51
|
Hu Y, Zhang F, Ikonomovic M, Yang T. The Role of NRF2 in Cerebrovascular Protection: Implications for Vascular Cognitive Impairment and Dementia (VCID). Int J Mol Sci 2024; 25:3833. [PMID: 38612642 PMCID: PMC11012233 DOI: 10.3390/ijms25073833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Vascular cognitive impairment and dementia (VCID) represents a broad spectrum of cognitive decline secondary to cerebral vascular aging and injury. It is the second most common type of dementia, and the prevalence continues to increase. Nuclear factor erythroid 2-related factor 2 (NRF2) is enriched in the cerebral vasculature and has diverse roles in metabolic balance, mitochondrial stabilization, redox balance, and anti-inflammation. In this review, we first briefly introduce cerebrovascular aging in VCID and the NRF2 pathway. We then extensively discuss the effects of NRF2 activation in cerebrovascular components such as endothelial cells, vascular smooth muscle cells, pericytes, and perivascular macrophages. Finally, we summarize the clinical potential of NRF2 activators in VCID.
Collapse
Affiliation(s)
- Yizhou Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC) McKeesport, McKeesport, PA 15132, USA
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Milos Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Tuo Yang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA; (Y.H.); (F.Z.); (M.I.)
- Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Internal Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15216, USA
| |
Collapse
|
52
|
Huang L, Du M, Sun D, He M, Liu Z, Wu R, Jiang Y, Qi L, Wang J, Zhu C, Li Y, Liu L, Feng G, Zhang L. Propelling Multi-Modal Therapeutics of PEEK Implants through the Power of NO evolving Covalent Organic Frameworks (COFs). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306508. [PMID: 37919860 DOI: 10.1002/smll.202306508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Indexed: 11/04/2023]
Abstract
The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.
Collapse
Affiliation(s)
- Leizhen Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Meixuan Du
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Miaomiao He
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ruibang Wu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yulin Jiang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ce Zhu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
53
|
Marinas IC, Ignat L, Maurușa IE, Gaboreanu MD, Adina C, Popa M, Chifiriuc MC, Angheloiu M, Georgescu M, Iacobescu A, Pircalabioru GG, Stan M, Pinteala M. Insights into the physico-chemical and biological characterization of sodium lignosulfonate - silver nanosystems designed for wound management. Heliyon 2024; 10:e26047. [PMID: 38384565 PMCID: PMC10878957 DOI: 10.1016/j.heliyon.2024.e26047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO3 (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against Pseudomonas aeruginosa and Escherichia coli strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.
Collapse
Affiliation(s)
- Ioana C. Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania
| | - Leonard Ignat
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Ignat E. Maurușa
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Madalina D. Gaboreanu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Coroabă Adina
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Marcela Popa
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Mariana C. Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independentei St., District 5, 50085, Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, Sector 1, District 1, 010071, Bucharest, Romania
| | - Marian Angheloiu
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania
| | - Mihaela Georgescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
| | - Alexandra Iacobescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| |
Collapse
|
54
|
Karan A, Sharma NS, Darder M, Su Y, Andrabi SM, Shahriar SMS, John JV, Luo Z, DeCoster MA, Zhang YS, Xie J. Copper-Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties. ACS OMEGA 2024; 9:9765-9781. [PMID: 38434900 PMCID: PMC10905775 DOI: 10.1021/acsomega.3c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Copper-cystine-based high aspect ratio structures (CuHARS) possess exceptional physical and chemical properties and exhibit remarkable biodegradability in human physiological conditions. Extensive testing has confirmed the biocompatibility and biodegradability of CuHARS under diverse biological conditions, making them a viable source of essential Cu2+. These ions are vital for catalyzing the production of nitric oxide (NO) from the decomposition of S-nitrosothiols (RSNOs) found in human blood. The ability of CuHARS to act as a Cu2+ donor under specific concentrations has been demonstrated in this study, resulting in the generation of elevated levels of NO. Consequently, this dual function makes CuHARS effective as both a bactericidal agent and a promoter of angiogenesis. In vitro experiments have shown that CuHARS actively promotes the migration and formation of complete lumens by redirecting microvascular endothelial cells. To maximize the benefits of CuHARS, they have been incorporated into biomimetic electrospun poly(ε-caprolactone)/gelatin nanofiber aerogels. Through the regulated release of Cu2+ and NO production, these channeled aerogels not only provide antibacterial support but also promote angiogenesis. Taken together, the inclusion of CuHARS in biomimetic scaffolds could hold great promise in revolutionizing tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Anik Karan
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Navatha Shree Sharma
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Margarita Darder
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
| | - Yajuan Su
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Syed Muntazir Andrabi
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - S M Shatil Shahriar
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V. John
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Zeyu Luo
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mark A. DeCoster
- Biomedical
Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
- Institute
for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Yu Shrike Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jingwei Xie
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
55
|
Webster CM, Shepherd M. The nitric oxide paradox: antimicrobial and inhibitor of antibiotic efficacy. Emerg Top Life Sci 2024; 8:37-43. [PMID: 37975610 PMCID: PMC10903473 DOI: 10.1042/etls20230114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
It is well-known that antibiotics target energy-consuming processes and a significant body of research now supports the conclusion that the metabolic state of bacteria can have a profound impact upon the efficacy of antibiotics. Several articles implicate bacterial energetics and the respiratory inhibitor nitric oxide (NO) in this process, although pinpointing the precise mechanism for how NO can diminish the potency of a range of antibiotics through modulating bacterial energy metabolism has proved challenging. Herein, we introduce the role of NO during infection, consider known links between NO and antibiotic efficacy, and discuss potential mechanisms via which NO present at the site of infection could mediate these effects through controlling bacterial energetics. This perspective article highlights an important relationship between NO and antibiotic action that has largely been overlooked and outlines future considerations for the development of new drugs and therapies that target bacterial energy metabolism.
Collapse
Affiliation(s)
- Calum M Webster
- School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NJ, U.K
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NJ, U.K
| |
Collapse
|
56
|
McDonald RA, Nagy SG, Chambers M, Broberg CA, Ahonen MJR, Schoenfisch MH. Nitric oxide-releasing prodrug for the treatment of complex Mycobacterium abscessus infections. Antimicrob Agents Chemother 2024; 68:e0132723. [PMID: 38206003 PMCID: PMC10848776 DOI: 10.1128/aac.01327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024] Open
Abstract
Non-tuberculosis mycobacteria (NTM) can cause severe respiratory infection in patients with underlying pulmonary conditions, and these infections are extremely difficult to treat. In this report, we evaluate a nitric oxide (NO)-releasing prodrug [methyl tris diazeniumdiolate (MD3)] against a panel of NTM clinical isolates and as a treatment for acute and chronic NTM infections in vivo. Its efficacy in inhibiting growth or killing mycobacteria was explored in vitro alongside evaluation of the impact to primary human airway epithelial tissue. Airway epithelial tissues remained viable after exposure at concentrations of MD3 needed to kill mycobacteria, with no inherent toxic effect from drug scaffold after NO liberation. Resistance studies conducted via serial passage with representative Mycobacterium abscessus isolates demonstrated no resistance to MD3. When administered directly into the lung via intra-tracheal administration in mice, MD3 demonstrated significant reduction in M. abscessus bacterial load in both acute and chronic models of M. abscessus lung infection. In summary, MD3 is a promising treatment for complex NTM pulmonary infection, specifically those caused by M. abscessus, and warrants further exploration as a therapeutic.
Collapse
Affiliation(s)
| | - Sarah G. Nagy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Chris A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Mark H. Schoenfisch
- Vast Therapeutics, Durham, North Carolina, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
57
|
Kaplish D, Vagha JD, Meshram RJ, Lohiya S. A Comprehensive Review of Inhaled Nitric Oxide Therapy: Current Trends, Challenges, and Future Directions. Cureus 2024; 16:e53558. [PMID: 38445143 PMCID: PMC10913844 DOI: 10.7759/cureus.53558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
This comprehensive review explores the multifaceted landscape of inhaled nitric oxide (iNO) therapy, tracing its historical evolution, mechanisms of action, clinical applications, challenges, and future directions. The nitric oxide signaling pathway, characterized by vasodilatory effects and anti-inflammatory properties, forms the foundation of iNO's therapeutic efficacy. Clinical applications are found in neonatal respiratory distress syndrome, pulmonary hypertension, and acute respiratory distress syndrome, showcasing its versatility. However, challenges, including cost considerations, technical intricacies, safety concerns, and resistance, highlight the nuanced landscape surrounding iNO therapy. Implications for clinical practice underscore the need for a tailored and evidence-based approach, considering individual patient characteristics and indications. Recommendations for future research emphasize ongoing exploration, novel indications, and the development of targeted therapies. In conclusion, this review positions iNO as a dynamic and adaptable intervention, poised to reshape therapeutic strategies and enhance patient outcomes in critical care.
Collapse
Affiliation(s)
- Divyanshi Kaplish
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Jayant D Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sham Lohiya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
58
|
Ma X, Tang W, Yang R. Bioinspired nanomaterials for the treatment of bacterial infections. NANO RESEARCH 2024; 17:691-714. [DOI: 10.1007/s12274-023-6283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 01/04/2025]
|
59
|
Mendoza AG, Guercio D, Smiley MK, Sharma GK, Withorn JM, Hudson-Smith NV, Ndukwe C, Dietrich LEP, Boon EM. The histidine kinase NahK regulates pyocyanin production through the PQS system. J Bacteriol 2024; 206:e0027623. [PMID: 38169296 PMCID: PMC10809955 DOI: 10.1128/jb.00276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Many bacterial histidine kinases work in two-component systems that combine into larger multi-kinase networks. NahK is one of the kinases in the GacS Multi-Kinase Network (MKN), which is the MKN that controls biofilm regulation in the opportunistic pathogen Pseudomonas aeruginosa. This network has also been associated with regulating many virulence factors P. aeruginosa secretes to cause disease. However, the individual role of each kinase is unknown. In this study, we identify NahK as a novel regulator of the phenazine pyocyanin (PYO). Deletion of nahK leads to a fourfold increase in PYO production, almost exclusively through upregulation of phenazine operon two (phz2). We determined that this upregulation is due to mis-regulation of all P. aeruginosa quorum-sensing (QS) systems, with a large upregulation of the Pseudomonas quinolone signal system and a decrease in production of the acyl-homoserine lactone-producing system, las. In addition, we see differences in expression of quorum-sensing inhibitor proteins that align with these changes. Together, these data contribute to understanding how the GacS MKN modulates QS and virulence and suggest a mechanism for cell density-independent regulation of quorum sensing. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium that establishes biofilms as part of its pathogenicity. P. aeruginosa infections are associated with nosocomial infections. As the prevalence of multi-drug-resistant P. aeruginosa increases, it is essential to understand underlying virulence molecular mechanisms. Histidine kinase NahK is one of several kinases in P. aeruginosa implicated in biofilm formation and dispersal. Previous work has shown that the nitric oxide sensor, NosP, triggers biofilm dispersal by inhibiting NahK. The data presented here demonstrate that NahK plays additional important roles in the P. aeruginosa lifestyle, including regulating bacterial communication mechanisms such as quorum sensing. These effects have larger implications in infection as they affect toxin production and virulence.
Collapse
Affiliation(s)
- Alicia G. Mendoza
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Danielle Guercio
- Department of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Gaurav K. Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Jason M. Withorn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | | | - Chika Ndukwe
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Elizabeth M. Boon
- Department of Chemistry, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
60
|
An Y, Tan S, Yang J, Gao T, Dong Y. The potential role of Hippo pathway regulates cellular metabolism via signaling crosstalk in disease-induced macrophage polarization. Front Immunol 2024; 14:1344697. [PMID: 38274792 PMCID: PMC10808647 DOI: 10.3389/fimmu.2023.1344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophages polarized into distinct phenotypes play vital roles in inflammatory diseases by clearing pathogens, promoting tissue repair, and maintaining homeostasis. Metabolism serves as a fundamental driver in regulating macrophage polarization, and understanding the interplay between macrophage metabolism and polarization is crucial for unraveling the mechanisms underlying inflammatory diseases. The intricate network of cellular signaling pathway plays a pivotal role in modulating macrophage metabolism, and growing evidence indicates that the Hippo pathway emerges as a central player in network of cellular metabolism signaling. This review aims to explore the impact of macrophage metabolism on polarization and summarize the cell signaling pathways that regulate macrophage metabolism in diseases. Specifically, we highlight the pivotal role of the Hippo pathway as a key regulator of cellular metabolism and reveal its potential relationship with metabolism in macrophage polarization.
Collapse
Affiliation(s)
- Yina An
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuyu Tan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanjun Dong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
61
|
Wan W, Zhang S, Zhao M, OuYang X, Yu Y, Xiong X, Zhao N, Jiao J. Lysosomal trafficking regulator restricts intracellular growth of Coxiella burnetii by inhibiting the expansion of Coxiella-containing vacuole and upregulating nos2 expression. Front Cell Infect Microbiol 2024; 13:1336600. [PMID: 38282619 PMCID: PMC10812120 DOI: 10.3389/fcimb.2023.1336600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium that causes Q fever, a zoonotic disease typically manifests as a severe flu-illness. After invading into the host cells, C. burnetii delivers effectors to regulate the vesicle trafficking and fusion events to form a large and mature Coxiella-containing vacuole (CCV), providing sufficient space and nutrition for its intracellular growth and proliferation. Lysosomal trafficking regulator (LYST) is a member of the Beige and Chediak-Higashi syndrome (BEACH) family, which regulates the transport of vesicles to lysosomes and regulates TLR signaling pathway, but the effect of LYST on C. burnetii infection is unclear. In this study, a series of experiments has been conducted to investigate the influence of LYST on intracellular growth of C. burnetii. Our results showed that lyst transcription was up-regulated in the host cells after C. burnetii infection, but there is no significant change in lyst expression level after infection with the Dot/Icm type IV secretion system (T4SS) mutant strain, while CCVs expansion and significantly increasing load of C. burnetii appeared in the host cells with a silenced lyst gene, suggesting LYST inhibits the intracellular proliferation of C. burnetii by reducing CCVs size. Then, the size of CCVs and the load of C. burnetii in the HeLa cells pretreated with E-64d were significantly decreased. In addition, the level of iNOS was decreased significantly in LYST knockout THP-1 cells, which was conducive to the intracellular replication of C. burnetii. This data is consistent with the phenotype of L-NMMA-treated THP-1 cells infected with C. burnetii. Our results revealed that the upregulation of lyst transcription after infection is due to effector secretion of C. burnetii and LYST inhibit the intracellular replication of C. burnetii by reducing the size of CCVs and inducing nos2 expression.
Collapse
Affiliation(s)
- Weiqiang Wan
- College of Life Sciences, Southwest Forestry University, Kunming, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mingliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ning Zhao
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
62
|
Chagovets V, Starodubtseva N, Tokareva A, Novoselova A, Patysheva M, Larionova I, Prostakishina E, Rakina M, Kazakova A, Topolnitskiy E, Shefer N, Kzhyshkowska J, Frankevich V, Sukhikh G. Specific changes in amino acid profiles in monocytes of patients with breast, lung, colorectal and ovarian cancers. Front Immunol 2024; 14:1332043. [PMID: 38259478 PMCID: PMC10800720 DOI: 10.3389/fimmu.2023.1332043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Immunometabolism is essential factor of tumor progression, and tumor-associated macrophages are characterized by substantial changes in their metabolic status. In this study for the first time, we applied targeted amino acid LC-MS/MS analysis to compare amino acid metabolism of circulating monocytes isolated from patients with breast, ovarian, lung, and colorectal cancer. Methods Monocyte metabolomics was analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/ MS) analysis of amino acid extracts. The targeted analysis of 26 amino acids was conducted by LCMS/MS on an Agilent 6460 triple quadrupole mass spectrometer equipped with an electrospray ionization source and an Agilent 1260 II liquid chromatograph. Results Comparison of monocytes of cancer patients with monocytes of healthy control individuals demonstrated that in breast cancer most pronounced changes were identified for tryptophan (AUC = 0.76); for ovarian cancer, aminobutyric acid was significantly elevated (AUC= 1.00); for lung cancer significant changes we indented for citrulline (AUC = 0.70). In order to identify key amino acids that are characteristic for monocytes in specific cancer types, we compared each individual cancer with other 3 types of cancer. We found, that aspartic acid and citrulline are specific for monocytes of patients with colorectal cancer (p<0.001, FC = 1.40 and p=0.003, FC = 1.42 respectively). Citrulline, sarcosine and glutamic acid are ovarian cancer-specific amino acids (p = 0.003, FC = 0.78, p = 0.003, FC = 0.62, p = 0.02, FC = 0.78 respectively). Glutamine, methionine and phenylalanine (p = 0.048, FC = 1.39. p = 0.03, FC = 1.27 and p = 0.02, FC = 1.41) are lung cancer-specific amino acids. Ornithine in monocytes demonstrated strong positive correlation (r = 0.63) with lymph node metastasis incidence in breast cancer patients. Methyl histidine and cysteine in monocytes had strong negative correlation with lymph node metastasis in ovarian cancer patients (r = -0.95 and r = -0.95 respectively). Arginine, citrulline and ornithine have strong negative correlation with tumor size (r = -0.78, citrulline) and lymph node metastasis (r = -0.63 for arginine and r = -0.66 for ornithine). Discussion These alterations in monocyte amino acid metabolism can reflect the reaction of systemic innate immunity on the growing tumor. Our data indicate that this metabolic programming is cancer specific and can be inhibiting cancer progression. Cancer-specific differences in citrulline, as molecular link between metabolic pathways and epigenetic programing, provide new option for the development and validation of anti-cancer therapies using inhibitors of enzymes catalyzing citrullination.
Collapse
Affiliation(s)
- Vitaliy Chagovets
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Natalia Starodubtseva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Chemical Physics, The Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alisa Tokareva
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anastasia Novoselova
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Marina Patysheva
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Elizaveta Prostakishina
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Kazakova
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Evgenii Topolnitskiy
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Nikolay Shefer
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular And Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg–Hessen, Mannheim, Germany
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, Tomsk, Russia
| | - Gennadiy Sukhikh
- National Medical Research Center for Obstetrics Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
63
|
Rosier BT, Johnston W, Carda-Diéguez M, Simpson A, Cabello-Yeves E, Piela K, Reilly R, Artacho A, Easton C, Burleigh M, Culshaw S, Mira A. Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability. Int J Oral Sci 2024; 16:1. [PMID: 38177101 PMCID: PMC10767001 DOI: 10.1038/s41368-023-00266-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P < 0.05 in all five datasets with n = 20-82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.
Collapse
Affiliation(s)
- Bob T Rosier
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - William Johnston
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Miguel Carda-Diéguez
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Annabel Simpson
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Elena Cabello-Yeves
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Krystyna Piela
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert Reilly
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alejandro Artacho
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain
| | - Chris Easton
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Center for Advanced Research in Public Health, Valencia, Spain.
- CIBER Center for Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
64
|
Borkar SB, Negi M, Jaiswal A, Raj Acharya T, Kaushik N, Choi EH, Kaushik NK. Plasma-generated nitric oxide water: A promising strategy to combat bacterial dormancy (VBNC state) in environmental contaminant Micrococcus luteus. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132634. [PMID: 37793251 DOI: 10.1016/j.jhazmat.2023.132634] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
The viable but non-culturable (VBNC) is an inactive state, and certain bacteria can enter under adverse conditions. The VBNC state challenges the environment, food safety, and public health since VBNCs may resuscitate and pose a risk to human health. The aim of this study was to investigate the effect of plasma-generated nitric oxide water (PG-NOW) on airborne contaminant Micrococcus luteus (M. luteus) and examine its potential to induce the VBNC state. The essential conditions for bacteria to enter VBNC state are low metabolic activity and rare or no culturable counts. The results indicated that PG-NOW effectively eliminates M. luteus, and the remaining bacteria are in culturable condition. Moreover, the conventional cultured-based method combined with a propidium iodide monoazide quantitative PCR (PMAxxTM-qPCR) showed no significant VBNC induction and moderate culturable counts. Results from the qPCR revealed that gene levels in PG-NOW treated bacteria related to resuscitation-promoting factors, amino acid biosynthesis, and fatty acid metabolism were notably upregulated. PG-NOW inactivated M. luteus showed negligible VBNC formation and alleviated infection ability in lung cells. This study provides new insights into the potential use of PG-NOW reactive species for the prevention and control of the VBNC state of M. luteus.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Apurva Jaiswal
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
65
|
Wu Y, Garren MR, Estes Bright LM, Maffe P, Brooks M, Brisbois EJ, Handa H. Enhanced antibacterial efficacy against antibiotic-resistant bacteria via nitric oxide-releasing ampicillin polymer substrates. J Colloid Interface Sci 2024; 653:1763-1774. [PMID: 37832467 PMCID: PMC10593200 DOI: 10.1016/j.jcis.2023.09.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
The emergence of antibiotic-resistant bacteria poses a pressing threat to global health and is a leading cause of healthcare-related morbidity and mortality. Herein, we report the fabrication of medical-grade polymers incorporated with a dual-action S-nitroso-N-acetylpenicillamine-functionalized ampicillin (SNAPicillin) conjugated molecule through a solvent evaporation process. The resulting SNAPicillin-incorporated polymer materials act as broad-spectrum antibacterial surfaces that improve the administration efficacy of conventional antibiotics through the targeted release of both nitric oxide and ampicillin. The polymer surfaces were characterized by scanning electron microscopy and static contact angle measurements. The nitric oxide (NO) release profile and diffusion of SNAPicillin from polymers were quantified using a chemiluminescence-based nitric oxide analyzer (NOA) and ultraviolet-visible (UV-vis) spectroscopy. As a result, the films had up to 2.96 × 10-7 mol cm-2 of total NO released within 24 hr. In addition, >79 % of the SNAPicillin reservoir was preserved in the polymers after 24 hr of incubation in the physiological environment, indicating their longer-term NO release ability and therapeutic window for antibacterial effects. The SNAPicillin-incorporated polymers reduced the viability of adhered bacteria in culture, with >95 % reduction found against clinically relevant strains of Staphylococcus aureus (S. aureus). Furthermore, SNAPicillin-modified surfaces did not elicit a cytotoxic effect toward 3T3 mouse fibroblast cells, supporting the material's biocompatibility in vitro. These results indicate that the complementary effects of NO-release and ampicillin in SNAPicillin-eluting polymers can enhance the properties of commonly infected medical device surfaces for antibacterial purposes.
Collapse
Affiliation(s)
- Yi Wu
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Mark R Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Lori M Estes Bright
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Patrick Maffe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Megan Brooks
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States.
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States; Pharmaceutical and Biomedical Science Department, College of Pharmacy, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
66
|
Li X, Gui S, Gui R, Li J, Huang R, Hu M, Luo XJ, Nie X. Multifunctional Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-Based Nanobomb against Carbapenem-Resistant Acinetobacter baumannii Infection through Cascade Reaction and Amplification Synergistic Effect. ACS NANO 2023; 17:24632-24653. [PMID: 37874946 DOI: 10.1021/acsnano.3c03267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Carbapenems have been considered to be the preferred antibiotics against Acinetobacter baumannii thus far. However, carbapenem-resistant Acinetobacter baumannii (CRAB) has gradually escalated worldwide, and it frequently causes respiratory and bloodstream infections. Its resistance may lead to high mortality. Thus, there is an urgent need to develop antibacterial drugs. In our research, the pH-sensitive sgRNA-I/L@ZS nanosystem delivered imipenem and better released it in infected tissues to synergistically damage bacteria with nanoparticles. Gene editing of the CRISPR-Cas9 nanosystem amplified the synergistic effect by reversing the drug-resistance of imipenem. Nitric oxide, which l-arginine reacted with ROS to produce in cascade reaction and bacterial infection sites, was beneficial to heal the infected tissues and induce bacteria death for further enhancing antibacterial effects. In addition, this nanocomposite influenced host-bacteria interactions and restrained and destroyed biofilms. The sgRNA-I/L@ZS nanosystem, similar to a nanobomb, was a high-efficiency bactericide against CRAB. Eventually, in acute pneumonia and peritonitis mouse models, the sgRNA-I/L@ZS nanosystem could combat bacteria and protect tissues from infection. It had marked suppressive effects on inflammation and promoted healing and proliferation of infected tissues. This multifunctional nanosystem is expected to be an effective antibacterial agent in the clinic based on good biocompatibility and no toxic side effects. Therefore, developing the nanocomposites will take a favorable step toward solving intractable public health issues.
Collapse
Affiliation(s)
- Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
| | - Shumin Gui
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P. R. China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, P. R. China
| |
Collapse
|
67
|
Peng W, Li L, Zhang Y, Su H, Jiang X, Liu H, Huang X, Zhou L, Shen XC, Liu C. Photothermal synergistic nitric oxide controlled release injectable self-healing adhesive hydrogel for biofilm eradication and wound healing. J Mater Chem B 2023; 12:158-175. [PMID: 38054356 DOI: 10.1039/d3tb02040a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The development of injectable self-healing adhesive hydrogel dressings with excellent bactericidal activity and wound healing ability is urgently in demand for combating biofilm infections. Herein, a multifunctional hydrogel (QP/QT-MB) with near-infrared (NIR) light-activated mild photothermal/gaseous antimicrobial activity was developed based on the dynamic reversible borate bonds and hydrogen bonds crosslinking between quaternization chitosan (QCS) derivatives alternatively containing phenylboronic acid and catechol-like moieties in conjunction with the in situ encapsulation of BNN6-loaded mesoporous polydopamine (MPDA@BNN6 NPs). Given the dynamic reversible cross-linking feature, the versatile hybrid hydrogel exhibited injectability, flexibility, and rapid self-healing ability. The numerous phenylboronic acid and catechol-like moieties on the QCS backbone confer the hydrogel with specific bacterial affinity, desirable tissue adhesion, and antioxidant stress ability that enhance bactericidal activity and facilitate the regeneration of infection wounds. Under NIR irradiation, the QP/QT-MB hydrogels exhibited a desirable mild photothermal effect and NIR-activity controllable NO delivery, combined with the endogenous contact antimicrobial activity of hydrogel, contributing jointly to induce dispersal of biofilms and disruption of the bacterial plasma membranes, ultimately leading to bacteria inactivation and biofilm elimination. In vivo experiments demonstrated that the fabricated QP/QT-MB hydrogel platform was capable of inducing efficient eradication of the S. aureus biofilm in a severely infected wound model and accelerating infected wound repair by promoting collagen deposition, angiogenesis, and suppressing inflammatory responses. Additionally, the QP/QT-MB hydrogel demonstrated excellent biocompatibility in vitro and in vivo. Collectively, the hydrogel (QP/QT-MB) reveals great potential application prospects as a promising alternative in the field of biofilm-associated infection treatment.
Collapse
Affiliation(s)
- Weiling Peng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Lixia Li
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Yu Zhang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haibing Su
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohe Jiang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haimeng Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohua Huang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541001, China
| | - Chanjuan Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| |
Collapse
|
68
|
Valadbeigi M, Mahmoudifard M, Ganji SM, Mehrabian S. Study on the antibacterial effect of CuO nanoparticles on Klebsiella pneumonia bacteria: Efficient treatment for colorectal cancer. Biotechnol Appl Biochem 2023; 70:1785-1793. [PMID: 37264727 DOI: 10.1002/bab.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is a widespread type of cancer across the world. One efficient therapy approach is the use of antibiotic agents, but one of the main issues related to treating CRC is microbial resistance to antibiotics. As microbes are becoming more resistant to antibiotics and other traditional antimicrobial agents, nanobiotechnology has made it possible to employ nanomaterials with the aim of creating a new generation of antimicrobial agents. In the present study, we have assessed the antimicrobial potential of CuO nanoparticles (NPs) against gram-negative bacteria like Klebsiella pneumoniae carrying PKS genes responsible for encoding colibactin as the key factor for CRC development. For this purpose, the antibacterial effects of conventional antibacterial agents, including erythromycin, piperacillin, and ampicillin, as well as CuONPs, were compared on isolated strains from cancerous candidates. The obtained results revealed that isolates (K. pneumoniae) showed resistance toward the mentioned conventional antibiotics, but CuONPs showed efficient antibacterial properties against K. pneumonia with a MIC = 62 μg/mL. On the other hand, a synergistic antibacterial effect was obtained when CuONPs were used in combination with conventional antibiotics, which are ineffective when used alone. Therefore, CuONPs can be introduced as an excellent antimicrobial agent against K. pneumoniae bacteria in CRC, especially when they are combined with other antibiotics since they can activate the antimicrobial activity of the conventional antibiotics.
Collapse
Affiliation(s)
- Maria Valadbeigi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahla Mohammad Ganji
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sedigheh Mehrabian
- Department of Microbiology, Faculty of Life Sciences, Azad Islamic University, North Tehran Branch, Tehran, Iran
| |
Collapse
|
69
|
Singh J, Srivastava A, Nigam AK, Kumari U, Mittal S, Mittal AK. Alterations in certain immunological parameters in the skin mucus of the carp, Cirrhinus mrigala, infected with the bacteria, Edwardsiella tarda. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1303-1320. [PMID: 37870724 DOI: 10.1007/s10695-023-01258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
The bacterial fish pathogen Edwardsiella tarda causes heavy stock mortality, severely hampering fish production, resulting in great economic loss to the farming industry. The first biological barriers that confer immune protection against pathogen entry are the fish mucosal surfaces. The present study was undertaken to investigate the influence of E. tarda on certain enzymatic and non-enzymatic parameters in the skin mucous secretions of the fish Cirrhinus mrigala using spectrophotometry and zymography. Fish were randomly divided into three groups: control, vehicle control, and infected. A sublethal dose of E. tarda (2.2 × 106 CFU/fish) suspended in 50 μL of PBS was injected intra-peritoneally at 0 day (d). Subsequently, mucus samples were collected at 2 d, 4 d, 6 d and 8 d post-infection. The activities of lysozyme (LYZ), protease (PROT), alkaline phosphatase (ALP), acid phosphatase (ACP), catalase (CAT), peroxidase (PER), superoxide dismutase (SOD), and glutathione S-transferase (GST) decreased significantly in the skin mucus of the challenged fish, indicating the suppressed immune system and decreased antioxidant capacity of C. mrigala to E. tarda infection. Lipid peroxidation (LPO) and total nitrate-nitrite were significantly higher at several time points post-infection, suggesting that physiological functions have been impaired following pathogen challenge. The present findings could be relevant for fish aquaculture and underline the importance of skin mucus not only for assessing fish immune status but also for identifying early warning signals of disease caused by pathogens.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ayan Srivastava
- Department of Zoology, MSM Samta College (BR Ambedkar Bihar University), Jandaha, Vaishali, Bihar, 844505, India
| | - Ashwini Kumar Nigam
- Udai Pratap Autonomous College, Bhojubir, Varanasi, Uttar Pradesh, 221002, India
| | - Usha Kumari
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Swati Mittal
- Department of Zoology, Skin Physiology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Ajay Kumar Mittal
- Department of Zoology, Banaras Hindu University, Present Address: 9, Mani Nagar, Near Asha Modern School, Kandawa road, Near Chitaipur, Varanasi, Uttar Pradesh, 221106, India
| |
Collapse
|
70
|
Guo J, Tian X, Chen S, Ma C, Bai L, Zhang Y, Yang N, Sun M, Wang W. Candidate molecules as alternative nitric oxide donors with better antibacterial property against Escherichia coli and Staphylococcus aureus. J Appl Microbiol 2023; 134:lxad285. [PMID: 38040654 DOI: 10.1093/jambio/lxad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023]
Abstract
AIMS Four nitric oxide (NO) donors, S-nitrosoglutathione (GSNO), S-nitrosocysteine (CySNO), S-nitroso-N-acetylcysteine (SNAC), and 2-(2-S-nitroso propionamide) acetic acid (GAS) were prepared and their physicochemical characteristics were analyzed. Besides, the antibacterial properties of NO donors were investigated against Escherichia coli and Staphylococcus aureus. METHODS AND RESULTS UV-visible absorption spectrum and Fourier transform infrared spectrum verified the successful preparation of RSNOs. All NO donors (10 mmol l-1) could release NO continuously, and the amount of NO release was from 80.22 μmol l-1 to 706.63 μmol l-1, in which the release of NO from SNAC was the highest, and the release of NO from NaNO2 was the least. The inhibition zone indicated that all NO donors showed stronger antibacterial activity against E. coli and S. aureus, and the antibacterial ability was in the order of SNAC > GSNO > CySNO > GAS > NaNO2 for both E. coli and S. aureus (P < 0.05). Scanning electron microscopy(SEM) showed that all NO donors could result in varying degrees of damage to cell wall and membrane of both E. coli and S. aureus and the damage of E. coli was more severe. CONCLUSION Four alternative NO donors were successfully synthesized. All alternative NO donors showed better antibacterial properties against E. coli and S. aureus than NaNO2.
Collapse
Affiliation(s)
- Jingjing Guo
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sihong Chen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenwei Ma
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lei Bai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yafei Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengjiao Sun
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
71
|
Meleady L, Towriss M, Kim J, Bacarac V, Dang V, Rowland ME, Ciernia AV. Histone deacetylase 3 regulates microglial function through histone deacetylation. Epigenetics 2023; 18:2241008. [PMID: 37506371 PMCID: PMC10392760 DOI: 10.1080/15592294.2023.2241008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
As the primary innate immune cells of the brain, microglia respond to damage and disease through pro-inflammatory release of cytokines and neuroinflammatory molecules. Histone acetylation is an activating transcriptional mark that regulates inflammatory gene expression. Inhibition of histone deacetylase 3 (Hdac3) has been utilized in pre-clinical models of depression, stroke, and spinal cord injury to improve recovery following injury, but the molecular mechanisms underlying Hdac3's regulation of inflammatory gene expression in microglia is not well understood. To address this lack of knowledge, we examined how pharmacological inhibition of Hdac3 in an immortalized microglial cell line (BV2) impacted histone acetylation and gene expression of pro- and anti-inflammatory genes in response to immune challenge with lipopolysaccharide (LPS). Flow cytometry and cleavage under tags & release using nuclease (CUT & RUN) revealed that Hdac3 inhibition increases global and promoter-specific histone acetylation, resulting in the release of gene repression at baseline and enhanced responses to LPS. Hdac3 inhibition enhanced neuroprotective functions of microglia in response to LPS through reduced nitric oxide release and increased phagocytosis. The findings suggest Hdac3 serves as a regulator of microglial inflammation, and that inhibition of Hdac3 facilitates the microglial response to inflammation and its subsequent clearing of debris or damaged cells. Together, this work provides new mechanistic insights into therapeutic applications of Hdac3 inhibition which mediate reduced neuroinflammatory insults through microglial response.
Collapse
Affiliation(s)
- Laura Meleady
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Morgan Towriss
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jennifer Kim
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | - Vince Bacarac
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Vivien Dang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Megan E. Rowland
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
72
|
Qiu Y, Zhao T, Lu X, Yuan Q, Gregg S, Nze RP, Xiao B. Ultraviolet Light Responsive N-Nitroso Polymers for Antibacterial Nitric Oxide Delivery. Macromol Rapid Commun 2023; 44:e2300473. [PMID: 37730214 DOI: 10.1002/marc.202300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/17/2023] [Indexed: 09/22/2023]
Abstract
This study investigates the incorporation of active secondary amine moieties into the polymer backbone by co-polymerizing 2,4,6-tris(chloromethyl)-mesitylene with three diamines, namely 1,4-diaminobutane, m-phenylenediamine, and p-phenylenediamine. This process results in the stabilization of the amine moieties and the subsequently introduced nitroso groups. Charging bioactive nitric oxide (NO) into the polymers is accomplished by converting the amine moieties into N-nitroso groups. The ability of the polymers to store and release NO depends on their structures, particularly the amount of incorporated active secondary amines. With grafting photosensitive N-nitroso groups into the polymers, the derived NO@polymers exhibit photoresponsivity. NO release is completely regulated by adjusting UV light irradiation. These resulting polymeric NO donors demonstrate remarkable bactericidal and bacteriostatic activity, effectively eradicating E. coli bacteria and inhibiting their growth. The findings from this study hold promising implications for combining NO delivery with phototherapy in various medical applications.
Collapse
Affiliation(s)
- Yusheng Qiu
- Department School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Taoran Zhao
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Lu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Qingchun Yuan
- Chemical Engineering and Applied Chemistry, Aston University, Birmingham, B4 7ET, UK
| | - Sharon Gregg
- Department School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - René-Ponce Nze
- Department School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Bo Xiao
- Department School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
73
|
Lv X, Jiang J, Ren J, Li H, Yang D, Song X, Hu Y, Wang W, Dong X. Nitric Oxide-Assisted Photodynamic Therapy for Enhanced Penetration and Hypoxic Bacterial Biofilm Elimination. Adv Healthc Mater 2023; 12:e2302031. [PMID: 37515529 DOI: 10.1002/adhm.202302031] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The presence of a biofilm matrix barrier and hypoxic microenvironment within the biofilm significantly impedes the efficacy of photodynamic therapy for bacterial biofilm infections. Herein, a phototherapeutic nanoagent with type-I photodynamic behavior and nitric oxide (NO) release performance is reported for overcoming biofilm-associated infectious diseases. Sodium nitroprusside (SNP), a NO donor, is loaded onto amino-modified mesoporous silica nanoparticles (MSN) to form MSN@SNP NPs. The resulting nanoparticles are further modified with a porphyrin-based metal-organic framework (Ti-TCPP MOF) to obtain MSN@MOF/SNP NPs (MMS NPs) for phototherapeutic applications. In the hypoxia biofilm microenvironment, the MMS NPs release NO to enhance the biofilm permeability and induce the generation of hydroxyl radical (•OH) and superoxide anion radical (O2 •- ) via Type-I photodynamic pathway under laser irradiation. Subsequently, the biofilm-associated infections are effectively eliminated through reactive oxygen species (ROS) and NO gas synergistic therapy. In addition, NO also stimulates collagen deposition and promotes angiogenesis in vivo. Therefore, the MMS NPs efficiently treat biofilm-related infections, providing an alternative approach to combat biofilm-associated infectious diseases.
Collapse
Affiliation(s)
- Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Jie Ren
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Hui Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yanling Hu
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
74
|
Mazón-Ortiz G, Cerda-Mejía G, Gutiérrez Morales E, Diéguez-Santana K, Ruso JM, González-Díaz H. Trends in Nanoparticles for Leishmania Treatment: A Bibliometric and Network Analysis. Diseases 2023; 11:153. [PMID: 37987264 PMCID: PMC10660713 DOI: 10.3390/diseases11040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Leishmaniasis is a neglected tropical illness with a wide variety of clinical signs ranging from visceral to cutaneous symptoms, resulting in millions of new cases and thousands of fatalities reported annually. This article provides a bibliometric analysis of the main authors' contributions, institutions, and nations in terms of productivity, citations, and bibliographic linkages to the application of nanoparticles (NPs) for the treatment of leishmania. The study is based on a sample of 524 Scopus documents from 1991 to 2022. Utilising the Bibliometrix R-Tool version 4.0 and VOSviewer software, version 1.6.17 the analysis was developed. We identified crucial subjects associated with the application of NPs in the field of antileishmanial development (NPs and drug formulation for leishmaniasis treatment, animal models, and experiments). We selected research topics that were out of date and oversaturated. Simultaneously, we proposed developing subjects based on multiple analyses of the corpus of published scientific literature (title, abstract, and keywords). Finally, the technique used contributed to the development of a broader and more specific "big picture" of nanomedicine research in antileishmanial studies for future projects.
Collapse
Affiliation(s)
- Gabriel Mazón-Ortiz
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Galo Cerda-Mejía
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eberto Gutiérrez Morales
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
| | - Karel Diéguez-Santana
- Facultad Ciencias de la Vida, Facultad Ciencias de la Tierra y Agua, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador; (G.M.-O.); (G.C.-M.); (E.G.M.)
- Wood Engineering Department, University of Bio-Bio, Concepcion 4030000, Chile
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Basque Center for Biophysics CSIC-UPVEH, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
75
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
76
|
Sapkota A, Mondal A, Chug MK, Brisbois EJ. Biomimetic catheter surface with dual action NO-releasing and generating properties for enhanced antimicrobial efficacy. J Biomed Mater Res A 2023; 111:1627-1641. [PMID: 37209058 PMCID: PMC10524361 DOI: 10.1002/jbm.a.37560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Infection of indwelling catheters is a common healthcare problem, resulting in higher morbidity and mortality. The vulnerable population reliant on catheters post-surgery for food and fluid intake, blood transfusion, or urinary incontinence or retention is susceptible to hospital-acquired infection originating from the very catheter. Bacterial adhesion on catheters can take place during the insertion or over time when catheters are used for an extended period. Nitric oxide-releasing materials have shown promise in exhibiting antibacterial properties without the risk of antibacterial resistance which can be an issue with conventional antibiotics. In this study, 1, 5, and 10 wt % selenium (Se) and 10 wt % S-nitrosoglutathione (GSNO)-incorporated catheters were prepared through a layer-by-layer dip-coating method to demonstrate NO-releasing and NO-generating capability of the catheters. The presence of Se on the catheter interface resulted in a 5 times higher NO flux in 10% Se-GSNO catheter through catalytic NO generation. A physiological level of NO release was observed from 10% Se-GSNO catheters for 5 d, along with an enhanced NO generation via the catalytic activity as Se was able to increase NO availability. The catheters were also found to be compatible and stable when subjected to sterilization and storage, even at room temperature. Additionally, the catheters showed a 97.02% and 93.24% reduction in the adhesion of clinically relevant strains of Escherichia coli and Staphylococcus aureus, respectively. Cytocompatibility testing of the catheter with 3T3 mouse fibroblast cells supports the material's biocompatibility. These findings from the study establish the proposed catheter as a prospective antibacterial material that can be translated into a clinical setting to combat catheter-related infections.
Collapse
Affiliation(s)
- Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
77
|
Chug MK, Griffin L, Garren M, Tharp E, Nguyen GH, Handa H, Brisbois EJ. Antimicrobial efficacy of a nitric oxide-releasing ampicillin conjugate catheter lock solution on clinically-isolated antibiotic-resistant bacteria. Biomater Sci 2023; 11:6561-6572. [PMID: 37594048 PMCID: PMC10529818 DOI: 10.1039/d3bm00775h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Antibiotic lock therapy (ALT) is standard clinical practice for treating bacteremia linked with catheter-related bloodstream infections (CRBSIs). However, this strategy frequently fails against multi-drug-resistant bacteria in clinical settings. In this study, a novel approach to utilize a nitric oxide (NO) donor S-nitroso-N-acetyl-penicillamine (SNAP)-conjugated to ampicillin antibiotic (namely SNAPicillin) as a catheter lock solution is presented. The conjugate of two antimicrobial agents is anticipated to overcome the challenges of bacterial infection caused by antibiotic-resistant bacteria in ALT applications. Nitric oxide release from the SNAPicillin lock solution at varying concentrations was measured at 0 and 24 h time points in a catheter model system, which revealed tunable NO release at physiological levels. The clinical strains of E. coli (CDC AR-0089) and S. marcescens (CDC AR-0099) were screened using a zone of inhibition assay against standard antibiotics which confirmed the antibiotic resistance in bacteria. The minimum inhibitory concentration (MIC) testing of SNAPicillin unveiled the lowest MIC value for SNAPicillin against both E. coli and S. marcescens (1 and 2 mM of SNAPicillin, respectively) with an 8.24- and 4.28-log reduction in bacterial load compared to controls, respectively. In addition, while the ampicillin-treated biofilm demonstrated resistance toward the antibiotic, SNAPicillin led to >99% reduction in exterminating biofilm buildup on polymeric catheter surfaces. Lastly, the SNAPicillin lock solution was determined to be biocompatible via hemolysis and cell compatibility studies. Together, these results emphasize the promising potential of SNAPicillin lock solution with the dual-action of NO and ampicillin in overcoming bacterial challenges on medical devices like central venous catheters and other medical device interfaces.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| | - Lauren Griffin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| | - Mark Garren
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| | - Emma Tharp
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| | - Grace H Nguyen
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| | - Hitesh Handa
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, GA, 30602, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
78
|
Cela EM, Urquiza D, Gómez MI, Gonzalez CD. New Weapons to Fight against Staphylococcus aureus Skin Infections. Antibiotics (Basel) 2023; 12:1477. [PMID: 37887178 PMCID: PMC10603739 DOI: 10.3390/antibiotics12101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The treatment of Staphylococcus aureus skin and soft tissue infections faces several challenges, such as the increased incidence of antibiotic-resistant strains and the fact that the antibiotics available to treat methicillin-resistant S. aureus present low bioavailability, are not easily metabolized, and cause severe secondary effects. Moreover, besides the susceptibility pattern of the S. aureus isolates detected in vitro, during patient treatment, the antibiotics may never encounter the bacteria because S. aureus hides within biofilms or inside eukaryotic cells. In addition, vascular compromise as well as other comorbidities of the patient may impede proper arrival to the skin when the antibiotic is given parenterally. In this manuscript, we revise some of the more promising strategies to improve antibiotic sensitivity, bioavailability, and delivery, including the combination of antibiotics with bactericidal nanomaterials, chemical inhibitors, antisense oligonucleotides, and lytic enzymes, among others. In addition, alternative non-antibiotic-based experimental therapies, including the delivery of antimicrobial peptides, bioactive glass nanoparticles or nanocrystalline cellulose, phototherapies, and hyperthermia, are also reviewed.
Collapse
Affiliation(s)
- Eliana M. Cela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Dolores Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
| | - Marisa I. Gómez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Cintia D. Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
79
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
80
|
Anantharaman S, Guercio D, Mendoza AG, Withorn JM, Boon EM. Negative regulation of biofilm formation by nitric oxide sensing proteins. Biochem Soc Trans 2023; 51:1447-1458. [PMID: 37610010 PMCID: PMC10625800 DOI: 10.1042/bst20220845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Biofilm-based infections pose a serious threat to public health. Biofilms are surface-attached communities of microorganisms, most commonly bacteria and yeast, residing in an extracellular polymeric substance (EPS). The EPS is composed of several secreted biomolecules that shield the microorganisms from harsh environmental stressors and promote antibiotic resistance. Due to the increasing prominence of multidrug-resistant microorganisms and a decreased development of bactericidal agents in clinical production, there is an increasing need to discover alternative targets and treatment regimens for biofilm-based infections. One promising strategy to combat antibiotic resistance in biofilm-forming bacteria is to trigger biofilm dispersal, which is a natural part of the bacterial biofilm life cycle. One signal for biofilm dispersal is the diatomic gas nitric oxide (NO). Low intracellular levels of NO have been well documented to rapidly disperse biofilm macrostructures and are sensed by a widely conserved NO-sensory protein, NosP, in many pathogenic bacteria. When bound to heme and ligated to NO, NosP inhibits the autophosphorylation of NosP's associated histidine kinase, NahK, reducing overall biofilm formation. This reduction in biofilm formation is regulated by the decrease in secondary metabolite bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). The NosP/NahK signaling pathway is also associated with other major regulatory systems in the maturation of bacterial biofilms, including virulence and quorum sensing. In this review, we will focus on recent discoveries investigating NosP, NahK and NO-mediated biofilm dispersal in pathogenic bacteria.
Collapse
Affiliation(s)
- Sweta Anantharaman
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Danielle Guercio
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Alicia G Mendoza
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Jason M Withorn
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| |
Collapse
|
81
|
Lee S, Park CY. Nitric oxide: an old drug but with new horizons in ophthalmology-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:352. [PMID: 37675299 PMCID: PMC10477639 DOI: 10.21037/atm-22-5634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/21/2023] [Indexed: 09/08/2023]
Abstract
Background and Objective Based on basic knowledge and prior research on nitric oxide (NO), the potential of NO for treating eye diseases is reviewed, and the possibility of NO-based eye drops in clinical practice and the future potential of NO in ophthalmology are discussed. Methods A PubMed search was performed for English-language original reports and reviews using the following key words: nitric oxide, eye, ocular, and drug. Key Content and Findings NO is synthesized in the human body by NO synthase (NOS) from L-arginine or through enzyme-dependent reduction of dietary nitrate. Three types of NOS (eNOS, nNOS, and iNOS) are abundantly expressed in the eye under normal physiologic or pathologic conditions. The biological effect of NO in the eye is dose dependent. Low intraocular NO concentrations, produced by eNOS or nNOS, have various cellular effects, including vasodilation, intraocular pressure (IOP) regulation, and neuroprotection. iNOS induced under pathologic ocular conditions produces high NO concentrations in the local environment and mediates tissue inflammation, ocular cell apoptosis, and neurodegeneration. In particular, increased iNOS has been reported in glaucoma and retinal ischemic or degenerative diseases. NO plays a vital role in ocular injury. NO can facilitate ocular surface wound healing while eradicating pathogens such as bacteria and Acanthamoeba in chemical burns or infectious keratitis. Furthermore, NO has antifibrotic activity via the cyclic guanosine monophosphate (cGMP) signaling pathway. NO causes smooth muscle relaxation, which can be used to inhibit myopia progression in children. NO can be a stem cell modulator and may help in treating ocular stem cell disorders. Conclusions Because of its diverse biologic effects, NO can be a key player in regulating ocular inflammation in various ocular diseases, aiding ocular surface wound healing, controlling IOP in glaucoma, alleviating retinal disease, and suppressing myopia progression. Although there remain limitations to the effective use of highly unstable state, gaseous NO, the role of NO in the field of ophthalmology can be greatly expanded through the development of novel NO donors and effective delivery platforms.
Collapse
Affiliation(s)
- Soomin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
82
|
Chang SH, Hsiao HY, Chen YH, Cheng MH, Liu JW, Huang HJ, Chou YT, Amer TAM, Vijayaraghavan P, Palanisamy S, Wang YM, Lu TT. Conjugation of bone grafts with NO-delivery dinitrosyl iron complexes promotes synergistic osteogenesis and angiogenesis in rat calvaria bone defects. J Mater Chem B 2023; 11:8007-8019. [PMID: 37530140 DOI: 10.1039/d3tb00587a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Craniofacial/jawbone deformities remain a significant clinical challenge in restoring facial/dental functions and esthetics. Despite the reported therapeutics for clinical bone tissue regeneration, the bioavailability issue of autografts and limited regeneration efficacy of xenografts/synthetic bone substitutes, however, inspire continued efforts towards functional conjugation and improvement of bioactive bone graft materials. Regarding the potential of nitric oxide (NO) in tissue engineering, herein, functional conjugation of NO-delivery dinitrosyl iron complex (DNIC) and osteoconductive bone graft materials was performed to optimize the spatiotemporal control over the delivery of NO and to activate synergistic osteogenesis and angiogenesis in rat calvaria bone defects. Among three types of biomimetic DNICs, [Fe2(μ-SCH2CH2COOH)2(NO)4] (DNIC-COOH) features a steady kinetics for cellular uptake by MC3T3-E1 osteoblast cells followed by intracellular assembly of protein-bound DNICs and release of NO. This steady kinetics for intracellular delivery of NO by DNIC-COOH rationalizes its biocompatibility and wide-spectrum cell proliferation effects on MC3T3-E1 osteoblast cells and human umbilical vein endothelial cells (HUVECs). Moreover, the bridging [SCH2CH2COOH]- thiolate ligands in DNIC-COOH facilitate its chemisorption to deproteinized bovine bone mineral (DBBM) and physisorption onto TCP (β-tricalcium phosphate), respectively, which provides a mechanism to control the kinetics for the local release of loaded DNIC-COOH. Using rats with calvaria bone defects as an in vivo model, DNIC-DBBM/DNIC-TCP promotes the osteogenic and angiogenic activity ascribed to functional conjugation of osteoconductive bone graft materials and NO-delivery DNIC-COOH. Of importance, the therapeutic efficacy of DNIC-DBBM/DNIC-TCP on enhanced compact bone formation after treatment for 4 and 12 weeks supports the potential for clinical application to regenerative medicine.
Collapse
Affiliation(s)
- Shih-Hao Chang
- Department of Periodontics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan 33302, Taiwan
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Hui-Yi Hsiao
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Ming-Huei Cheng
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jia-Wei Liu
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hsiao-Jo Huang
- Department of Periodontics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Yu-Ting Chou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Tarik Abdelkareem Mostafa Amer
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Priya Vijayaraghavan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sathyadevi Palanisamy
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
83
|
Khanzadeh Tehrani M, Yazdi MH, Pourmand MR. Glucomannan enhanced the macrophage activity in exposure to methicillin-resistant Staphylococcus aureus (MRSA): in-vitro study. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:557-564. [PMID: 38045713 PMCID: PMC10692966 DOI: 10.18502/ijm.v15i4.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives The increasing number of methicillin-resistant Staphylococcus aureus persuade the need for preventive measures. Glucomannan is a polysaccharide choice for developing immunological strategies. This study aimed to investigate changes in gene expression and phagocytic activity of macrophage cells in the presence of glucomannan. Materials and Methods The effect of different concentrations of glucomannan (25, 50, and 100 μg/mL) on the phagocytic activity of macrophage cells was measured using the colony count method. The expression of Tumor Necrosis Factor-alpha (TNF-α) and Inducible Nitric Oxide Synthase (iNOS) genes was evaluated by Real-Time PCR. Results The concentrations of glucomannan significantly reduced the bacterial Colony-Forming Unit (CFU) and increased the phagocytic activity of macrophage cells. The maximum effect of glucomannan on iNOS and TNF-A genes expression was 100 μg/mL. Conclusion Glucomannan should be considered an adjuvant that stimulates the immune system. It may increase the expression of TNF-α and iNOS genes and the phagocytic activity of macrophage cells against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Rajaramon S, Shanmugam K, Dandela R, Solomon AP. Emerging evidence-based innovative approaches to control catheter-associated urinary tract infection: a review. Front Cell Infect Microbiol 2023; 13:1134433. [PMID: 37560318 PMCID: PMC10407108 DOI: 10.3389/fcimb.2023.1134433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Healthcare settings have dramatically advanced the latest medical devices, such as urinary catheters (UC) for infection, prevention, and control (IPC). The continuous or intermittent flow of a warm and conducive (urine) medium in the medical device, the urinary catheter, promotes the formation of biofilms and encrustations, thereby leading to the incidence of CAUTI. Additionally, the absence of an innate immune host response in and around the lumen of the catheter reduces microbial phagocytosis and drug action. Hence, the review comprehensively overviews the challenges posed by CAUTI and associated risks in patients' morbidity and mortality. Also, detailed, up-to-date information on the various strategies that blended/tailored the surface properties of UC to have anti-fouling, biocidal, and anti-adhesive properties to provide an outlook on how they can be better managed with futuristic solutions.
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
85
|
Zhang A, Wu H, Chen X, Chen Z, Pan Y, Qu W, Hao H, Chen D, Xie S. Targeting and arginine-driven synergizing photodynamic therapy with nutritional immunotherapy nanosystems for combating MRSA biofilms. SCIENCE ADVANCES 2023; 9:eadg9116. [PMID: 37450586 PMCID: PMC10348676 DOI: 10.1126/sciadv.adg9116] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
The resistance and immune escape of methicillin-resistant Staphylococcus aureus (MRSA) biofilms cause recalcitrant infections. Here, we design a targeting and synergizing cascade PDT with nutritional immunotherapy nanosystems (Arg-PCN@Gel) containing PCN-224 as PDT platform for providing reactive oxygen species (ROS), incorporating arginine (Arg) as nitric oxide (NO) donor to cascade with ROS to produce more lethal ONOO- and promote immune response, and coating with gelatin as targeting agent and persistent Arg provider. The nanosystems adhered to the autolysin of MRSA and inhibited Arg metabolism by down-regulating icdA and icaA. It suppressed polysaccharide intercellular adhesin and extracellular DNA synthesis to prevent biofilm formation. The NO broke mature biofilms and helped ROS and ONOO- penetrate into biofilms to inactivate internal MRSA. Arg-PCN@Gel drove Arg to enhance immunity via inducible NO synthase/NO axis and arginase/polyamine axis and achieve efficient target treatment in MRSA biofilm infections. The targeting and cascading PDT synergized with nutritional immunotherapy provide an effective promising strategy for biofilm-associated infections.
Collapse
Affiliation(s)
- Aoxue Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Xin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Chen
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| | - Wei Qu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| | - Haihong Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs,Wuhan, Hubei 430070, China
| |
Collapse
|
86
|
Kumar A, Mondal A, Douglass ME, Francis DJ, Garren MR, Estes Bright LM, Ghalei S, Xie J, Brisbois EJ, Handa H. Nanoarchitectonics of nitric oxide releasing supramolecular structures for enhanced antibacterial efficacy under visible light irradiation. J Colloid Interface Sci 2023; 640:144-161. [PMID: 36842420 PMCID: PMC10081829 DOI: 10.1016/j.jcis.2023.02.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Light-controlled therapies offer a promising strategy to prevent and suppress infections caused by numerous bacterial pathogens. Excitation of exogenously supplied photosensitizers (PS) at specific wavelengths elicits levels of reactive oxygen intermediates toxic to bacteria. Porphyrin-based supramolecular nanostructure frameworks (SNF) are effective PS with unique physicochemical properties that have led to their widespread use in photomedicine. Herein, we developed a nitric oxide (NO) releasing, biocompatible, and stable porphyrin-based SNF (SNF-NO), which was achieved through a confined noncovalent self-assembly process based on π-π stacking. Characterization of the SNFs via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the formation of three-dimensional, well-defined octahedral structures. These SNF-NO were shown to exhibit a red shift due to the noncovalent self-assembly of porphyrins, which also show extended light absorption to broadly cover the entire visible light spectrum to enhance photodynamic therapy (PDT). Under visible light irradiation (46 J cm-2), the SNF generates high yields of singlet oxygen (1O2) radicals, hydroxyl radicals (HO), superoxide radicals (O2), and peroxynitrite (ONOO-) radicals that have shown potential to enhance antimicrobial photodynamic therapy (APDT) against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli (E. coli). The resulting SNFs also exhibit significant biofilm dispersion and a decrease in biomass production. The combination of robust photosensitizer SNFs with nitric oxide-releasing capabilities is dynamic in its ability to target pathogenic infections while remaining nontoxic to mammalian cells. The engineered SNFs have enormous potential for treating and managing microbial infections.
Collapse
Affiliation(s)
- Anil Kumar
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Arnab Mondal
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Megan E Douglass
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Divine J Francis
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Mark R Garren
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Lori M Estes Bright
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Sama Ghalei
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Hitesh Handa
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
87
|
Marini E, Sodano F, Rolando B, Chegaev K, Maresca DC, Ianaro A, Ercolano G, Lazzarato L. New lipophilic organic nitrates: candidates for chronic skin disease therapy. Biol Chem 2023; 404:601-606. [PMID: 36867068 DOI: 10.1515/hsz-2022-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
Organic nitrates are widely used, but their chronic efficacy is blunted due to the development of tolerance. The properties of new tolerance free organic nitrates were studied. Their lipophilicity profile and passive diffusion across polydimethylsiloxane membrane and pig ear-skin, and their efficacy in tissue regeneration using HaCaT keratinocytes were evaluated. The permeation results show that these nitrates have a suitable profile for NO topical administration on the skin. Furthermore, the derivatives with higher NO release exerted a pro-healing effect on HaCaT cells. This new class of organic nitrates might be a promising strategy for the chronic treatment of skin pathologies.
Collapse
Affiliation(s)
- Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | - Federica Sodano
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| | | | - Angela Ianaro
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples «Federico II», I-80131 Naples, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, I-10125 Turin, Italy
| |
Collapse
|
88
|
Wang Z, Jin A, Yang Z, Huang W. Advanced Nitric Oxide Generating Nanomedicine for Therapeutic Applications. ACS NANO 2023; 17:8935-8965. [PMID: 37126728 PMCID: PMC10395262 DOI: 10.1021/acsnano.3c02303] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), a gaseous transmitter extensively present in the human body, regulates vascular relaxation, immune response, inflammation, neurotransmission, and other crucial functions. Nitrite donors have been used clinically to treat angina, heart failure, pulmonary hypertension, and erectile dysfunction. Based on NO's vast biological functions, it further can treat tumors, bacteria/biofilms and other infections, wound healing, eye diseases, and osteoporosis. However, delivering NO is challenging due to uncontrolled blood circulation release and a half-life of under five seconds. With advanced biotechnology and the development of nanomedicine, NO donors packaged with multifunctional nanocarriers by physically embedding or chemically conjugating have been reported to show improved therapeutic efficacy and reduced side effects. Herein, we review and discuss recent applications of NO nanomedicines, their therapeutic mechanisms, and the challenges of NO nanomedicines for future scientific studies and clinical applications. As NO enables the inhibition of the replication of DNA and RNA in infectious microbes, including COVID-19 coronaviruses and malaria parasites, we highlight the potential of NO nanomedicines for antipandemic efforts. This review aims to provide deep insights and practical hints into design strategies and applications of NO nanomedicines.
Collapse
Affiliation(s)
- Zhixiong Wang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| |
Collapse
|
89
|
Chen L, Fang D, Zhang J, Xiao X, Li N, Li Y, Wan M, Mao C. Nanomotors-loaded microneedle patches for the treatment of bacterial biofilm-related infections of wound. J Colloid Interface Sci 2023; 647:142-151. [PMID: 37247478 DOI: 10.1016/j.jcis.2023.05.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
The biofilms formed by bacteria at the wound site can effectively protect the bacteria, which greatly weakens the effect of antibiotics. Herein, a microneedle patch for wound treatment is designed, which can effectively penetrate the biofilms in a physical way because of the penetration ability of the microneedles and the motion behavior of the nanomotors, and deliver bacterial quorum sensing inhibitor luteolin (Le) and nanomotors with multiple antibacterial properties within biofilms. Firstly, the nanomotors-loaded microneedle patches are prepared and characterized. The results of in vitro and in vivo experiments show that the microneedle patches have good biosafety and antibacterial properties. Among them, Le can inhibit the growth of biofilms. Further, under near-infrared (NIR) irradiation, the nanomotors loaded with photosensitizer ICG and nitric oxide (NO) donor L-arginine (L-Arg) can move in the biofilms under the double driving effect of photothermal and NO, and can give full play to the multiple anti-biological infection effects of photothermal therapy (PTT), photodynamic therapy (PDT) and NO, and finally realize the effective removal of biofilms and promote wound healing. The intervention of nanomotor technology has brought about a new therapeutic strategy for bacterial biofilm-related infection of wound.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Junyue Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yue Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
90
|
Park D, Lee SJ, Choi DK, Park JW. Therapeutic Agent-Loaded Fibrous Scaffolds for Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15051522. [PMID: 37242764 DOI: 10.3390/pharmaceutics15051522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tissue engineering is a sophisticated field that involves the integration of various disciplines, such as clinical medicine, material science, and life science, to repair or regenerate damaged tissues and organs. To achieve the successful regeneration of damaged or diseased tissues, it is necessary to fabricate biomimetic scaffolds that provide structural support to the surrounding cells and tissues. Fibrous scaffolds loaded with therapeutic agents have shown considerable potential in tissue engineering. In this comprehensive review, we examine various methods for fabricating bioactive molecule-loaded fibrous scaffolds, including preparation methods for fibrous scaffolds and drug-loading techniques. Additionally, we delved into the recent biomedical applications of these scaffolds, such as tissue regeneration, inhibition of tumor recurrence, and immunomodulation. The aim of this review is to discuss the latest research trends in fibrous scaffold manufacturing methods, materials, drug-loading methods with parameter information, and therapeutic applications with the goal of contributing to the development of new technologies or improvements to existing ones.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
91
|
Antibacterial gas therapy: Strategies, advances, and prospects. Bioact Mater 2023; 23:129-155. [DOI: 10.1016/j.bioactmat.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
|
92
|
Hwang P, Shin CM, Sherwood JA, Kim D, Vijayan VM, Josyula KC, Millican RC, Ho D, Brott BC, Thomas V, Choi CH, Oh SH, Kim DW, Jun HW. A multi-targeting bionanomatrix coating to reduce capsular contracture development on silicone implants. Biomater Res 2023; 27:34. [PMID: 37087537 PMCID: PMC10122329 DOI: 10.1186/s40824-023-00378-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Capsular contracture is a critical complication of silicone implantation caused by fibrotic tissue formation from excessive foreign body responses. Various approaches have been applied, but targeting the mechanisms of capsule formation has not been completely solved. Myofibroblast differentiation through the transforming growth factor beta (TGF-β)/p-SMADs signaling is one of the key factors for capsular contracture development. In addition, biofilm formation on implants may result chronic inflammation promoting capsular fibrosis formation with subsequent contraction. To date, there have been no approaches targeting multi-facted mechanisms of capsular contracture development. METHODS In this study, we developed a multi-targeting nitric oxide (NO) releasing bionanomatrix coating to reduce capsular contracture formation by targeting myofibroblast differentiation, inflammatory responses, and infections. First, we characterized the bionanomatrix coating on silicon implants by conducting rheology test, scanning electron microcsopy analysis, nanoindentation analysis, and NO release kinetics evaluation. In addition, differentiated monocyte adhesion and S. epidermidis biofilm formation on bionanomatrix coated silicone implants were evaluated in vitro. Bionanomatrix coated silicone and uncoated silicone groups were subcutaneously implanted into a mouse model for evaluation of capsular contracture development for a month. Fibrosis formation, capsule thickness, TGF-β/SMAD 2/3 signaling cascade, NO production, and inflammatory cytokine production were evaluated using histology, immunofluorescent imaging analysis, and gene and protein expression assays. RESULTS The bionanomatrix coating maintained a uniform and smooth surface on the silicone even after mechanical stress conditions. In addition, the bionanomatrix coating showed sustained NO release for at least one month and reduction of differentiated monocyte adhesion and S. epidermidis biofilm formation on the silicone implants in vitro. In in vivo implantation studies, the bionanomatrix coated groups demonstrated significant reduction of capsule thickness surrounding the implants. This result was due to a decrease of myofibroblast differentiation and fibrous extracellular matrix production through inhibition of the TGF-β/p-SMADs signaling. Also, the bionanomatrix coated groups reduced gene expression of M1 macrophage markers and promoted M2 macrophage markers which indicated the bionanomatrix could reduce inflammation but promote healing process. CONCLUSIONS In conclusion, the bionanomatrix coating significantly reduced capsular contracture formation and promoted healing process on silicone implants by reducing myfibroblast differentiation, fibrotic tissue formation, and inflammation. A multi-targeting nitric oxide releasing bionanomatrix coating for silicone implant can reduce capsular contracture and improve healing process. The bionanomatrix coating reduces capsule thickness, α-smooth muscle actin and collagen synthesis, and myofibroblast differentiation through inhibition of TGF-β/SMADs signaling cascades in the subcutaneous mouse models for a month.
Collapse
Affiliation(s)
- Patrick Hwang
- Endomimetics, LLC, Birmingham, AL, 35242, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL, 35294, USA
| | - Chung Min Shin
- Department of Plastic and Reconstructive Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | | | - DongHo Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Vineeth M Vijayan
- Department of Biomedical Engineering, Alabama State University, Montgomery, AL, 36104, USA
| | - Krishna C Josyula
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL, 35294, USA
| | | | - Donald Ho
- Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Brigitta C Brott
- Endomimetics, LLC, Birmingham, AL, 35242, USA
- Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Vinoy Thomas
- Department of Material Science and Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chul Hee Choi
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology, Brain Research Institute, College of Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Ho-Wook Jun
- Endomimetics, LLC, Birmingham, AL, 35242, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
93
|
Pereira R, Barbosa T, Cardoso AL, Sá R, Sousa M. Cystic fibrosis and primary ciliary dyskinesia: Similarities and differences. Respir Med 2023; 209:107169. [PMID: 36828173 DOI: 10.1016/j.rmed.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Cystic fibrosis (CF) and Primary ciliary dyskinesia (PCD) are both rare chronic diseases, inherited disorders associated with multiple complications, namely respiratory complications, due to impaired mucociliary clearance that affect severely patients' lives. Although both are classified as rare diseases, PCD has a much lower prevalence than CF, particularly among Caucasians. As a result, CF is well studied, better recognized by clinicians, and with some therapeutic approaches already available. Whereas PCD is still largely unknown, and thus the approach is based on consensus guidelines, expert opinion, and extrapolation from the larger evidence base available for patients with CF. Both diseases have some clinical similarities but are very different, necessitating different treatment by specialists who are familiar with the complexities of each disease.This review aims to provide an overview of the knowledge about the two diseases with a focus on the similarities and differences between both in terms of disease mechanisms, common clinical manifestations, genetics and the most relevant therapeutic options. We hoped to raise clinical awareness about PCD, what it is, how it differs from CF, and how much information is still lacking. Furthermore, this review emphasises the fact that both diseases require ongoing research to find better treatments and, in particular for PCD, to fill the medical and scientific gaps.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Telma Barbosa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Ana Lúcia Cardoso
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal; Department of Pediatrics, Maternal Child Centre of the North (CMIN), University Hospital Centre of Porto (CHUP), Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP/ ITR-Laboratory for Integrative and Translational Research in Population Health, UP, Porto, Portugal.
| |
Collapse
|
94
|
Mohapatra A, Mondal J, Sathiyamoorthy P, Mohanty A, Revuri V, Rajendrakumar SK, Lee YK, Park IK. Thermosusceptible Nitric-Oxide-Releasing Nitrogel for Strengthening Antitumor Immune Responses with Tumor Collagen Diminution and Deep Tissue Delivery during NIR Laser-Assisted Photoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36896475 DOI: 10.1021/acsami.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Combined cancer immunotherapy has demonstrated promising potential with an amplified antitumor response and immunosuppressive tumor microenvironment (TME) modulation. However, one of the main issues that cause treatment failure is the poor diffusion and insufficient penetration of therapeutic and immunomodulatory agents in solid tumors. Herein, a cancer treatment approach that combines photothermal therapy (PTT) and nitric oxide (NO) gas therapy for tumor extracellular matrix (ECM) degradation, along with NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor that reduces tryptophan catabolism to kynurenine, and DMXAA, a stimulator of interferon gene (STING) agonist that stimulates antigen cross-presentation, is proposed to overcome this issue. Upon NIR (808 nm) laser irradiation, NO-GEL achieved the desired thermal ablation by releasing sufficient tumor antigens through immunogenic cell death (ICD). NO delivery triggered local diffusion of excess NO gas for effectively degrading tumor collagen in the ECM, homogeneously delivered NLG919 throughout the tumor tissue, inhibited IDO expression that was upregulated by PTT, and reduced the immune suppressive activities. The sustained release of DMXAA prolonged dendritic cell maturation and CD8+ T cell activation against the tumor. In summary, NO-GEL therapeutics offer a significant tumor regression with PTT and STING agonist combination that stimulates a durable antitumor immune response. Additional unification of IDO inhibition during PTT supplements the immunotherapy by reducing the T cell apoptosis and immune suppressive cell infiltration to TME. NO-GEL with the STING agonist and IDO inhibitor is an effective therapeutic combination to counter possible limitations during solid tumor immunotherapy.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Padmanaban Sathiyamoorthy
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Ayeskanta Mohanty
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | | | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
95
|
Zhu M, Dang J, Dong F, Zhong R, Zhang J, Pan J, Li Y. Antimicrobial and cleaning effects of ultrasonic-mediated plasma-loaded microbubbles on Enterococcus faecalis biofilm: an in vitro study. BMC Oral Health 2023; 23:133. [PMID: 36890534 PMCID: PMC9996855 DOI: 10.1186/s12903-023-02813-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Enterococcus faecalis (E. faecalis) is the most frequently isolated bacteria from teeth with root canal treatment failure. This study aims to evaluate the disinfection effect of ultrasonic-mediated cold plasma-loaded microbubbles (PMBs) on 7d E. faecalis biofilm, the mechanical safety and the mechanisms. METHODS The PMBs were fabricated by a modified emulsification process and the key reactive species, nitric oxide (NO) and hydrogen peroxide (H2O2) were evaluated. The 7d E. faecalis biofilm on human tooth disk was constructed and divided into the following groups: PBS, 2.5%NaOCl, 2%CHX, and different concentrations of PMBs (108 mL-1, 107 mL-1). The disinfection effects and elimination effects were verified with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Microhardness and roughness change of dentin after PMBs treatment were verified respectively. RESULTS The concentration of NO and H2O2 in PMBs increased by 39.99% and 50.97% after ultrasound treatment (p < 0.05) respectively. The CLSM and SEM results indicate that PMBs with ultrasound treatment could remove the bacteria and biofilm components effectively, especially those living in dentin tubules. The 2.5% NaOCl presented an excellent effect against biofilm on dishes, but the elimination effect on dentin tubules is limited. The 2% CHX group exhibits significant disinfection effect. The biosafety tests indicated that there is no significant changes on microhardness and roughness after PMBs with ultrasound treatment (p > 0.05). CONCLUSION PMBs combined with ultrasound treatment exhibited significant disinfection effect and biofilm removal effect, the mechanical safety is acceptable.
Collapse
Affiliation(s)
- Mengqian Zhu
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Jie Dang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Feihong Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ruoqing Zhong
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,College of Engineering, Peking University, Beijing, 100871, China
| | - Jie Pan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China.
| | - Yinglong Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
96
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
97
|
Juárez-Niño ED, Moreno-Rodríguez A, Juárez-Chávez L, Santillan R, Ochoa ME, Argueta-Figueroa L, Torres-Rosas R, Domínguez-Diaz LR, Soto-Castro D. Synthesis of acetylenic 17α-ethynylestradiol derivatives as potential trypanocidal oral drugs: In vitro and in silico evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
98
|
Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:483. [PMID: 36770443 PMCID: PMC9920255 DOI: 10.3390/nano13030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microbes have dominated life on Earth for the past two billion years, despite facing a variety of obstacles. In the 20th century, antibiotics and immunizations brought about these changes. Since then, microorganisms have acquired resistance, and various infectious diseases have been able to avoid being treated with traditionally developed vaccines. Antibiotic resistance and pathogenicity have surpassed antibiotic discovery in terms of importance over the course of the past few decades. These shifts have resulted in tremendous economic and health repercussions across the board for all socioeconomic levels; thus, we require ground-breaking innovations to effectively manage microbial infections and to provide long-term solutions. The pharmaceutical and biotechnology sectors have been radically altered as a result of nanomedicine, and this trend is now spreading to the antibacterial research community. Here, we examine the role that nanomedicine plays in the prevention of microbial infections, including topics such as diagnosis, antimicrobial therapy, pharmaceutical administration, and immunizations, as well as the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
99
|
Plasma-Generated Nitric Oxide Water Mediates Environmentally Transmitted Pathogenic Bacterial Inactivation via Intracellular Nitrosative Stress. Int J Mol Sci 2023; 24:ijms24031901. [PMID: 36768225 PMCID: PMC9915551 DOI: 10.3390/ijms24031901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Over time, the proportion of resistant bacteria will increase. This is a major concern. Therefore, effective and biocompatible therapeutic strategies against these bacteria are urgently needed. Non-thermal plasma has been exhaustively characterized for its antibacterial activity. This study aims to investigate the inactivation efficiency and mechanisms of plasma-generated nitric oxide water (PG-NOW) on pathogenic water, air, soil, and foodborne Gram-negative and Gram-positive bacteria. Using a colony-forming unit assay, we found that PG-NOW treatment effectively inhibited the growth of bacteria. Moreover, the intracellular nitric oxide (NO) accumulation was evaluated by 4-amino-5-methylamino-2',7'-dichlorofluorescein diacetate (DAF-FM DA) staining. The reduction of viable cells unambiguously indicates the anti-microbial effect of PG-NOW. The soxR and soxS genes are associated with nitrosative stress, and oxyR regulation corresponds to oxidative stress in bacterial cells. To support the nitrosative effect mediated by PG-NOW, we have further assessed the soxRS and oxyR gene expressions after treatment. Accordingly, soxRS expression was enhanced, whereas the oxyR expression was decreased following PG-NOW treatment. The disruption of cell morphology was observed using scanning electron microscopy (SEM) analysis. In conclusion, our findings furnish evidence of an initiation point for the further progress and development of PG-NOW-based antibacterial treatments.
Collapse
|
100
|
Ruparel FJ, Shah SK, Patel JH, Thakkar NR, Gajera GN, Kothari VO. Network analysis for identifying potential anti-virulence targets from whole transcriptome of Pseudomonas aeruginosa and Staphylococcus aureus exposed to certain anti-pathogenic polyherbal formulations. Drug Target Insights 2023; 17:58-69. [PMID: 37275512 PMCID: PMC10238913 DOI: 10.33393/dti.2022.2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a serious global threat. Identification of novel antibacterial targets is urgently warranted to help antimicrobial drug discovery programs. This study attempted identification of potential targets in two important pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods Transcriptomes of P. aeruginosa and S. aureus exposed to two different quorum-modulatory polyherbal formulations were subjected to network analysis to identify the most highly networked differentially expressed genes (hubs) as potential anti-virulence targets. Results Genes associated with denitrification and sulfur metabolism emerged as the most important targets in P. aeruginosa. Increased buildup of nitrite (NO2) in P. aeruginosa culture exposed to the polyherbal formulation Panchvalkal was confirmed through in vitro assay too. Generation of nitrosative stress and inducing sulfur starvation seemed to be effective anti-pathogenic strategies against this notorious gram-negative pathogen. Important targets identified in S. aureus were the transcriptional regulator sarA, immunoglobulin-binding protein Sbi, serine protease SplA, the saeR/S response regulator system, and gamma-hemolysin components hlgB and hlgC. Conclusion Further validation of the potential targets identified in this study is warranted through appropriate in vitro and in vivo assays in model hosts. Such validated targets can prove vital to many antibacterial drug discovery programs globally.
Collapse
Affiliation(s)
- Feny J Ruparel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Siddhi K Shah
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Jhanvi H Patel
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Nidhi R Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Gemini N Gajera
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| | - Vijay O Kothari
- Institute of Science, Nirma University, Ahmedabad - India
- FJR, NRT, and GNG contributed equally
| |
Collapse
|