.2922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/23/2014] [Indexed: 01/28/2023]
Abstract
Hydrocarbon stapling can restore bioactive α-helical structure to natural peptides, yielding research tools and prototype therapeutics to dissect and target protein interactions. Here we explore the capacity of peptide stapling to generate high-fidelity, protease-resistant mimics of antigenic structures for vaccine development. HIV-1 has been refractory to vaccine technologies thus far, although select human antibodies can broadly neutralize HIV-1 by targeting sequences of the gp41 juxtamembrane fusion apparatus. To develop candidate HIV-1 immunogens, we generated and characterized stabilized α-helices of the membrane-proximal external region (SAH-MPER) of gp41. SAH-MPER peptides were remarkably protease resistant and bound to the broadly neutralizing 4E10 and 10E8 antibodies with high affinity, recapitulating the structure of the MPER epitope when differentially engaged by the two anti-HIV Fabs. Thus, stapled peptides may provide a new opportunity to develop chemically stabilized antigens for vaccination.
Collapse
Affiliation(s)
- Gregory H. Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Adriana Irimia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Gilad Ofek
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
| | - Loren D. Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
74
|
Wiehe K, Easterhoff D, Luo K, Nicely NI, Bradley T, Jaeger FH, Dennison SM, Zhang R, Lloyd KE, Stolarchuk C, Parks R, Sutherland LL, Scearce RM, Morris L, Kaewkungwal J, Nitayaphan S, Pitisuttithum P, Rerks-Ngarm S, Sinangil F, Phogat S, Michael NL, Kim JH, Kelsoe G, Montefiori DC, Tomaras GD, Bonsignori M, Santra S, Kepler TB, Alam SM, Moody MA, Liao HX, Haynes BF. Antibody light-chain-restricted recognition of the site of immune pressure in the RV144 HIV-1 vaccine trial is phylogenetically conserved. Immunity 2014; 41:909-18. [PMID: 25526306 DOI: 10.1016/j.immuni.2014.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/20/2014] [Indexed: 01/21/2023]
Abstract
In HIV-1, the ability to mount antibody responses to conserved, neutralizing epitopes is critical for protection. Here we have studied the light chain usage of human and rhesus macaque antibodies targeted to a dominant region of the HIV-1 envelope second variable (V2) region involving lysine (K) 169, the site of immune pressure in the RV144 vaccine efficacy trial. We found that humans and rhesus macaques used orthologous lambda variable gene segments encoding a glutamic acid-aspartic acid (ED) motif for K169 recognition. Structure determination of an unmutated ancestor antibody demonstrated that the V2 binding site was preconfigured for ED motif-mediated recognition prior to maturation. Thus, light chain usage for recognition of the site of immune pressure in the RV144 trial is highly conserved across species. These data indicate that the HIV-1 K169-recognizing ED motif has persisted over the diversification between rhesus macaques and humans, suggesting an evolutionary advantage of this antibody recognition mode.
Collapse
Affiliation(s)
- Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nathan I Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frederick H Jaeger
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Moses Dennison
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ruijun Zhang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Krissey E Lloyd
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christina Stolarchuk
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg 2131, SA and the Centre for the AIDS Programme of Research in South Africa (CAPRISA)
| | - Jaranit Kaewkungwal
- Department of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sorachai Nitayaphan
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok 10400, Thailand
| | | | - Supachai Rerks-Ngarm
- Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | | | - Sanjay Phogat
- Global Solutions for Infectious Diseases, South San Francisco, CA 94080, USA
| | - Nelson L Michael
- US Military Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jerome H Kim
- US Military Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard University School of Medicine, Boston, MA 02215, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02118, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
75
|
Antibody B cell responses in HIV-1 infection. Trends Immunol 2014; 35:549-61. [DOI: 10.1016/j.it.2014.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
|
76
|
Lai RPJ, Hock M, Radzimanowski J, Tonks P, Hulsik DL, Effantin G, Seilly DJ, Dreja H, Kliche A, Wagner R, Barnett SW, Tumba N, Morris L, LaBranche CC, Montefiori DC, Seaman MS, Heeney JL, Weissenhorn W. A fusion intermediate gp41 immunogen elicits neutralizing antibodies to HIV-1. J Biol Chem 2014; 289:29912-26. [PMID: 25160627 PMCID: PMC4208001 DOI: 10.1074/jbc.m114.569566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41(int)-Cys) and show that it folds into an elongated ∼ 12-nm-long extended structure based on small angle x-ray scattering data. Gp41(int)-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41(int)-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140(CA018) in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140(CA018) was higher than that induced by gp41(int)-Cys, the majority of animals immunized with gp41(int)-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.
Collapse
Affiliation(s)
- Rachel P J Lai
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Miriam Hock
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Jens Radzimanowski
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Paul Tonks
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - David Lutje Hulsik
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - Gregory Effantin
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France
| | - David J Seilly
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Hanna Dreja
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Susan W Barnett
- Novartis Vaccines and Diagnostics Inc., Cambridge, Massachusetts 02139
| | - Nancy Tumba
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, Centre for HIV and Sexually Transmitted Infections, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, and
| | - Michael S Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Jonathan L Heeney
- From the Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom,
| | - Winfried Weissenhorn
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France, CNRS, UVHCI, F-38000 Grenoble, France,
| |
Collapse
|
77
|
Gao F, Bonsignori M, Liao HX, Kumar A, Xia SM, Lu X, Cai F, Hwang KK, Song H, Zhou T, Lynch RM, Alam SM, Moody MA, Ferrari G, Berrong M, Kelsoe G, Shaw GM, Hahn BH, Montefiori DC, Kamanga G, Cohen MS, Hraber P, Kwong PD, Korber BT, Mascola JR, Kepler TB, Haynes BF. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 2014; 158:481-91. [PMID: 25065977 PMCID: PMC4150607 DOI: 10.1016/j.cell.2014.06.022] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/05/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
Development of strategies for induction of HIV-1 broadly neutralizing antibodies (bnAbs) by vaccines is a priority. Determining the steps of bnAb induction in HIV-1-infected individuals who make bnAbs is a key strategy for immunogen design. Here, we study the B cell response in a bnAb-producing individual and report cooperation between two B cell lineages to drive bnAb development. We isolated a virus-neutralizing antibody lineage that targeted an envelope region (loop D) and selected virus escape mutants that resulted in both enhanced bnAb lineage envelope binding and escape mutant neutralization-traits associated with increased B cell antigen drive. Thus, in this individual, two B cell lineages cooperated to induce the development of bnAbs. Design of vaccine immunogens that simultaneously drive both helper and broadly neutralizing B cell lineages may be important for vaccine-induced recapitulation of events that transpire during the maturation of neutralizing antibodies in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Feng Gao
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA.
| | - Mattia Bonsignori
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Hua-Xin Liao
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Amit Kumar
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Shi-Mao Xia
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Xiaozhi Lu
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Fangping Cai
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Kwan-Ki Hwang
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Hongshuo Song
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca M Lynch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Munir Alam
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - M Anthony Moody
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Guido Ferrari
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Mark Berrong
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Garnett Kelsoe
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David C Montefiori
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA
| | - Gift Kamanga
- UNC Project, Lilongwe, Malawi; Departments of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Myron S Cohen
- Departments of Medicine, Epidemiology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Hraber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University, Boston, MA 02215, USA
| | - Barton F Haynes
- Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, Durham NC 27710, USA; The Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham NC 27710, USA.
| |
Collapse
|
78
|
Hardy GJ, Wong GC, Nayak R, Anasti K, Hirtz M, Shapter JG, Alam SM, Zauscher S. HIV-1 antibodies and vaccine antigen selectively interact with lipid domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2662-9. [PMID: 25019685 DOI: 10.1016/j.bbamem.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The rare, broadly neutralizing antibodies, 4E10 and 2F5, that target the HIV-1 membrane proximal external region also associate with HIV-1 membrane lipids as part of a required first-step in HIV-1 neutralization. HIV-1 virions have high concentration of cholesterol and sphingomyelin, which are able to organize into liquid-ordered domains (i.e., lipid rafts), and could influence the interaction of neutralizing antibodies with epitopes proximal to the membrane. The objective of this research is to understand how these lipid domains contribute to 2F5/4E10 membrane interactions and to antigen presentation in liposomal form of HIV-1 vaccines. To this end we have engineered biomimetic supported lipid bilayers and are able to use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody-membrane interactions. Our results demonstrate that 2F5/4E10 do not interact with highly ordered gel and liquid-ordered domains and exclusively bind to a liquid-disordered lipid phase. This suggests that vaccine liposomes that contain key viral membrane components, such as high cholesterol content, may not be advantageous for 2F5/4E10 vaccine strategies. Rather, vaccine liposomes that primarily contain a liquid-disordered phase may be more likely to elicit production of lipid reactive, 2F5- and 4E10-like antibodies.
Collapse
Affiliation(s)
- Gregory J Hardy
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Gene C Wong
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Rahul Nayak
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Kara Anasti
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27708, United States
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Joseph G Shapter
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - S Munir Alam
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27708, United States
| | - Stefan Zauscher
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
79
|
Abstract
UNLABELLED The extraordinary diversity of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein poses a major challenge for the development of an HIV-1 vaccine. One strategy to circumvent this problem utilizes bioinformatically optimized mosaic antigens. However, mosaic Env proteins expressed as trimers have not been previously evaluated for their stability, antigenicity, and immunogenicity. Here, we report the production and characterization of a stable HIV-1 mosaic M gp140 Env trimer. The mosaic M trimer bound CD4 as well as multiple broadly neutralizing monoclonal antibodies, and biophysical characterization suggested substantial stability. The mosaic M trimer elicited higher neutralizing antibody (nAb) titers against clade B viruses than a previously described clade C (C97ZA.012) gp140 trimer in guinea pigs, whereas the clade C trimer elicited higher nAb titers than the mosaic M trimer against clade A and C viruses. A mixture of the clade C and mosaic M trimers elicited nAb responses that were comparable to the better component of the mixture for each virus tested. These data suggest that combinations of relatively small numbers of immunologically complementary Env trimers may improve nAb responses. IMPORTANCE The development of an HIV-1 vaccine remains a formidable challenge due to multiple circulating strains of HIV-1 worldwide. This study describes a candidate HIV-1 Env protein vaccine whose sequence has been designed by computational methods to address HIV-1 diversity. The characteristics and immunogenicity of this Env protein, both alone and mixed together with a clade C Env protein vaccine, are described.
Collapse
|
80
|
Molinos-Albert LM, Carrillo J, Curriu M, Rodriguez de la Concepción ML, Marfil S, García E, Clotet B, Blanco J. Anti-MPER antibodies with heterogeneous neutralization capacity are detectable in most untreated HIV-1 infected individuals. Retrovirology 2014; 11:44. [PMID: 24909946 PMCID: PMC4067070 DOI: 10.1186/1742-4690-11-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals. We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. Results Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. Conclusions Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julià Blanco
- IrsiCaixa-HIVACAT, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, UAB, Badalona, 08916 Barcelona, Catalonia, Spain.
| |
Collapse
|
81
|
HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities. J Virol 2014; 88:7715-26. [PMID: 24807721 DOI: 10.1128/jvi.00156-14] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RV144 ALVAC/AIDSVax HIV-1 vaccine clinical trial showed an estimated vaccine efficacy of 31.2%. Viral genetic analysis identified a vaccine-induced site of immune pressure in the HIV-1 envelope (Env) variable region 2 (V2) focused on residue 169, which is included in the epitope recognized by vaccinee-derived V2 monoclonal antibodies. The ALVAC/AIDSVax vaccine induced antibody-dependent cellular cytotoxicity (ADCC) against the Env V2 and constant 1 (C1) regions. In the presence of low IgA Env antibody levels, plasma levels of ADCC activity correlated with lower risk of infection. In this study, we demonstrate that C1 and V2 monoclonal antibodies isolated from RV144 vaccinees synergized for neutralization, infectious virus capture, and ADCC. Importantly, synergy increased the HIV-1 ADCC activity of V2 monoclonal antibody CH58 at concentrations similar to that observed in plasma of RV144 vaccinees. These findings raise the hypothesis that synergy among vaccine-induced antibodies with different epitope specificities contributes to HIV-1 antiviral antibody responses and is important to induce for reduction in the risk of HIV-1 transmission. Importance: The Thai RV144 ALVAC/AIDSVax prime-boost vaccine efficacy trial represents the only example of HIV-1 vaccine efficacy in humans to date. Studies aimed at identifying immune correlates involved in the modest vaccine-mediated protection identified HIV-1 envelope (Env) variable region 2-binding antibodies as inversely correlated with infection risk, and genetic analysis identified a site of immune pressure within the region recognized by these antibodies. Despite this evidence, the antiviral mechanisms by which variable region 2-specific antibodies may have contributed to lower rates of infection remain unclear. In this study, we demonstrate that vaccine-induced HIV-1 envelope variable region 2 and constant region 1 antibodies synergize for recognition of virus-infected cells, infectious virion capture, virus neutralization, and antibody-dependent cellular cytotoxicity. This is a major step in understanding how these types of antibodies may have cooperatively contributed to reducing infection risk and should be considered in the context of prospective vaccine design.
Collapse
|
82
|
Dimitrov JD, Planchais C, Scheel T, Ohayon D, Mesnage S, Berek C, Kaveri SV, Lacroix-Desmazes S. A cryptic polyreactive antibody recognizes distinct clades of HIV-1 glycoprotein 120 by an identical binding mechanism. J Biol Chem 2014; 289:17767-79. [PMID: 24802758 DOI: 10.1074/jbc.m114.556266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polyreactive antibodies play an important role for neutralization of human immunodeficiency virus (HIV). In addition to intrinsic polyreactive antibodies, the immune system of healthy individuals contains antibodies with cryptic polyreactivity. These antibodies acquire promiscuous antigen binding potential post-translationally, after exposure to various redox-active substances such as reactive oxygen species, iron ions, and heme. Here, we characterized the interaction of a prototypic human antibody that acquires binding potential to glycoprotein (gp) 120 after exposure to heme. The kinetic and thermodynamic analyses of interaction of the polyreactive antibody with distinct clades of gp120 demonstrated that the antigen-binding promiscuity of the antibody compensates for the molecular heterogeneity of the target antigen. Thus, the polyreactive antibody recognized divergent gp120 clades with similar values of the binding kinetics and quantitatively identical changes in the activation thermodynamic parameters. Moreover, this antibody utilized the same type of noncovalent forces for formation of complexes with gp120. In contrast, HIV-1-neutralizing antibodies isolated from HIV-1-infected individuals, F425 B4a1 and b12, demonstrated different binding behavior upon interaction with distinct variants of gp120. This study contributes to a better understanding of the physiological role and binding mechanism of antibodies with cryptic polyreactivity. Moreover, this study might be of relevance for understanding the basic aspects of HIV-1 interaction with human antibodies.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France,
| | - Cyril Planchais
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France
| | - Tobias Scheel
- the Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 13092 Berlin, Germany, and
| | - Delphine Ohayon
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France
| | - Stephane Mesnage
- the Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Claudia Berek
- the Deutsches Rheuma-Forschungszentrum, Institut der Leibniz-Gemeinschaft, 13092 Berlin, Germany, and
| | - Srinivas V Kaveri
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France
| | - Sébastien Lacroix-Desmazes
- From the Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Unité Mixte de Recherche S 1138, 75006 Paris, France, the Université Paris Descartes, Unité Mixte de Recherche S 1138, Paris, France, INSERM U1138, 75006 Paris, France
| |
Collapse
|
83
|
Hu B, Liao HX, Alam SM, Goldstein B. Estimating the probability of polyreactive antibodies 4E10 and 2F5 disabling a gp41 trimer after T cell-HIV adhesion. PLoS Comput Biol 2014; 10:e1003431. [PMID: 24499928 PMCID: PMC3907291 DOI: 10.1371/journal.pcbi.1003431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023] Open
Abstract
A few broadly neutralizing antibodies, isolated from HIV-1 infected individuals, recognize epitopes in the membrane proximal external region (MPER) of gp41 that are transiently exposed during viral entry. The best characterized, 4E10 and 2F5, are polyreactive, binding to the viral membrane and their epitopes in the MPER. We present a model to calculate, for any antibody concentration, the probability that during the pre-hairpin intermediate, the transient period when the epitopes are first exposed, a bound antibody will disable a trivalent gp41 before fusion is complete. When 4E10 or 2F5 bind to the MPER, a conformational change is induced that results in a stably bound complex. The model predicts that for these antibodies to be effective at neutralization, the time to disable an epitope must be shorter than the time the antibody remains bound in this conformation, about five minutes or less for 4E10 and 2F5. We investigate the role of avidity in neutralization and show that 2F5 IgG, but not 4E10, is much more effective at neutralization than its Fab fragment. We attribute this to 2F5 interacting more stably than 4E10 with the viral membrane. We use the model to elucidate the parameters that determine the ability of these antibodies to disable epitopes and propose an extension of the model to analyze neutralization data. The extended model predicts the dependencies of for neutralization on the rate constants that characterize antibody binding, the rate of fusion of gp41, and the number of gp41 bridging the virus and target cell at the start of the pre-hairpin intermediate. Analysis of neutralization experiments indicate that only a small number of gp41 bridges must be disabled to prevent fusion. However, the model cannot determine the exact number from neutralization experiments alone. Most people who become infected with HIV generate a strong antibody response to the infecting virus population. Unfortunately, the protection offered by the antibody is short lived as the virus rapidly mutates and renders the antibodies impotent in preventing further infection. There are a few antibodies, however, that have been isolated from infected individuals that can block infection by many different viral strains. Among these are several that target sites on the HIV that are exposed only after the virus has attached to a cell. These antibodies have a brief window of time to prevent fusion of the virus and cell. They are special in that they bind both to the viral membrane and to sequences on the gp41 protein that lie along the viral surface. Here, we present a model that predicts the concentrations at which these antibodies effectively neutralize the virus. The model tells us what properties of antibody binding are key in determining efficient neutralization and what properties have little influence. A prediction of the model is that in a standard neutralization assay there are only a small number of attachments between virus and cell and disabling these is sufficient to prevent infection.
Collapse
Affiliation(s)
- Bin Hu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
84
|
Zhang J, Alam SM, Bouton-Verville H, Chen Y, Newman A, Stewart S, Jaeger FH, Montefiori DC, Dennison SM, Haynes BF, Verkoczy L. Modulation of nonneutralizing HIV-1 gp41 responses by an MHC-restricted TH epitope overlapping those of membrane proximal external region broadly neutralizing antibodies. THE JOURNAL OF IMMUNOLOGY 2014; 192:1693-706. [PMID: 24465011 DOI: 10.4049/jimmunol.1302511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs), but current immunization strategies fail to induce BnAbs, and for unknown reasons, often induce nonneutralizing Abs instead. To explore potential host genetic contributions controlling Ab responses to the HIV-1 Envelope, we have used congenic strains to identify a critical role for MHC class II restriction in modulating Ab responses to the membrane proximal external region (MPER) of gp41, a key vaccine target. Immunized H-2(d)-congenic strains had more rapid, sustained, and elevated MPER(+) Ab titers than those bearing other haplotypes, regardless of immunogen, adjuvant, or prime or boost regimen used, including formulations designed to provide T cell help. H-2(d)-restricted MPER(+) serum Ab responses depended on CD4 TH interactions with class II (as revealed in immunized intra-H-2(d/b) congenic or CD154(-/-) H-2(d) strains, and by selective abrogation of MPER restimulated, H-2(d)-restricted primed splenocytes by class II-blocking Abs), and failed to neutralize HIV-1 in the TZM-b/l neutralization assay, coinciding with lack of specificity for an aspartate residue in the neutralization core of BnAb 2F5. Unexpectedly, H-2(d)-restricted MPER(+) responses functionally mapped to a core TH epitope partially overlapping the 2F5/z13/4E10 BnAb epitopes as well as nonneutralizing B cell-Ab binding residues. We propose that class II restriction contributes to the general heterogeneity of nonneutralizing gp41 responses induced by Envelope. Moreover, the proximity of TH and B cell epitopes in this restriction may have to be considered in redesigning minimal MPER immunogens aimed at exclusively binding BnAb epitopes and triggering MPER(+) BnAbs.
Collapse
Affiliation(s)
- Jinsong Zhang
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Carbonetti S, Oliver BG, Glenn J, Stamatatos L, Sather DN. Soluble HIV-1 envelope immunogens derived from an elite neutralizer elicit cross-reactive V1V2 antibodies and low potency neutralizing antibodies. PLoS One 2014; 9:e86905. [PMID: 24466285 PMCID: PMC3900663 DOI: 10.1371/journal.pone.0086905] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/15/2013] [Indexed: 11/17/2022] Open
Abstract
We evaluated four gp140 Envelope protein vaccine immunogens that were derived from an elite neutralizer, subject VC10042, whose plasma was able to potently neutralize a wide array of genetically distinct HIV-1 isolates. We sought to determine whether soluble Envelope proteins derived from the viruses circulating in VC10042 could be used as immunogens to elicit similar neutralizing antibody responses by vaccination. Each gp140 was tested in its trimeric and monomeric forms, and we evaluated two gp140 trimer vaccine regimens in which adjuvant was supplied at all four immunizations or at only the first two immunizations. Interestingly, all four Envelope immunogens elicited high titers of cross-reactive antibodies that recognize the variable regions V1V2 and are potentially similar to antibodies linked with a reduced risk of HIV-1 acquisition in the RV144 vaccine trial. Two of the four immunogens elicited neutralizing antibody responses that neutralized a wide array of HIV-1 isolates from across genetic clades, but those responses were of very low potency. There were no significant differences in the responses elicited by trimers or monomers, nor was there a significant difference between the two adjuvant regimens. Our study identified two promising Envelope immunogens that elicited anti-V1V2 antibodies and broad, but low potency, neutralizing antibody responses.
Collapse
Affiliation(s)
- Sara Carbonetti
- Seattle BioMed, Seattle, Washington, United States of America
| | - Brian G Oliver
- Seattle BioMed, Seattle, Washington, United States of America
| | - Jolene Glenn
- Seattle BioMed, Seattle, Washington, United States of America
| | - Leonidas Stamatatos
- Seattle BioMed, Seattle, Washington, United States of America ; Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - D Noah Sather
- Seattle BioMed, Seattle, Washington, United States of America
| |
Collapse
|
86
|
Toll-like receptor 7/8 (TLR7/8) and TLR9 agonists cooperate to enhance HIV-1 envelope antibody responses in rhesus macaques. J Virol 2014; 88:3329-39. [PMID: 24390332 DOI: 10.1128/jvi.03309-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The development of a vaccine that can induce high titers of functional antibodies against HIV-1 remains a high priority. We have developed an adjuvant based on an oil-in-water emulsion that incorporates Toll-like receptor (TLR) ligands to test whether triggering multiple pathogen-associated molecular pattern receptors could enhance immunogenicity. Compared to single TLR agonists or other pairwise combinations, TLR7/8 and TLR9 agonists combined were able to elicit the highest titers of binding, neutralizing, and antibody-dependent cellular cytotoxicity-mediating antibodies against the protein immunogen, transmitted/founder HIV-1 envelope gp140 (B.63521). We further found that the combination of TLR7/8 and TLR9 agonists was associated with the release of CXCL10 (IP-10), suggesting that this adjuvant formulation may have optimally stimulated innate and adaptive immunity to elicit high titers of antibodies. IMPORTANCE Combining TLR agonists in an adjuvant formulation resulted in higher antibody levels compared to an adjuvant without TLR agonists. Adjuvants that combine TLR agonists may be useful for enhancing antibody responses to HIV-1 vaccines.
Collapse
|
87
|
Abstract
Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.
Collapse
Affiliation(s)
- Sandhya Vasan
- Department of Retrovirology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
88
|
Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol 2013; 13:693-701. [PMID: 23969737 DOI: 10.1038/nri3516] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of HIV-1 vaccine research has seen a renaissance with the identification of antibodies that neutralize most circulating HIV-1 strains. An understanding of the structural mode of target recognition that these antibodies use and the immune pathways that lead to their development is emerging. This knowledge has provided fundamental insights into the pathways that elicit broadly neutralizing antibodies and provides a foundation for active and passive immunization strategies to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
89
|
Lynch HE, Stewart SM, Kepler TB, Sempowski GD, Alam SM. Surface plasmon resonance measurements of plasma antibody avidity during primary and secondary responses to anthrax protective antigen. J Immunol Methods 2013; 404:1-12. [PMID: 24316020 DOI: 10.1016/j.jim.2013.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Establishment of humoral immunity against pathogens is dependent on events that occur in the germinal center and the subsequent induction of high-affinity neutralizing antibodies. Quantitative assays that allow monitoring of affinity maturation and duration of antibody responses can provide useful information regarding the efficacy of vaccines and adjuvants. Using an anthrax protective antigen (rPA) and alum model antigen/adjuvant system, we describe a methodology for monitoring antigen-specific serum antibody concentration and avidity by surface plasmon resonance during primary and secondary immune responses. Our analyses showed that following a priming dose in mice, rPA-specific antibody concentration and avidity increases over time and reaches a maximal response in about six weeks, but gradually declines in the absence of antigenic boost. Germinal center reactions were observed early with maximal development achieved during the primary response, which coincided with peak antibody avidity responses to primary immunization. Boosting with antigen resulted in a rapid increase in rPA-specific antibody concentration and five-fold increase in avidity, which was not dependent on sustained GC development. The described methodology couples surface plasmon resonance-based plasma avidity measurements with germinal center analysis and provides a novel way to monitor humoral responses that can play a role in facilitating vaccine and adjuvant development.
Collapse
Affiliation(s)
- Heather E Lynch
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Shelley M Stewart
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Gregory D Sempowski
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - S Munir Alam
- Duke Human Vaccine Institute and Departments of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
90
|
Mechanism of HIV-1 neutralization by antibodies targeting a membrane-proximal region of gp41. J Virol 2013; 88:1249-58. [PMID: 24227838 DOI: 10.1128/jvi.02664-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Induction of broadly neutralizing antibodies (bNAbs) is an important goal for HIV-1 vaccine development. Two autoreactive bNAbs, 2F5 and 4E10, recognize a conserved region on the HIV-1 envelope glycoprotein gp41 adjacent to the viral membrane known as the membrane-proximal external region (MPER). They block viral infection by targeting a fusion-intermediate conformation of gp41, assisted by an additional interaction with the viral membrane. Another MPER-specific antibody, 10E8, has recently been reported to neutralize HIV-1 with potency and breadth much greater than those of 2F5 or 4E10, but it appeared not to bind phospholipids and might target the untriggered envelope spikes, raising the hope that the MPER could be harnessed for vaccine design without major immunological concerns. Here, we show by three independent approaches that 10E8 indeed binds lipid bilayers through two hydrophobic residues in its CDR H3 (third heavy-chain complementarity-determining region). Its weak affinity for membranes in general and preference for cholesterol-rich membranes may account for its great neutralization potency, as it is less likely than other MPER-specific antibodies to bind cellular membranes nonspecifically. 10E8 binds with high affinity to a construct mimicking the fusion intermediate of gp41 but fails to recognize the envelope trimers representing the untriggered conformation. Moreover, we can improve the potency of 4E10 without affecting its binding to gp41 by a modification of its lipid-interacting CDR H3. These results reveal a general mechanism of HIV-1 neutralization by MPER-specific antibodies that involves interactions with viral lipids.
Collapse
|
91
|
Tenascin-C is an innate broad-spectrum, HIV-1-neutralizing protein in breast milk. Proc Natl Acad Sci U S A 2013; 110:18220-5. [PMID: 24145401 DOI: 10.1073/pnas.1307336110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Achieving an AIDS-free generation will require elimination of postnatal transmission of HIV-1 while maintaining the nutritional and immunologic benefits of breastfeeding for infants in developing regions. Maternal/infant antiretroviral prophylaxis can reduce postnatal HIV-1 transmission, yet toxicities and the development of drug-resistant viral strains may limit the effectiveness of this strategy. Interestingly, in the absence of antiretroviral prophylaxis, greater than 90% of infants exposed to HIV-1 via breastfeeding remain uninfected, despite daily mucosal exposure to the virus for up to 2 y. Moreover, milk of uninfected women inherently neutralizes HIV-1 and prevents virus transmission in animal models, yet the factor(s) responsible for this anti-HIV activity is not well-defined. In this report, we identify a primary HIV-1-neutralizing protein in breast milk, Tenascin-C (TNC). TNC is an extracellular matrix protein important in fetal development and wound healing, yet its antimicrobial properties have not previously been established. Purified TNC captured and neutralized multiclade chronic and transmitted/founder HIV-1 variants, and depletion of TNC abolished the HIV-1-neutralizing activity of milk. TNC bound the HIV-1 Envelope protein at a site that is induced upon engagement of its primary receptor, CD4, and is blocked by V3 loop- (19B and F39F) and chemokine coreceptor binding site-directed (17B) monoclonal antibodies. Our results demonstrate the ability of an innate mucosal host protein found in milk to neutralize HIV-1 via binding to the chemokine coreceptor site, potentially explaining why the majority of HIV-1-exposed breastfed infants are protected against mucosal HIV-1 transmission.
Collapse
|
92
|
Recognition of synthetic glycopeptides by HIV-1 broadly neutralizing antibodies and their unmutated ancestors. Proc Natl Acad Sci U S A 2013; 110:18214-9. [PMID: 24145434 DOI: 10.1073/pnas.1317855110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. Broadly neutralizing antibodies (BnAbs) are not induced by current vaccines, but are found in plasma in ∼20% of HIV-1-infected individuals after several years of infection. One strategy for induction of unfavored antibody responses is to produce homogeneous immunogens that selectively express BnAb epitopes but minimally express dominant strain-specific epitopes. Here we report that synthetic, homogeneously glycosylated peptides that bind avidly to variable loop 1/2 (V1V2) BnAbs PG9 and CH01 bind minimally to strain-specific neutralizing V2 antibodies that are targeted to the same envelope polypeptide site. Both oligomannose derivatization and conformational stabilization by disulfide-linked dimer formation of synthetic V1V2 peptides were required for strong binding of V1V2 BnAbs. An HIV-1 vaccine should target BnAb unmutated common ancestor (UCA) B-cell receptors of naïve B cells, but to date no HIV-1 envelope constructs have been found that bind to the UCA of V1V2 BnAb PG9. We demonstrate herein that V1V2 glycopeptide dimers bearing Man5GlcNAc2 glycan units bind with apparent nanomolar affinities to UCAs of V1V2 BnAbs PG9 and CH01 and with micromolar affinity to the UCA of a V2 strain-specific antibody. The higher-affinity binding of these V1V2 glycopeptides to BnAbs and their UCAs renders these glycopeptide constructs particularly attractive immunogens for targeting subdominant HIV-1 envelope V1V2-neutralizing antibody-producing B cells.
Collapse
|
93
|
Hardy GJ, Nayak R, Zauscher S. Model cell membranes: Techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Curr Opin Colloid Interface Sci 2013; 18:448-458. [PMID: 24031164 DOI: 10.1016/j.cocis.2013.06.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vesicle fusion has long provided an easy and reliable method to form supported lipid bilayers (SLBs) from simple, zwitterionic vesicles on siliceous substrates. However, for complex compositions, such as vesicles with high cholesterol content and multiple lipid types, the energy barrier for the vesicle-to-bilayer transition is increased or the required vesicle-vesicle and vesicle-substrate interactions are insufficient for vesicle fusion. Thus, for vesicle compositions that more accurately mimic native membranes, vesicle fusion often fails to form SLBs. In this paper, we review three approaches to overcome these barriers to form complex, biomimetic SLBs via vesicle fusion: (i) optimization of experimental conditions (e.g., temperature, buffer ionic strength, osmotic stress, cation valency, and buffer pH), (ii) α-helical (AH) peptide-induced vesicle fusion, and (iii) bilayer edge-induced vesicle fusion. AH peptide-induced vesicle fusion can form complex SLBs on multiple substrate types without the use of additional equipment. Bilayer edge-induced vesicle fusion uses microfluidics to form SLBs from vesicles with complex composition, including vesicles derived from native cell membranes. Collectively, this review introduces vesicle fusion techniques that can be generalized for many biomimetic vesicle compositions and many substrate types, and thus will aid efforts to reliably create complex SLB platforms on a range of substrates.
Collapse
Affiliation(s)
- Gregory J Hardy
- Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall Box 90300, Durham, NC 27708, USA. ; Tel: +1 (919) 660-5360
| | | | | |
Collapse
|
94
|
Finton KAK, Larimore K, Larman HB, Friend D, Correnti C, Rupert PB, Elledge SJ, Greenberg PD, Strong RK. Autoreactivity and exceptional CDR plasticity (but not unusual polyspecificity) hinder elicitation of the anti-HIV antibody 4E10. PLoS Pathog 2013; 9:e1003639. [PMID: 24086134 PMCID: PMC3784475 DOI: 10.1371/journal.ppat.1003639] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/04/2013] [Indexed: 01/19/2023] Open
Abstract
The broadly-neutralizing anti-HIV antibody 4E10 recognizes an epitope in the membrane-proximal external region of the HIV envelope protein gp41. Previous attempts to elicit 4E10 by vaccination with envelope-derived or reverse-engineered immunogens have failed. It was presumed that the ontogeny of 4E10-equivalent responses was blocked by inherent autoreactivity and exceptional polyreactivity. We generated 4E10 heavy-chain knock-in mice, which displayed significant B cell dysregulation, consistent with recognition of autoantigen/s by 4E10 and the presumption that tolerance mechanisms may hinder the elicitation of 4E10 or 4E10-equivalent responses. Previously proposed candidate 4E10 autoantigens include the mitochondrial lipid cardiolipin and a nuclear splicing factor, 3B3. However, using carefully-controlled assays, 4E10 bound only weakly to cardiolipin-containing liposomes, but also bound negatively-charged, non-cardiolipin-containing liposomes comparably poorly. 4E10/liposome binding was predominantly mediated by electrostatic interactions rather than presumed hydrophobic interactions. The crystal structure of 4E10 free of bound ligands showed a dramatic restructuring of the combining site, occluding the HIV epitope binding site and revealing profound flexibility, but creating an electropositive pocket consistent with non-specific binding of phospholipid headgroups. These results strongly suggested that antigens other than cardiolipin mediate 4E10 autoreactivity. Using a synthetic peptide library spanning the human proteome, we determined that 4E10 displays limited and focused, but unexceptional, polyspecificity. We also identified a novel autoepitope shared by three ER-resident inositol trisphosphate receptors, validated through binding studies and immunohistochemistry. Tissue staining with 4E10 demonstrated reactivity consistent with the type 1 inositol trisphosphate receptor as the most likely candidate autoantigen, but is inconsistent with splicing factor 3B3. These results demonstrate that 4E10 recognition of liposomes competes with MPER recognition and that HIV antigen and autoepitope recognition may be distinct enough to permit eliciting 4E10-like antibodies, evading autoimmunity through directed engineering. However, 4E10 combining site flexibility, exceptional for a highly-matured antibody, may preclude eliciting 4E10 by conventional immunization strategies.
Collapse
Affiliation(s)
- Kathryn A K Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Klein F, Mouquet H, Dosenovic P, Scheid JF, Scharf L, Nussenzweig MC. Antibodies in HIV-1 vaccine development and therapy. Science 2013; 341:1199-204. [PMID: 24031012 DOI: 10.1126/science.1241144] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1-neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1.
Collapse
Affiliation(s)
- Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Aussedat B, Vohra Y, Park PK, Fernández-Tejada A, Alam SM, Dennison SM, Jaeger FH, Anasti K, Stewart S, Blinn JH, Liao HX, Sodroski JG, Haynes BF, Danishefsky SJ. Chemical synthesis of highly congested gp120 V1V2 N-glycopeptide antigens for potential HIV-1-directed vaccines. J Am Chem Soc 2013; 135:13113-20. [PMID: 23915436 DOI: 10.1021/ja405990z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Critical to the search for an effective HIV-1 vaccine is the development of immunogens capable of inducing broadly neutralizing antibodies (BnAbs). A key first step in this process is to design immunogens that can be recognized by known BnAbs. The monoclonal antibody PG9 is a BnAb that neutralizes diverse strains of HIV-1 by targeting a conserved carbohydrate-protein epitope in the variable 1 and 2 (V1V2) region of the viral envelope. Important for recognition are two closely spaced N-glycans at Asn(160) and Asn(156). Glycopeptides containing this synthetically challenging bis-N-glycosylated motif were prepared by convergent assembly, and were shown to be antigenic for PG9. Synthetic glycopeptides such as these may be useful for the development of HIV-1 vaccines based on the envelope V1V2 BnAb epitope.
Collapse
Affiliation(s)
- Baptiste Aussedat
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10065, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Verkoczy L, Chen Y, Zhang J, Bouton-Verville H, Newman A, Lockwood B, Scearce RM, Montefiori DC, Dennison SM, Xia SM, Hwang KK, Liao HX, Alam SM, Haynes BF. Induction of HIV-1 broad neutralizing antibodies in 2F5 knock-in mice: selection against membrane proximal external region-associated autoreactivity limits T-dependent responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:2538-50. [PMID: 23918977 DOI: 10.4049/jimmunol.1300971] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs). Using a knock-in (KI) model of 2F5, a human HIV-1 gp41 membrane proximal external region (MPER)-specific BnAb, we previously demonstrated that a key obstacle to BnAb induction is clonal deletion of BnAb-expressing B cells. In this study of this model, we provide a proof-of-principle that robust serum neutralizing IgG responses can be induced from pre-existing, residual, self-reactive BnAb-expressing B cells in vivo using a structurally compatible gp41 MPER immunogen. Furthermore, in CD40L-deficient 2F5 KI mice, we demonstrate that these BnAb responses are elicited via a type II T-independent pathway, coinciding with expansion and activation of transitional splenic B cells specific for 2F5's nominal gp41 MPER-binding epitope (containing the 2F5 neutralization domain ELDKWA). In contrast, constitutive production of nonneutralizing serum IgGs in 2F5 KI mice is T dependent and originates from a subset of splenic mature B2 cells that have lost their ability to bind 2F5's gp41 MPER epitope. These results suggest that residual, mature B cells expressing autoreactive BnAbs, like 2F5 as BCR, may be limited in their ability to participate in T-dependent responses by purifying selection that selectively eliminates reactivity for neutralization epitope-containing/mimicked host Ags.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
The development of an effective vaccine has been hindered by the enormous diversity of human immunodeficiency virus-1 (HIV-1) and its ability to escape a myriad of host immune responses. In addition, conserved vulnerable regions on the HIV-1 envelope glycoprotein are often poorly immunogenic and elicit broadly neutralizing antibody responses (BNAbs) in a minority of HIV-1-infected individuals and only after several years of infection. All of the known BNAbs demonstrate high levels of somatic mutations and often display other unusual traits, such as a long heavy chain complementarity determining region 3 (CDRH3) and autoreactivity that can be limited by host tolerance controls. Nonetheless, the demonstration that HIV-1-infected individuals can make potent BNAbs is encouraging, and recent progress in isolating such antibodies and mapping their immune pathways of development is providing new strategies for vaccination.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
99
|
Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding and effector function of IgG. Proc Natl Acad Sci U S A 2013; 110:9019-24. [PMID: 23661056 DOI: 10.1073/pnas.1301456110] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of correlates of risk of infection in the RV144 HIV-1 vaccine efficacy trial demonstrated that plasma IgG against the HIV-1 envelope (Env) variable region 1 and 2 inversely correlated with risk, whereas HIV-1 Env-specific plasma IgA responses directly correlated with risk. In the secondary analysis, antibody-dependent cellular cytotoxicity (ADCC) was another inverse correlate of risk, but only in the presence of low plasma IgA Env-specific antibodies. Thus, we investigated the hypothesis that IgA could attenuate the protective effect of IgG responses through competition for the same Env binding sites. We report that Env-specific plasma IgA/IgG ratios are higher in infected than in uninfected vaccine recipients in RV144. Moreover, Env-specific IgA antibodies from RV144 vaccinees blocked the binding of ADCC-mediating mAb to HIV-1 Env glycoprotein 120 (gp120). An Env-specific monomeric IgA mAb isolated from an RV144 vaccinee also inhibited the ability of natural killer cells to kill HIV-1-infected CD4(+) T cells coated with RV144-induced IgG antibodies. We show that monomeric Env-specific IgA, as part of postvaccination polyclonal antibody response, may modulate vaccine-induced immunity by diminishing ADCC effector function.
Collapse
|
100
|
Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013; 496:469-76. [PMID: 23552890 PMCID: PMC3637846 DOI: 10.1038/nature12053] [Citation(s) in RCA: 814] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/07/2013] [Indexed: 01/03/2023]
Abstract
Current HIV-1 vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in ~20% of HIV-1-infected individuals, and details of their generation could provide a roadmap for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from time of infection. The mature antibody, CH103, neutralized ~55% of HIV-1 isolates, and its co-crystal structure with gp120 revealed a novel loop-based mechanism of CD4-binding site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the CH103-lineage unmutated common ancestor avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data elucidate the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies and provide insights into strategies to elicit similar antibodies via vaccination.
Collapse
|