51
|
Tseng HC, Lin CC, Hsiao LD, Yang CM. Lysophosphatidylcholine-induced mitochondrial fission contributes to collagen production in human cardiac fibroblasts. J Lipid Res 2019; 60:1573-1589. [PMID: 31363041 PMCID: PMC6718437 DOI: 10.1194/jlr.ra119000141] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidylcholine (LPC) may accumulate in the heart to cause fibrotic events, which is mediated through fibroblast activation and collagen accumulation. Here, we evaluated the mechanisms underlying LPC-mediated collagen induction via mitochondrial events in human cardiac fibroblasts (HCFs), coupling application of the pharmacologic cyclooxygenase-2 (COX-2) inhibitor, celecoxib, and genetic mutations in FOXO1 on the fibrosis pathway. In HCFs, LPC caused prostaglandin E2 (PGE2)/PGE2 receptor 4 (EP4)-dependent collagen induction via activation of transcriptional activity of forkhead box protein O1 (FoxO1) on COX-2 gene expression. These responses were mediated through LPC-induced generation of mitochondrial reactive oxygen species (mitoROS), as confirmed by ex vivo studies, which indicated that LPC increased COX-2 expression and oxidative stress. LPC-induced mitoROS mediated the activation of protein kinase C (PKC)α, which interacted with and phosphorylated dynamin-related protein 1 (Drp1) at Ser616, thereby increasing Drp1-mediated mitochondrial fission and mitochondrial depolarization. Furthermore, inhibition of PKCα and Drp1 reduced FoxO1-mediated phosphorylation at Ser256 and nuclear accumulation, which suppressed COX-2/PGE2 expression and collagen production. Moreover, pretreatment with celecoxib or COX-2 siRNA suppressed WT FoxO1; mutated Ser256-to-Asp256 FoxO1-enhanced collagen induction, which was reversed by addition of PGE2 Our results demonstrate that LPC-induced generation of mitoROS regulates PKCα-mediated Drp1-dependent mitochondrial fission and COX-2 expression via a PKCα/Drp1/FoxO1 cascade, leading to PGE2/EP4-mediated collagen induction. These findings provide new insights about the role of LPC in the pathway of fibrotic injury in HCFs.
Collapse
Affiliation(s)
- Hui-Ching Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics Chang Gung Memorial Hospital, Linkuo, Taiwan and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan; Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
52
|
Bae JE, Park SJ, Hong Y, Jo DS, Lee H, Park NY, Kim JB, Park HJ, Bunch H, Chang JH, Lee EK, Cho DH. Loss of RNA binding protein, human antigen R enhances mitochondrial elongation by regulating Drp1 expression in SH-SY5Y cells. Biochem Biophys Res Commun 2019; 516:713-718. [DOI: 10.1016/j.bbrc.2019.06.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/10/2023]
|
53
|
Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, Riggs LM, Francis TC, McGlincy M, Evans B, Nam H, Das S, Girven K, Konkalmatt P, Gancarz AM, Golden SA, Iñiguez SD, Russo SJ, Turecki G, Mathur BN, Creed M, Dietz DM, Lobo MK. Drp1 Mitochondrial Fission in D1 Neurons Mediates Behavioral and Cellular Plasticity during Early Cocaine Abstinence. Neuron 2019; 96:1327-1341.e6. [PMID: 29268097 DOI: 10.1016/j.neuron.2017.11.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.
Collapse
Affiliation(s)
- Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michel Engeln
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Schiefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary H Patton
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Craig T Werner
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lace M Riggs
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Madeleine McGlincy
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brianna Evans
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shweta Das
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kasey Girven
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, D.C., USA
| | - Amy M Gancarz
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Sam A Golden
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meaghan Creed
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
54
|
Sehrawat A, Samanta SK, Hahm ER, St Croix C, Watkins S, Singh SV. Withaferin A-mediated apoptosis in breast cancer cells is associated with alterations in mitochondrial dynamics. Mitochondrion 2019; 47:282-293. [PMID: 30685490 PMCID: PMC6599725 DOI: 10.1016/j.mito.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
Abstract
Withaferin A (WA), a steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits cancer development in transgenic and chemically-induced rodent models of breast cancer but the underlying mechanism is not fully grasped. We have shown previously that WA treatment causes apoptotic cell death in human breast cancer cells that is preceded by inhibition of complex III of the mitochondrial electron transport chain. This study extends these observations to now demonstrate alterations in mitochondrial dynamics in WA-induced apoptosis. Assembly of complex III was decreased in MCF-7 and SUM159 cells but not in MDA-MB-231 as determined by native blue gel electrophoresis. Because WA is a Michael acceptor (electrophile), we explored the possibility of whether it covalently modifies cysteine residue(s) in ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 (UQCRFS1). Covalent modification of cysteine in UQCRFS1 was not observed after WA treatment. Instead, WA treatment inhibited chemically-induced mitochondrial fusion and decreased the mitochondrial volume, and this effect was accompanied by a decrease in the expression of proteins involved in fusion process, including mitofusin1, mitofusin2, and full-length optic atrophy protein 1 (OPA1). A loss of volume in fragmented mitochondria also occurred in WA-exposed cells when compared to vehicle-treated control. WA treatment also caused a decrease in protein level of mitochondrial fission-regulating protein dynamin-related protein 1 (DRP1). Functional studies revealed that DRP1 deficiency and OPA1 knockdown attenuated apoptotic potential of WA. Taken together, these results indicate that WA not only alters Complex III assembly but also inhibits mitochondrial dynamics in breast cancer cells.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Suman K Samanta
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
55
|
Qi Z, Shi W, Zhao Y, Ji X, Liu KJ. Zinc accumulation in mitochondria promotes ischemia-induced BBB disruption through Drp1-dependent mitochondria fission. Toxicol Appl Pharmacol 2019; 377:114601. [PMID: 31152817 DOI: 10.1016/j.taap.2019.114601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
High concentration of zinc has been reported to act as a critical mediator of neuronal death in the ischemic brain. Our previous studies showed that labile zinc accumulates in cerebromicrovessels and contributes to blood-brain barrier (BBB) permeability increase after cerebral ischemia. However, the role of mitochondrial zinc in ischemia-induced BBB permeability alteration is still unclear. In this study, we showed that ischemia/reperfusion induced free zinc accumulation in endothelial cells (ECs), resulting in increased generation of reactive oxygen species (ROS) in both cultured ECs and in microvessels isolated from the brain of ischemic rats. Furthermore, we found that zinc was highly accumulated in mitochondria, leading to mitochondrial ROS generation under the ischemic condition. Moreover, zinc overload in mitochondria resulted in the collapse of the network of mitochondria, which was mediated through Dynamin-related protein-1 (Drp-1) dependent mitochondrial fission pathway. Finally, the zinc overload in mitochondria activated matrix metalloproteinase-2 and led to ischemia-induced BBB permeability increase. This study demonstrated that zinc-ROS pathway in mitochondria contributes to the ischemia-induced BBB disruption via Drp-1 dependent mitochondrial fission pathway.
Collapse
Affiliation(s)
- Zhifeng Qi
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China.
| | - Wenjuan Shi
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Yongmei Zhao
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China.
| | - Xunming Ji
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
56
|
Haileselassie B, Mukherjee R, Joshi AU, Napier BA, Massis LM, Ostberg NP, Queliconi BB, Monack D, Bernstein D, Mochly-Rosen D. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J Mol Cell Cardiol 2019; 130:160-169. [PMID: 30981733 PMCID: PMC6948926 DOI: 10.1016/j.yjmcc.2019.04.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/06/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunction is a key contributor to septic cardiomyopathy. Although recent literature implicates dynamin related protein 1 (Drp1) and its mitochondrial adaptor fission 1 (Fis1) in the development of pathologic fission and mitochondrial failure in neurodegenerative disease, little is known about the role of Drp1/Fis1 interaction in the context of sepsis-induced cardiomyopathy. Our study tests the hypothesis that Drp1/Fis1 interaction is a major driver of sepsis-mediated pathologic fission, leading to mitochondrial dysfunction in the heart. METHODS H9C2 cardiomyocytes were treated with lipopolysaccharide (LPS) to evaluate changes in mitochondrial membrane potential, oxidative stress, cellular respiration, and mitochondrial morphology. Balb/c mice were treated with LPS, cardiac function was measured by echocardiogaphy, and mitochondrial morphology determined by electron microscopy (EM). Drp1/Fis1 interaction was inhibited by P110 to determine whether limiting mitochondrial fission can reduce LPS-induced oxidative stress and cardiac dysfunction. RESULTS LPS-treated H9C2 cardiomyocytes demonstrated a decrease in mitochondrial respiration followed by an increase in mitochondrial oxidative stress and a reduction in membrane potential. Inhibition of Drp1/Fis1 interaction with P110 attenuated LPS-mediated cellular oxidative stress and preserved membrane potential. In vivo, cardiac dysfunction in LPS-treated mice was associated with increased mitochondrial fragmentation. Treatment with P110 reduced cardiac mitochondrial fragmentation, prevented decline in cardiac function, and reduced mortality. CONCLUSIONS Sepsis decreases cardiac mitochondrial respiration and membrane potential while increasing oxidative stress and inducing pathologic fission. Treatment with P110 was protective in both in vitro and in vivo models of septic cardiomyopathy, suggesting a key role of Drp1/Fis1 interaction, and a potential target to reduce its morbidity and mortality.
Collapse
Affiliation(s)
- Bereketeab Haileselassie
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Riddhita Mukherjee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brooke A Napier
- Department of Microbiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liliana M Massis
- Department of Microbiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicolai Patrick Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bruno B Queliconi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Denise Monack
- Department of Microbiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
57
|
Zorov DB, Vorobjev IA, Popkov VA, Babenko VA, Zorova LD, Pevzner IB, Silachev DN, Zorov SD, Andrianova NV, Plotnikov EY. Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells 2019; 8:E175. [PMID: 30791381 PMCID: PMC6406845 DOI: 10.3390/cells8020175] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/12/2023] Open
Abstract
Thirty-five years ago, we described fragmentation of the mitochondrial population in a living cell into small vesicles (mitochondrial fission). Subsequently, this phenomenon has become an object of general interest due to its involvement in the process of oxidative stress-related cell death and having high relevance to the incidence of a pathological phenotype. Tentatively, the key component of mitochondrial fission process is segregation and further asymmetric separation of a mitochondrial body yielding healthy (normally functioning) and impaired (incapable to function in a normal way) organelles with subsequent decomposition and removal of impaired elements through autophagy (mitophagy). We speculate that mitochondria contain cytoskeletal elements, which maintain the mitochondrial shape, and also are involved in the process of intramitochondrial segregation of waste products. We suggest that perturbation of the mitochondrial fission/fusion machinery and slowdown of the removal process of nonfunctional mitochondrial structures led to the increase of the proportion of impaired mitochondrial elements. When the concentration of malfunctioning mitochondria reaches a certain threshold, this can lead to various pathologies, including aging. Overall, we suggest a process of mitochondrial fission to be an essential component of a complex system controlling a healthy cell phenotype. The role of reactive oxygen species in mitochondrial fission is discussed.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ivan A Vorobjev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Vasily A Popkov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Valentina A Babenko
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ljubava D Zorova
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Irina B Pevzner
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Denis N Silachev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Savva D Zorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Egor Y Plotnikov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119146, Russia.
| |
Collapse
|
58
|
Sui Y, Nguyen HB, Thai TQ, Ikenaka K, Ohno N. Mitochondrial Dynamics in Physiology and Pathology of Myelinated Axons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:145-163. [PMID: 31760643 DOI: 10.1007/978-981-32-9636-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria play essential roles in neurons and abnormal functions of mitochondria have been implicated in neurological disorders including myelin diseases. Since mitochondrial functions are regulated and maintained by their dynamic behavior involving localization, transport, and fusion/fission, modulation of mitochondrial dynamics would be involved in physiology and pathology of myelinated axons. In fact, the integration of multimodal imaging in vivo and in vitro revealed that mitochondrial localization and transport are differentially regulated in nodal and internodal regions in response to the changes of metabolic demand in myelinated axons. In addition, the mitochondrial behavior in axons is modulated as adaptive responses to demyelination irrespective of the cause of myelin loss, and the behavioral modulation is partly through interactions with cytoskeletons and closely associated with the pathophysiology of demyelinating diseases. Furthermore, the behavior and functions of axonal mitochondria are modulated in congenital myelin disorders involving impaired interactions between axons and myelin-forming cells, and, together with the inflammatory environment, implicated in axonal degeneration and disease phenotypes. Further studies on the regulatory mechanisms of the mitochondrial dynamics in myelinated axons would provide deeper insights into axo-glial interactions mediated through myelin ensheathment, and effective manipulations of the dynamics may lead to novel therapeutic strategies protecting axonal and neuronal functions and survival in primary diseases of myelin.
Collapse
Affiliation(s)
- Yang Sui
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,Departments of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,Departments of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan.,Departments of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan. .,Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan.
| |
Collapse
|
59
|
Qi Z, Huang Z, Xie F, Chen L. Dynamin-related protein 1: A critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases. J Cell Physiol 2018; 234:10032-10046. [PMID: 30515821 DOI: 10.1002/jcp.27866] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria play a key role in the maintenance of neuronal function by continuously providing energy. Here, we will give a detailed review about the recent developments in regards to dynamin-related protein 1 (Drp1) induced unbalanced mitochondrial dynamics, excessive mitochondrial division, and neuronal injury in neural system dysfunctions and neurodegenerative diseases, including the Drp1 knockout induced mice embryonic death, the dysfunction of the Drp1-dependent mitochondrial division induced neuronal cell apoptosis and impaired neuronal axonal transportation, the abnormal interaction between Drp1 and amyloid β (Aβ) in Alzheimer's disease (AD), the mutant Huntingtin (Htt) in Huntington's disease (HD), and the Drp1-associated pathogenesis of other neurodegenerative diseases such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Drp1 is required for mitochondrial division determining the size, shape, distribution, and remodeling as well as maintaining of mitochondrial integrity in mammalian cells. In addition, increasing reports indicate that the Drp1 is involved in some cellular events of neuronal cells causing some neural system dysfunctions and neurodegenerative diseases, including impaired mitochondrial dynamics, apoptosis, and several posttranslational modification induced increased mitochondrial divisions. Recent studies also revealed that the Drp1 can interact with Aβ, phosphorylated τ, and mutant Htt affecting the mitochondrial shape, size, distribution, axonal transportation, and energy production in the AD and HD neuronal cells. These changes can affect the health of mitochondria and the function of synapses causing neuronal injury and eventually leading to the dysfunction of memory, cognitive impairment, resting tremor, posture instability, involuntary movements, and progressive muscle atrophy and paralysis in patients.
Collapse
Affiliation(s)
- Zhihao Qi
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Zhen Huang
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Feng Xie
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| |
Collapse
|
60
|
Zhan L, Lu Z, Zhu X, Xu W, Li L, Li X, Chen S, Sun W, Xu E. Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats. FASEB J 2018; 33:1313-1329. [PMID: 30148677 DOI: 10.1096/fj.201800111rr] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hypoxic preconditioning (HPC) alleviates the selective and delayed neuronal death in the hippocampal CA1 region induced by transient global cerebral ischemia (tGCI). This type of cell death may include different programmed cell death mechanisms, namely, apoptosis and necroptosis. Although apoptotic signaling is well defined, the mechanisms that underlie neuronal necroptosis are yet to be fully elucidated. In this study, we investigated whether HPC protects neurons from cerebral ischemia-induced necroptosis. We observed that tGCI up-regulated the expression of receptor-interacting protein (RIP) 3 and increased the interaction of RIP1-RIP3 in CA1 at the early stage of reperfusion. The pretreatment with HPC or necrostatin-1 decreased the expression of RIP3 and the formation of RIP1-RIP3 after tGCI. We also found that HPC decreased the expression and the activity of caspase-8 in CA1 after tGCI, and notably, the pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, did not trigger necroptosis but attenuated the tGCI-induced neuronal damage. Furthermore, we demonstrated that HPC decreased the activation of calcium-calmodulin kinase (CaMK) IIα and the interaction of RIP1 and CaMKIIα induced by tGCI. Intriguingly, the pretreatment with a CaMKs inhibitor KN-93 before tGCI resulted in significantly reduced RIP1-3 interaction and tGCI-induced neuronal damage. Finally, we ascertained that HPC prevented the dephosphorylation of dynamin-related protein 1 (Drp1)-Ser637 (serine 637) and inhibited the translocation of Drp1 to mitochondria induced by tGCI. Importantly, the treatment with a Drp1 inhibitor Mdivi-1 or necrostatin-1 before tGCI also abolished Drp1 dephosphorylation at Ser637 and mitochondrial translocation. Taken together, our results highlight that HPC attenuates necroptotic neuronal death induced by tGCI via Drp1-dependent mitochondrial signaling pathways mediated by CaMKIIα inactivation.-Zhan, L., Lu, Z., Zhu, X., Xu, W., Li, L., Li, X., Chen, S., Sun, W., Xu, E. Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats.
Collapse
Affiliation(s)
- Lixuan Zhan
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Lu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou Huai Hospital, Guangzhou, China
| | - Xinyong Zhu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wensheng Xu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Luxi Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinyu Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Siyuan Chen
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - En Xu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education, Guangzhou, China.,Institute of Neurosciences, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
61
|
Suresh K, Servinsky L, Jiang H, Bigham Z, Yun X, Kliment C, Huetsch J, Damarla M, Shimoda LA. Reactive oxygen species induced Ca 2+ influx via TRPV4 and microvascular endothelial dysfunction in the SU5416/hypoxia model of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2018; 314:L893-L907. [PMID: 29388466 PMCID: PMC6008124 DOI: 10.1152/ajplung.00430.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by elevations in pulmonary arterial pressure, in part due to formation of occlusive lesions in the distal arterioles of the lung. These complex lesions may comprise multiple cell types, including endothelial cells (ECs). To better understand the molecular mechanisms underlying EC dysfunction in PAH, lung microvascular endothelial cells (MVECs) were isolated from normoxic rats (N-MVECs) and rats subjected to SU5416 plus hypoxia (SuHx), an experimental model of PAH. Compared with N-MVECs, MVECs isolated from SuHx rats (SuHx-MVECs) appeared larger and more spindle shaped morphologically and expressed canonical smooth muscle cell markers smooth muscle-specific α-actin and myosin heavy chain in addition to endothelial markers such as Griffonia simplicifolia and von Willebrand factor. SuHx-MVEC mitochondria were dysfunctional, as evidenced by increased fragmentation/fission, decreased oxidative phosphorylation, and increased reactive oxygen species (ROS) production. Functionally, SuHx-MVECs exhibited increased basal levels of intracellular calcium concentration ([Ca2+]i) and enhanced migratory and proliferative capacity. Treatment with global (TEMPOL) or mitochondria-specific (MitoQ) antioxidants decreased ROS levels and basal [Ca2]i in SuHx-MVECs. TEMPOL and MitoQ also decreased migration and proliferation in SuHx-MVECs. Additionally, inhibition of ROS-induced Ca2+ entry via pharmacologic blockade of transient receptor potential vanilloid-4 (TRPV4) attenuated [Ca2]i, migration, and proliferation. These findings suggest a role for mitochondrial ROS-induced Ca2+ influx via TRPV4 in promoting abnormal migration and proliferation in MVECs in this PAH model.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Laura Servinsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Zahna Bigham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Corrine Kliment
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - John Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
62
|
Yu T, Ferdjallah I, Elenberg F, Chen SK, Deuster P, Chen Y. Mitochondrial fission contributes to heat-induced oxidative stress in skeletal muscle but not hyperthermia in mice. Life Sci 2018; 200:6-14. [DOI: 10.1016/j.lfs.2018.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
|
63
|
Han Y, Cho U, Kim S, Park IS, Cho JH, Dhanasekaran DN, Song YS. Tumour microenvironment on mitochondrial dynamics and chemoresistance in cancer. Free Radic Res 2018; 52:1271-1287. [PMID: 29607684 DOI: 10.1080/10715762.2018.1459594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria, evolutionally acquired symbionts of eukaryotic cells, are essential cytoplasmic organelles. They are structurally dynamic organelles that continually go through fission and fusion processes in response to various stimuli. Tumour tissue is composed of not just cancer cells but also various cell types like fibroblasts, mesenchymal stem and immune cells. Mitochondrial dynamics of cancer cells has been shown to be significantly affected by features of tumour microenvironment such as hypoxia, inflammation and energy deprivation. The interactions of cancer cells with tumour microenvironment like hypoxia give rise to the inter- and intratumoural heterogeneity, causing chemoresistance. In this review, we will focus on the chemoresistance by tumoural heterogeneity in relation to mitochondrial dynamics of cancer cells. Recent findings in molecular mechanisms involved in the control of mitochondrial dynamics as well as the impact of mitochondrial dynamics on drug sensitivity in cancer are highlighted in the current review.
Collapse
Affiliation(s)
- Youngjin Han
- a Biomodulation, Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Untack Cho
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Interdisciplinary Program in Cancer Biology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Soochi Kim
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,d Seoul National University Hospital Biomedical Research Institute , Seoul , Republic of Korea
| | - In Sil Park
- b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,e Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Jae Hyun Cho
- f Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Danny N Dhanasekaran
- g Stephenson Cancer Center , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Yong Sang Song
- a Biomodulation, Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Cancer Research Institute , Seoul National University College of Medicine , Seoul , Republic of Korea.,c Interdisciplinary Program in Cancer Biology , Seoul National University College of Medicine , Seoul , Republic of Korea.,f Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
64
|
Kang S, Byun J, Son SM, Mook-Jung I. Thrombospondin-1 protects against Aβ-induced mitochondrial fragmentation and dysfunction in hippocampal cells. Cell Death Discov 2018. [PMID: 29531828 PMCID: PMC5841271 DOI: 10.1038/s41420-017-0023-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is often characterized by the impairment of mitochondrial function caused by excessive mitochondrial fragmentation. Thrombospondin-1 (TSP-1), which is primarily secreted from astrocytes in the central nervous system (CNS), has been suggested to play a role in synaptogenesis, spine morphology, and synaptic density of neurons. In this study, we investigate the protective role of TSP-1 in the recovery of mitochondrial morphology and function in amyloid β (Aβ)-treated mouse hippocampal neuroblastoma cells (HT22). We observe that TSP-1 inhibits Aβ-induced mitochondrial fission by maintaining phosphorylated-Drp1 (p-Drp1) levels, which results in reduced Drp1 translocation to the mitochondria. By using gabapentin, a drug that antagonizes the interaction between TSP-1 and its neuronal receptor α2δ1, we observe that α2δ1 acts as one of the target receptors for TSP-1, and blocks the reduction of the p-Drp1 to Drp1 ratio, in the presence of Aβ. Taken together, TSP-1 appears to contribute to maintaining the balance in mitochondrial dynamics and mitochondrial functions, which is crucial for neuronal cell viability. These data suggest that TSP-1 may be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Seokjo Kang
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Jayoung Byun
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Sung Min Son
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
65
|
Robicsek O, Ene HM, Karry R, Ytzhaki O, Asor E, McPhie D, Cohen BM, Ben-Yehuda R, Weiner I, Ben-Shachar D. Isolated Mitochondria Transfer Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells and Rescues Deficits in a Rat Model of the Disorder. Schizophr Bull 2018; 44:432-442. [PMID: 28586483 PMCID: PMC5814822 DOI: 10.1093/schbul/sbx077] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dysfunction of mitochondria, key players in various essential cell processes, has been repeatedly reported in schizophrenia (SZ). Recently, several studies have reported functional recovery and cellular viability following mitochondrial transplantation, mostly in ischemia experimental models. Here, we aimed to demonstrate beneficial effects of isolated active normal mitochondria (IAN-MIT) transfer in vitro and in vivo, using SZ-derived induced pluripotent stem cells (iPSCs) differentiating into glutamatergic neuron, as well as a rodent model of SZ. First, we show that IAN-MIT enter various cell types without manipulation. Next, we show that IAN-MIT transfer into SZ-derived lymphoblasts induces long-lasting improvement in various mitochondrial functions including cellular oxygen consumption and mitochondrial membrane potential (Δ ψ m). We also demonstrate improved differentiation of SZ-derived iPSCs into neurons, by increased expression of neuronal and glutamatergic markers β3-tubulin, synapsin1, and Tbr1 and by an activation of the glutamate-glutamine cycle. In the animal model, we show that intra-prefrontal cortex injection of IAN-MIT in adolescent rats exposed prenatally to a viral mimic prevents mitochondrial Δ ψ m and attentional deficit at adulthood. Our results provide evidence for a direct link between mitochondrial function and SZ-related deficits both in vitro and in vivo and suggest a therapeutic potential for IAN-MIT transfer in diseases with bioenergetic and neurodevelopmental abnormalities such as SZ.
Collapse
Affiliation(s)
- Odile Robicsek
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, Haifa, Israel
| | - Hila M Ene
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, Haifa, Israel
| | - Rachel Karry
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, Haifa, Israel
| | - Ofer Ytzhaki
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, Haifa, Israel
| | - Eyal Asor
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, Haifa, Israel
| | - Donna McPhie
- Department of Psychiatry, Harvard Medical School, Boston, McLean Hospital, Belmont, MA
| | - Bruce M Cohen
- Department of Psychiatry, Harvard Medical School, Boston, McLean Hospital, Belmont, MA
| | - Rotem Ben-Yehuda
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ina Weiner
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, Haifa, Israel,To whom correspondence should be addressed; Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus and B. Rappaport Faculty of Medicine, Technion ITT, POB 9649, Haifa 31096, Israel; tel: +972-4-8295224, fax: +972-4-8295220, e-mail:
| |
Collapse
|
66
|
Inhibition of Peroxynitrite-Induced Mitophagy Activation Attenuates Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2018; 55:6369-6386. [DOI: 10.1007/s12035-017-0859-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
|
67
|
YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKC δ/Drp1-Mediated Excessive Mitochondrial Fission. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1832093. [PMID: 29435096 PMCID: PMC5757147 DOI: 10.1155/2017/1832093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/21/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
YiQiFuMai (YQFM) powder injection has been reported to be used in cardiovascular and nervous system diseases with marked efficacy. However, as a treatment against diseases characterized by hypoxia, lassitude, and asthenia, the effects and underlying mechanisms of YQFM in neuronal mitochondrial function and dynamics have not been fully elucidated. Here, we demonstrated that YQFM inhibited mitochondrial apoptosis and activation of dynamin-related protein 1 (Drp1) in cerebral ischemia-injured rats, producing a significant improvement in cerebral infarction and neurological score. YQFM also attenuated oxidative stress-induced mitochondrial dysfunction and apoptosis through increasing ATP level and mitochondria membrane potential (Δψm), inhibiting ROS production, and regulating Bcl-2 family protein levels in primary cultured neurons. Moreover, YQFM inhibited excessive mitochondrial fission, Drp1 phosphorylation, and translocation from cytoplasm to mitochondria induced by oxidative stress. We provided the first evidence that YQFM inhibited the activation, association, and translocation of PKCδ and Drp1 upon oxidative stress. Taken together, we demonstrate that YQFM ameliorates ischemic stroke-induced neuronal apoptosis through inhibiting mitochondrial dysfunction and PKCδ/Drp1-mediated excessive mitochondrial fission. These findings not only put new insights into the unique neuroprotective properties of YQFM associated with the regulation of mitochondrial function but also expand our understanding of the underlying mechanisms of ischemic stroke.
Collapse
|
68
|
Sabouny R, Fraunberger E, Geoffrion M, Ng ACH, Baird SD, Screaton RA, Milne R, McBride HM, Shutt TE. The Keap1-Nrf2 Stress Response Pathway Promotes Mitochondrial Hyperfusion Through Degradation of the Mitochondrial Fission Protein Drp1. Antioxid Redox Signal 2017; 27:1447-1459. [PMID: 28494652 DOI: 10.1089/ars.2016.6855] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIMS Mitochondrial function is coupled to metabolic and survival pathways through both direct signaling cascades and dynamic changes in mitochondrial morphology. For example, a hyperfused mitochondrial reticulum is activated upon cellular stress and is protective against cell death. As part of a genome-wide small inhibitory ribonucleic acid screen, we identified the central redox regulator, Keap1, as a novel regulator of mitochondrial morphology. Here, we aimed to determine the mechanism through which redox signaling and Keap1 mediate changes in mitochondrial morphology. RESULTS We found that the Nrf2 transcription factor is required for mitochondrial hyperfusion induced by knockdown of Keap1. Nrf2, which is negatively regulated by Keap1, mediates the cell's response to stress by controlling the expression of several hundred genes, including proteasome expression. We next showed that increased proteasome activity, a result of increased Nrf2 activity, is responsible for the degradation of the mitochondrial fission protein Drp1, which occurs in an ubiquitin-independent manner. INNOVATION Our study described a novel pathway by which Nrf2 activation, known to occur in response to increased oxidative stress, decreases mitochondrial fission and contributes to a hyperfused mitochondrial network. CONCLUSION This study has identified the Keap1-Nrf2 nexus and modulation of proteasomal activity as novel avenues to inhibit mitochondrial fission. These findings are important, because inhibiting mitochondrial fission is a promising therapeutic approach to restore the balance between fission and fusion, which is attractive for an increasing number of disorders linked to mitochondrial dysfunction. Antioxid. Redox Signal. 27, 1447-1459.
Collapse
Affiliation(s)
- Rasha Sabouny
- 1 Department of Biochemistry and Molecular Biology, University of Calgary , Calgary, Canada
| | - Erik Fraunberger
- 2 Department of Neuroscience, University of Calgary , Calgary, Canada
| | - Michèle Geoffrion
- 3 Department of Atherosclerosis, Genetics and Cell Biology, University of Ottawa Heart Institute , Ottawa, Canada
| | - Andy Cheuk-Him Ng
- 4 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Stephen D Baird
- 5 Children's Hospital of Eastern Ontario Research Institute , Ottawa, Canada
| | - Robert A Screaton
- 6 Department of Biochemistry, Sunnybrook Research Institute , Toronto, Canada
| | - Ross Milne
- 7 Department of Pathology and Laboratory Medicine, University of Ottawa Heart Institute , Ottawa, Canada
| | - Heidi M McBride
- 8 Department of Neurology and Neurosurgery, Montreal Neurological Institute , Montreal, Canada
| | - Timothy E Shutt
- 1 Department of Biochemistry and Molecular Biology, University of Calgary , Calgary, Canada .,9 Department of Medical Genetics, University of Calgary , Calgary, Canada
| |
Collapse
|
69
|
Differences in mitochondrial function and morphology during cooling and rewarming between hibernator and non-hibernator derived kidney epithelial cells. Sci Rep 2017; 7:15482. [PMID: 29138454 PMCID: PMC5686174 DOI: 10.1038/s41598-017-15606-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Hibernators show superior resistance to ischemia and hypothermia, also outside the hibernation season. Therefore, hibernation is a promising strategy to decrease cellular damage in a variety of fields, such as organ transplantation. Here, we explored the role of mitochondria herein, by comparing epithelial cell lines from a hibernator (hamster kidney cells, HaK) and a non-hibernator (human embryonic kidney cells, HEK293) during cold preservation at 4 °C and rewarming. Cell survival (Neutral Red), ATP and MDA levels, mitochondrial membrane potential (MMP), mitochondrial morphology (using fluorescent probes) and metabolism (seahorse XF) were assessed. Hypothermia induced dispersion of the tubular mitochondrial network, a loss of MMP, increased oxygen radical (MDA) and decreased ATP production in HEK293. In contrast, HaK maintained MMP and ATP production without an increase in oxygen radicals during cooling and rewarming, resulting in superior cell survival compared to HEK293. Further, normothermic HaK showed a dispersed mitochondrial network and higher respiratory and glycolysis capacity compared to HEK293. Disclosing the mechanisms that hibernators use to counteract cell death in hypothermic and ischemic circumstances may help to eventually improve organ preservation in a variety of fields, including organ transplantation.
Collapse
|
70
|
Ko SH, Choi GE, Oh JY, Lee HJ, Kim JS, Chae CW, Choi D, Han HJ. Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Sci Rep 2017; 7:12582. [PMID: 28974722 PMCID: PMC5626702 DOI: 10.1038/s41598-017-12692-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 12/24/2022] Open
Abstract
The role of metabolites produced from stem cell metabolism has been emerged as signaling molecules to regulate stem cell behaviors such as migration. The mitochondrial morphology is closely associated with the metabolic balance and stem cell function. However, the physiological role of succinate on human mesenchymal stem cell (hMSC) migration by regulating the mitochondrial morphology remains unclear. Here, we investigate the effect of succinate on hMSC migration via regulation of mitochondrial dynamics and its related signaling pathway. Succinate (50 μM) significantly accelerates hMSC migration. Succinate increases phosphorylation of pan-PKC, especially the atypical PKCζ level which was blocked by the knockdown of Gαq and Gα12. Activated PKCζ subsequently phosphorylates p38 MAPK. Cytosolic DRP1 is phosphorylated by p38 MAPK and results in DRP1 translocation to the mitochondria outer membrane, eventually inducing mitochondrial fragmentation. Mitochondrial fission-induced mitochondrial function elevates mitochondrial ROS (mtROS) levels and activates Rho GTPases, which then induces F-actin formation. Furthermore, in a skin excisional wound model, we found the effects of succinate-pretreated hMSC enhanced wound closure, vascularization and re-epithelialization and confirmed that DRP1 has a vital role in injured tissue regeneration. Overall, succinate promotes DRP1-mediated mitochondrial fission via GPR91, consequently stimulating the hMSC migration through mtROS-induced F-actin formation.
Collapse
Affiliation(s)
- So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Diana Choi
- Department of Biological Sciences, Mount Holyoke College, South Hadley, Massachusetts, 01075, USA
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS program for Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
71
|
Kim DI, Lee KH, Oh JY, Kim JS, Han HJ. Relationship Between β-Amyloid and Mitochondrial Dynamics. Cell Mol Neurobiol 2017; 37:955-968. [PMID: 27766447 PMCID: PMC11482120 DOI: 10.1007/s10571-016-0434-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/13/2016] [Indexed: 01/29/2023]
Abstract
Mitochondria as dynamic organelles undergo morphological changes through the processes of fission and fusion which are major factors regulating their functions. A disruption in the balance of mitochondrial dynamics induces functional disorders in mitochondria such as failed energy production and the generation of reactive oxygen species, which are closely related to pathophysiological changes associated with Alzheimer's disease (AD). Recent studies have demonstrated a relationship between abnormalities in mitochondrial dynamics and impaired mitochondrial function, clarifying the effects of morphofunctional aberrations which promote neuronal cell death in AD. Several possible signaling pathways have been suggested for a better understanding of the mechanism behind the key molecules regulating mitochondrial morphologies. However, the exact machinery involved in mitochondrial dynamics still has yet to be elucidated. This paper reviews the current knowledge on signaling mechanisms involved in mitochondrial dynamics and the significance of mitochondrial dynamics in controlling associated functions in neurodegenerative diseases, particularly in AD.
Collapse
Affiliation(s)
- Dah Ihm Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ki Hoon Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
72
|
The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease. Clin Sci (Lond) 2017; 130:1861-74. [PMID: 27660309 DOI: 10.1042/cs20160030] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/26/2016] [Indexed: 02/01/2023]
Abstract
Mitochondrial morphology is governed by the balance of mitochondrial fusion, mediated by mitofusins and optic atrophy 1 (OPA1), and fission, mediated by dynamin-related protein 1 (Drp1). Disordered mitochondrial dynamics alters metabolism, proliferation, apoptosis and mitophagy, contributing to human diseases, including neurodegenerative syndromes, pulmonary arterial hypertension (PAH), cancer and ischemia/reperfusion injury. Post-translational regulation of Drp1 (by phosphorylation and SUMOylation) is an established means of modulating Drp1 activation and translocation to the outer mitochondrial membrane (OMM). This review focuses on Drp1 adaptor proteins that also regulate fission. The proteins include fission 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49, MiD51). Heterologous MiD overexpression sequesters inactive Drp1 on the OMM, promoting fusion; conversely, increased endogenous MiD creates focused Drp1 multimers that optimize OMM scission. The triggers that activate MiD-bound Drp1 in disease states are unknown; however, MiD51 has a unique capacity for ADP binding at its nucleotidyltransferase domain. Without ADP, MiD51 inhibits Drp1, whereas ADP promotes MiD51-mediated fission, suggesting a link between metabolism and fission. Confusion over whether MiDs mediate fusion (by sequestering inactive Drp1) or fission (by guiding Drp1 assembly) relates to a failure to consider cell types used and to distinguish endogenous compared with heterologous changes in expression. We speculate that endogenous MiDs serve as Drp1-binding partners that are dysregulated in disease states and may be important targets for inhibiting cell proliferation and ischemia/reperfusion injury. Moreover, it appears that the composition of the fission apparatus varies between disease states and amongst individuals. MiDs may be important targets for inhibiting cell proliferation and attenuating ischemia/reperfusion injury.
Collapse
|
73
|
Zheng X, Chen M, Meng X, Chu X, Cai C, Zou F. Phosphorylation of dynamin-related protein 1 at Ser616 regulates mitochondrial fission and is involved in mitochondrial calcium uniporter-mediated neutrophil polarization and chemotaxis. Mol Immunol 2017; 87:23-32. [DOI: 10.1016/j.molimm.2017.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 11/28/2022]
|
74
|
Arterial relaxation is coupled to inhibition of mitochondrial fission in arterial smooth muscle cells: comparison of vasorelaxant effects of verapamil and phentolamine. Acta Pharm Sin B 2017; 7:319-325. [PMID: 28540168 PMCID: PMC5430753 DOI: 10.1016/j.apsb.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/09/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are morphologically dynamic organelles which undergo fission and fusion processes. Our previous study found that arterial constriction was always accompanied by increased mitochondrial fission in smooth muscle cells, whereas inhibition of mitochondrial fission in smooth muscle cells was associated with arterial relaxation. Here, we used the typical vasorelaxants, verapamil and phentolamine, to further confirm the coupling between arterial constriction and mitochondrial fission in rat aorta. Results showed that phentolamine but not verapamil induced vasorelaxation in phenylephrine (PE)-induced rat thoracic aorta constriction. Verapamil, but not phentolamine, induced vasorelaxation in high K+ (KPSS)-induced rat thoracic aorta constriction. Pre-treatment with phentolamine prevented PE- but not KPSS-induced aorta constriction and pre-treatment with verapamil prevented both PE- and KPSS-induced aorta constriction. Transmission electron microscopy (TEM) results showed that verapamil but not phentolamine inhibited KPSS-induced excessive mitochondrial fission in aortic smooth muscle cells, and verapamil prevented both PE- and KPSS-induced excessive mitochondrial fission in aortic smooth muscle cells. Verapamil inhibited KPSS-induced excessive mitochondrial fission in cultured vascular smooth muscle cells (A10). These results further demonstrate that arterial relaxation is coupled to inhibition of mitochondrial fission in arterial smooth muscle cells.
Collapse
|
75
|
Kim MH, Min JS, Lee JY, Chae U, Yang EJ, Song KS, Lee HS, Lee HJ, Lee SR, Lee DS. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction. Nutr Neurosci 2017; 21:520-528. [PMID: 28448247 DOI: 10.1080/1028415x.2017.1317449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects. However, the mechanism of neuroprotective effects of Ole is still poorly defined. In this study, we aimed to investigate whether Ole prevents glutamate-induced toxicity in HT-22 hippocampal neuronal cells. The exposure of the glutamate treatment caused neuronal cell death through an alteration of Bax/Bcl-2 expression and translocation of mitochondrial apoptosis-inducing factor (AIF) to the cytoplasm of HT-22 cells. In addition, glutamate induced an increase in dephosphorylation of dynamin-related protein 1 (Drp1), mitochondrial fragmentation, and mitochondrial dysfunction. The pretreatment of Ole decreased Bax expression, increased Bcl-2 expression, and inhibited the translocation of mitochondrial AIF to the cytoplasm. Furthermore, Ole amended a glutamate-induced mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria, regulating the phosphorylation of Drp1 at amino acid residue serine 637. In conclusion, our results show that Ole has a preventive effect against glutamate-induced toxicity in HT-22 hippocampal neuronal cells. Therefore, these data imply that Ole may be an efficient approach for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mi Hye Kim
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Ju-Sik Min
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea.,c Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea
| | - Joon Yeop Lee
- d College of Pharmacy, Kyungpook National University , Republic of Korea.,e Traditional Korean Medicine Technology Division, National Development Institute of Korean Medicine , Gyeongsangbuk-do , Republic of Korea
| | - Unbin Chae
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Eun-Ju Yang
- d College of Pharmacy, Kyungpook National University , Republic of Korea
| | - Kyung-Sik Song
- d College of Pharmacy, Kyungpook National University , Republic of Korea
| | - Hyun-Shik Lee
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Hong Jun Lee
- f Biomedical Research Institute, Chung-Ang University College of Medicine , Seoul , Republic of Korea
| | - Sang-Rae Lee
- g National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Chungcheongbuk-do , Republic of Korea
| | - Dong-Seok Lee
- a School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Republic of Korea.,b College of Natural Sciences, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
76
|
Díez H, Cortès-Saladelafont E, Ormazábal A, Marmiese AF, Armstrong J, Matalonga L, Bravo M, Briones P, Emperador S, Montoya J, Artuch R, Giros M, Garcia-Cazorla À. Severe infantile parkinsonism because of a de novo mutation on DLP1
mitochondrial-peroxisomal protein. Mov Disord 2017; 32:1108-1110. [DOI: 10.1002/mds.27021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/22/2017] [Accepted: 03/13/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- H. Díez
- Synaptic Metabolism Laboratory; Hospital Sant Joan de Déu, Institut de Recerca Pediatric; Barcelona Spain
| | - E. Cortès-Saladelafont
- Department of Neurology; Hospital Sant Joan de Déu, Institut de Recerca Pediatric; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
| | - A. Ormazábal
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Department of Clinical Biochemistry and Institut d'Investigació Sanitària Sant Joan de Déu; Hospital Sant Joan de Déu; Barcelona Spain
| | - A. Fernández Marmiese
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases; Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela; Santiago de Compostela Spain
| | - J. Armstrong
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Department of Clinical Biochemistry and Institut d'Investigació Sanitària Sant Joan de Déu; Hospital Sant Joan de Déu; Barcelona Spain
| | - Leslie Matalonga
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Hospital Clinic-IBC, IDIBAPS; Barcelona Spain
| | - Miren Bravo
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Hospital Clinic-IBC, IDIBAPS; Barcelona Spain
| | - Paz Briones
- Institut de Bioquímica Clínica; Hospital Clínic i Provincial; Barcelona Spain
| | - Sonia Emperador
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Department of Biochemistry; Molecular and Cellular Biology, Universidad de Zaragoza; Zaragoza Spain
| | - Julio Montoya
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Department of Biochemistry; Molecular and Cellular Biology, Universidad de Zaragoza; Zaragoza Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Department of Clinical Biochemistry and Institut d'Investigació Sanitària Sant Joan de Déu; Hospital Sant Joan de Déu; Barcelona Spain
| | - Marisa Giros
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
- Hospital Clinic-IBC, IDIBAPS; Barcelona Spain
| | - Àngels Garcia-Cazorla
- Synaptic Metabolism Laboratory; Hospital Sant Joan de Déu, Institut de Recerca Pediatric; Barcelona Spain
- Department of Neurology; Hospital Sant Joan de Déu, Institut de Recerca Pediatric; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras; Instituto de Salud Carlos III; Barcelona Spain
| |
Collapse
|
77
|
Inhibition of Drp1 Ameliorates Synaptic Depression, Aβ Deposition, and Cognitive Impairment in an Alzheimer's Disease Model. J Neurosci 2017; 37:5099-5110. [PMID: 28432138 DOI: 10.1523/jneurosci.2385-16.2017] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
Excessive mitochondrial fission is a prominent early event and contributes to mitochondrial dysfunction, synaptic failure, and neuronal cell death in the progression of Alzheimer's disease (AD). However, it remains to be determined whether inhibition of excessive mitochondrial fission is beneficial in mammal models of AD. To determine whether dynamin-related protein 1 (Drp1), a key regulator of mitochondrial fragmentation, can be a disease-modifying therapeutic target for AD, we examined the effects of Drp1 inhibitor on mitochondrial and synaptic dysfunctions induced by oligomeric amyloid-β (Aβ) in neurons and neuropathology and cognitive functions in Aβ precursor protein/presenilin 1 double-transgenic AD mice. Inhibition of Drp1 alleviates mitochondrial fragmentation, loss of mitochondrial membrane potential, reactive oxygen species production, ATP reduction, and synaptic depression in Aβ-treated neurons. Furthermore, Drp1 inhibition significantly improves learning and memory and prevents mitochondrial fragmentation, lipid peroxidation, BACE1 expression, and Aβ deposition in the brain in the AD model. These results provide evidence that Drp1 plays an important role in Aβ-mediated and AD-related neuropathology and in cognitive decline in an AD animal model. Therefore, inhibiting excessive Drp1-mediated mitochondrial fission may be an efficient therapeutic avenue for AD.SIGNIFICANCE STATEMENT Mitochondrial fission relies on the evolutionary conserved dynamin-related protein 1 (Drp1). Drp1 activity and mitochondria fragmentation are significantly elevated in the brains of sporadic Alzheimer's disease (AD) cases. In the present study, we first demonstrated that the inhibition of Drp1 restored amyloid-β (Aβ)-mediated mitochondrial dysfunctions and synaptic depression in neurons and significantly reduced lipid peroxidation, BACE1 expression, and Aβ deposition in the brain of AD mice. As a result, memory deficits in AD mice were rescued by Drp1 inhibition. These results suggest that neuropathology and combined cognitive decline can be attributed to hyperactivation of Drp1 in the pathogenesis of AD. Therefore, inhibitors of excessive mitochondrial fission, such as Drp1 inhibitors, may be a new strategy for AD.
Collapse
|
78
|
Singh S, Sharma S. Dynamin-related protein-1 as potential therapeutic target in various diseases. Inflammopharmacology 2017; 25:383-392. [PMID: 28409390 DOI: 10.1007/s10787-017-0347-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria can interchange morphology due to their dynamic nature. It can exist in either fragmented disconnected arrangement or elongated interconnected mitochondrial networks due to fission and fusion, respectively. The recent studies have revealed the remarkable and unexpected insights into the physiological impact and molecular regulation of mitochondrial morphology. The balance between fission and fusion governs the faith of the cell. The active targeting of DRP 1 to the outer mitochondrial membrane (OMM) is done by non-GTPase receptor proteins such as mitochondrial fission factor, mitochondrial fission protein 1 and mitochondrial elongation factor 1. The active targeting of DRP 1 to OMM leads to the fission of mitochondria. However, the imbalance of DRP 1-dependent mitochondrial fission and modulation of equilibrium of fission and fusion has been documented to be involved in several cardiovascular and neurodegenerative disorders. In this review, we are focusing on the active participation of DRP 1 in various diseases and also the factors responsible for the activation of DRP 1 for its action.
Collapse
Affiliation(s)
- Surinder Singh
- Cardiovascular Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, 142001, Punjab, India
| | - Saurabh Sharma
- Cardiovascular Division, Department of Pharmacology, I.S.F. College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
79
|
Jo Y, Cho HM, Sun W, Ryu JR. Localization of dynamin-related protein 1 and its potential role in lamellipodia formation. Histochem Cell Biol 2017; 148:13-20. [PMID: 28314909 DOI: 10.1007/s00418-017-1554-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
Dynamin-related protein1 (Drp1) plays an essential role in mitochondrial fission: Cytosolic Drp1 is translocated to the mitochondria upon stimulus, and oligomerized Drp1 constricts mitochondria by aid of actin filaments. Drp1 completes the fission process with GTP hydrolysis by its own GTPase activity. The importance of actin filament and its interaction with Drp1 in the mitochondrial fission process have been demonstrated. In this study, we found that Drp1 is enriched in the actin-rich leading edge of lamellipodia of mouse embryonic fibroblasts (MEFs) wherein mitochondria or peroxisomes are absent. Mff-binding mutant (A395D) of Drp1, which cannot be recruited to mitochondria, was also localized in lamellipodia, indicating that Drp1 in lamellipodia is not related to mitochondria. When lamellipodia formation was induced by platelet-derived growth factor (PDGF) in MEFs, S616 phosphorylated form of Drp1 was accumulated to the lamellipodia. Inhibition of Drp1 with Mdivi-1 or a specific shRNA significantly decreased PDGF-induced lamellipodia formation or initial cell spreading during re-plating of the cells, respectively. Interestingly, defective lamellipodia formation and cell adhesion caused by Drp1 inhibition were not rescued by supplementing L-carnitine, although it restored mitochondrial energy loss caused by Drp1 inhibition. Collectively, these results favor the idea that Drp1 might play a significant role in lamellipodia formation and cell spreading through a different mechanism from that used for regulating mitochondrial dynamics/function.
Collapse
Affiliation(s)
- Youhwa Jo
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Hyo Min Cho
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Korea.
| | - Jae Ryun Ryu
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Korea.
| |
Collapse
|
80
|
SENP3-mediated deSUMOylation of Drp1 facilitates interaction with Mff to promote cell death. Sci Rep 2017; 7:43811. [PMID: 28262828 PMCID: PMC5338345 DOI: 10.1038/srep43811] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
The GTPase dynamin-related protein 1 (Drp1) is essential for physiological and pathophysiological mitochondrial fission. DeSUMOylation of Drp1 by the enzyme SENP3 promotes cell death during reperfusion after ischaemia by enhancing Drp1 partitioning to the mitochondrial outer membrane (MOM), which causes cytochrome c release and apoptosis. However, how deSUMOylation recruits Drp1 to the MOM is unknown. Here we show that deSUMOylation selectively promotes Drp1 binding to the MOM resident adaptor protein mitochondrial fission factor (Mff). Consistent with this, preventing Drp1 SUMOylation by mutating the SUMO acceptor sites enhances binding to Mff. Conversely, increasing Drp1 SUMOylation by knocking down SENP3 reduces both Drp1 binding to Mff and stress-induced cytochrome c release. Directly tethering Drp1 to the MOM bypasses the need for Mff to evoke cytochrome c release, and occludes the effect of SENP3 overexpression. Thus, Drp1 deSUMOylation promotes cell death by enhancing Mff-mediated mitochondrial recruitment. These data provide a mechanistic explanation for how the SUMOylation status of Drp1 acts as a key switch in cell death/survival decisions following extreme cell stress.
Collapse
|
81
|
Flippo KH, Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 2017; 130:671-681. [PMID: 28154157 DOI: 10.1242/jcs.171017] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria fulfill numerous cellular functions including ATP production, Ca2+ buffering, neurotransmitter synthesis and degradation, ROS production and sequestration, apoptosis and intermediate metabolism. Mitochondrial dynamics, a collective term for the processes of mitochondrial fission, fusion and transport, governs mitochondrial function and localization within the cell. Correct balance of mitochondrial dynamics is especially important in neurons as mutations in fission and fusion enzymes cause peripheral neuropathies and impaired development of the nervous system in humans. Regulation of mitochondrial dynamics is partly accomplished through post-translational modification of mitochondrial fission and fusion enzymes, in turn influencing mitochondrial bioenergetics and transport. The importance of post-translational regulation is highlighted by numerous neurodegenerative disorders associated with post-translational modification of the mitochondrial fission enzyme Drp1. Not surprisingly, mitochondrial dynamics also play an important physiological role in the development of the nervous system and synaptic plasticity. Here, we highlight recent findings underlying the mechanisms and regulation of mitochondrial dynamics in relation to neurological disease, as well as the development and plasticity of the nervous system.
Collapse
Affiliation(s)
- Kyle H Flippo
- Department of Pharmacology, University of Iowa, Iowa City, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, USA
| |
Collapse
|
82
|
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1:172-184. [PMID: 28959481 PMCID: PMC5435218 DOI: 10.1136/svn-2016-000042] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Intracranial haemorrhages, including intracerebral haemorrhage (ICH), intraventricular haemorrhage (IVH) and subarachnoid haemorrhage (SAH), are leading causes of morbidity and mortality worldwide. In addition, haemorrhage contributes to tissue damage in traumatic brain injury (TBI). To date, efforts to treat the long-term consequences of cerebral haemorrhage have been unsatisfactory. Incident rates and mortality have not showed significant improvement in recent years. In terms of secondary damage following haemorrhage, it is becoming increasingly apparent that blood components are of integral importance, with haemoglobin-derived iron playing a major role. However, the damage caused by iron is complex and varied, and therefore, increased investigation into the mechanisms by which iron causes brain injury is required. As ICH, IVH, SAH and TBI are related, this review will discuss the role of iron in each, so that similarities in injury pathologies can be more easily identified. It summarises important components of normal brain iron homeostasis and analyses the existing evidence on iron-related brain injury mechanisms. It further discusses treatment options of particular promise.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
83
|
N-Myc overexpression increases cisplatin resistance in neuroblastoma via deregulation of mitochondrial dynamics. Cell Death Discov 2016; 2:16082. [PMID: 28028439 PMCID: PMC5149579 DOI: 10.1038/cddiscovery.2016.82] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022] Open
Abstract
N-Myc is a global transcription factor that regulates the expression of genes involved in a number of essential cellular processes including: ribosome biogenesis, cell cycle and apoptosis. Upon deregulation, N-Myc can drive pathologic expression of many of these genes, which ultimately defines its oncogenic potential. Overexpression of N-Myc has been demonstrated to contribute to tumorigenesis, most notably for the pediatric tumor, neuroblastoma. Herein, we provide evidence that deregulated N-Myc alters the expression of proteins involved in mitochondrial dynamics. We found that N-Myc overexpression leads to increased fusion of the mitochondrial reticulum secondary to changes in protein expression due to aberrant transcriptional and post-translational regulation. We believe the structural changes in the mitochondrial network in response to N-Myc amplification in neuroblastoma contributes to two important aspects of tumor development and maintenance—bioenergetic alterations and apoptotic resistance. Specifically, we found that N-Myc overexpressing cells are resistant to programmed cell death in response to exposure to low doses of cisplatin, and demonstrated that this was dependent on increased mitochondrial fusion. We speculate that these changes in mitochondrial structure and function may contribute significantly to the aggressive clinical ph9enotype of N-Myc amplified neuroblastoma.
Collapse
|
84
|
Yang XD, Shi Q, Sun J, Lv Y, Ma Y, Chen C, Xiao K, Zhou W, Dong XP. Aberrant Alterations of Mitochondrial Factors Drp1 and Opa1 in the Brains of Scrapie Experiment Rodents. J Mol Neurosci 2016; 61:368-378. [PMID: 27921253 DOI: 10.1007/s12031-016-0866-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
The abnormal mitochondrial dynamics has been reported in the brains of some neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), but limitedly described in prion disease. Dynamin-related protein 1 (Drpl) and optic atrophy protein 1 (Opa1) are two essential elements for mitochondria fission and fusion. To evaluate possible changes of mitochondria dynamics during prion infection, the situations of brain Drp1 and Opa1 of scrapie strains 139A, ME7, and S15 mice, as well as 263K-infected hamsters, were analyzed. Significant decreases of brain Drp1 were observed in scrapie-infected rodents at terminal stage by Western blots and immunohistochemical assays, while the levels of Opa1 also showed declined tendency in the brains of scrapie-infected rodents. Immunofluorescent assays illustrated well localization of Drp1 or Opa1 within NeuN-positive cells. Moreover, the S-nitrosylated forms of Drp1significantly increased in the brain tissues of 139A- and ME7-infected mice at terminal stage. Dynamic analysis of Drp1 and SNO-Dpr1 in the brains collected at different time points within the incubation period of 139A-infected mice demonstrated that the whole Drp1 decreased at all tested samples, whereas the SNO-Drp1 remarkably increased in the sample of 90-day post-infection (dpi), reached to the peak in that of 120 dpi and dropped down but still maintained at higher level at the end of disease. The levels of apoptotic factors cleaved caspase 9, caspase 3, and Bax were also markedly increased in the brain tissues of the mice infected with agents 139A and ME7. Our data indicate a disorder of mitochondria dynamics in the brains of prion infection, largely depending on the abnormal alteration of brain Drp1.
Collapse
Affiliation(s)
- Xiao -Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China. .,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yue Ma
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China. .,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China. .,Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
85
|
Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH, Han HJ. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2820-2834. [PMID: 27599716 DOI: 10.1016/j.bbamcr.2016.09.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
Mitochondrial dysfunction is known as one of causative factors in Alzheimer's disease (AD), inducing neuronal cell death. Mitochondria regulate their functions through changing their morphology. The present work was undertaken to investigate whether Amyloid β (Aβ) affects mitochondrial morphology in neuronal cells to induce apoptosis. Aβ treatment induced not only the fragmentation of mitochondria but also neuronal apoptosis in association with an increase in caspase-9 and -3 activity. Calcium influx induced by Aβ up-regulated the activation of Akt through CaMKII resulting in changes to the phosphorylation level of Drp1 in a time-dependent manner. Translocation of Drp1 from the cytosol to mitochondria was blocked by CB-124005 (an Akt inhibitor). Recruitment of Drp1 to mitochondria led to ROS generation and mitochondrial fission, accompanied by dysfunction of mitochondria such as loss of membrane potential and ATP production. ROS generation and mitochondrial dysfunction by Aβ were attenuated when treated with Mdivi-1, a selective Drp1 inhibitor. Furthermore, the sustained Akt activation induced not only the fragmentation of mitochondria but also the activation of mTOR, eventually suppressing autophagy. Inhibition of autophagic clearance of Aβ led to increased ROS levels and aggravating mitochondrial defects, which were blocked by Rapamycin (an mTOR inhibitor). In conclusion, sustained phosphorylation of Akt by Aβ directly activates Drp1 and inhibits autophagy through the mTOR pathway. Together, these changes elicit abundant mitochondrial fragmentation resulting in ROS-mediated neuronal apoptosis.
Collapse
Affiliation(s)
- Dah Ihm Kim
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Ki Hoon Lee
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Amr Ahmed Gabr
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Gee Euhn Choi
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Jun Sung Kim
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - So Hee Ko
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Ho Jae Han
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
86
|
Pascucci B, D'Errico M, Romagnoli A, De Nuccio C, Savino M, Pietraforte D, Lanzafame M, Calcagnile AS, Fortini P, Baccarini S, Orioli D, Degan P, Visentin S, Stefanini M, Isidoro C, Fimia GM, Dogliotti E. Overexpression of parkin rescues the defective mitochondrial phenotype and the increased apoptosis of Cockayne Syndrome A cells. Oncotarget 2016; 8:102852-102867. [PMID: 29262528 PMCID: PMC5732694 DOI: 10.18632/oncotarget.9913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
The ERCC8/CSA gene encodes a WD-40 repeat protein (CSA) that is part of a E3-ubiquitin ligase/COP9 signalosome complex. When mutated, CSA causes the Cockayne Syndrome group A (CS-A), a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. CS-A cells features include ROS hyperproduction, accumulation of oxidative genome damage, mitochondrial dysfunction and increased apoptosis that may contribute to the neurodegenerative process. In this study, we show that CSA localizes to mitochondria and specifically interacts with the mitochondrial fission protein dynamin-related protein (DRP1) that is hyperactivated when CSA is defective. Increased fission is not counterbalanced by increased mitophagy in CS-A cells thus leading to accumulation of fragmented mitochondria. However, when mitochondria are challenged with the mitochondrial toxin carbonyl cyanide m-chloro phenyl hydrazine, CS-A fibroblasts undergo mitophagy as efficiently as normal fibroblasts, suggesting that this process remains targetable to get rid of damaged mitochondria. Indeed, when basal mitophagy was potentiated by overexpressing Parkin in CSA deficient cells, a significant rescue of the dysfunctional mitochondrial phenotype was observed. Importantly, Parkin overexpression not only reactivates basal mitophagy, but plays also an anti-apoptotic role by significantly reducing the translocation of Bax at mitochondria in CS-A cells. These findings provide new mechanistic insights into the role of CSA in mitochondrial maintenance and might open new perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy.,Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Alessandra Romagnoli
- Department Epidemiology and Preclinical Research, INMI L. Spallanzani IRCCS, Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Miriam Savino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Donatella Pietraforte
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Manuela Lanzafame
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Angelo Salvatore Calcagnile
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Sara Baccarini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Donata Orioli
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Paolo Degan
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi, Genova, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| | - Miria Stefanini
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gian Maria Fimia
- Department Epidemiology and Preclinical Research, INMI L. Spallanzani IRCCS, Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, Lecce, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy
| |
Collapse
|
87
|
Qu Y, Shi J, Tang Y, Zhao F, Li S, Meng J, Tang J, Lin X, Peng X, Mu D. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp Neurol 2016; 279:223-231. [PMID: 26980487 DOI: 10.1016/j.expneurol.2016.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
Abstract
Mixed lineage kinase domain-like protein (MLKL) is a critical molecule mediating cell necroptosis. However, its role in brain injury remains obscure. We first investigated the functions and mechanisms of MLKL in mediating neuronal damage in developing brain after hypoxia-ischemia. Neuronal necroptosis was induced by oxygen-glucose deprivation (OGD) plus caspase inhibitor zVAD treatment (OGD/zVAD). We found that two important necroptosis related proteins, receptor-interacting protein 1 and 3 (RIP1, RIP3) were upregulated. Furthermore, the interaction of RIP1-RIP3 with MLKL increased. Inhibition of MLKL through siRNA diminished RIP1-RIP3-MLKL interaction and attenuated neuronal death induced by OGD/zVAD. The translocation of oligomerized MLKL to the neuronal membrane leading to the injury of cellular membrane is the possible new mechanism of neuronal necroptosis. Animal experiment with neonatal rats further proved that MLKL inhibition attenuated brain damage induced by hypoxia-ischemia. These findings suggest that MLKL is a target to attenuate brain damage in developing brain.
Collapse
Affiliation(s)
- Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China.
| | - Jing Shi
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ying Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Junjie Meng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Xuemei Lin
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Xiaodong Peng
- Department of Experimental Medicine, West China First University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
88
|
Xu S, Pi H, Zhang L, Zhang N, Li Y, Zhang H, Tang J, Li H, Feng M, Deng P, Guo P, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Wang W, Reiter RJ, Yu Z, Zhou Z. Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J Pineal Res 2016; 60:291-302. [PMID: 26732476 DOI: 10.1111/jpi.12310] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022]
Abstract
Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd-induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2 ) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (▵Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd-induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca(2+) ]i ) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium-induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Shangcheng Xu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Nixian Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
- Cancer Institute of the People's Liberation Army, The Second Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - YuMing Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Huiliang Zhang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Ju Tang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huijuan Li
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Min Feng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Pan Guo
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Min Zhong
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yanwen Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Wang Wang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| |
Collapse
|
89
|
Park JH, Ko J, Hwang J, Koh HC. Dynamin-related protein 1 mediates mitochondria-dependent apoptosis in chlorpyrifos-treated SH-SY5Y cells. Neurotoxicology 2015; 51:145-57. [DOI: 10.1016/j.neuro.2015.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022]
|
90
|
Dynamin-related protein 1 controls the migration and neuronal differentiation of subventricular zone-derived neural progenitor cells. Sci Rep 2015; 5:15962. [PMID: 26514444 PMCID: PMC4626845 DOI: 10.1038/srep15962] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are important in many essential cellular functions, including energy production, calcium homeostasis, and apoptosis. The organelles are scattered throughout the cytoplasm, but their distribution can be altered in response to local energy demands, such as cell division and neuronal maturation. Mitochondrial distribution is closely associated with mitochondrial fission, and blocking the fission-promoting protein dynamin-related protein 1 (Drp1) activity often results in mitochondrial elongation and clustering. In this study, we observed that mitochondria were preferentially localized at the leading process of migratory adult neural stem cells (aNSCs), whereas neuronal differentiating cells transiently exhibited perinuclear condensation of mitochondria. Inhibiting Drp1 activity altered the typical migratory cell morphology into round shapes while the polarized mitochondrial distribution was maintained. With these changes, aNSCs failed to migrate, and neuronal differentiation was prevented. Because Drp1 blocking also impaired the mitochondrial membrane potential, we tested whether supplementing with L-carnitine, a compound that restores mitochondrial membrane potential and ATP synthesis, could revert the defects induced by Drp1 inhibition. Interestingly, L-carnitine fully restored the aNSC defects, including cell shrinkage, migration, and impaired neuronal differentiation. These results suggest that Drp1 is required for functionally active mitochondria, and supplementing with ATP can restore the defects induced by Drp1 suppression.
Collapse
|
91
|
Cho HM, Sun W. Control of Mitochondrial Dynamics by Fas-induced Caspase-8 Activation in Hippocampal Neurons. Exp Neurobiol 2015; 24:219-25. [PMID: 26412971 PMCID: PMC4580749 DOI: 10.5607/en.2015.24.3.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
Cells undergo apoptosis mainly via two pathways-the mitochondrial pathway and the cytosolic pathway. It has been well documented that activation of the mitochondrial pathway promotes mitochondrial fragmentation and inhibition of mitochondrial fragmentation partly represses cell death. However, the mitochondrial events following activation of the cytosolic pathway are less understood. In this study, we treated Fas-activating antibody and found mitochondrial fragmentation without cell death in hippocampal primary neurons and HT-22 cell lines. Fas antibody treatment, in fact, promoted rapid activation of caspase-8, while executioner caspase-3 activation was not observed. Furthermore, blockage of caspase-8 efficiently prevented Fas antibody-induced mitochondrial fragmentation. These results suggest that the cytosolic pathway induced by death receptor activation promotes caspase-8-dependent mitochondrial fission.
Collapse
Affiliation(s)
- Hyo Min Cho
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul 02841, Korea
| |
Collapse
|
92
|
Parameyong A, Govitrapong P, Chetsawang B. Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells. Mitochondrion 2015; 24:1-8. [PMID: 26176977 DOI: 10.1016/j.mito.2015.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/09/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022]
Abstract
Methamphetamine (METH) is an addictive drug that can cause toxicity and degeneration in the brain. Several pieces of evidence have demonstrated that METH toxicity results in increases in oxidative stress that regulate an intracellular signaling cascade that leads to cell death. Recently, several studies have emphasized that the overload of cytosolic calcium levels and mitochondrial fission into a small mitochondrial structure is involved in cell death processes. In the present study, we aimed to investigate the effects of METH toxicity on cytosolic calcium overload and mitochondrial fission in neuroblastoma SH-SY5Y cells. Additionally, the protective effect of melatonin against METH-induced toxicity was also investigated. The results of the present study demonstrated that METH significantly decreases cell viability and increases the levels of mitochondrial fission (Fis1 and Drp1) proteins and pro-apoptotic protein, Bax in isolated mitochondria. The levels of Drp1 in the cytosol of METH-treated cells had no significant differences compared to the control untreated cells. METH also significantly increased the cytosolic calcium levels. Melatonin reversed the toxic effects of METH by restoring cell viability and inhibiting the increase in mitochondrial Fis1 levels and the mitochondrial translocation of Drp1 and Bax. Additionally, melatonin was able to reduce the METH-induced increase in cytosolic calcium levels and fragmented mitochondria into small globular structures in SH-SY5Y cells. The results of the present study demonstrate the potential abilities of melatonin to maintain the homeostasis of mitochondrial dynamics and cytosolic calcium levels in METH-induced toxicity in neuronal cells.
Collapse
Affiliation(s)
- Arisa Parameyong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
93
|
Cherubini M, Puigdellívol M, Alberch J, Ginés S. Cdk5-mediated mitochondrial fission: A key player in dopaminergic toxicity in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2145-60. [PMID: 26143143 DOI: 10.1016/j.bbadis.2015.06.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/04/2023]
Abstract
The molecular mechanisms underlying striatal vulnerability in Huntington's disease (HD) are still unknown. However, growing evidence suggest that mitochondrial dysfunction could play a major role. In searching for a potential link between striatal neurodegeneration and mitochondrial defects we focused on cyclin-dependent kinase 5 (Cdk5). Here, we demonstrate that increased mitochondrial fission in mutant huntingtin striatal cells can be a consequence of Cdk5-mediated alterations in Drp1 subcellular distribution and activity since pharmacological or genetic inhibition of Cdk5 normalizes Drp1 function ameliorating mitochondrial fragmentation. Interestingly, mitochondrial defects in mutant huntingtin striatal cells can be worsened by D1 receptor activation a process also mediated by Cdk5 as down-regulation of Cdk5 activity abrogates the increase in mitochondrial fission, the translocation of Drp1 to the mitochondria and the raise of Drp1 activity induced by dopaminergic stimulation. In sum, we have demonstrated a new role for Cdk5 in HD pathology by mediating dopaminergic neurotoxicity through modulation of Drp1-induced mitochondrial fragmentation, which underscores the relevance for pharmacologic interference of Cdk5 signaling to prevent or ameliorate striatal neurodegeneration in HD.
Collapse
Affiliation(s)
- Marta Cherubini
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Mar Puigdellívol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
94
|
Randriamboavonjy V, Mann WA, Elgheznawy A, Popp R, Rogowski P, Dornauf I, Dröse S, Fleming I. Metformin reduces hyper-reactivity of platelets from patients with polycystic ovary syndrome by improving mitochondrial integrity. Thromb Haemost 2015; 114:569-78. [PMID: 25993908 DOI: 10.1160/th14-09-0797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with decreased fertility, insulin resistance and an increased risk of developing cardiovascular disease. Treating PCOS patients with metformin improves fertility and decreases cardiovascular complications. Given that platelet activation contributes to both infertility and cardiovascular disease development, we assessed platelet reactivity in PCOS patients and the consequences of metformin treatment. Compared to washed platelets from healthy donors, platelets from PCOS patients demonstrated enhanced reactivity and impaired activation of the AMP-activated kinase (AMPK). PCOS platelets also demonstrated enhanced expression of mitochondrial proteins such as the cytochrome c reductase, ATP synthase and the voltage-dependent anion channel-1. However, mitochondrial function was impaired as demonstrated by a decreased respiration rate. In parallel, the phosphorylation of dynamin-related protein-1 (Drp-1) on Ser616 was increased while that on Ser637 decreased. The latter changes were accompanied by decreased mitochondrial size. In insulin-resistant PCOS patients (HOMA-IR> 2) metformin treatment (1.7 g per day for 4 weeks to 6 months) improved insulin sensitivity, restored mitochondrial integrity and function and normalised platelet aggregation. Treatment was without effect in PCOS patients with HOMA-IR< 2. Moreover, treatment of megakaryocytes with metformin enhanced mitochondrial content and in the same cells metformin enhanced the phosphorylation of the Drp-1 on Ser637 via an AMPKα1-dependent mechanism. In conclusion, the improvement of mitochondrial integrity and platelet reactivity may contribute to the beneficial effects of metformin on cardiovascular disease.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- Voahanginirina Randriamboavonjy PhD, Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany, Tel.: +49 69 6301 6973, Fax: +49 69 6301 86880,
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 2015; 131:1-20. [PMID: 26001589 DOI: 10.1016/j.pneurobio.2015.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
96
|
Chiang H, Ohno N, Hsieh YL, Mahad DJ, Kikuchi S, Komuro H, Hsieh ST, Trapp BD. Mitochondrial fission augments capsaicin-induced axonal degeneration. Acta Neuropathol 2015; 129:81-96. [PMID: 25322817 PMCID: PMC4282704 DOI: 10.1007/s00401-014-1354-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022]
Abstract
Capsaicin, an agonist of transient receptor potential vanilloid receptor 1, induces axonal degeneration of peripheral sensory nerves and is commonly used to treat painful sensory neuropathies. In this study, we investigated the role of mitochondrial dynamics in capsaicin-induced axonal degeneration. In capsaicin-treated rodent sensory axons, axonal swellings, decreased mitochondrial stationary site length and reduced mitochondrial transport preceded axonal degeneration. Increased axoplasmic Ca(2+) mediated the alterations in mitochondrial length and transport. While sustaining mitochondrial transport did not reduce axonal swellings in capsaicin-treated axons, preventing mitochondrial fission by overexpression of mutant dynamin-related protein 1 increased mitochondrial length, retained mitochondrial membrane potentials and reduced axonal loss upon capsaicin treatment. These results establish that mitochondrial stationary site size significantly affects axonal integrity and suggest that inhibition of Ca(2+)-dependent mitochondrial fission facilitates mitochondrial function and axonal survival following activation of axonal cationic channels.
Collapse
Affiliation(s)
- Hao Chiang
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 10051 Taiwan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Nobuhiko Ohno
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Present Address: Department of Anatomy and Molecular Histology, University of Yamanashi, Chuo, Yamanashi 409-3898 Japan
| | - Yu-Lin Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 10051 Taiwan
- Present Address: Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | - Don J. Mahad
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Present Address: Centre for Neuroregeneration, University of Edinburgh, Chancellor’s Building, Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Shin Kikuchi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Present Address: Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, 060-8556 Japan
| | - Hitoshi Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 10051 Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, 10002 Taiwan
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
97
|
Godoy JA, Arrázola MS, Ordenes D, Silva-Alvarez C, Braidy N, Inestrosa NC. Wnt-5a ligand modulates mitochondrial fission-fusion in rat hippocampal neurons. J Biol Chem 2014; 289:36179-93. [PMID: 25336659 PMCID: PMC4276881 DOI: 10.1074/jbc.m114.557009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 10/02/2014] [Indexed: 11/06/2022] Open
Abstract
The Wnt signaling pathway plays an important role in developmental processes, including embryonic patterning, cell specification, and cell polarity. Wnt components participate in the development of the central nervous system, and growing evidence indicates that this pathway also regulates the function of the adult nervous system. In this study, we report that Wnt-5a, a noncanonical Wnt ligand, is a potent activator of mitochondrial dynamics and induces acute fission and fusion events in the mitochondria of rat hippocampal neurons. The effect of Wnt-5a was inhibited in the presence of sFRP, a Wnt scavenger. Similarly, the canonical Wnt-3a ligand had no effect on mitochondrial fission-fusion events, suggesting that this effect is specific for Wnt-5a alone. We also show that the Wnt-5a effects on mitochondrial dynamics occur with an increase in both intracellular and mitochondrial calcium (Ca(2+)), which was correlated with an increased phosphorylation of Drp1(Ser-616) and a decrease of Ser-637 phosphorylation, both indicators of mitochondrial dynamics. Electron microscope analysis of hippocampal tissues in the CA1 region showed an increase in the number of mitochondria present in the postsynaptic region, and this finding correlated with a change in mitochondrial morphology. We conclude that Wnt-5a/Ca(2+) signaling regulates the mitochondrial fission-fusion process in hippocampal neurons, a feature that might help to further understand the role of Wnt-related pathologies, including neurodegenerative diseases associated with mitochondrial dysfunction, and represents a potentially important link between impaired metabolic function and degenerative disorders.
Collapse
Affiliation(s)
- Juan A Godoy
- From the Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Macarena S Arrázola
- From the Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Daniela Ordenes
- From the Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Carmen Silva-Alvarez
- From the Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Nady Braidy
- the Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, 2031 New South Wales, Australia, and
| | - Nibaldo C Inestrosa
- From the Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile, the Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, 2031 New South Wales, Australia, and the Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, 6200000 Punta Arenas, Chile
| |
Collapse
|
98
|
Mao C, Zhang J, Lin S, Jing L, Xiang J, Wang M, Wang B, Xu P, Liu W, Song X, Lv C. MiRNA-30a inhibits AECs-II apoptosis by blocking mitochondrial fission dependent on Drp-1. J Cell Mol Med 2014; 18:2404-16. [PMID: 25284615 PMCID: PMC4302646 DOI: 10.1111/jcmm.12420] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/09/2014] [Indexed: 12/27/2022] Open
Abstract
Apoptosis of type II alveolar epithelial cells (AECs-II) is a key determinant of initiation and progression of lung fibrosis. However, the mechanism of miR-30a participation in the regulation of AECs-II apoptosis is ambiguous. In this study, we investigated whether miR-30a could block AECs-II apoptosis by repressing mitochondrial fission dependent on dynamin-related protein-1 (Drp-1). The levels of miR-30a in vivo and in vitro were determined through quantitative real-time PCR (qRT-PCR). The inhibition of miR-30a in AECs-II apoptosis, mitochondrial fission and its dependence on Drp-1, and Drp-1 expression and translocation were detected using miR-30a mimic, inhibitor-transfection method (gain- and loss-of-function), or Drp-1 siRNA technology. Results showed that miR-30a decreased in lung fibrosis. Gain- and loss-of-function studies revealed that the up-regulation of miR-30a could decrease AECs-II apoptosis, inhibit mitochondrial fission, and reduce Drp-1 expression and translocation. MiR-30a mimic/inhibitor and Drp-1 siRNA co-transfection showed that miR-30a could inhibit the mitochondrial fission dependent on Drp-1. This study demonstrated that miR-30a inhibited AECs-II apoptosis by repressing the mitochondrial fission dependent on Drp-1, and could function as a novel therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Cuiping Mao
- Molecular Medicine Research Center, Binzhou Medical University, Yantai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ribeiro M, Rosenstock TR, Oliveira AM, Oliveira CR, Rego AC. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med 2014; 74:129-44. [PMID: 24992836 DOI: 10.1016/j.freeradbiomed.2014.06.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/01/2014] [Accepted: 06/21/2014] [Indexed: 12/17/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit.
Collapse
Affiliation(s)
- Márcio Ribeiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tatiana R Rosenstock
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana M Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Catarina R Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
100
|
The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell Death Dis 2014; 5:e1368. [PMID: 25118928 PMCID: PMC4454299 DOI: 10.1038/cddis.2014.320] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 01/16/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been associated with Parkinson's disease, and its inhibition opens potential new therapeutic options. Among the drug inhibitors of both wild-type and mutant LRRK2 forms is the 2-arylmethyloxy-5-subtitutent-N-arylbenzamide GSK257815A. Using the well-established dopaminergic cell culture model SH-SY5Y, we have investigated the effects of GSK2578215A on crucial neurodegenerative features such as mitochondrial dynamics and autophagy. GSK2578215A induces mitochondrial fragmentation of an early step preceding autophagy. This increase in autophagosome results from inhibition of fusion rather than increases in synthesis. The observed effects were shared with LRRK2-IN-1, a well-described, structurally distinct kinase inhibitor compound or when knocking down LRRK2 expression using siRNA. Studies using the drug mitochondrial division inhibitor 1 indicated that translocation of the dynamin-related protein-1 has a relevant role in this process. In addition, autophagic inhibitors revealed the participation of autophagy as a cytoprotective response by removing damaged mitochondria. GSK2578215A induced oxidative stress as evidenced by the accumulation of 4-hydroxy-2-nonenal in SH-SY5Y cells. The mitochondrial-targeted reactive oxygen species scavenger MitoQ positioned these species as second messengers between mitochondrial morphologic alterations and autophagy. Altogether, our results demonstrated the relevance of LRRK2 in mitochondrial-activated pathways mediating in autophagy and cell fate, crucial features in neurodegenerative diseases.
Collapse
|