51
|
Fu Y, Zheng Y, Wang PP, Chen YY, Ding ZY. Immunotherapy for a POLE Mutation Advanced Non-Small-Cell Lung Cancer Patient. Front Pharmacol 2022; 13:817265. [PMID: 35308232 PMCID: PMC8931479 DOI: 10.3389/fphar.2022.817265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, the predictive role of POLE mutations for immunotherapy is under intense investigation. The POLE gene encodes one of the four subunits of DNA polymerase important for DNA replication and repair. POLE mutations are related to other favorable predicative factors such as high expression of PD-L1, high TMB, and infiltration of CD8+ cells in the tumor microenvironment. No formal clinical trials studied the efficacy of immunotherapy in lung patients harboring POLE mutation, and only few cases were mentioned in the literature. Moreover, lung cancer patients are prone to brain metastasis, which is notorious for the unresponsiveness to chemotherapy. The efficacy of immunotherapy for brain metastasis is still controversial. Here, we described a case of a POLEmt non-small-cell lung cancer (NSCLC) patient with brain metastasis who was treated with immunotherapy. His brain lesions disappeared after treatment. Our report strongly supported the benefit of immune-combined therapy for advanced NSCLC patients with POLE mutation, even with brain metastasis.
Collapse
|
52
|
Dong S, Zakaria H, Hsiehchen D. Non-Exonuclease Domain POLE Mutations Associated with Immunotherapy Benefit. Oncologist 2022; 27:159-162. [PMID: 35274726 PMCID: PMC8914489 DOI: 10.1093/oncolo/oyac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
Abstract
Inactivating mutations in the exonuclease domain of POLE induce somatic hypermutation resulting in a high tumor mutation burden (TMB) and are associated with immune checkpoint inhibitor (ICI) benefit. POLE mutations outside the exonuclease domain predicted to be deleterious are also observed in cancers, but it is unknown whether they are similarly associated with response to ICIs. We present a patient with hepatocellular carcinoma with a rare POLE mutation (V1368M) outside the exonuclease-domain predicted to be deleterious, a low TMB (1 mut/Mb), and microsatellite stability, who demonstrated an exceptional response to pembrolizumab. To support the generalizability of this finding, an analysis of 1278 patients with advanced cancers harboring low or intermediate TMB treated with ICIs showed that missense non-exonuclease domain POLE mutations were associated with greater overall survival. In contrast, among patients with advanced cancers without ICI exposure, POLE mutations were not associated with overall survival. These results demonstrate that a subset of missense POLE mutations may represent predictive biomarkers independent of TMB. Pathogenic POLE mutations outside the exonuclease domain may result in altered functions beyond DNA replication and proofreading which render cancers sensitive to ICIs.
Collapse
Affiliation(s)
- Sharlene Dong
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heba Zakaria
- University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - David Hsiehchen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
53
|
Oh CR, Kim JE, Hong YS, Kim SY, Ahn JB, Baek JY, Lee MA, Kang MJ, Cho SH, Beom SH, Kim TW. Phase II study of durvalumab monotherapy in patients with previously treated microsatellite instability-high/mismatch repair-deficient or POLE-mutated metastatic or unresectable colorectal cancer. Int J Cancer 2022; 150:2038-2045. [PMID: 35179785 DOI: 10.1002/ijc.33966] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
The aim of this study is to evaluate the clinical efficacy of durvalumab in patients with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) or polymerase epsilon (POLE)-mutated metastatic or unresectable colorectal cancer (mCRC) who had disease progression after standard chemotherapy. This prospective, open-label, multicenter, phase II study enrolled patients with mCRC harboring MSI-H/dMMR or POLE mutations treated with at least one prior line of therapy. The participants received durvalumab (1500 mg) every 4 weeks intravenously. The primary endpoint was the objective response rate (ORR). Of the 33 patients, 30 had MSI-H/dMMR and 3 had POLE-mutated microsatellite stable (MSS) CRC. With a median follow-up duration of 11.2 months (95% confidence interval [CI]: 7.3-15.0), the ORR was 42.4% (95% CI: 25.5-60.8). Among three patients with POLE-mutated CRC, one patient who had an exonuclease domain mutation (EDM) achieved an objective response, but the others with mutations in the non-exonuclease domain had progressive disease. Overall, the median duration of response was not reached and 85.7% of the responses were ongoing at data cutoff. The progression-free survival rate of 12 months was 58.2% (95% CI: 39.0-73.1) and the 12-month overall survival rate was 68.3% (95% CI: 48.8-81.7). Grade 3 treatment-related adverse events (TRAEs) occurred in 36.4% of the patients and were manageable. In conclusion, durvalumab showed promising clinical activity with encouraging response rates and satisfactory survival outcomes in mCRC patients with MSI-H/dMMR or POLE EDM. In patients with POLE-mutated mCRC, clinical response to durvalumab may be restricted to those with EDM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chung Ryul Oh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Yeon Baek
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Myung-Ah Lee
- Department of Oncology, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myoung Joo Kang
- Division of Oncology, Department of Internal Medicine, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Sang Hee Cho
- Department of Hematology-Oncology, Chonnam National University Hospital, Hwasun, Republic of Korea
| | - Seung-Hoon Beom
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
54
|
Gorzo A, Galos D, Volovat SR, Lungulescu CV, Burz C, Sur D. Landscape of Immunotherapy Options for Colorectal Cancer: Current Knowledge and Future Perspectives beyond Immune Checkpoint Blockade. Life (Basel) 2022; 12:229. [PMID: 35207516 PMCID: PMC8878674 DOI: 10.3390/life12020229] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer is the third most prevalent malignancy in Western countries and a major cause of death despite recent improvements in screening programs and early detection methods. In the last decade, a growing effort has been put into better understanding how the immune system interacts with cancer cells. Even if treatments with immune checkpoint inhibitors (anti-PD1, anti-PD-L1, anti-CTLA4) were proven effective for several cancer types, the benefit for colorectal cancer patients is still limited. However, a subset of patients with deficient mismatch repair (dMMR)/microsatellite-instability-high (MSI-H) metastatic colorectal cancer has been observed to have a prolonged benefit to immune checkpoint inhibitors. As a result, pembrolizumab and nivolumab +/- ipilimumab recently obtained the Food and Drug Administration approval. This review aims to highlight the body of knowledge on immunotherapy in the colorectal cancer setting, discussing the potential mechanisms of resistance and future strategies to extend its use.
Collapse
Affiliation(s)
- Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Diana Galos
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Simona Ruxandra Volovat
- Department of Medical Oncology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | | | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Allergology and Immunology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania; (A.G.); (D.G.); (C.B.)
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400000 Cluj-Napoca, Romania
| |
Collapse
|
55
|
Zhang L, Chen Y, Lv Y, Jiao S, Zhao W. OUP accepted manuscript. Oncologist 2022; 27:245-250. [PMID: 35380719 DOI: 10.1093/oncolo/oyac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Li Zhang
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Yimeng Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Yao Lv
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Shunchang Jiao
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| | - Weihong Zhao
- Department of Oncology, PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
56
|
Du F, Liu Y. Predictive molecular markers for the treatment with immune checkpoint inhibitors in colorectal cancer. J Clin Lab Anal 2022; 36:e24141. [PMID: 34817097 PMCID: PMC8761449 DOI: 10.1002/jcla.24141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is one of the most common malignant tumors and, hence, has become one of the most important public health issues in the world. Treatment with immune checkpoint inhibitors (ICIs) successfully improves the survival rate of patients with melanoma, non-small-cell lung cancer, and other malignancies, and its application in metastatic colorectal cancer is being actively explored. However, a few patients develop drug resistance. Predictive molecular markers are important tools to precisely screen patient groups that can benefit from treatment with ICIs. The current article focused on certain important predictive molecular markers for ICI treatment in colorectal cancer, including not only some of the mature molecular markers, such as deficient mismatch repair (d-MMR), microsatellite instability-high (MSI-H), tumor mutational burden (TMB), programmed death-ligand-1 (PD-L1), tumor immune microenvironment (TiME), and tumor-infiltrating lymphocytes (TILs), but also some of the novel molecular markers, such as DNA polymerase epsilon (POLE), polymerase delta 1 (POLD1), circulating tumor DNA (ctDNA), and consensus molecular subtypes (CMS). We have reviewed these markers in-depth and presented the results from certain important studies, which suggest their applicability in CRC and indicate their advantages and disadvantages. We hope this article is helpful for clinicians and researchers to systematically understand these markers and can guide the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Fenqi Du
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yanlong Liu
- Department of Colorectal SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
57
|
Zhu M, Cui H, Zhang L, Zhao K, Jia X, Jin H. Assessment of POLE and POLD1 mutations as prognosis and immunotherapy biomarkers for stomach adenocarcinoma. Transl Cancer Res 2022; 11:193-205. [PMID: 35261896 PMCID: PMC8841685 DOI: 10.21037/tcr-21-1601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/04/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cancer patients with POLE or POLD1 mutations may be excellent candidates for immune checkpoint inhibitors (ICIs) therapy and have favorable prognosis, but their potential in stomach adenocarcinoma (STAD) remains unknown. Therefore, the clinical significance of POLE and POLD1 mutations in STAD was evaluated. METHODS A summary of POLE/POLD1 mutations and clinical characteristics was performed on all 613 STAD samples, from which 360 samples were screened for analysis of the potential clinical relevance of POLE/POLD1 mutations to prognosis and immunotherapy. RESULTS The total frequency of both POLE and POLD1 mutations was 7.99% in STAD patients, correlating with an older age of onset and more frequently in the antrum anatomic subdivisions. Several genes that related to prognosis and immunotherapy also had high mutation frequencies in POLE/POLD1-mutant STADs. Furthermore, the STAD subgroup with POLE/POLD1 mutations had longer progression free survival (PFS) and overall survival (OS) in the subpopulation under 80. More importantly, STAD patients with POLE/POLD1 mutations exhibited adaptive immune resistance tumor microenvironment (TME) and deficient mismatch repair (dMMR) status, and possessed significantly higher PD-L1 expression level, higher tumor mutational load (TMB), higher microsatellite instability (MSI) percentage, and lower aneuploidy score, all of which may have potential implications for better ICIs treatment outcomes. CONCLUSIONS POLE and POLD1 mutations are promising useful biomarkers to improve the clinical efficiency of practicing precision medicine in STAD patients, including as positive prognostic markers and predictive biomarkers of immunotherapy outcomes for STAD patients.
Collapse
Affiliation(s)
- Mingyu Zhu
- Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Haiyan Cui
- Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Lu Zhang
- Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Kuo Zhao
- Department of Medical Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Xiaochen Jia
- Department of Breast Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Hao Jin
- Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Cancer Precise Diagnosis Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| |
Collapse
|
58
|
Yang F, Wang JF, Wang Y, Liu B, Molina JR. Comparative Analysis of Predictive Biomarkers for PD-1/PD-L1 Inhibitors in Cancers: Developments and Challenges. Cancers (Basel) 2021; 14:cancers14010109. [PMID: 35008273 PMCID: PMC8750062 DOI: 10.3390/cancers14010109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The development of immune checkpoint inhibitors (ICIs) has greatly changed the treatment landscape of multiple malignancies. However, the wide administration of ICIs is mainly obstructed by the low response rate and several life-threatening adverse events. Thus, there is an urgent need to identify sets of biomarkers to predict which patients will respond to ICIs. In this review, we discuss the recently investigated molecular and clinical determinants of ICI response, from the aspects of tumor features, clinical features, as well as tumor microenvironment. Abstract Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) have dramatically changed the landscape of cancer therapy. Both remarkable and durable responses have been observed in patients with melanoma, non-small-cell lung cancer (NSCLC), and other malignancies. However, the PD-1/PD-L1 blockade has demonstrated meaningful clinical responses and benefits in only a subset of patients. In addition, several severe and life-threatening adverse events were observed in these patients. Therefore, the identification of predictive biomarkers is urgently needed to select patients who are more likely to benefit from ICI therapy. PD-L1 expression level is the most commonly used biomarker in clinical practice for PD-1/PD-L1 inhibitors. However, negative PD-L1 expression cannot reliably exclude a response to a PD-1/PD-L1 blockade. Other factors, such as tumor microenvironment and other tumor genomic signatures, appear to impact the response to ICIs. In this review, we examine emerging data for novel biomarkers that may have a predictive value for optimizing the benefit from anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Fang Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China;
| | | | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China;
- Correspondence: (B.L.); (J.R.M.)
| | - Julian R. Molina
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (B.L.); (J.R.M.)
| |
Collapse
|
59
|
Baraibar I, Mirallas O, Saoudi N, Ros J, Salvà F, Tabernero J, Élez E. Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:6311. [PMID: 34944931 PMCID: PMC8699573 DOI: 10.3390/cancers13246311] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, deepening knowledge of the complex interactions between the immune system and cancer cells has led to the advent of effective immunotherapies that have revolutionized the therapeutic paradigm of several cancer types. However, colorectal cancer (CRC) is one of the tumor types in which immunotherapy has proven less effective. While there is solid clinical evidence for the therapeutic role of immune checkpoint inhibitors in mismatch repair-deficient (dMMR) and in highly microsatellite instable (MSI-H) metastatic CRC (mCRC), blockade of CTLA-4 or PD-L1/PD-1 as monotherapy has not conferred any major clinical benefit to patients with MMR-proficient (pMMR) or microsatellite stable (MSS) mCRC, reflecting 95% of the CRC population. There thus remains a high unmet medical need for the development of novel immunotherapy approaches for the vast majority of patients with pMMR or MSS/MSI-low (MSI-L) mCRC. Defining the molecular mechanisms for immunogenicity in mCRC and mediating immune resistance in MSS mCRC is needed to develop predictive biomarkers and effective therapeutic combination strategies. Here we review available clinical data from combinatorial therapeutic approaches using immunotherapy-based strategies for MSS mCRC.
Collapse
Affiliation(s)
- Iosune Baraibar
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Oriol Mirallas
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
| | - Nadia Saoudi
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Ros
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Francesc Salvà
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Josep Tabernero
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| |
Collapse
|
60
|
Schenck K, Masetti M, Pfarr N, Lorenzen S. PD-1 Blockade Elicits Ongoing Remission in Two Cases of Refractory Microsatellite-Stable Cancer Harboring a POLE Mutation. Oncol Res Treat 2021; 45:222-226. [PMID: 34875656 DOI: 10.1159/000521332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In the last decade immune checkpoint therapy has led to a break-through in the treatment of cancer across all entities, while molecular markers have grown in importance for the choice of the appropriate chemotherapeutic agents. Accordingly, in 2017 the U.S. Food and Drug Administration (FDA) approved the programmed cell death protein 1 (PD-1) inhibitor pembrolizumab, a tissue agnostic cancer drug, for the treatment of cancer that displays microsatellite instability (MSI), regardless of histological entity and site of origin. However, a growing number of studies report that cases of microsatellite stable (MSS) tumors harboring a DNA polymerase ε (POLE) mutation, a gene associated with proofreading deficiency, leading to an increased tumor mutational burden (TMB), likewise benefit from immune checkpoint therapy. CASE REPORT Here we present two cases - one advanced adenocarcinoma of the ileum and one mixed neuroendocrine non-neuroendocrine neoplasm (MiNEN), both MSS and carrying a POLE mutation - that were refractory to initial chemotherapy but responded on immunotherapy with pembrolizumab. CONCLUSION Colorectal cancer is a clinically and molecularly heterogenic disease which requires comprehensive genetic testing to screen for rare genetic alterations like POLE mutations to detect tumors harboring an ultramutator phenotype especially in patients that are refractory to standard chemotherapy.
Collapse
Affiliation(s)
- Kristina Schenck
- Department of Hematology and Oncology, Klinikum Rechts der Isar der TU Muenchen, Munich, Germany
| | - Michael Masetti
- Department of Hematology and Oncology, Klinikum Rechts der Isar der TU Muenchen, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technical University Munich, Munich, Germany
| | - Sylvie Lorenzen
- Department of Hematology and Oncology, Klinikum Rechts der Isar der TU Muenchen, Munich, Germany
| |
Collapse
|
61
|
Gomar M, Najafi M, Aghili M, Cozzi S, Jahanbakhshi A. Durable complete response to pembrolizumab in microsatellite stable colorectal cancer. Daru 2021; 29:501-506. [PMID: 34254265 PMCID: PMC8602589 DOI: 10.1007/s40199-021-00404-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Immunotherapy by checkpoint inhibitors, i.e., anti-programmed death-1(PD-1) or anti-programmed death-ligand 1 (PD-L1) antibodies, has gained more attention managing solid tumors. Pembrolizumab (an anti-PD-1 antibody) in metastatic colorectal cancer (CRC) was approved in 2017 by the US FDA. REASON FOR THE REPORT Pembrolizumab is not effective in microsatellite stable, mismatch-repair-proficient (MSS-pMMR) molecular phenotype, which comprises most CRC patients. In this report, we present the first case of metastatic CRC with a dramatic and durable response to pembrolizumab despite being of MSS-pMMR phenotype. A 34-year-old woman, presented seven years ago with T3N2bM0 colon cancer and an appendix carcinoid tumor. The last relapse with bilateral pulmonary metastases was refractory to all treatments. Although it seemed unresponsive to immunotherapy because of MSS molecular phenotype, due to the high expression level of PD-L1 (85%), we started treatment with pembrolizumab 200 mg every three weeks and continued for the overall 19 courses. Surprisingly, a rapid and complete response was observed that last until now, i.e., 17 months after discontinuation of pembrolizumab. OUTCOME Despite non-promising results in the current clinical trials, MSS-pMMR colorectal cancer patients' deprivation from immunotherapy seems not to be reasonable. There are ongoing clinical trials on checkpoint inhibitors either alone or in combination with other drugs. However, immunostaining for PD-L1 should be considered as a possible response predictor. Immunotherapy either by cell-based approaches or by checkpoint inhibitors may revolutionize cancer treatment Pembrolizumab has been approved by the FDA in 2017 for colorectal cancer. However, MSS-pMMR molecular phenotype which comprises the majority of CRC patients, has not shown a good response to checkpoint inhibitors. We present a MSS-pMMR case with complete and durable response to pembrolizumab We suggest immunostaining for PD-L1 as a possible response predictor to checkpoint inhibitors.
Collapse
Affiliation(s)
- Marzieh Gomar
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Najafi
- Radiation Oncology Department, Shohadaye Haftome Tir Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Aghili
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Salvatore Cozzi
- Radiation Therapy Unit, Department of Oncology and Advanced Technology, AUSL-IRCCS, Reggio Emilia, Italy
| | - Amin Jahanbakhshi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
62
|
Jiang M, Jin S, Han J, Li T, Shi J, Zhong Q, Li W, Tang W, Huang Q, Zong H. Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomark Res 2021; 9:85. [PMID: 34798902 PMCID: PMC8605607 DOI: 10.1186/s40364-021-00326-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Histopathological examination (biopsy) is the "gold standard" for the diagnosis of colorectal cancer (CRC). However, biopsy is an invasive method, and due to the temporal and spatial heterogeneity of the tumor, a single biopsy cannot reveal the comprehensive biological characteristics and dynamic changes of the tumor. Therefore, there is a need for new biomarkers to improve CRC diagnosis and to monitor and treat CRC patients. Numerous studies have shown that "liquid biopsy" is a promising minimally invasive method for early CRC detection. A liquid biopsy mainly samples circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA) and extracellular vesicles (EVs). CTCs are malignant cells that are shed from the primary tumors and/or metastases into the peripheral circulation. CTCs carry information on both primary tumors and metastases that can reflect dynamic changes in tumors in a timely manner. As a promising biomarker, CTCs can be used for early disease detection, treatment response and disease progression evaluation, disease mechanism elucidation, and therapeutic target identification for drug development. This review will discuss currently available technologies for plasma CTC isolation and detection, their utility in the management of CRC patients and future research directions.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jinming Han
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Tong Li
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.,Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Qian Zhong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wen Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wenxue Tang
- Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Qinqin Huang
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
63
|
Ros J, Baraibar I, Martini G, Salvà F, Saoudi N, Cuadra-Urteaga JL, Dienstmann R, Tabernero J, Élez E. The Evolving Role of Consensus Molecular Subtypes: a Step Beyond Inpatient Selection for Treatment of Colorectal Cancer. Curr Treat Options Oncol 2021; 22:113. [PMID: 34741675 DOI: 10.1007/s11864-021-00913-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT The heterogenous nature of colorectal cancer (CRC) renders it a major clinical challenge. Increasing genomic understanding of CRC has improved our knowledge of this heterogeneity and the main cancer drivers, with significant improvements in clinical outcomes. Comprehensive molecular characterization has allowed clinicians a more precise range of treatment options based on biomarker selection. Furthermore, this deep molecular understanding likely extends therapeutic options to a larger number of patients. The biological associations of consensus molecular subtypes (CMS) with clinical outcomes in localized CRC have been validated in retrospective clinical trials. The prognostic role of CMS has also been confirmed in the metastatic setting, with CMS2 having the best prognosis, whereas CMS1 tumors are associated with a higher risk of progression and death after chemotherapy. Similarly, according to mesenchymal features and immunosuppressive molecules, CMS1 responds to immunotherapy, whereas CMS4 has a poorer prognosis, suggesting that a CMS1 signature could identify patients who may benefit from immune checkpoint inhibitors regardless of microsatellite instability (MSI) status. The main goal of these comprehensive analyses is to switch from "one marker-one drug" to "multi-marker drug combinations" allowing oncologists to give "the right drug to the right patient." Despite the revealing data from transcriptomic analyses, the high rate of intra-tumoral heterogeneity across the different CMS subgroups limits its incorporation as a predictive biomarker. In clinical practice, when feasible, comprehensive genomic tests should be performed to identify potentially targetable alterations, particularly in RAS/BRAF wild-type, MSI, and right-sided tumors. Furthermore, CMS has not only been associated with clinical outcomes and specific tumor and patient phenotypes but also with specific microbiome patterns. Future steps will include the integration of clinical features, genomics, transcriptomics, and microbiota to select the most accurate biomarkers to identify optimal treatments, improving individual clinical outcomes. In summary, CMS is context specific, identifies a level of heterogeneity beyond standard genomic biomarkers, and offers a means of maximizing personalized therapy.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain. .,Department of Precision Medicine, Medical Oncology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Campania, Italy.
| | - Iosune Baraibar
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Giulia Martini
- Department of Precision Medicine, Medical Oncology, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Campania, Italy
| | - Francesc Salvà
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Nadia Saoudi
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey) Group, Vall D'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall D'Hebron, Vall D'Hebron Barcelona Hospital Campus (Spain), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,IOB, Barcelona, Spain.,UVic-UCC, Vic, Spain
| | - Elena Élez
- Medical Oncology, Vall d'Hebron University Hospital and Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
64
|
Current Treatment Landscape for Third- or Later-Line Therapy in Metastatic Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
65
|
Imyanitov E, Kuligina E. Molecular testing for colorectal cancer: Clinical applications. World J Gastrointest Oncol 2021; 13:1288-1301. [PMID: 34721767 PMCID: PMC8529925 DOI: 10.4251/wjgo.v13.i10.1288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/19/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular genetic analysis is an integral part of colorectal cancer (CRC) management. The choice of systemic therapy for CRC is largely based on the results of tumor molecular testing. Evaluation of the KRAS and NRAS gene status is mandatory for consideration of anti-epidermal growth factor receptor (EGFR) therapy. Tumors with the BRAF V600E substitution are characterized by aggressive behaviour, may require intensified cytotoxic regimens and benefit from combined BRAF and EGFR inhibition. The inactivation of DNA mismatch repair (MMR), or MUTYH gene, or DNA polymerase epsilon results in excessive tumor mutational burden; these CRCs are highly antigenic and therefore sensitive to immune checkpoint inhibitors. Some CRCs are characterized by overexpression of the HER2 oncogene and respond to the appropriate targeted therapy. There are CRCs with clinical signs of hereditary predisposition to this disease, which require germline genetic testing. Liquid biopsy is an emerging technology that has the potential to assist CRC screening, control the efficacy of surgical intervention and guide disease monitoring. The landscape of CRC molecular diagnosis is currently undergoing profound changes due to the increasing use of next generation sequencing.
Collapse
Affiliation(s)
- Evgeny Imyanitov
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, Saint-Petersburg 194100, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, Saint-Petersburg 191015, Russia
| | - Ekaterina Kuligina
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| |
Collapse
|
66
|
Sena LA, Denmeade SR, Antonarakis ES. Targeting the spectrum of immune checkpoints in prostate cancer. Expert Rev Clin Pharmacol 2021; 14:1253-1266. [PMID: 34263692 PMCID: PMC8484035 DOI: 10.1080/17512433.2021.1949287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Introduction: The proven efficacy of the cellular vaccine sipuleucel-T in 2010 led to optimism about immunotherapeutic approaches for the treatment of prostate cancer. Some surmised that prostate cancer might be an ideal target for immune-mediated killing given that the prostate is not an essential organ and expresses unique proteins including prostate-specific antigen, prostate-specific membrane antigen, and prostatic acid phosphatase that could be targeted without side effects. Subsequently, antibodies that inhibit the T cell checkpoints PD1 and CTLA4 were shown to stimulate antitumor immune responses, leading to tumor regression in several cancer types. These therapies have since been tested in several studies as treatments for prostate cancer, but appear to have limited efficacy in molecularly unselected patients.Areas covered: In this review, we discuss these studies and evaluate features of prostate cancer and its host environment that may render it generally resistant to CTLA4 and PD1 blockade. We provide an overview of alternate immune checkpoints that may hold greater significance in this disease.Expert opinion: Combination therapies to target multiple layers of alternate immune checkpoints may be required for an effective immune response to prostate cancer. We discuss combination therapies currently being investigated.
Collapse
Affiliation(s)
- Laura A. Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R. Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
67
|
POLE, POLD1, and NTHL1: the last but not the least hereditary cancer-predisposing genes. Oncogene 2021; 40:5893-5901. [PMID: 34363023 DOI: 10.1038/s41388-021-01984-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
POLE, POLD1, and NTHL1 are involved in DNA replication and have recently been recognized as hereditary cancer-predisposing genes, because their alterations are associated with colorectal cancer and other tumors. POLE/POLD1-associated syndrome shows an autosomal dominant inheritance, whereas NTHL1-associated syndrome follows an autosomal recessive pattern. Although the prevalence of germline monoallelic POLE/POLD1 and biallelic NTHL1 pathogenic variants is low, they determine different phenotypes with a broad tumor spectrum overlapping that of other hereditary conditions like Lynch Syndrome or Familial Adenomatous Polyposis. Endometrial and breast cancers, and probably ovarian and brain tumors are also associated with POLE/POLD1 alterations, while breast cancer and other unusual tumors are correlated with NTHL1 pathogenic variants. POLE-mutated colorectal and endometrial cancers are associated with better prognosis and may show favorable responses to immunotherapy. Since POLE/POLD1-mutated tumors show a high tumor mutational burden producing an increase in neoantigens, the identification of POLE/POLD1 alterations could help select patients suitable for immunotherapy treatment. In this review, we will investigate the role of POLE, POLD1, and NTHL1 genetic variants in cancer predisposition, discussing the potential future therapeutic applications and assessing the utility of performing a routine genetic testing for these genes, in order to implement prevention and surveillance strategies in mutation carriers.
Collapse
|
68
|
Hwang HS, Kim D, Choi J. Distinct mutational profile and immune microenvironment in microsatellite-unstable and POLE-mutated tumors. J Immunother Cancer 2021; 9:e002797. [PMID: 34607897 PMCID: PMC8491424 DOI: 10.1136/jitc-2021-002797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Mismatch repair (MMR)-deficient and DNA polymerase epsilon (POLE)-mutated tumors exhibit a high tumor mutation burden (TMB) and have been proven to be associated with good responses to immune checkpoint inhibitor treatments. However, the relationship between mutational characteristics of MMR-deficient and POLE-mutated tumors and the spatial architecture of tumor-infiltrating lymphocytes (TILs) has not been fully evaluated. METHODS We retrieved microsatellite instability-high (MSI-high, N=20) and POLE-mutated (N=47) cases from the clinical next-generation sequencing cohort at Asan Medical Center. Whole-slide immunostaining for CD3, CD4, CD8, FoxP3 and PD-1 were performed with tissue samples of colorectal and gastric cancer (N=24) and the tumor-positive TIL cell densities were correlated with the tumor's mutational features. The findings were compared with the results of similar analyses in The Cancer Genome Atlas-Colorectal Adenocarcinoma (TCGA-COADREAD) cohort (N=592). RESULTS The MSI-high group showed significantly higher overall TMBs with a number of insertion/deletion (indel) mutations relative to the POLE-mutated group (median TMB; 83.6 vs 12.5/Mb). Oncogenic/likely-oncogenic POLE mutations were identified with ultrahypermutations (≥100 mutations/Mb) (2/47, 4.3%). Concurrent POLE mutations of unknown significance and MSI-high cases were identified in eight cases (8/67, 11%), and two of these colorectal cancers had multiple POLE mutations, showing an ultramutated phenotype (378.1 and 484.4/Mb) and low indel mutation burdens with complete loss of MSH-6 or PMS-2, which was similar to the mutational profile of the POLE-inactivated tumors. Intratumoral CD3-positive, CD4-positive, CD8-positive, FoxP3-positive and PD-1-positive TIL cell densities were more strongly correlated with the indel mutation burden than with the total TMB (correlation coefficient, 0.61-0.73 vs 0.23-0.38). In addition, PI3K/AKT/mTOR pathway mutations were commonly found in MSI-high tumors (75%) but not in POLE-mutated tumors. CONCLUSIONS Indel mutation burden rather than total TMB could serve as a predictor of high TILs in both MSI-high and POLE-mutated tumors. Multiple uncharacterized/non-pathogenic POLE mutations occurring via MMR deficiency within MSI-high tumors may have combined pathogenic roles. A mutated PI3K/AKT/mTOR pathway may be a biomarker that can be used to stratify patients with advanced MSI-high tumors for immune therapy.
Collapse
Affiliation(s)
- Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
69
|
Pilard C, Ancion M, Delvenne P, Jerusalem G, Hubert P, Herfs M. Cancer immunotherapy: it's time to better predict patients' response. Br J Cancer 2021; 125:927-938. [PMID: 34112949 PMCID: PMC8476530 DOI: 10.1038/s41416-021-01413-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
In less than a decade, half a dozen immune checkpoint inhibitors have been approved and are currently revolutionising the treatment of many cancer (sub)types. With the clinical evaluation of novel delivery approaches (e.g. oncolytic viruses, cancer vaccines, natural killer cell-mediated cytotoxicity) and combination therapies (e.g. chemo/radio-immunotherapy) as well as the emergence of novel promising targets (e.g. TIGIT, LAG-3, TIM-3), the 'immunotherapy tsunami' is not about to end anytime soon. However, this enthusiasm in the field is somewhat tempered by both the relatively low percentage (<15%) of patients who display an effective anti-cancer immune response and the inability to accurately identify them. Recently, several existing or acquired features/parameters have been shown to impact the efficacy of immune checkpoint inhibitors. In the present review, we critically discuss current knowledge regarding predictive biomarkers for checkpoint inhibitor-based immunotherapy, highlight the missing/unclear links and emphasise the importance of characterising each neoplasm and its microenvironment in order to better guide the course of treatment.
Collapse
Affiliation(s)
- Charlotte Pilard
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie Ancion
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Philippe Delvenne
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium ,grid.411374.40000 0000 8607 6858Department of Pathology, University Hospital of Liege, Liege, Belgium
| | - Guy Jerusalem
- grid.411374.40000 0000 8607 6858Department of Medical Oncology, University Hospital of Liege, Liege, Belgium
| | - Pascale Hubert
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Michael Herfs
- grid.4861.b0000 0001 0805 7253Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| |
Collapse
|
70
|
He Y, Lu M, Che J, Chu Q, Zhang P, Chen Y. Biomarkers and Future Perspectives for Hepatocellular Carcinoma Immunotherapy. Front Oncol 2021; 11:716844. [PMID: 34552872 PMCID: PMC8450565 DOI: 10.3389/fonc.2021.716844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular cancer is the sixth most frequently diagnosed malignant disease worldwide, and was responsible for tens of millions of deaths in 2020; however, treatment options for patients with advanced hepatocellular carcinoma remain limited. Immunotherapy has undergone rapid development over recent years, especially in the field of immune checkpoint inhibitors (ICIs). These drugs aim to activate and enhance antitumor immunity and represent a new prospect for the treatment of patients with advanced cancer. Nevertheless, only a small proportion of liver cancer patients currently benefit from ICI-based treatment, highlighting the need to better understand how ICIs and tumors interact, as well as identify predictive biomarkers for immunotherapeutic responses. In this review, we highlight clinical trials and basic research in hepatocellular carcinoma, with a particular focus on predictive biomarkers for the therapeutic efficacy of ICIs. Predictive biomarkers for immune-related adverse events are also discussed.
Collapse
Affiliation(s)
- Yuqing He
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
71
|
Rochefort P, Desseigne F, Bonadona V, Dussart S, Coutzac C, Sarabi M, la Fouchardiere CD. Immune checkpoint inhibitor sensitivity of DNA repair deficient tumors. Immunotherapy 2021; 13:1205-1213. [PMID: 34494466 DOI: 10.2217/imt-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Faithful DNA replication is necessary to maintain genome stability and implicates a complex network with several pathways depending on DNA damage type: homologous repair, nonhomologous end joining, base excision repair, nucleotide excision repair and mismatch repair. Alteration in components of DNA repair machinery led to DNA damage accumulation and potentially carcinogenesis. Preclinical data suggest sensitivity to immune checkpoint inhibitors in tumors with DNA repair deficiency. Here, we review clinical studies that explored the use of immune checkpoint inhibitor in patient harboring tumor with DNA repair deficiency.
Collapse
Affiliation(s)
- Pauline Rochefort
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France
| | | | - Valérie Bonadona
- Unit of Genetic Epidemiology & Prevention, Centre Léon Bérard, 69008, Lyon, France
| | - Sophie Dussart
- Unit of Genetic Epidemiology & Prevention, Centre Léon Bérard, 69008, Lyon, France
| | - Clélia Coutzac
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France
| | - Matthieu Sarabi
- Department of Medical Oncology, Centre Léon Bérard, 69008, Lyon, France
| | | |
Collapse
|
72
|
Tumour mutational burden, microsatellite instability, and actionable alterations in metastatic colorectal cancer: Next-generation sequencing results of TRIBE2 study. Eur J Cancer 2021; 155:73-84. [PMID: 34365081 DOI: 10.1016/j.ejca.2021.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND We performed a comprehensive genomic profiling of tumour samples from metastatic colorectal cancer (mCRC) patients enrolled in the TRIBE2 study to assess the concordance among different techniques to evaluate mismatch repair (MMR) and microsatellite instability (MSI) status, to characterize tumours according to the tumour mutational burden (TMB) and explore the clinical relevance of different TMB cutpoints, and to investigate the prevalence of alterations actionable with targeted approaches or immune checkpoint inhibitors. MATERIAL AND METHODS Tumour samples of 296 (44%) of 679 enrolled patients underwent 592-gene DNA next-generation sequencing (NGS). MMR status was assessed by immunohistochemistry (MMR-IHC), and MSI status was assessed by NGS (MSI-NGS). TMB was defined as low, intermediate, or high if <7, 7-16, or ≥17 mutations/megabase (mut/Mb) were found. The performance of TMB to predict MSI status was tested by receiver operating characteristic (ROC) curve. Actionable alterations included BRAF V600E, KRAS G12C, POLE mutations, HER2 amplification and mutations, and MSI-H. RESULTS Of 216 paired cases, concordance between MMR-IHC and MSI-NGS was 98.6%. Among 11 TMB-high tumours, eight (73%) were MSI-H and three (27%) were microsatellite stable and harboured POLE or MSH6 mutations. High TMB had a trend for a better outcome than low/intermediate TMB (hazard ratio for overall survival 0.45, 95% confidence interval 0.28-1.33; P = 0.106). No interaction effect between TMB and treatment arm was observed. Seventeen mut/Mb was identified as the optimal threshold of TMB for predicting MSI status. Actionable alterations were found in 62 (21%) of 296 patients. CONCLUSIONS Genomic profiling provides an overview of the genomic landscape of mCRC in a single analysis, including actionable targets and markers of immune sensitivity.
Collapse
|
73
|
Arrichiello G, Poliero L, Borrelli C, Paragliola F, Nacca V, Napolitano S, Corte CMD, Martini G, Martinelli E. Immunotherapy in colorectal cancer: is the long-awaited revolution finally happening? Cancer Treat Res Commun 2021; 28:100442. [PMID: 34391139 DOI: 10.1016/j.ctarc.2021.100442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022]
Abstract
Immunotherapy has recently become a major treatment modality for several types of solid tumours, achieving remarkable and long-lasting remissions. In metastatic colorectal cancer patients (mCRC), immune checkpoint inhibitors (ICIs) were found to be effective as treatment for deficient mismatch repair (dMMR)/ microsatellite instability high (MSI-H) tumours and received regulatory approval for this indication. However, mCRC is a complex disease and dMMR/MSI-H tumours represent a minority of the cases; therefore, new strategies are needed to extend the benefits of immunotherapy to a larger population of patients. This review explores the immunological differences between dMMR/MSI-H and proficient mismatch repair (pMMR)/ microsatellite instability low (MSI-L) tumours, focuses on new proposed biomarkers to predict response to immunotherapy and illustrates results reported from the main clinical trials with immunotherapeutic agents in CRC, addressing the most promising approaches being currently developed.
Collapse
Affiliation(s)
- Gianluca Arrichiello
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Luca Poliero
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Carola Borrelli
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Fernando Paragliola
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Valeria Nacca
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Stefania Napolitano
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Martini
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Erika Martinelli
- Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
74
|
Liu N, Shan F, Ma M. Strategic enhancement of immune checkpoint inhibition in refractory Colorectal Cancer: Trends and future prospective. Int Immunopharmacol 2021; 99:108017. [PMID: 34352568 DOI: 10.1016/j.intimp.2021.108017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC), known as a frequently fatal disease, ranking as the third most common malignancy, is the second leading cause of cancer related mortality worldwide. Metastases are common in CRC patients which account for approximately 25% of the patients at diagnosis, 50% of patients during treatment which is associated closely with CRC mortality. Conventional therapies such as surgery, chemotherapy, and radiotherapy are standards of care for the treatment of CRC patients. However, primary tumor recurrence and secondary disease in patients receiving standard of care treatment modalities occur in 50% of patients so that new treatment modalities are needed. Immune checkpoint inhibition (ICI) has transformed the management of patients suffered from metastatic CRC (mCRC) with mismatch repair deficiency (dMMR) and microsatellite instability (MSI) -high (MSI-H) while manifests ineffectiveness in preserved mismatch repair (pMMR) or microsatellite stable (MSS) "cold" tumors which makes up the majority (95%) of mCRC. In this review, we mainly lay emphasis on the development of combinations in therapy strategies with ICIs with other immune based treatment approaches to increase the intra-tumoral immune response and render tumors 'immune-reactive', thereby increasing the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
75
|
João Pissarra A, Abreu C, Mansinho A, Lúcia Costa A, Dâmaso S, Lobo-Martins S, Martins M, Costa L. Landscape of Current Targeted Therapies for Advanced Colorectal Cancer. COLORECTAL CANCER 2021. [DOI: 10.5772/intechopen.93978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent and lethal cancer types worldwide. While surgery with chemotherapy and radiotherapy remains the only curative approach for localized CRC, for metastatic disease the therapeutic landscape has significantly evolved over the last years. Development and approval of novel targeted therapies, such as monoclonal antibodies against EGFR and VEGF, have significantly increased the median survival of patients with metastatic disease, with some trials reporting a benefit over 40 months. Increasing accessibility of high throughput sequencing has unraveled several new therapeutic targets. Actionable alterations, such as HER2 overexpression, BRAF mutations, and NTRK fusions, are currently available in metastatic disease, providing significant therapeutic opportunities for these patients, while new emerging agents, as immune checkpoint inhibitors, promise better treatment options in the near future. In this chapter, an overview of established and future CRC targeted therapies in the clinical setting is provided, as well as their mechanism of action, limitations, and future applicability.
Collapse
|
76
|
Immunogenomics in personalized cancer treatments. J Hum Genet 2021; 66:901-907. [PMID: 34193979 DOI: 10.1038/s10038-021-00950-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
Recent advances in next-generation sequencing technologies have led to significant improvements in cancer genomic research and cancer treatment. Through the use of comprehensive cancer genome data, precision medicine has become more of a reality; albeit, at present, only ~10-15% of patients can benefit from current genomic testing practices. Improvements in cancer genome analyses have contributed to a better understanding of antitumor immunity and have provided solutions for targeting highly cancer-specific neoantigens generated from somatic mutations in individual patients. Since then, numerous studies have demonstrated the importance of neoantigens and neoantigen-reactive T cells in the tumor microenvironment and how their presence influences the beneficial responses associated with various cancer immunotherapies, including immune checkpoint inhibitor therapy. Indeed, cancer immunotherapies that explicitly target neoantigens specific to individual cancer patients would lead to the ultimate form of cancer precision medicine. For this to be realized, several issues would need to be overcome, including the accurate prediction and selection of neoantigens that can induce cytotoxic T cells in individual patients. The precise prediction of target neoantigens will likely accelerate the development of personalized immunotherapy including cancer vaccines and T-cell receptor-engineered T-cell therapy for patients with cancer.
Collapse
|
77
|
Wookey V, Grothey A. Update on the role of pembrolizumab in patients with unresectable or metastatic colorectal cancer. Therap Adv Gastroenterol 2021; 14:17562848211024460. [PMID: 34262612 PMCID: PMC8246487 DOI: 10.1177/17562848211024460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type in both men and women in the USA. Most patients with CRC are diagnosed as local or regional disease. However, the survival rate for those diagnosed with metastatic disease remains disappointing, despite multiple treatment options. Cancer therapies for patients with unresectable or metastatic CRC are increasingly being driven by particular biomarkers. The development of various immune checkpoint inhibitors has revolutionized cancer therapy over the last decade by harnessing the immune system in the treatment of cancer, and the role of immunotherapy continues to expand and evolve. Pembrolizumab is an anti-programmed cell death protein 1 immune checkpoint inhibitor and has become an essential part of the standard of care in the treatment regimens for multiple cancer types. This paper reviews the increasing evidence supporting and defining the role of pembrolizumab in the treatment of patients with unresectable or metastatic CRC.
Collapse
Affiliation(s)
- Vanessa Wookey
- Department of Hematology and Oncology, University of Tennessee Health Science Center, Memphis, TN, USA
- West Cancer Center and Research Institute, Germantown, TN, USA
| | - Axel Grothey
- West Cancer Center and Research Institute, 7945 Wolf River Blvd, Germantown, TN 38138, USA
| |
Collapse
|
78
|
Ghidini M, Fusco N, Salati M, Khakoo S, Tomasello G, Petrelli F, Trapani D, Petrillo A. The Emergence of Immune-checkpoint Inhibitors in Colorectal Cancer Therapy. Curr Drug Targets 2021; 22:1021-1033. [PMID: 33563194 DOI: 10.2174/1389450122666210204204415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Immunotherapy has revolutionized the treatment landscape in a number of solid tumors. In colorectal cancer, evidence suggests that microsatellite high (MSI-H) tumors are the most responsive to immune checkpoint blockade due to increased neo-antigen load and a favorable tumor microenvironment. Indeed, Pembrolizumab now represents a first-line option in such patients. However, MSI-H tumors represent the minority and a proportion of patients' progress despite initially responding. Trials are investigating different immunotherapy combinatorial strategies to enhance immune response in less immunogenic colorectal tumors. Such strategies include dual immune checkpoint blockade, combining immune checkpoint inhibitors with other treatment modalities such as radiotherapy, chemotherapy or other biological or targeted agents. Moreover, there is an increasing drive to identify biomarkers to better select patients most likely to respond to immunotherapy and understand intrinsic and acquired resistance mechanisms. Apart from MSI-H tumors, there is a strong rationale to suggest that tumors with alterations in DNA polymerase epsilon and DNA polymerase delta are also likely to respond to immunotherapy and trials in this subpopulation are underway. Other strategies such as priming O6-methylguanineDNA methyltransferase silenced tumors with alkylating agents to make them receptive to immune checkpoint blockade are also being investigated. Here we discuss different colorectal subpopulations together with their likelihood of response to immune checkpoint blockade and strategies to overcome barriers to a successful clinical outcome. We summarize evidence from published clinical trials and provide an overview of trials in progress whilst discussing newer immunotherapy strategies such as adoptive cell therapies and cancer vaccines.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Massimiliano Salati
- PhD Program, Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Shelize Khakoo
- Department of Medicine, The Royal Marsden Hospital NHS Foundation Trust, London and Surrey, United Kingdom
| | - Gianluca Tomasello
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fausto Petrelli
- Medical Oncology Unit, Azienda Socio-Sanitaria Territoriale Bergamo Ovest, Treviglio, Bergamo, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
79
|
Wang C, Fakih M. Targeting MSS colorectal cancer with immunotherapy: are we turning the corner? Expert Opin Biol Ther 2021; 21:1347-1357. [PMID: 34030532 DOI: 10.1080/14712598.2021.1933940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immunotherapy with checkpoint inhibition has shown potent antitumor activity in patients with microsatellite instability (MSI) metastatic cancer. Microsatellite stable (MSS) colorectal cancer has long been considered resistant to immunotherapy. AREAS COVERED In this review, we provide an overview of current progress on strategies to overcome the resistance to immunotherapy in MSS colorectal cancer. EXPERT OPINION Emerging evidence suggest that combination of immune modulators such as regorafenib may improve the responsiveness of MSS colorectal cancer to checkpoint blockade. In addition, signs of clinical activity have also been observed in other combination strategies, such as the combination of checkpoint blockade with Stat3 inhibitor, or bispecific T-cell engagers. Nevertheless, predictive biomarkers that can identify patients who may benefit from immunotherapy are key for its implementation in clinical setting. Metastatic disease sites may predict for the response or resistance to checkpoint blockade, with liver metastases emerging as a strong predictive biomarker of lack of benefit from PD-1 targeting, even with combination therapies. Additional efforts are required to study the mechanism of resistance and to develop novel therapeutic strategies to overcome immune resistance. ABBREVIATIONS CEA: carcinoembryonic antigen; CR: complete response; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; DCR: disease control rate; MSI-H: microsatellite instability-high; MSS: Microsatellite stable (MSS); OS: overall survival; PD-1: programmed cell death protein 1; PD-L1: programmed death-ligand receptor 1; PR: partial response; PFS: progression-free survival; SD: stable disease; TMB: tumor mutation burden; VEGFR: vascular endothelial growth factor receptor.
Collapse
Affiliation(s)
- Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
80
|
Yuan H, Ji J, Shi M, Shi Y, Liu J, Wu J, Yang C, Xi W, Li Q, Zhu W, Li J, Gong X, Zhang J. Characteristics of Pan-Cancer Patients With Ultrahigh Tumor Mutation Burden. Front Oncol 2021; 11:682017. [PMID: 33968789 PMCID: PMC8100597 DOI: 10.3389/fonc.2021.682017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tumor mutation burden has been proven to be a good predictor for the efficacy of immunotherapy, especially in patients with hypermutation. However, most research focused on the analysis of hypermutation in individual tumors, and there is a lack of integrated research on the hypermutation across different cancers. This study aimed to characterize hypermutated patients to distinguish between these patients and non-hypermutated patients. METHODS A total of 5,980 tumor samples involving 23 types of solid tumors from the in-house database were included in the study. Based on the cutoff value of tumor mutation burden (TMB), all samples were divided into hypermutated or non-hypermutated groups. Microsatellite instability status, PD-L1 expression and other mutation-related indicators were analyzed. RESULTS Among the 5,980 tumor samples, 1,164 were selected as samples with hypermutation. Compared with the non-hypermutated group, a significant increase in the mutation rates of DNA mismatch repair genes and polymerase genes was detected in the hypermutated group, and there was an overlap between high TMB and high microsatellite instability or high PD-L1. In addition, we found that EGFR, KRAS and PIK3CA had a high frequency of both single nucleotide variation and copy number variation mutations. These identified mutant genes were enriched in the oncogenic signaling pathway and the DNA damage repair pathway. At the same time, the somatic cell characteristics and distribution of the two groups were significantly different. CONCLUSIONS This study identified genetic and phenotypic characteristics of hypermutated tumors and demonstrated that DNA damage repair is critically involved in hypermutation.
Collapse
Affiliation(s)
- Hong Yuan
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Liu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyuan Li
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Wei Zhu
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jingjie Li
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Xiaoli Gong
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
81
|
Manz SM, Losa M, Fritsch R, Scharl M. Efficacy and side effects of immune checkpoint inhibitors in the treatment of colorectal cancer. Therap Adv Gastroenterol 2021; 14:17562848211002018. [PMID: 33948110 PMCID: PMC8053828 DOI: 10.1177/17562848211002018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancers (CRCs) remain one of the most common and challenging neoplasia in the Western world. The response rate of immunotherapeutic treatment approaches in a subset of advanced CRCs is remarkable and has sustainably changed treatment regimens. Unfortunately, currently available immunotherapeutics only displayed significant antitumoral activity - in terms of progression free survival (PFS) and objective response rate (ORR) - in microsatellite instability-high (MSI-H)/DNA mismatch repair deficient (dMMR) CRCs. Subsequently, these remarkable results had led to the US Food and Drug Administration's approval of both immune checkpoint inhibitors (ICIs) pembrolizumab and nivolumab in the treatment of advanced MSI-H/dMMR CRCs. However, in microsatellite stable (MSS)/DNA mismatch repair proficient (pMMR) CRCs, ICIs have clearly failed to meet their expectations and are therefore not considered effective. As the vast majority of CRCs display a molecular MSS/pMMR profile, current treatment approaches endeavor to improve tumor immunogenicity that consecutively leads to increased proinflammatory cytokine levels as well as tumor infiltrating T-cells, which in turn may be targeted by various immunotherapeutic agents. Therefore, ongoing studies are investigating novel synergistic therapy modalities and approaches to overcome a "cold" to "hot" tumor conversion in MSS/pMMR CRCs. In this review, we summarize the efficacy and possible immune-related adverse events as well as novel therapeutic approaches of ICIs in the treatment of MSI-H/dMMR and MSS/pMMR CRCs.
Collapse
Affiliation(s)
- Salomon M. Manz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Losa
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ralph Fritsch
- Center for Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| |
Collapse
|
82
|
O’Connell E, Reynolds IS, McNamara DA, Burke JP, Prehn JHM. Resistance to Cell Death in Mucinous Colorectal Cancer-A Review. Cancers (Basel) 2021; 13:cancers13061389. [PMID: 33808549 PMCID: PMC8003305 DOI: 10.3390/cancers13061389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Mucinous colorectal cancer (CRC) is estimated to occur in approximately 10-15% of CRC cases and is characterized by abundant extracellular mucin. Mucinous CRC is frequently associated with resistance to apoptosis. Inferior prognosis is observed in mucinous CRC, particularly in rectal cancer and metastatic cases. Mucins are heavily glycosylated secretory or transmembrane proteins that participate in protection of the colonic epithelium. MUC2 overexpression is a hallmark of mucinous CRCs. Mucinous CRC is associated with KRAS and BRAF mutation, microsatellite instability and the CpG island methylator phenotype. Mutations of the APC gene and p53 mutations which are characteristic non-mucinous colorectal adenocarcinoma are less common in mucinous CRC. Both physical and anti-apoptotic properties of mucin provide mechanisms for resistance to cell death. Mucin glycoproteins are associated with decreased expression of pro-apoptotic proteins, increased expression of anti-apoptotic proteins and increased cell survival signaling. The role for BCL-2 proteins, including BCL-XL, in preventing apoptosis in mucinous CRC has been explored to a limited extent. Additional mechanisms opposing cell death include altered death receptor expression and altered mutation rates in genes responsible for chemotherapy resistance. The roles of alternate cell death programs including necroptosis and pyroptosis are not well understood in mucinous CRC. While the presence of MUC2 is associated with an immunosuppressive environment, the tumor immune environment of mucinous CRC and the role of immune-mediated tumor cell death likewise require further investigation. Improved understanding of cell death mechanisms in mucinous CRC may allow modification of currently used regimens and facilitate targeted treatment.
Collapse
Affiliation(s)
- Emer O’Connell
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland; (E.O.); (I.S.R.); (D.A.M.); (J.P.B.)
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ian S. Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland; (E.O.); (I.S.R.); (D.A.M.); (J.P.B.)
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Deborah A. McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland; (E.O.); (I.S.R.); (D.A.M.); (J.P.B.)
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - John P. Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland; (E.O.); (I.S.R.); (D.A.M.); (J.P.B.)
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Correspondence:
| |
Collapse
|
83
|
Xiao J, Li W, Huang Y, Huang M, Li S, Zhai X, Zhao J, Gao C, Xie W, Qin H, Cai S, Bai Y, Lan P, Zou Y. A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer. BMC Cancer 2021; 21:282. [PMID: 33726687 PMCID: PMC7962287 DOI: 10.1186/s12885-021-07942-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
Background Mismatch repair (MMR)/microsatellite instability (MSI) and tumor mutational burden (TMB) are independent biomarkers that complement each other for predicting immune checkpoint inhibitors (ICIs) efficacy. Here we aim to establish a strategy that integrates MSI and TMB determination for colorectal cancer (CRC) in one single assay. Methods Surgical or biopsy specimens retrospectively collected from CRC patients were subjected to NGS analysis. Immunohistochemistry (IHC) and polymerase chain reaction (PCR) were also used to determine MMR/MSI for those having enough tissues. The NGS-MSI method was validated against IHC and PCR. The MSI-high (MSI-H) or microsatellite stable (MSS) groups were further stratified based on tumor mutational burden, followed by validation using the The Cancer Genome Atlas (TCGA) CRC dataset. Immune microenvironment was evaluated for each subgroup be profiling the expression of immune signatures. Results Tissues from 430 CRC patients were analyzed using a 381-gene NGS panel. Alterations in KRAS, NRAS, BRAF, and HER2 occurred at a significantly higher incidence among MSI-H tumors than in MSS patients (83.6% vs. 58.4%, p = 0.0003). A subset comprising 98 tumors were tested for MSI/MMR using all three techniques, where NGS proved to be 99.0 and 93.9% concordant with PCR and IHC, respectively. Four of the 7 IHC-PCR discordant cases had low TMB (1.1–8.1 muts/Mb) and were confirmed to have been misdiagnosed by IHC. Intriguingly, 4 of the 66 MSS tumors (as determined by NGS) were defined as TMB-high (TMB-H) using a cut-off of 29 mut/Mb. Likewise, 15 of the 456 MSS tumors in the TCGA CRC cohort were also TMB-H with a cut-off of 9 muts/Mb. Expression of immune signatures across subgroups (MSS-TMB-H, MSI-H-TMB-H, and MSS-TMB-L) confirmed that the microenvironment of the MSS-TMB-H tumors was similar to that of the MSI-H-TMB-H tumors, but significantly more immune-responsive than that of the MSS-TMB-L tumors, indicating that MSI combined with TMB may be more precise than MSI alone for immune microenvironment prediction. Conclusion This study demonstrated that NGS panel-based method is both robust and tissue-efficient for comprehensive molecular diagnosis of CRC. It also underscores the importance of combining MSI and TMB information for discerning patients with different microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07942-1.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenyun Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Shanshan Li
- Department of Medical Oncology, The Sixth Affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Zhai
- Department of Medical Oncology, The Sixth Affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Chan Gao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Wenzhuan Xie
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hao Qin
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai, China
| | - Shangli Cai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yuezong Bai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated hospital of Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
| | - Yifeng Zou
- Department of Colorectal Surgery, The Sixth Affiliated hospital of Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
84
|
Chen J, Lou H. Complete Response to Pembrolizumab in Advanced Colon Cancer Harboring Somatic POLE F367S Mutation with Microsatellite Stability Status: A Case Study. Onco Targets Ther 2021; 14:1791-1796. [PMID: 33727829 PMCID: PMC7955730 DOI: 10.2147/ott.s300987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Polymerase epsilon (POLE) mutations are considered as one of the most potential and promising biomarkers for immune checkpoint inhibitors (ICIs) in patients with colorectal cancer. However, the treatment of ICIs sometimes also resulted in unsatisfactory results in patients with POLE mutations, which revealed that not all mutations on POLE contribute to tumor regression in colorectal cancer. Case Presentation We herein reported a case in which the patient with advanced colon cancer harboring somatic POLE F367S mutation, along with microsatellite stability status, has achieved efficacy of complete response to the programmed cell death 1 (PD-1) receptor inhibitor pembrolizumab, as well as a progression-free survival more than 49 months, and still in extension. Conclusion Somatic POLE F367S mutation might be presented as a sensitive predictor to pembrolizumab in patients with colon cancer.
Collapse
Affiliation(s)
- Jianxin Chen
- Department of Medical Oncology, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, People's Republic of China
| | - Haizhou Lou
- Department of Oncology, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| |
Collapse
|
85
|
Cui G. The Mechanisms Leading to Distinct Responses to PD-1/PD-L1 Blockades in Colorectal Cancers With Different MSI Statuses. Front Oncol 2021; 11:573547. [PMID: 33763344 PMCID: PMC7982849 DOI: 10.3389/fonc.2021.573547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Current clinical studies showed distinct therapeutic outcomes, in which CRC patients with mismatch repair-deficient (dMMR)/microsatellite instability high (MSI-H) seem to be relatively more "sensitive" in response to anti-programmed death-1 receptor (PD-1)/programmed death-1 receptor ligand 1 (PD-L1) therapy than those with mismatch repair-proficient (pMMR)/microsatellite instability-low (MSI-L). The mechanisms by which the same PD-1/PD-L1 blockades lead to two distinct therapeutic responses in CRC patients with different MSI statuses remain poorly understood and become a topic of great interest in both basic research and clinical practice. In this review of the potential mechanisms for the distinct response to PD-1/PD-L1 blockades between dMMR/MSI-H CRCs and pMMR/MSI-L CRCs, relevant references were electronically searched and collected from databases PubMed, MEDLINE, and Google scholar. Sixty-eight articles with full text and 10 articles by reference-cross search were included for final analysis after eligibility selection according to the guidelines of PRISMA. Analysis revealed that multiple factors e.g. tumor mutation burden, immune cell densities and types in the tumor microenvironment, expression levels of PD-1/PD-L1 and cytokines are potential determinants of such distinct response to PD-1/PD-L1 blockades in CRC patients with different MSI statuses which might help clinicians to select candidates for anti-PD-1/PD-L1 therapy and improve therapeutic response in patients with CRC.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Faculty of Health Science, Nord University, Bodø, Norway
| |
Collapse
|
86
|
Roufas C, Georgakopoulos-Soares I, Zaravinos A. Molecular correlates of immune cytolytic subgroups in colorectal cancer by integrated genomics analysis. NAR Cancer 2021; 3:zcab005. [PMID: 34316699 PMCID: PMC8210146 DOI: 10.1093/narcan/zcab005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Although immune checkpoint inhibition (ICI) has shown promising results in metastatic dMMR/MSI-H colorectal cancer (CRC), the majority of pMMR/MSS patients do not respond to such therapies. To systematically evaluate the determinants of immune response in CRC, we explored whether patients with diverse levels of immune cytolytic activity (CYT) have different patterns of chromothripsis and kataegis. Analysis of CRC genomic data from the TCGA, indicated an excess of chromothriptic clusters among CYT-low colon adenocarcinomas, affecting known cancer drivers (APC, KRAS, BRAF, TP53 and FBXW7), immune checkpoints (CD274, PDCD1LG2, IDO1/2 and LAG3) and immune-related genes (ENTPD1, PRF1, NKG7, FAS, GZMA/B/H/K and CD73). CYT-high tumors were characterized by hypermutation, enrichment in APOBEC-associated mutations and kataegis events, as well as APOBEC activation. We also assessed differences in the most prevalent mutational signatures (SBS15, SBS20, SBS54 and DBS2) across cytolytic subgroups. Regarding the composition of immune cells in the tumor milieu, we found enrichment of M1 macrophages, CD8+ T cells and Tregs, as well as higher CD8+ T-cells/Tregs ratio among CYT-high tumors. CYT-high patients had higher immunophenoscores, which is predictive of their responsiveness if they were to be treated with anti-PD-1 alone or in combination with anti-CTLA-4 drugs. These results could have implications for patient responsiveness to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Constantinos Roufas
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Apostolos Zaravinos
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
87
|
Cohen R, Rousseau B, Vidal J, Colle R, Diaz LA, André T. Immune Checkpoint Inhibition in Colorectal Cancer: Microsatellite Instability and Beyond. Target Oncol 2021; 15:11-24. [PMID: 31786718 DOI: 10.1007/s11523-019-00690-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immune checkpoints inhibitors (ICIs) have been a breakthrough, with unique response and survival patterns compared with chemotherapy for patients with advanced Mismatch Repair-deficient/Microsatellite instable (dMMR/MSI) colorectal cancer, but have shown disappointing results in Mismatch Repair-proficient/Microsatellite stable (pMMR/MSS) colorectal cancer. As up to 50% of patients harboring dMMR/MSI advanced cancers will ultimately progress after PD-1 blockade, biomarkers are needed to predict response/resistance to immunotherapy and to select patients for immunomodulating combination therapies. Patients with pMMR/MSS colorectal cancer present with distinct immune profiles compared to dMMR/MSI tumors, giving evidence of different immune escape mechanisms, which could be overcome through individualized immunotherapeutic strategies. In this review we discuss the latest developments in the field of immunotherapy for dMMR/MSI and pMMR/MSS colorectal cancers, and unresolved questions and considerations concerning the use of ICI therapies in this population. Future immunomodulation strategies based on biomarker selection (tumor mutational burden, Immunoscore®, mutational profile) are discussed.
Collapse
Affiliation(s)
- Romain Cohen
- Sorbonne Université, Medical Oncology Department, Hôpital Saint-Antoine, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75012, Paris, France.
| | - Benoît Rousseau
- Department of Medicine-Solid Tumor Division, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Joana Vidal
- Department of Medicine-Solid Tumor Division, Memorial Sloan Kettering Cancer Center, New York, USA
- Medical Oncology Department, Hospital del Mar-IMIM, CIBERONC Instituto de Salud Carlos III, Barcelona, Spain
| | - Raphaël Colle
- Sorbonne Université, Medical Oncology Department, Hôpital Saint-Antoine, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75012, Paris, France
| | - Luis A Diaz
- Department of Medicine-Solid Tumor Division, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Thierry André
- Sorbonne Université, Medical Oncology Department, Hôpital Saint-Antoine, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75012, Paris, France
| |
Collapse
|
88
|
Tarantino P, Mazzarella L, Marra A, Trapani D, Curigliano G. The evolving paradigm of biomarker actionability: Histology-agnosticism as a spectrum, rather than a binary quality. Cancer Treat Rev 2021; 94:102169. [PMID: 33652262 DOI: 10.1016/j.ctrv.2021.102169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Precision medicine is progressively revolutionizing oncology, through the identification of biomarkers predictive of treatment response in cancer patients. For three of such biomarkers, namely NTRK-fusions, microsatellite instability and high tumor mutational burden, drugs have been approved by regulatory agencies regardless of tumor histology, realizing the paradigm of histology-agnostic actionability. Several additional biomarkers are being studied in a histology-agnostic manner, and may in the future expand this list. However, most available evidence suggest that histology-agnosticism may be the extreme of a continuous spectrum of actionability, rather than a binary quality. The present review recapitulates such evidence, highlighting opportunities and challenges posed by the emergence of the spectrum of biomarker actionability in the context of a prevalently histology-based oncology.
Collapse
Affiliation(s)
- Paolo Tarantino
- European Institute of Oncology IRCCS, Milan, Italy; University of Milan, Milan, Italy
| | | | - Antonio Marra
- European Institute of Oncology IRCCS, Milan, Italy; University of Milan, Milan, Italy
| | | | - Giuseppe Curigliano
- European Institute of Oncology IRCCS, Milan, Italy; University of Milan, Milan, Italy.
| |
Collapse
|
89
|
Ooki A, Shinozaki E, Yamaguchi K. Immunotherapy in Colorectal Cancer: Current and Future Strategies. J Anus Rectum Colon 2021; 5:11-24. [PMID: 33537496 PMCID: PMC7843143 DOI: 10.23922/jarc.2020-064] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the recent advances in the systemic treatment of metastatic colorectal cancer (mCRC), prognostic outcomes have remained to be poor. Thus, what is needed is an innovative treatment approach. Immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) have exhibited a durable response and dominated the treatment of various tumor types. However, in mCRC, the clinical benefit is limited in patients with deficient mismatch repair (dMMR)/high levels of microsatellite instability (MSI-H), comprising approximately 5% of mCRC cases, and some do not respond to ICI treatment. Thus, further research is needed to identify predictive biomarkers. The most urgent need is developing effective immunotherapy for patients with proficient mismatch repair (pMMR)/microsatellite stable (MSS) cancer, which comprises 95% of mCRC cases. Tumors with the pMMR/MSS phenotype often exhibit a lower tumor mutation burden and fewer tumor-infiltrating lymphocytes than dMMR/MSI-H, leading to immune tolerance and evasion in the tumor microenvironment. Therefore, a number of investigative studies aimed at overcoming tumor resistance in current immunotherapy approaches are underway. A better understanding on the complexity and diversity of the immune system's functioning within the tumor microenvironment will increase the potential for developing predictive biomarkers and novel therapeutic strategies to potentiate anti-tumor immunity in patients with mCRC. In this review, we summarize the most recent advances in immunotherapy based on the findings of pivotal clinical trials for patients with mCRC, highlighting potent therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
90
|
Almquist DR, Ahn DH, Bekaii-Saab TS. The Role of Immune Checkpoint Inhibitors in Colorectal Adenocarcinoma. BioDrugs 2021; 34:349-362. [PMID: 32246441 DOI: 10.1007/s40259-020-00420-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade, immune checkpoint inhibitors (ICI) have proven to be promising agents in a number of solid tumor malignancies. Pembrolizumab and nivolumab are ICIs that target programmed cell death protein 1 and both have been approved by the US Food and Drug Administration for the treatment of microsatellite instability-high/DNA mismatch repair deficient (MSI-H/dMMR) colorectal cancer (CRC). In MSI-H/dMMR CRC, these agents were found to have considerable antitumor activity and are now used in the treatment of this disease. However, MSI-H/dMMR tumors account for only 5% of metastatic CRC and the remaining patients are identified as being microsatellite stable/DNA mismatch repair proficient (MSS/pMMR). In MSS/pMMR CRC, ICIs were found to have no antitumor activity and they are not currently used in the treatment of the disease. However, ongoing research is expanding our knowledge of how the human immune system interacts with cancer cells. Identifying mechanisms to improve our immune response to MSS/pMMR CRC is of utmost importance. In this review, we discuss available clinical data and the emerging role of immune-based strategies to overcome the resistance to ICI therapy in the treatment of MSS/pMMR CRC.
Collapse
Affiliation(s)
- Daniel R Almquist
- Division of Hematology and Medical Oncology, Mayo Clinic Cancer Center, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Daniel H Ahn
- Division of Hematology and Medical Oncology, Mayo Clinic Cancer Center, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology and Medical Oncology, Mayo Clinic Cancer Center, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
91
|
Hildebrand LA, Pierce CJ, Dennis M, Paracha M, Maoz A. Artificial Intelligence for Histology-Based Detection of Microsatellite Instability and Prediction of Response to Immunotherapy in Colorectal Cancer. Cancers (Basel) 2021; 13:391. [PMID: 33494280 PMCID: PMC7864494 DOI: 10.3390/cancers13030391] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Microsatellite instability (MSI) is a molecular marker of deficient DNA mismatch repair (dMMR) that is found in approximately 15% of colorectal cancer (CRC) patients. Testing all CRC patients for MSI/dMMR is recommended as screening for Lynch Syndrome and, more recently, to determine eligibility for immune checkpoint inhibitors in advanced disease. However, universal testing for MSI/dMMR has not been uniformly implemented because of cost and resource limitations. Artificial intelligence has been used to predict MSI/dMMR directly from hematoxylin and eosin (H&E) stained tissue slides. We review the emerging data regarding the utility of machine learning for MSI classification, focusing on CRC. We also provide the clinician with an introduction to image analysis with machine learning and convolutional neural networks. Machine learning can predict MSI/dMMR with high accuracy in high quality, curated datasets. Accuracy can be significantly decreased when applied to cohorts with different ethnic and/or clinical characteristics, or different tissue preparation protocols. Research is ongoing to determine the optimal machine learning methods for predicting MSI, which will need to be compared to current clinical practices, including next-generation sequencing. Predicting response to immunotherapy remains an unmet need.
Collapse
Affiliation(s)
- Lindsey A. Hildebrand
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
| | - Colin J. Pierce
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
| | - Michael Dennis
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
- Division of Hematology Oncology, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Munizay Paracha
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
| | - Asaf Maoz
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; (L.A.H.); (C.J.P.); (M.D.); (M.P.)
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
92
|
He J, Ouyang W, Zhao W, Shao L, Li B, Liu B, Wang D, Han-Zhang H, Zhang Z, Shao L, Li W. Distinctive genomic characteristics in POLE/POLD1-mutant cancers can potentially predict beneficial clinical outcomes in patients who receive immune checkpoint inhibitor. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:129. [PMID: 33569431 PMCID: PMC7867935 DOI: 10.21037/atm-20-7553] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Mutations in POLE /POLD1 proofreading domain can cause deficiencies in DNA repair, conferring ultramutated cancer phenotypes. Preliminary clinical studies have revealed an association between POLE/POLD1 mutations and beneficial clinical outcomes to immune checkpoint inhibitor (ICI) therapy This study aims to investigate the genomic characteristics of POLE/POLD-mutant tumors and the prognostic value of POLE/POLD mutation for ICI treatment. Methods Genomic data of 21,074 patients with 23 cancer types were retrieved from Burning Rock variant database (BR VarDB). The prevalence and spectra of POLE and POLD1 mutations were assessed and compared with that in The Cancer Genome Atlas (TCGA) samples. The correlations of POLE/POLD1 mutation with tumor mutational burden (TMB) and microsatellite instability (MSI) were investigated. The prognostic value of POLE/POLD1 mutations was also explored in 2,487 ICI-treated patients from published studies. Results BR VarDB samples displayed a similar mutational prevalence of POLE (3.2% vs. 3.2%) and POLD1 (1.4% vs. 1.6%, P=0.248) versusTCGA samples, but a slightly lower frequency of POLE and POLD1 co-mutations (0.21% vs. 0.43%, P<0.001). POLE/POLD1-mutant tumors harbored increased TCT→TAT and TCG→TTG transversions, and genomic signatures associated with DNA mismatch repair (MMR) deficiency and ultra-hypermuation. Furthermore, tumors with POLE/POLD1 proofreading mutation showed a significantly higher TMB than tumors with non-proofreading mutations (P<0.01), although both possessed a higher TMB than POLE/POLD1 wild-type (WT) tumors (P<0.0001 and P<0.0001, respectively). MSI was commonly observed in tumors harboring dominant clone of POLE/POLD1 mutation (10.2%), but occurred rarely in POLE/POLD1 WT tumors (0.5%) and tumors with accumulating sub-cloned POLE/POLD1 mutation (0%). Survival analysis revealed that POLE/POLD1 mutation was not independently correlated with longer survival after adjusting for TMB and other factors (HR =0.86, P=0.372). However, patients harboring POLE/POLD1 mutation demonstrated a higher response rate than patients with POLE/ POLD1 WT tumors (35.2% vs. 19.6%, P=0.0165). Conclusions We delineated distinctive genomic characteristics in POLE/POLD1-mutant tumors, suggesting the potential predictive role of POLE/POLD1 mutations, especially those in the proofreading domain, for beneficial outcomes of immunotherapy. Our results also suggest that MSI caused by a loss-of-function mutation in the MMR pathway tends to result from POLE/POLD1 proofreading deficiency in POLE/POLD1-mutant tumors with MSI.
Collapse
Affiliation(s)
- Junjun He
- Key Laboratory of Pancreatic Disease Research of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ouyang
- Department of Oncology, Zhuzhou Central Hospital, Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Wugan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Shao
- Burning Rock Biotech, Guangzhou, China
| | - Bing Li
- Burning Rock Biotech, Guangzhou, China
| | - Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
93
|
Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov 2020; 10:1808-1825. [PMID: 33139244 PMCID: PMC7710563 DOI: 10.1158/2159-8290.cd-20-0522] [Citation(s) in RCA: 500] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
Tumor mutational burden (TMB), defined as the number of somatic mutations per megabase of interrogated genomic sequence, varies across malignancies. Panel sequencing-based estimates of TMB have largely replaced whole-exome sequencing-derived TMB in the clinic. Retrospective evidence suggests that TMB can predict the efficacy of immune checkpoint inhibitors, and data from KEYNOTE-158 led to the recent FDA approval of pembrolizumab for the TMB-high tumor subgroup. Unmet needs include prospective validation of TMB cutoffs in relationship to tumor type and patient outcomes. Furthermore, standardization and harmonization of TMB measurement across test platforms are important to the successful implementation of TMB in clinical practice. SIGNIFICANCE: Evaluation of TMB as a predictive biomarker creates the need to harmonize panel-based TMB estimation and standardize its reporting. TMB can improve the predictive accuracy for immunotherapy outcomes, and has the potential to expand the candidate pool of patients for treatment with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Dan Sha
- Departments of Medicine and Gastrointestinal Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg Partner Site, Heidelberg, Germany
| | - Frank A Sinicrope
- Departments of Medicine and Gastrointestinal Research Unit, Mayo Clinic, Rochester, Minnesota.
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
94
|
Li X, Ling A, Kellgren TG, Lundholm M, Löfgren-Burström A, Zingmark C, Rutegård M, Ljuslinder I, Palmqvist R, Edin S. A Detailed Flow Cytometric Analysis of Immune Activity Profiles in Molecular Subtypes of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12113440. [PMID: 33228141 PMCID: PMC7699331 DOI: 10.3390/cancers12113440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer is one of the deadliest cancers worldwide, with around 40% of patients dying from distant metastasis. Tumour immune cell infiltration has powerful positive prognostic value in this disease, suggesting immunotherapy as a potential treatment modality. The aim of this explorative study was to assess in detail the local and systemic immune response in different molecular subgroups of colorectal cancer. An improved molecular understanding of the disease may lead to important advances in personalised medicine, identifying prognostic and predictive tools, in addition to new therapeutic targets. Abstract The local anti-tumour immune response has important prognostic value in colorectal cancer (CRC). In the era of immunotherapy, a better understanding of the immune response in molecular subgroups of CRC may lead to significant advances in personalised medicine. On this note, microsatellite instable (MSI) tumours have been characterised by increased immune infiltration, suggesting MSI as a marker for immune inhibitor checkpoint therapy. Here, we used flow cytometry to perform a comprehensive analysis of immune activity profiles in tumour tissues, adjacent non-malignant tissues and blood, from a cohort of 69 CRC patients. We found several signs of immune suppression in tumours compared to adjacent non-malignant tissues, including T cells more often expressing the immune checkpoint molecules programmed cell death protein (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). We further analysed immune cell infiltration in molecular subgroups of CRC. MSI tumours were indeed found to be associated with increased immune infiltration, including increased fractions of PD-1+ T cells. No correlation was, however, found between MSI and the fraction of CTLA-4+ T cells. Interestingly, within the group of patients with microsatellite stable (MSS) tumours, some also presented with increased immune infiltration, including comparably high portions of PD-1+ T cells, but also CTLA-4+ T cells. Furthermore, no correlation was found between PD-1+ and CTLA-4+ T cells, suggesting that different tumours may, to some extent, be regulated by different immune checkpoints. We further evaluated the distribution of immune activity profiles in the consensus molecular subtypes of CRC. In conclusion, our findings suggest that different immune checkpoint inhibitors may be beneficial for selected CRC patients irrespective of MSI status. Improved predictive tools are required to identify these patients.
Collapse
Affiliation(s)
- Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Therese G. Kellgren
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Anna Löfgren-Burström
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Martin Rutegård
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 90185 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, 90185 Umeå, Sweden;
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, 90185 Umeå, Sweden; (X.L.); (A.L.); (T.G.K.); (M.L.); (A.L.-B.); (C.Z.); (R.P.)
- Correspondence: ; Tel.: +46-(0)907854431; Fax: +46-(0)90-121562
| |
Collapse
|
95
|
Kim JH, Kim SY, Baek JY, Cha YJ, Ahn JB, Kim HS, Lee KW, Kim JW, Kim TY, Chang WJ, Park JO, Kim J, Kim JE, Hong YS, Kim YH, Kim TW. A Phase II Study of Avelumab Monotherapy in Patients with Mismatch Repair-Deficient/Microsatellite Instability-High or POLE-Mutated Metastatic or Unresectable Colorectal Cancer. Cancer Res Treat 2020; 52:1135-1144. [PMID: 32340084 PMCID: PMC7577804 DOI: 10.4143/crt.2020.218] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We evaluated the efficacy and safety of avelumab, an anti-PD-L1 antibody, in patients with metastatic or unresectable colorectal cancer (mCRC) with mismatch repair deficiency (dMMR)/microsatellite instability-high (MSI-H) or POLE mutations. MATERIALS AND METHODS In this prospective, open-label, multicenter phase II study, 33 patients with mCRC harboring dMMR/MSI-H or POLE mutations after failure of ≥1st-line chemotherapy received avelumab 10 mg/kg every 2 weeks. dMMR/MSI-H was confirmed with immunohistochemical staining (IHC) by loss of expression of MMR proteins or polymerase chain reaction (PCR) for microsatellite sequences. POLE mutation was confirmed by next-generation sequencing (NGS). The primary endpoint was the objective response rate (ORR) by Response Evaluation Criteria in Solid Tumors ver. 1.1. RESULTS The median age was 60 years, and 78.8% were male. Thirty patients were dMMR/MSI-H and three had POLE mutations. The ORR was 24.2%, and all of the responders were dMMR/MSI-H. For 21 patients with MSI-H by PCR or NGS, the ORR was 28.6%. At a median follow-up duration of 16.3 months, median progression-free survival and overall survival were 3.9 and 13.2 months in all patients, and 8.1 months and not reached, respectively, in patients with MSI-H by PCR or NGS. Dose interruption and discontinuation due to treatment-related adverse events occurred in four and two patients, respectively, with no treatment-related deaths. CONCLUSION Avelumab displayed antitumor activity with manageable toxicity in patients with previously treated mCRC harboring dMMR/MSI-H. Diagnosis of dMMR/MSI-H with PCR or NGS could be complementary to IHC to select patients who would benefit from immunotherapy.
Collapse
Affiliation(s)
- Jwa Hoon Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yeon Baek
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yong Jun Cha
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Wook Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji-Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Won Jin Chang
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology–Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeul Hong Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
96
|
The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. Int J Mol Sci 2020; 21:ijms21186866. [PMID: 32962159 PMCID: PMC7558485 DOI: 10.3390/ijms21186866] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the main population of myeloid cells infiltrating solid tumors and the pivotal orchestrators of cancer-promoting inflammation. However, due to their exceptional plasticity, macrophages can be also key effector cells and powerful activators of adaptive anti-tumor immunity. This functional heterogeneity is emerging in human tumors, colorectal cancer (CRC) in particular, where the dynamic co-existence of different macrophage subtypes influences tumor development, outcome, and response to therapies. Intestinal macrophages are in close interaction with enteric microbiota, which contributes to carcinogenesis and affects treatment outcomes. This interplay may be particularly relevant in CRC, one of the most prevalent and lethal cancer types in the world. Therefore, both macrophages and intestinal microbiota are considered promising prognostic indicators and valuable targets for new therapeutic approaches. Here, we discuss the current understanding of the molecular circuits underlying the interplay between macrophages and microbiota in CRC development, progression, and response to both conventional therapies and immunotherapies.
Collapse
|
97
|
Biomarkers for immune checkpoint therapy targeting programmed death 1 and programmed death ligand 1. Biomed Pharmacother 2020; 130:110621. [PMID: 34321165 DOI: 10.1016/j.biopha.2020.110621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Rapidly increasing usages of immune checkpoint therapy for cancer treatment, particularly monoclonal antibodies that target programmed cell death-1 (PD-1) and its ligand PD-L1, have been achieved due to startling durable therapeutic efficacy with limited toxicity. The therapeutics significantly prolonged the overall survival and progression free survival of patients across multiple cancer types. However, the objective response rate of patients receiving this kind of treatment is substantially low. Therefore, it is of great importance to exploit reliable biomarkers that can robustly predict the therapeutic effects. Several biomarkers have been characterized for the selection of patients, which is mainly based on immunological and genetic criteria. Herein, we focus on the current progress regarding the biomarkers for anti-PD-1/PD-L1 therapy.
Collapse
|
98
|
Burdett N, Desai J. New biomarkers for checkpoint inhibitor therapy. ESMO Open 2020; 5:e000597. [PMID: 32933940 PMCID: PMC7493090 DOI: 10.1136/esmoopen-2019-000597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitor blockade has vastly changed treatment paradigms and improved outcomes of many solid organ malignancies. The achievements of the last decade have transformed the outcomes of several tumour types, most notably metastatic melanoma. There are, however, still large numbers of patients who receive checkpoint inhibitor therapy and do not respond. In addition to potential lack of efficacy, checkpoint inhibitors also come with a unique and sometimes devastating side-effect profile. There exists a strong need for biomarkers to accurately predict response, improve treatment selection and avoid exposing patients to toxicity where there is minimal likelihood of response. There is a wide range of methodologies investigating predictive biomarkers in this space; in this review, we address the major putative biomarkers of interest. These include conventional serum tests such as lymphocyte indices and lactate dehydrogenase, and more novel research markers such as interleukin-6 and T receptor clonality. We discuss tumorous factors that may be of interest in certain tumour types, and finally gene expression profiling. Significant research continues into many of these potential predictive biomarkers in response to the emergent need to better select patients who will benefit from treatment.
Collapse
Affiliation(s)
- Nikki Burdett
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jayesh Desai
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
99
|
Guo Y, Guo X, Wang S, Chen X, Shi J, Wang J, Wang K, Klempner SJ, Wang W, Xiao M. Genomic Alterations of NTRK, POLE, ERBB2, and Microsatellite Instability Status in Chinese Patients with Colorectal Cancer. Oncologist 2020; 25:e1671-e1680. [PMID: 32627883 PMCID: PMC7648350 DOI: 10.1634/theoncologist.2020-0356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/12/2020] [Indexed: 12/27/2022] Open
Abstract
Background The increasing molecular characterization of colorectal cancers (CRCs) has spurred the need to look beyond RAS, BRAF, and microsatellite instability (MSI). Genomic alterations, including ERBB2 amplifications and mutations, POLE mutations, MSI, and NTRK1–3 fusions, have emerged as targets for matched therapies. We sought to study a clinically annotated Chinese cohort of CRC subjected to genomic profiling to explore relative target frequencies. Methods Tumor and matched whole blood were collected from 609 Chinese patients with CRC. Extracted DNA was analyzed for all classes of genomic alterations across 450 cancer‐related genes, including single‐nucleotide variations (SNVs), short and long insertions and deletions (indels), copy number variations, and gene rearrangements. Next‐generation sequencing–based computational algorithms also determined tumor mutational burden and MSI status. Results Alterations in TP53 (76%), APC (72%), and KRAS (46%) were common in Chinese patients with CRC. For the first time, the prevalence of NTRK gene fusion was observed to be around 7% in the MSI‐high CRC cohort. Across the cohort, MSI was found in 9%, ERBB2 amplification in 3%, and POLE pathogenic mutation in 1.5% of patients. Such results mostly parallel frequencies observed in Western patients. However, POLE existed at a higher frequency and was associated with large tumor T‐cell infiltration. Conclusion Comparing to the Western counterparts, POLE mutations were increased in our cohort. The prevalence of NTRK gene fusion was around 7% in the MSI‐high CRC cohort. Increased adoption of molecular profiling in Asian patients is essential for the improvement of therapeutic outcomes. Implications for Practice The increasing use of genomic profiling assays in colorectal cancer (CRC) has allowed for the identification of a higher number of patient subsets benefiting from matched therapies. With an increase in the number of therapies, assays simultaneously evaluating all candidate biomarkers are critical. The results of this study provide an early support for the feasibility and utility of genomic profiling in Chinese patients with CRC. The emergence of precision medicine has identified genomic variants, such as NTRK gene fusion, microsatellite instability (MSI), HER2 amplification, and POLE pathogenic mutation, as potential agonistic biomarkers for immune or targeted therapies. This article examines NTRK, HER2, and POLE in a cohort of Chinese patients with colorectal cancer.
Collapse
Affiliation(s)
- Yun Guo
- First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Xian‐ling Guo
- Department of Medical Oncology, 10th People's Hospital, Tongji UniversityShanghaiPeople's Republic of China
- Department of Medical Oncology, Dermatology Hospital, Tongji UniversityShanghaiPeople's Republic of China
| | - Shuang Wang
- Nanfang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Xinyu Chen
- First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | | | - Jian Wang
- OrigiMedShanghaiPeople's Republic of China
| | - Kai Wang
- OrigiMedShanghaiPeople's Republic of China
| | - Samuel J. Klempner
- Department of Medicine, Massachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Min Xiao
- Shu Lan (Hangzhou) HospitalHangzhouPeople's Republic of China
| |
Collapse
|
100
|
Martini G, Dienstmann R, Ros J, Baraibar I, Cuadra-Urteaga JL, Salva F, Ciardiello D, Mulet N, Argiles G, Tabernero J, Elez E. Molecular subtypes and the evolution of treatment management in metastatic colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920936089. [PMID: 32782486 PMCID: PMC7383645 DOI: 10.1177/1758835920936089] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease representing a therapeutic challenge, which is further complicated by the common occurrence of several molecular alterations that confer resistance to standard chemotherapy and targeted agents. Mechanisms of resistance have been identified at multiple levels in the epidermal growth factor receptor (EGFR) pathway, including mutations in KRAS, NRAS, and BRAF V600E, and in the HER2 and MET receptors. These alterations represent oncogenic drivers that may co-exist in the same tumor with other primary and acquired alterations via a clonal selection process. Other molecular alterations include DNA damage repair mechanisms and rare kinase fusions, potentially offering a rationale for new therapeutic strategies. In recent years, genomic analysis has been expanded by a more complex study of epigenomic, transcriptomic, and microenvironment features. The Consensus Molecular Subtype (CMS) classification describes four CRC subtypes with distinct biological characteristics that show prognostic and potential predictive value in the clinical setting. Here, we review the panorama of actionable targets in CRC, and the developments in more recent molecular tests, such as liquid biopsy analysis, which are increasingly offering clinicians a means of ensuring optimal tailored treatments for patients with metastatic CRC according to their evolving molecular profile and treatment history.
Collapse
Affiliation(s)
- Giulia Martini
- Università della Campania L. Vanvitelli, Naples
- Vall d’Hebron Institute of Oncology, P/ Vall D’Hebron 119-121, Barcelona, 08035, Spain
| | | | - Javier Ros
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | | | | | | | - Davide Ciardiello
- Università della Campania L. Vanvitelli, Naples
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | - Nuria Mulet
- Vall d’Hebron Hospital, Barcelona, Catalunya, Spain
| | | | | | - Elena Elez
- Vall D’Hebron Institute of Oncology P/Vall D’Hebron 119-121, Barcelona, 08035 Spain
| |
Collapse
|