51
|
Brindle HE, Choisy M, Christley R, French N, Griffiths M, Thai PQ, van Doorn HR, Nadjm B. Review of the aetiologies of central nervous system infections in Vietnam. Front Public Health 2025; 12:1396915. [PMID: 39959908 PMCID: PMC11825750 DOI: 10.3389/fpubh.2024.1396915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025] Open
Abstract
Central nervous system (CNS) infections are an important cause of morbidity and mortality in Vietnam, with many studies conducted to determine the aetiology. However, the cause remains unknown in a large proportion of cases. Although a systematic review of the aetiologies of CNS infections was conducted in the Mekong region, there are no known published reviews of the studies specifically in Vietnam. Here, we review the cause of CNS infections in Vietnam while also considering the potential aetiologies where a cause was not identified, based on the literature from the region. In particular, we focus on the most common pathogens in adults and children including Streptococcus suis which is associated with the consumption of raw pig products, and Japanese encephalitis virus, a mosquito-borne pathogen. We also discuss pathogens less commonly known to cause CNS infections in Vietnam but have been detected in neighbouring countries such as Orientia tsutsugamushi, Rickettsia typhi and Leptospira species and how these may contribute to the unknown causes in Vietnam. We anticipate that this review may help guide future public health measures to reduce the burden of known pathogens and broaden testing to help identify additional aetiologies.
Collapse
Affiliation(s)
- Hannah E. Brindle
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert Christley
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Behzad Nadjm
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- The Medical Research Council, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
| |
Collapse
|
52
|
Haidar LL, Wang Y, Gilmour AD, Austria E, Boumelhem BB, Aziz Khan N, Fadzil AA, Fraser ST, Bilek MMM, Akhavan B. Direct covalent attachment of fluorescent molecules on plasma polymerized nanoparticles: a simplified approach for biomedical applications. J Mater Chem B 2025; 13:1666-1680. [PMID: 39717992 DOI: 10.1039/d4tb01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Polymeric nanoparticles surface functionalised with fluorescent molecules hold significant potential for advancing diagnostics and therapeutic delivery. Despite their promise, challenges persist in achieving robust attachment of fluorescent molecules for real-time tracking. Weak physical adsorption, pH-dependent electrostatic capture, and hydrophobic interactions often fail to achieve stable attachment of fluorescent markers. While covalent attachment offers stability, it often entails laborious multi-step wet-chemistry processes. This work demonstrates that plasma polymerised nanoparticles (PPNs) can directly and covalently attach fluorescent molecules with no need for additional interim treatment processes. For the first time, we provide evidence indicating the formation of covalent bonds between the fluorescent molecules and PPN surfaces. Two model fluorescent molecules, fluorescein isothiocyanate (FITC) and Nile blue (NB), were attached to PPNs in a one-step process. The attached molecules remained on nanoparticle surfaces even after detergent washing, as confirmed by a combination of X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, flow cytometry, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. The robust attachment of fluorescent molecules on PPNs ensures their stability and functionality, enhancing the potential of these fluorescently labelled nanoparticles for diagnostic, therapeutic, and imaging applications.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuheng Wang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aaron D Gilmour
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elmer Austria
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Badwi B Boumelhem
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Naveed Aziz Khan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Arifah Anwar Fadzil
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stuart T Fraser
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marcela M M Bilek
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW 2305, Australia
- School of Engineering, University of Newcastle, Callaghan, 2308 NSW, Australia.
| |
Collapse
|
53
|
Chavarria X, Choi JH, Oh S, Kim M, Kang D, Lee IY, Jang YS, Yi MH, Yong TS, Kim JY. Metabarcoding for the Monitoring of the Microbiome and Parasitome of Medically Important Mosquito Species in Two Urban and Semi-urban Areas of South Korea. Curr Microbiol 2025; 82:102. [PMID: 39865193 DOI: 10.1007/s00284-025-04081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale. We used 16S and 18S rRNA gene metabarcoding through iSeq100 sequencing to characterize the microbiome and eukaryome of Aedes albopictus (Skuse 1894) and Culex pipiens (Linnaeus 1758), two globally important vectors present in South Korea. Mosquitoes were collected from an urban and a semi-urban location in South Korea. Bacterial alpha and beta diversities varied by population. Pseudomonadota dominated the microbiomes of both species. The microbiome composition varied by population and was dominated by different taxa. At the genus level, Wolbachia sp. was the most enriched genus in Cx. pipiens, followed by Aeromonas sp. In Ae. Albopictus, the most abundant group was Enterococcus sp. The gregarine parasite Ascogregarina taiwanensis was highly prevalent in Ae. Albopictus and its absence was marked by the presence of seven bacterial taxa. To our knowledge, this is the first characterization of the microbiome of Ae. albopictus and Cx. pipiens in these regions of South Korea and contributes to the current information on the microbiome of mosquito species, which can be used in further studies to assess pathogen-microbiome and microbiome-microbiome interactions.
Collapse
Affiliation(s)
- Xavier Chavarria
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Dongjun Kang
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - In-Yong Lee
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Yun Soo Jang
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Myung-Hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea
- Faculty of Medicine, Eswatini Medical Christian University, Lomkiri Portion 69 of Farm 73 Zone 4, Mbabane, Eswatini
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
54
|
Mestiri S, Sami A, Sah N, El-Ella DMA, Khatoon S, Shafique K, Raza A, Mathkor DM, Haque S. Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies. Cancer Metastasis Rev 2025; 44:27. [PMID: 39856479 DOI: 10.1007/s10555-025-10244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines. Immunosuppressive cells, including M2 tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, contribute to resistance by suppressing the immune response. This cellular plasticity is influenced when B cells, natural killer cells, and T cells are exhausted or inhibited by components of the tumor microenvironment. Conversely, diverse T cell, NK cell, and B cell subsets hold potential as predictive response markers particularly cytotoxic CD8+ T cells, effector memory T cells, activated T cells, tumor infiltrated NK cells, tertiary lymphoid structures, etc. influence treatment response. Identifying specific gene expressions and immunophenotypes within T cells may offer insights into early clinical responses to immunotherapy. ICI resistance in NSCLC is a multifaceted process shaped by tumor plasticity, the complex tumor microenvironment, and dynamic immune cell changes. Comprehensive analysis of these factors may lead to the identification of novel biomarkers and combination therapies to enhance ICI efficacy in NSCLC treatment.
Collapse
Affiliation(s)
- Sarra Mestiri
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ana Sami
- Queen Mary University of London, London, UK
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sabiha Khatoon
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Khadija Shafique
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, UAE.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
- Universidad Espiritu Santo, Samborondon, Ecuador.
| |
Collapse
|
55
|
Doan VTH, Imai T, Kawazoe N, Chen G, Yoshitomi T. Regulation of antigen presentation and interleukin 10 production in murine dendritic cells via the oxidative stimulation of cell membrane using a polycation-porphyrin-conjugate-immobilized cell culture dish. Acta Biomater 2025; 193:231-241. [PMID: 39788307 DOI: 10.1016/j.actbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Tolerogenic dendritic cells with professional antigen presentation via major histocompatibility complex molecules, co-stimulatory molecules (CD80/86), and interleukin 10 production have attracted significant attention as cellular therapies for autoimmune, allergic, and graft-versus-host diseases. In this study, we developed a cell culture dish equipped with polycation-porphyrin-conjugate-immobilized glass (PA-HP-G) to stimulate immature murine dendritic cell (iDCs). Upon irradiation with a red light at 635 nm toward the PA-HP-G surface, singlet oxygen was generated by the immobilized porphyrins on the PA-HP-G surface. When iDCs were cultured on the PA-HP-G surface, moderate light irradiation generated lipid radicals without excessive generation of reactive oxygen species in the cytoplasm and nucleus, which led to the oxidative stimulation of the iDC cell membrane without cell death. Light irradiation changed the morphology of dendritic cells on the PA-HP-G surface to a tree-like structure with dendrites, accelerated their maturation, and enhanced the antigen-presenting ability for the ovalbumin peptide via major histocompatibility complex class I molecules. Additionally, the antigen-presenting dendritic cells on the PA-HP-G surface produced the anti-inflammatory cytokine interleukin 10 upon light irradiation. These results indicated that upon moderate light irradiation, the PA-HP-G surface regulated the maturation of iDCs into tolerogenic dendritic cells. STATEMENT OF SIGNIFICANCE: • Cell culture dish is developed for selective oxidative stimulus of cell membrane. • 1O2 is generated from polycation/porphyrin-immobilized glass by light irradiation. • Lipid radicals are generated without generation of ROS in cytoplasm and nuclei. • Immature dendritic cells are maturated by oxidative stimulation of cell membrane. • Oxidative membrane stimulus enhances antigen-presentation and IL-10 secretion.
Collapse
Affiliation(s)
- Van Thi Hong Doan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Takashi Imai
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640 Japan; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan; Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
56
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
57
|
Chang T, Choi S, Jun H, Chai JY, Song SH, Kim S, Yeom JS, Cho SI, Min KD. Nowcasting Vector Mosquito Abundance and Determining Its Association With Malaria Epidemics in South Korea. Transbound Emerg Dis 2025; 2025:9959287. [PMID: 40302739 PMCID: PMC12016956 DOI: 10.1155/tbed/9959287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/28/2024] [Indexed: 05/02/2025]
Abstract
Since a resurgence occurred in 1993, malaria has remained an endemic disease in the Republic of Korea (ROK). A major challenge is the inaccessibility of current vector mosquito abundance data due to a 2-week reporting delay, which limits timely implementation of control measures. We aimed to nowcast mosquito abundance and assess its utility by evaluating the predictive value of mosquito abundance for malaria epidemic peaks. We used machine learning models to nowcast mosquito abundance, employing gradient boosting models (GBMs), extreme gradient boosting (XGB), and an ensemble model combining both. Various meteorological factors served as predictors. The models were trained with data from mosquito collection sites between 2009 and 2021 and tested with data from 2022. To evaluate the utility of nowcasting, we calculated the effective reproduction number (R t), which can indicate malaria epidemic peaks. Generalized linear models (GLMs) were then used to assess the impact of vector mosquito abundance on R t. The ensemble models demonstrated the best performance in nowcasting mosquito abundance, with a root mean square error (RMSE) of 0.90 and R-squared value (R 2) value of 0.85. The GBM model showed an RMSE of 0.91 and R 2 of 0.84, while the XGB model had an RMSE of 0.92 and R 2 of 0.85. Additionally, the R 2 of the GLMs predicting R t using mosquito abundance 2 weeks in advance was >0.72 for all provinces. The mosquito abundance coefficients were also significant. We constructed reliable models to nowcast mosquito abundance. These outcomes could potentially be incorporated into a malaria early warning system. Our study provides evidence to support the development of malaria management strategies in regions where malaria remains a public health challenge.
Collapse
Affiliation(s)
- Taehee Chang
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Saebom Choi
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hojong Jun
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Sehyeon Kim
- Medipeace Peru Office, Medipeace, Lima, Peru
| | - Joon-Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-il Cho
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Duk Min
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
58
|
Alsaafeen BH, Ali BR, Elkord E. Resistance mechanisms to immune checkpoint inhibitors: updated insights. Mol Cancer 2025; 24:20. [PMID: 39815294 PMCID: PMC11734352 DOI: 10.1186/s12943-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response. In the current review, we summarize what is known so far about the mechanisms of resistance in terms of being tumor-intrinsic or tumor-extrinsic taking into account the multimodal crosstalk between the tumor, immune system compartment and other host-related factors.
Collapse
Affiliation(s)
- Besan H Alsaafeen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
59
|
Yamamoto C, Maruyama A, Munakata J, Matsuyama T, Furukawa K, Hamashima R, Ogawa M, Hashimoto Y, Fukuda A, Inaba T, Nukui Y. Scrub Typhus and Influenza A Co-Infection: A Case Report. Pathogens 2025; 14:64. [PMID: 39861025 PMCID: PMC11768316 DOI: 10.3390/pathogens14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Scrub typhus, caused by Orientia tsutsugamushi, is a neglected and reemerging disease that causes considerable morbidity and mortality. It now extends beyond the Tsutsugamushi Triangle, the region wherein it has traditionally been endemic. Influenza has also resurged since the infection control measures against COVID-19 were relaxed. A few cases of scrub typhus and influenza co-infection have been reported. Herein, we report the case of a 74-year-old woman with fever and upper respiratory symptoms diagnosed with influenza A and treated with oseltamivir; however, her fever persisted, and she developed respiratory failure, liver dysfunction, headache, diarrhea, and an erythematous skin rash. She lived in a forested area where scrub typhus was endemic and worked on a farm. Physical examination revealed an eschar on her posterior neck, and she was diagnosed with scrub typhus and influenza A co-infection. After minocycline treatment, her symptoms improved within a few days. This is the first reported case of scrub typhus and influenza A co-infection in Japan. This case illustrates that co-infection should be suspected in patients with fever persisting after their initial infection has been treated and that in patients living in endemic areas, scrub typhus can occur concurrently with influenza. The symptoms of scrub typhus are flu-like and nonspecific, which may delay diagnosis and treatment.
Collapse
Affiliation(s)
- Chie Yamamoto
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.F.); (R.H.); (T.I.); (Y.N.)
| | - Ayano Maruyama
- Department of Dermatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jun Munakata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Keitaro Furukawa
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.F.); (R.H.); (T.I.); (Y.N.)
| | - Ryosuke Hamashima
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.F.); (R.H.); (T.I.); (Y.N.)
| | - Motohiko Ogawa
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yuki Hashimoto
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akiko Fukuda
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tohru Inaba
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.F.); (R.H.); (T.I.); (Y.N.)
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.F.); (R.H.); (T.I.); (Y.N.)
| |
Collapse
|
60
|
Baek BS, Park H, Choi JW, Lee EY, Seong SY. HIFU-CCL19/21 Axis Enhances Dendritic Cell Vaccine Efficacy in the Tumor Microenvironment. Pharmaceutics 2025; 17:65. [PMID: 39861713 PMCID: PMC11769570 DOI: 10.3390/pharmaceutics17010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth. METHODS M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment. DC vaccines loaded with OLFM4 were then administered to boost the immune response within this primed environment. RESULTS The combination of M-HIFU and DC vaccine significantly inhibited tumor growth and metastasis, with enhanced T-cell activation and increased recruitment of immune cells due to elevated chemokines CCL19 and CCL21. This synergy promoted immune memory, reducing the likelihood of recurrence. CONCLUSIONS M-HIFU effectively promotes the migration of DC vaccines through CCL19/21, presenting a promising approach for cancer treatment. Further studies are recommended to optimize this combination for clinical applications, with potential to improve patient outcomes in challenging cancer types.
Collapse
Affiliation(s)
- Bum-Seo Baek
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyunmi Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Ji-Woong Choi
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Eun-Young Lee
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon 25159, Gangwon, Republic of Korea; (B.-S.B.); (H.P.); (J.-W.C.); (E.-Y.L.)
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Shaperon Inc., Ltd., Seoul 06373, Republic of Korea
| |
Collapse
|
61
|
Hosseini SA, Nasab NK, Kargozar S, Wang AZ. Advanced biomaterials and scaffolds for cancer immunotherapy. BIOMATERIALS FOR PRECISION CANCER MEDICINE 2025:377-424. [DOI: 10.1016/b978-0-323-85661-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
62
|
Park BJ, Heo ST, Kim M, Yoo JR, Bae EJ, Kang SY, Park S, Han KR, Lee KH, Lee JM, Lee H, Song YJ. A CRISPR-Cas12a-based universal rapid scrub typhus diagnostic method targeting 16S rRNA of Orientia tsutsugamushi. PLoS Negl Trop Dis 2025; 19:e0012826. [PMID: 39841710 PMCID: PMC11790230 DOI: 10.1371/journal.pntd.0012826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/03/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Scrub typhus is caused by Orientia tsutsugamushi infection and occurs frequently in an area called the Tsutsugamushi Triangle. Currently, there is no vaccine for O. tsutsugamushi, and its infection is treated with antibiotics such as doxycycline. Scrub typhus responds to effective treatment, and early treatment shortens the course of the disease, reduces mortality, and accelerates recovery. Therefore, it is important to rapidly diagnose O. tsutsugamushi infection to ensure successful outcomes. Here, we developed a CRISPR-Cas12a-based diagnostic method targeting the bacterial 16S rRNA to detect O. tsutsugamushi infection of all known genotypes. To reduce the possibility of contamination and increase field applicability, we designed the one-pot assay system in addition to conventional two-pot assay system. Using this method, we successfully detected up to 100 copies of in vitro transcribed O. tsutsugamushi 16S rRNA within 1 hour under isothermal conditions. In blood samples from patients confirmed to be infected with O. tsutsugamushi by nested PCR, the developed method exhibited a clinical sensitivity of 98% and high specificity. These data demonstrate that the presented method is applicable for the rapid and universal diagnosis of scrub typhus to facilitate timely and appropriate treatment.
Collapse
Affiliation(s)
- Bum Ju Park
- Department of Life Science, Gachon University, Seongnam-Si, Republic of Korea
- Inogenix Inc. Gangwon-Do, Republic of Korea
| | - Sang Taek Heo
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Misun Kim
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Jeong Rae Yoo
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Eun Jin Bae
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Su Yeon Kang
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Park
- Department of Microbiology and Immunology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyeo Re Han
- Department of Microbiology and Immunology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Keun Hwa Lee
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeyoung Lee
- Inogenix Inc. Gangwon-Do, Republic of Korea
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, Republic of Korea
| |
Collapse
|
63
|
Lee E, Kale A, Gaspari AA. Toll-Like Receptors and Contact Dermatitis. Dermatitis 2025; 36:14-27. [PMID: 38778705 DOI: 10.1089/derm.2023.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Contact dermatitis (CD) is a common cutaneous inflammatory condition that affects millions of people worldwide. Xenobiotic agents are frequently encountered in substances used in everyday life, making it difficult to avoid personal and occupational exposure. Toll-like receptors (TLRs) are transmembrane receptors that modulate the innate immune system in response to tissue injury or infection. TLRs play a key role in the pathophysiology of contact dermatitis. TLR signaling is involved in three major forms of CD: protein CD, allergic contact dermatitis (ACD), and irritant CD. Of the 10 TLRs found in humans, three play an important role in ACD. This makes TLRs a useful potential therapeutic target to consider against CD. In this review, we discuss the role of TLRs in CD and summarize current and emerging treatments for CD that target TLRs.
Collapse
Affiliation(s)
- Emily Lee
- From the Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aditi Kale
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony A Gaspari
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
64
|
Ratnaparkhi MP, Salvankar SS, Tekade AR, Kulkarni GM. Core-Shell Nanoparticles for Pulmonary Drug Delivery. Pharm Nanotechnol 2025; 13:90-116. [PMID: 38265371 DOI: 10.2174/0122117385277725231120043600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 01/25/2024]
Abstract
Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.
Collapse
Affiliation(s)
- Mukesh P Ratnaparkhi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Shailendra S Salvankar
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Gajanan M Kulkarni
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| |
Collapse
|
65
|
Pandey V, Khanal S, Shahi N, Parajuli R, Adhikari A, Pokharel YR. Anti-inflammatory and Anti-proliferative Role of Essential Oil of Leaves of Cleistocalyx operculatus (Roxb.) Merr. & Perry. Anticancer Agents Med Chem 2025; 25:232-243. [PMID: 39568110 DOI: 10.2174/0118715206304193240715043704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Phytochemicals have long remained an essential component of the traditional medicine system worldwide. Advancement of research in phytochemicals has led to the identification of novel constituents and metabolites from phytochemicals, performing various vital functions ranging from antimicrobial properties to anticarcinogenic roles. Cleistocalyx operculatus is traditionally used by local people to manage inflammation. In this study, we aim to extract and chemically profile the essential oil from the leaves of Cleistocalyx operculatus (Roxb.) Merr. & Perry and study of the anti-inflammatory and anti-proliferative role of essential oil. METHODS The hydro distillation method was used for the extraction of essential oil, and the GC-MS was applied for the chemical profiling. The percentage of cell viability was calculated using a crystal violet assay, colony formation assay was performed using Semiquantitative PCR, Propodium iodite staining was used for cell death assay, and Western blotting was used to determine antibodies and proteins. Schrodinger 2015 software was used for molecular docking. RESULTS Myrcene, a monoterpene, constitutes 56% of the oil and could be attributed to its anti-inflammatory potential. Treatment of LPS-challenged mouse macrophages RAW264.7 cells with essential oil resulted in a decline in the inflammatory markers, such as IL-1β, TNFα, iNOS, COX-2, and NFκB. Further, essential oil inhibited cancer PC-3, A431, A549, and MCF-7 cell lines at concentrations lower than normal PNT2 and HEK-293 cell lines. This decline in proliferative potential can be attributed to a decline in anti-apoptotic proteins, such as procaspase 3 and PARP, an increase in CKIs, such as p21, and a decline in the Akt signaling responsible for survival. CONCLUSION The essential oil of the plant Cleistocalyx operculatus may be a potential lead for anti-inflammatory and anti-proliferative function.
Collapse
MESH Headings
- Oils, Volatile/pharmacology
- Oils, Volatile/chemistry
- Oils, Volatile/isolation & purification
- Plant Leaves/chemistry
- Cell Proliferation/drug effects
- Humans
- Mice
- Animals
- Drug Screening Assays, Antitumor
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Dose-Response Relationship, Drug
- Cell Survival/drug effects
- Syzygium/chemistry
- Structure-Activity Relationship
- Molecular Structure
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/isolation & purification
Collapse
Affiliation(s)
- Vivek Pandey
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Sumnath Khanal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Nerina Shahi
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Rupak Parajuli
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Yuba Raj Pokharel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| |
Collapse
|
66
|
Tong R, Jing F, Li Y, Pan L, Yu X, Zhang N, Liao Q. Mechanisms of intestinal DNA damage and inflammation induced by ammonia nitrogen exposure in Litopenaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110070. [PMID: 39522856 DOI: 10.1016/j.cbpc.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Ammonia nitrogen, a common aquaculture pollutant, harms crustaceans by causing intestinal inflammation, though its exact mechanisms are unclear. Thus, we exposed shrimp to 0, 2, 10 and 20 mg/L NH4Cl exposure for 0, 3, 6, 12, 24, 48, 72 h, and explored the intestinal stress, apoptosis, proliferation, inflammation and its histopathological changes. This research indicated that ammonia nitrogen exposure heightens plasma dopamine (DA), 5-hydroxytryptamine (5-HT), norepinephrine (NE), and acetylcholine (ACh) levels, alters gene expression of neurotransmitter receptors in the intestine, triggering the PLCCa2+ pathway and induces endoplasmic reticulum stress. Additionally, mitochondrial fission-related genes (Drp1, FIS1) significantly increase, the level of reactive oxygen species (ROS) was significantly elevated in the intestine, which induced DNA damage effects and initiated the DNA repair function, mainly through the base excision repair pathway, but with a low repair efficiency. By determining the expression of key genes of caspase-dependent and non-caspase-dependent apoptotic pathways, it was found that ammonia nitrogen exposure induced apoptosis in intestinal cells, proliferation key signaling pathways such as Wnt, EGFR and FOXO signaling showed an overall decrease after ammonia nitrogen exposure, combined with the gene expression of cell cycle proteins and proliferation markers, indicated that the proliferation of intestinal cells was inhibited. Performing pearson correlation analysis of intestinal cell damage, proliferation, and inflammatory factors, we hypothesized that ammonia nitrogen exposure induces intestinal endoplasmic reticulum stress and mitochondrial fission, induces elevated ROS, leads to DNA damage, and causes inflammation and damage in intestinal tissues by the underlying mechanism of promoting apoptosis and inhibiting proliferation.
Collapse
Affiliation(s)
- Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Futao Jing
- Shandong Fisheries Development and Resources Conservation Center, Jinan 250013, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Xin Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
67
|
Yan A, Li Z, Gao Y, Hu F, Han S, Liu F, Liu Z, Chen J, Yuan C, Zhou C. Isobicyclogermacrenal ameliorates hippocampal ferroptosis involvement in neurochemical disruptions and neuroinflammation induced by sleep deprivation in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156306. [PMID: 39647468 DOI: 10.1016/j.phymed.2024.156306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sleep deprivation (SLD) is a widespread condition that disrupts physiological functions and may increase mortality risk. Valeriana officinalis, a traditional medicinal herb known for its sedative and hypnotic properties, contains isobicyclogermacrenal (IG), a newly isolated active compound. However, research on the therapeutic potential of IG for treating SLD remains limited. METHODS In this study, IG was extracted and characterized from Valeriana officinalis, and an SLD model was established in rats using p-chlorophenylalanine (PCPA). Behavioral tests and pathological studies were conducted to assess the effects of IG on SLD, and transcriptomic and metabolomic analyses were utilized to investigate its underlying mechanisms. RESULTS IG administration significantly improved the cognitive performance of SLD rats in behavioral tests and ameliorated histological injuries in the hippocampus and cerebral cortex. IG treatment increased the levels of brain-derived neurotrophic factor (BDNF) and neurotransmitters such as serotonin (5-HT) in SLD rats. Additionally, IG directly targets TFRC, thereby improving iron metabolism in the hippocampus. Comprehensive transcriptomic and metabolomic analyses revealed that the improvements from IG stemmed from the mitigation of abnormalities in iron metabolism, cholesterol metabolism, and glutathione metabolism, leading to reduced oxidative stress, ferroptosis, and neuroinflammation in the hippocampus caused by SLD. CONCLUSIONS Collectively, these findings suggest that IG has the potential to ameliorate neurological damage and cognitive impairment caused by SLD, offering a novel strategy for protection against the adverse effects of SLD.
Collapse
Affiliation(s)
- Ao Yan
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Zhejin Li
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Yuanwei Gao
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Fanglong Hu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Shuo Han
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Fengjie Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jinting Chen
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Chengyan Zhou
- College of Pharmaceutical Science, Hebei University, Baoding 071002, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
68
|
Yao J, Lin X, Zhang X, Xie M, Ma X, Bao X, Song J, Liang Y, Wang Q, Xue X. Predictive biomarkers for immune checkpoint inhibitors therapy in lung cancer. Hum Vaccin Immunother 2024; 20:2406063. [PMID: 39415535 PMCID: PMC11487980 DOI: 10.1080/21645515.2024.2406063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the treatment mode of lung cancer, extending the survival time of patients unprecedentedly. Once patients respond to ICIs, the median duration of response is usually longer than that achieved with cytotoxic or targeted drugs. Unfortunately, there is still a large proportion of lung cancer patients do not respond to ICI. Effective biomarkers are crucial for identifying lung cancer patients who can benefit from them. The first predictive biomarker is programmed death-ligand 1 (PD-L1), but its predictive value is limited to specific populations. With the development of single-cell sequencing and spatial imaging technologies, as well as the use of deep learning and artificial intelligence, the identification of predictive biomarkers has been greatly expanded. In this review, we will dissect the biomarkers used to predict ICIs efficacy in lung cancer from the tumor-immune microenvironment and host perspectives, and describe cutting-edge technologies to further identify biomarkers.
Collapse
Affiliation(s)
- Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqi Wang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
69
|
Mieda K, Nakanishi T, Kuramoto H, Hosokawa Y, Hosokawa I, Takegawa D, Hosaka K. Sudachitin Reduces Inflammatory Mediator Expression in Toll-Like Receptor 2 Ligand-Stimulated Human Dental Pulp Cells. Cell Biochem Biophys 2024:10.1007/s12013-024-01652-8. [PMID: 39739289 DOI: 10.1007/s12013-024-01652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Sudachitin, which is a polymethoxy flavonoid derived from the peer of Citrus sudachi, has several biological properties. However, the effect of sudachitin on human dental pulp cells (HDPCs) remains unclear. The aim of this study was to investigate whether sudachitin could decrease the expression of inflammatory mediators such as cytokines and prostaglandin in HDPCs stimulated with Pam3CSK4, a ligand for toll-like receptor (TLR) 2. HDPCs were pre-incubated with different concentrations of sudachitin (6.25, 12.5, 25, or 50 μM) and stimulated with Pam3CSK4 (100 ng/mL). The quantification of inflammatory cytokines (interleukin (IL)-6, IL-8, and C-X-C motif chemokine ligand (CXCL) 10) and prostaglandin E2 (PGE2) were performed by enzyme-linked immunosorbent assay (ELISA). The expression of cyclooxygenase (COX)-2, a key enzyme for PGE2 formation, was analyzed by western blot. Moreover, the activations of cell signal pathways were examined by western blot analysis. Sudachitin suppressed IL-6, IL-8, CXCL10, and PGE2 production and COX-2 protein expression in Pam3CSK4-stimulated HDPCs. In addition, we revealed that nuclear factor-kappa B (NF-κB) and protein kinase B (Akt) pathways in the Pam3CSK4-stimulated HDPCs were inhibited by sudachitin treatment. These findings suggest that sudachitin can reduce inflammatory mediator production in HDPCs stimulated with TLR2 ligand by inhibiting NF-κB and Akt activations.
Collapse
Affiliation(s)
- Katsuhiro Mieda
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tadashi Nakanishi
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Hitomi Kuramoto
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshitaka Hosokawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ikuko Hosokawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daisuke Takegawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
70
|
Borilova S, Grell P, Selingerova I, Gescheidtova L, Mlnarikova M, Bilek O, Lakomy R, Poprach A, Podhorec J, Kiss I, Vyzula R, Vavrusakova B, Nevrlka J, Zdrazilova-Dubska L. Early changes of peripheral circulating immune subsets induced by PD-1 inhibitors in patients with advanced malignant melanoma and non-small cell lung cancer. BMC Cancer 2024; 24:1590. [PMID: 39736542 DOI: 10.1186/s12885-024-13351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), including those targeting PD-1, are currently used in a wide range of tumors, but only 20-40% of patients achieve clinical benefit. The objective of our study was to find predictive peripheral blood-based biomarkers for ICI treatment. METHODS In 41 patients with advanced malignant melanoma (MM) and NSCLC treated with PD-1 inhibitors, we analyzed peripheral blood-based immune subsets by flow cytometry before treatment initialization and the second therapy dose. Specifically, we assessed basic blood differential count, overall T cells and their subgroups, B cells, and myeloid-derived suppressor cells (MDSC). In detail, CD4 + and CD8 + T cells were assessed according to their subtypes, such as central memory T cells (TCM), effector memory T cells (TEM), and naïve T cells (TN). Furthermore, we also evaluated the predictive value of CD28 and ICOS/CD278 co-expression on T cells. RESULTS Patients who achieved disease control on ICIs had a significantly lower baseline proportion of CD4 + TEM (p = 0.013) and tended to have a higher baseline proportion of CD4 + TCM (p = 0.059). ICI therapy-induced increase in Treg count (p = 0.012) and the proportion of CD4 + TN (p = 0.008) and CD28 + ICOS- T cells (p = 0.012) was associated with disease control. Patients with a high baseline proportion of CD4 + TCM and a low baseline proportion of CD4 + TEM showed significantly longer PFS (p = 0.011, HR 2.6 and p ˂ 0.001, HR 0.23, respectively) and longer OS (p = 0.002, HR 3.75 and p ˂ 0.001, HR 0.15, respectively). Before the second dose, the high proportion of CD28 + ICOS- T cells after ICI therapy initiation was significantly associated with prolonged PFS (p = 0.017, HR 2.51) and OS (p = 0.030, HR 2.69). Also, a high Treg count after 2 weeks of ICI treatment was associated with significantly prolonged PFS (p = 0.016, HR 2.33). CONCLUSION In summary, our findings suggest that CD4 + TEM and TCM baselines and an early increase in the Treg count induced by PD-1 inhibitors and the proportion of CD28 + ICOS- T cells may be useful in predicting the response in NSCLC and MM patients.
Collapse
Affiliation(s)
- Simona Borilova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Iveta Selingerova
- Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Gescheidtova
- Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marie Mlnarikova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Bilek
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radek Lakomy
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Podhorec
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Rostislav Vyzula
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Vavrusakova
- Research Center for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Nevrlka
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Laboratory Medicine, Department of Laboratory Methods, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Lenka Zdrazilova-Dubska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Laboratory Medicine, Department of Laboratory Methods, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic
| |
Collapse
|
71
|
Chung WK, Jeon I, Jang IJ, Seong SY, Han SA, Yu KS. Safety, Tolerability and Pharmacokinetics of Intravenous Sodium Taurodeoxycholate, HY209, a GPCR19 Agonist Inhibiting Inflammasomal Activation. Drug Des Devel Ther 2024; 18:5853-5861. [PMID: 39670278 PMCID: PMC11636299 DOI: 10.2147/dddt.s438507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND HY209 is a synthesized sodium taurodeoxycholate (TDCA) that is expected to serve as a novel treatment for sepsis by inhibiting the inflammasomal activation that suppresses the production of pro-inflammatory cytokines. This study aimed to assess the safety, tolerability and pharmacokinetics (PKs) of HY209 after intravenous administration in healthy subjects. METHODS A dose-block randomized, double-blind, placebo-controlled, single ascending dose study was conducted. Eight subjects in each dose group were randomized to receive an intravenous administration of HY209 (0.1, 0.2, 0.4, 0.8 and 1.6 mg/kg) or a placebo at a 3:1 ratio. Safety and tolerability variables including adverse events (AEs) and vital signs were monitored. For the PK analysis, serial blood samples were collected for 72 hours at baseline and up to 24 hours post-dose. A power model was used to evaluate the dose-proportionality of HY209. Given that TDCA is an endogenous compound, time-matched baseline differences in plasma concentrations were analyzed. RESULTS A total of 39 subjects completed the study. All AEs were mild, and no serious AEs were observed. There was no significant correlation between the frequency of AEs and the administered dose. A circadian pattern was observed in the plasma TDCA concentration at baseline. After infusion, the plasma TDCA was rapidly eliminated; the plasma TDCA concentration at one hour after the end of infusion showed no significant differences from the baseline. The baseline-adjusted maximum plasma concentration of TDCA demonstrated dose-proportionality in a HY209 range of 0.1-1.6 mg/kg. CONCLUSION A single intravenous administration of HY209 was well tolerated and its systemic exposure showed dose-proportionality in a dose range between 0.1 and 1.6 mg/kg.
Collapse
Affiliation(s)
- Woo Kyung Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Inseung Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| |
Collapse
|
72
|
Islam MT, Kamal ASMM, Islam MM, Hossain S. Impact of climate change on dengue incidence in Singapore: time-series seasonal analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3988-3998. [PMID: 38627938 DOI: 10.1080/09603123.2024.2337827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/28/2024] [Indexed: 11/20/2024]
Abstract
This study aimed to identify the meteorological factors that contribute to dengue epidemics. The monthly incidence of dengue was used as the outcome variable, while maximum temperature, humidity, precipitation, and sunshine hours were used as independent variables. The results showed a consistent increase in monthly dengue cases from 2013 to 2021, with seasonal patterns observed in stationary time-series data. The ARIMA (2, 1, 3) × seasonal (0, 1, 2)12 model was used based on its lowest Akaike Information Criterion (AIC) values. The analysis revealed that a 1-unit increase in rainfall was positively correlated with a small 0.062-unit increase in dengue cases, whereas a 1-unit increase in humidity was negatively associated, leading to a substantial reduction of approximately 16.34 cases. This study highlights the importance of incorporating weather data into national dengue prevention programs to enhance public awareness and to promote recommended safety measures.
Collapse
Affiliation(s)
- Md Tauhedul Islam
- Department of Disaster Science and Climate Resilience, University of Dhaka, Dhaka, Bangladesh
| | - A S M Maksud Kamal
- Department of Disaster Science and Climate Resilience, University of Dhaka, Dhaka, Bangladesh
| | - Md Momin Islam
- Department of Meteorology, University of Dhaka, Dhaka, Bangladesh
| | - Sorif Hossain
- Department of Statistics, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
73
|
He A, Li Q, Dang M, Lu W, Li X, Dai Z, Ding M, Zhang Y, Dong H, Teng Z, Mou Y. Extracellular Vesicle-Inspired Minimalist Flexible Nanocapsules Assembled with Whole Active Ingredients for Highly Efficient Enhancement of DC-Mediated Tumor Immunotherapy. Adv Healthc Mater 2024; 13:e2401199. [PMID: 39054675 PMCID: PMC11650550 DOI: 10.1002/adhm.202401199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Indexed: 07/27/2024]
Abstract
The development of nanovaccines capable of eliciting tumor-specific immune responses holds significant promise for tumor immunotherapy. However, many nanovaccine designs rely heavily on incorporating multiple adjuvants and carriers, increasing the biological hazards associated with these additional components. Here, this work introduces novel flexible nanocapsules (OVAnano) designed to mimic extracellular vesicles, primarily using the ovalbumin antigen and minimal polyethylenimine adjuvant components. These results show that the biomimetic flexible structure of OVAnano facilitates enhanced antigen uptake by dendritic cells (DCs), leading to efficient antigen and adjuvant release into the cytosol via endosomal escape, and ultimately, successful antigen cross-presentation by DCs. Furthermore, OVAnano modulates the intracellular nuclear factor kappa-B (NF-κB) signaling pathway, promoting DC maturation. The highly purified antigens in OVAnano demonstrate remarkable antigen-specific immunogenicity, triggering strong antitumor immune responses mediated by DCs. Therapeutic tumor vaccination studies have also shown that OVAnano administration effectively suppresses tumor growth in mice by inducing immune responses from CD8+ and CD4+ T cells targeting specific antigens, reducing immunosuppression by regulatory T cells, and boosting the populations of effector memory T cells. These findings underscore that the simple yet potent strategy of employing minimal flexible nanocapsules markedly enhances DC-mediated antitumor immunotherapy, offering promising avenues for future clinical applications.
Collapse
Affiliation(s)
- Ao He
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Xiaoye Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Zhuo Dai
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| |
Collapse
|
74
|
Xu S, Wang D, Tan L, Lu J. The role of NLRP3 inflammasome in type 2 inflammation related diseases. Autoimmunity 2024; 57:2310269. [PMID: 38332696 DOI: 10.1080/08916934.2024.2310269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Type 2 inflammation related diseases, such as atopic dermatitis, asthma, and allergic rhinitis, are diverse and affect multiple systems in the human body. It is common for individuals to have multiple co-existing type 2 inflammation related diseases, which can impose a significant financial and living burden on patients. However, the exact pathogenesis of these diseases is still unclear. The NLRP3 inflammasome is a protein complex composed of the NLRP3 protein, ASC, and Caspase-1, and is activated through various mechanisms, including the NF-κB pathway, ion channels, and lysosomal damage. The NLRP3 inflammasome plays a role in the immune response to pathogens and cellular damage. Recent studies have indicated a strong correlation between the abnormal activation of NLRP3 inflammasome and the onset of type 2 inflammation. Additionally, it has been demonstrated that suppressing NLRP3 expression effectively diminishes the inflammatory response, highlighting its promising therapeutic applications. Therefore, this article reviews the role of NLRP3 inflammasome in the development and therapy of multiple type 2 inflammation related diseases.
Collapse
Affiliation(s)
- Shenming Xu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Dan Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Lina Tan
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Medical Ozone Research Center of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
75
|
Wang Z, Li R, Yang G, Wang Y. Cancer stem cell biomarkers and related signalling pathways. J Drug Target 2024; 32:33-44. [PMID: 38095181 DOI: 10.1080/1061186x.2023.2295222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023]
Abstract
Cancer stem cells (CSCs) represent a distinct subset of neoplastic cells characterised by their heightened capacity for tumorigenesis. These cells are implicated in the facilitation of cancer metastasis, recurrence, and resistance to conventional therapeutic interventions. Extensive scientific research has been devoted to the identification of biomarkers and the elucidation of molecular mechanisms in order to improve targeted therapeutic approaches. Accurate identification of cancer stem cells based on biomarkers can provide a theoretical basis for drug combinations of malignant tumours. Targeted biomarker-based therapies also offer a silver lining for patients with advanced malignancies. This review aims comprehensively to consolidate the latest findings on CSCs biomarkers, targeted agents as well as biomarkers associated signalling pathways in well-established cancer types, thereby contributing to improved prognostic outcomes.
Collapse
Affiliation(s)
- Zhe Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Rui Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guilin Yang
- Department of Infectious Disease, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
76
|
Kroemer G, Montégut L, Kepp O, Zitvogel L. The danger theory of immunity revisited. Nat Rev Immunol 2024; 24:912-928. [PMID: 39511426 DOI: 10.1038/s41577-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Léa Montégut
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France.
- INSERM UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Université Paris-Saclay, Ile-de-France, Paris, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| |
Collapse
|
77
|
Liang D, Tang J, Sun B, He S, Yang D, Ma H, Yun Y, Zhu Y, Wei W, Chen H, Zhao X. Novel CAR-T cells targeting TRKB for the treatment of solid cancer. Apoptosis 2024; 29:2183-2196. [PMID: 38498249 DOI: 10.1007/s10495-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating blood cancers such as B-cell malignancies, however, its effectiveness as an approach to treat solid tumors remains to be further explored. Here, we focused on the development of CAR-T cell therapies targeting tropomyosin-related kinase receptor B (TRKB), a highly expressed protein that is significantly associated with tumor progression, malignancy, and drug resistance in multiple forms of aggressive solid tumors. To achieve this, we screened brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4) ligand-based CAR-T cells for their efficiency in targeting the TRKB receptor in the context of solid tumors, particularly hepatocellular carcinoma and pancreatic cancer. We demonstrated that TRKB is overexpressed not only in hepatocellular carcinoma and pancreatic carcinoma cell lines but also in cancer stem-like cells (CSCs). Notably, BDNF-CAR T and NTF4-CAR T cells could not only effectively target and kill TRKB-expressing pan-cancer cell lines in a dose-dependent manner but also effectively kill CSCs. We also performed in vivo studies to show that NTF4-CAR T cells have a better potential to inhibit the tumor growth of hepatocellular carcinoma xenografts in mice, compared with BDNF-CAR T cells. Taken together, our findings suggest that CAR-T targeting TRKB may be a promising approach for developing novel therapies to treat solid cancers.
Collapse
MESH Headings
- Humans
- Animals
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Xenograft Model Antitumor Assays
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
Collapse
Affiliation(s)
- Dandan Liang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai He
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyan Ma
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
78
|
Weerarathna IN, Kumar P, Luharia A, Mishra G. Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered 2024; 15:2401269. [PMID: 39285709 PMCID: PMC11409512 DOI: 10.1080/21655979.2024.2401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 01/16/2025] Open
Abstract
In the dynamic realm of healthcare, the convergence of engineering and biomedical sciences has emerged as a pivotal frontier. In this review we go into specific areas of innovation, including medical imaging and diagnosis, developments in biomedical sensors, and drug delivery systems. Wearable biosensors, non-wearable biosensors, and biochips, which include gene chips, protein chips, and cell chips, are all included in the scope of the topic that pertains to biomedical sensors. Extensive research is conducted on drug delivery systems, spanning topics such as the integration of computer modeling, the optimization of drug formulations, and the design of delivery devices. Furthermore, the paper investigates intelligent drug delivery methods, which encompass stimuli-responsive systems such as temperature, redox, pH, light, enzyme, and magnetic responsive systems. In addition to that, the review goes into topics such as tissue engineering, regenerative medicine, biomedical robotics, automation, biomechanics, and the utilization of green biomaterials. The purpose of this analysis is to provide insights that will enhance continuing research and development efforts in engineering-driven biomedical breakthroughs, ultimately contributing to the improvement of healthcare. These insights will be provided by addressing difficulties and highlighting future prospects.
Collapse
Affiliation(s)
- Induni N. Weerarathna
- School of Allied Health Sciences, Department of Biomedical Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Anurag Luharia
- Department of Radio Physicist and Radio Safety, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| | - Gaurav Mishra
- Department of Radio Diagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India
| |
Collapse
|
79
|
Lee D, Kim K. A practical approach to multifaceted perspectives for sustainable international collaboration on mosquito-borne diseases in Southeast Asia. Acta Trop 2024; 260:107481. [PMID: 39608662 DOI: 10.1016/j.actatropica.2024.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The coronavirus disease 2019 pandemic highlighted the necessity and limitations of scientific collaboration and equitable and effective international research partnerships. The spread of mosquito-borne diseases (MBDs) presents severe public health challenges, particularly in Southeast Asia. Addressing these threats requires establishing regional priorities, bridging research gaps, and strengthening long-term international collaboration. We propose a practical approach to multifaceted perspectives to enhance collaboration across Asia. This study examines MBD-related scientific publications from nine Southeast Asian countries between January 2017 and June 2024, utilizing bibliometric analysis and data visualization to identify research trends, research capacities, key institutions, and international collaborative partners. Thailand and Singapore led the dengue research, followed by Malaysia and Indonesia. Vietnam and the Philippines demonstrated moderate research capabilities, whereas Cambodia, Laos, and Myanmar had lower capacities. Relationships with high-income countries drove international collaboration, whereas intra-regional collaboration in Southeast Asia increased. Furthermore, we identified directions for cooperative opportunities between South Korea and other Southeast Asian countries by analyzing their relative research capacities for infectious MBDs. We propose a practical approach to bridge research-capacity gaps and strengthen collaboration between low- and middle-income countries. These findings provide fundamental information for developing future infectious-disease-response strategies and international-collaboration research partnerships and facilitate the implementation of effective global public health preparedness policies and evidence-based decision-making, such as knowledge-transfer and resource-sharing.
Collapse
Affiliation(s)
- Doyeon Lee
- Division of Data Analysis, Korea Institute of Science and Technology Information, 66 Hoegiro, Dongdaemun-gu, Seoul 02456, South Korea
| | - Keunhwan Kim
- Division of Data Analysis, Korea Institute of Science and Technology Information, 66 Hoegiro, Dongdaemun-gu, Seoul 02456, South Korea.
| |
Collapse
|
80
|
Chatterjee A, Bandyopadhyay A, Maiti TK, Kanti Bhattacharyya T. Size-selective microfluidics delineate the effects of combinatorial immunotherapy on T-cell response dynamics at the single-cell level. MICROSYSTEMS & NANOENGINEERING 2024; 10:178. [PMID: 39587085 PMCID: PMC11589710 DOI: 10.1038/s41378-024-00769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024]
Abstract
Cellular communication at the single-cell level holds immense potential for uncovering response heterogeneity in immune cell behaviors. However, because of significant size diversity among different immune cell types, controlling the pairing of cells with substantial size differences remains a formidable challenge. We developed a microfluidic platform for size-selective pairing (SSP) to pair single cells with up to a fivefold difference in size, achieving over 40% pairing efficiency. We used SSP to investigate the real-time effects of combinatorial immunotherapeutic stimulation on macrophage T-cell interactions at the single-cell level via fluorescence microscopy and microfluidic sampling. While combinatorial activation involving toll-like receptor (TLR) agonists and rapamycin (an mTOR inhibitor) has improved therapeutic efficacy in mice, its clinical success has been limited. Here, we investigated immune synaptic interactions and outcomes at the single-cell level in real time and compared them with bulk-level measurements. Our findings, after tracking and computationally analyzing the effects of sequential and spatiotemporal stimulations of primary mouse macrophages, suggest a regulatory role of rapamycin in dampening inflammatory outputs in T cells.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Tarun Kanti Bhattacharyya
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India.
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
81
|
Tundo S, Trefny M, Rodić A, Grueninger O, Brodmann N, Börsch A, Serger C, Fürst J, Buchi M, Buczak K, Müller AT, Sach-Peltason L, Don L, Herzig P, Lardinois D, Heinzelmann-Schwarz V, Mertz KD, Hojski A, Schaeuble K, Laubli H, Natoli M, Toso A, Luu TT, Zippelius A, Romagnani A. Inhibition of Cbl-b restores effector functions of human intratumoral NK cells. J Immunother Cancer 2024; 12:e009860. [PMID: 39551607 PMCID: PMC11574514 DOI: 10.1136/jitc-2024-009860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND T cell-based immunotherapies including immune checkpoint blockade and chimeric antigen receptor T cells can induce durable responses in patients with cancer. However, clinical efficacy is limited due to the ability of cancer cells to evade immune surveillance. While T cells have been the primary focus of immunotherapy, recent research has highlighted the importance of natural killer (NK) cells in directly recognizing and eliminating tumor cells and playing a key role in the set-up of an effective adaptive immune response. The remarkable potential of NK cells for cancer immunotherapy is demonstrated by their ability to broadly identify stressed cells, irrespective of the presence of neoantigens, and their ability to fight tumors that have lost their major histocompatibility complex class I (MHC I) expression due to acquired resistance mechanisms.However, like T cells, NK cells can become dysfunctional within the tumor microenvironment. Strategies to enhance and reinvigorate NK cell activity hold potential for bolstering cancer immunotherapy. METHODS In this study, we conducted a high-throughput screen to identify molecules that could enhance primary human NK cell function. After compound validation, we investigated the effect of the top performing compounds on dysfunctional NK cells that were generated by a newly developed in vitro platform. Functional activity of NK cells was investigated using compounds alone and in combination with checkpoint inhibitor blockade. The findings were validated on patient-derived intratumoral dysfunctional NK cells from different cancer types. RESULTS The screening approach led to the identification of a Casitas B-lineage lymphoma (Cbl-b) inhibitor enhancing the activity of primary human NK cells. Furthermore, the Cbl-b inhibitor was able to reinvigorate the activity of in vitro generated and patient-derived dysfunctional NK cells. Finally, Cbl-b inhibition combined with T-cell immunoreceptor with Ig and ITIM domains (TIGIT) blockade further increased the cytotoxic potential and reinvigoration of both in vitro generated and patient-derived intratumoral dysfunctional NK cells. CONCLUSIONS These findings underscore the relevance of Cbl-b inhibition in overcoming NK cell dysfunctionality with the potential to complement existing immunotherapies and improve outcomes for patients with cancer.
Collapse
Affiliation(s)
- Sofia Tundo
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Marcel Trefny
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Andrijana Rodić
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Olivia Grueninger
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Nicole Brodmann
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Anastasiya Börsch
- Department of Biomedicine, Bioinformatics Core Facility, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Clara Serger
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jonas Fürst
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Melanie Buchi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Katarzyna Buczak
- Biozentrum, Proteomics Core Facility, University of Basel, Basel, Switzerland
| | - Alex T Müller
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Lisa Sach-Peltason
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Leyla Don
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Petra Herzig
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Didier Lardinois
- Department of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Aljaž Hojski
- Department of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Karin Schaeuble
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Heinz Laubli
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Marina Natoli
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Alberto Toso
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Thuy T Luu
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Andrea Romagnani
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| |
Collapse
|
82
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024; 92:e0028424. [PMID: 39324805 PMCID: PMC11556148 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E. Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
83
|
Smyth T, Payton A, Hickman E, Rager JE, Jaspers I. Leveraging a comprehensive unbiased RNAseq database to characterize human monocyte-derived macrophage gene expression profiles within commonly employed in vitro polarization methods. Sci Rep 2024; 14:26753. [PMID: 39500943 PMCID: PMC11538326 DOI: 10.1038/s41598-024-78000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages are pivotal innate immune cells which exhibit high phenotypic plasticity and can exist in different polarization states dependent on exposure to external stimuli. Numerous methods have been employed to simulate macrophage polarization states to test their function in vitro. However, limited research has explored whether these polarization methods yield comparable populations beyond key gene, cytokine, and cell surface marker expression. Here, we employ an unbiased comprehensive analysis using data organized through the all RNA-seq and ChIP-seq sample and signature search (ARCHS4) database, which compiles all RNAseq data deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). In silico analyses were carried out demonstrating that commonly employed macrophage polarization methods generate distinct gene expression profiles in macrophage subsets that remained poorly described until now. Our analyses confirm existing knowledge on broad macrophage polarization, while expanding nuanced differences between M2a and M2c subsets, suggesting non-interchangeable stimuli for M2a polarization. Furthermore, we characterize divergent gene expression patterns in M1 macrophages following standard polarization protocols, indicating significant subset distinctions. Consequently, equivalence cannot be assumed among polarization regimens for in vitro macrophage studies, particularly in simulating diverse pathogen responses.
Collapse
Affiliation(s)
- Timothy Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elise Hickman
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- , 116 Manning Drive, Campus Box 7310, Chapel Hill, NC, 27599-7310, USA.
| |
Collapse
|
84
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
85
|
Thirumavalavan M, Sukumar K, Sabarimuthu SQ. Trends in green synthesis, pharmaceutical and medical applications of nano ZnO: A review. INORG CHEM COMMUN 2024; 169:113002. [DOI: 10.1016/j.inoche.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
86
|
Ge X, Subramaniyam N, Song Z, Desert R, Han H, Das S, Komakula SSB, Wang C, Lantvit D, Ge Z, Hoshida Y, Nieto N. Post-translational modifications drive the effects of HMGB1 in alcohol-associated liver disease. Hepatol Commun 2024; 8:e0549. [PMID: 39760999 PMCID: PMC11495752 DOI: 10.1097/hc9.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD). METHODS We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells). RESULTS Hmgb1 ablation in hepatocytes or myeloid cells partially protected, while ablation in both prevented steatosis, inflammation, IL1B production, and alcohol-induced liver injury. Hepatocytes were a major source of [H], [O], and [Ac] HMGB1, whereas myeloid cells produced only [H] and [Ac] HMGB1. Neutralization of HMGB1 prevented, whereas injection of [H] HMGB1 increased AALD, which was worsened by injection of [O] HMGB1. While [O] HMGB1 induced liver injury, [Ac] HMGB1 protected and counteracted the effects of [O] HMGB1 in AALD. [O] HMGB1 stimulated macrophage (MF) migration, activation, IL1B production, and secretion. Ethanol-fed RageΔMye but not Tlr4ΔMye, RageΔHep, or Tlr4ΔHep mice were protected from AALD, indicating a crucial role of RAGE in myeloid cells for AALD. [O] HMGB1 recruited and activated myeloid cells through RAGE and contributed to steatosis, inflammation, and IL1B production in AALD. CONCLUSIONS These results provide evidence for targeting [O] HMGB1 of hepatocyte origin as a ligand for RAGE signaling in myeloid cells and a driver of steatosis, inflammatory cell infiltration, and IL1B production in AALD. Importantly, we reveal that [Ac] HMGB1 offsets the noxious effects of [O] HMGB1 in AALD.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Zhuolun Song
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Romain Desert
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Hui Han
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Chao Wang
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Zhiyan Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yujin Hoshida
- Department of Internal Medicine, Division of Digestive and Liver Diseases, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, Illinois, USA
- Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, lllinois, USA
| |
Collapse
|
87
|
Balasubramanian S, Perumal E. Integrated in silico analysis of transcriptomic alterations in nanoparticle toxicity across human and mouse models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174897. [PMID: 39053559 DOI: 10.1016/j.scitotenv.2024.174897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles, due to their exceptional physicochemical properties are used in our day-to-day environment. They are currently not regulated which might lead to increased levels in the biological systems causing adverse effects. However, the overall mechanism behind nanotoxicity remains elusive. Previously, we analysed the transcriptome datasets of copper oxide nanoparticles using in silico tools and identified IL-17, chemokine signaling pathway, and cytokine-cytokine receptor interaction as the key pathways altered. Based on the findings, we hypothesized a common pathway could be involved in transition metal oxide nanoparticles toxicity irrespective of the variables. Further, there could be unique transcriptome changes between metal oxide nanoparticles and other nanoparticles. To accomplish this, the overall transcriptome datasets of nanoparticles consisting of microarray and RNA-Seq were obtained. >90 studies for 17 different nanoparticles, performed in humans, rats, and mice were assessed. After initial screening, 24 mouse studies (with 196 datasets) and 34 human studies (with 200 datasets) were used for further analyses. The common genes that are dysregulated upon NPs exposure were identified for human and mouse datasets separately. Further, an overrepresentation functional enrichment analysis was performed. The common genes, their gene ontology, gene-gene, and protein-protein interactions were assessed. The overall results suggest that IL-17 and its related pathways might be commonly altered in nanoparticle exposure with lung as one of the major organs affected.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
88
|
Luo J, Mo F, Zhang Z, Hong W, Lan T, Cheng Y, Fang C, Bi Z, Qin F, Yang J, Zhang Z, Li X, Que H, Wang J, Chen S, Wu Y, Yang L, Li J, Wang W, Chen C, Wei X. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform. Cell Mol Immunol 2024; 21:1251-1265. [PMID: 39164536 PMCID: PMC11528120 DOI: 10.1038/s41423-024-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
The preferable antigen delivery profile accompanied by sufficient adjuvants favors vaccine efficiency. Mitochondria, which feature prokaryotic characteristics and contain various damage-associated molecular patterns (DAMPs), are easily taken up by phagocytes and simultaneously activate innate immunity. In the current study, we established a mitochondria engineering platform for generating antigen-enriched mitochondria as cancer vaccine. Ovalbumin (OVA) and tyrosinase-related protein 2 (TRP2) were used as model antigens to synthesize fusion proteins with mitochondria-localized signal peptides. The lentiviral infection system was then employed to produce mitochondrial vaccines containing either OVA or TRP2. Engineered OVA- and TRP2-containing mitochondria (OVA-MITO and TRP2-MITO) were extracted and evaluated as potential cancer vaccines. Impressively, the engineered mitochondria vaccine demonstrated efficient antitumor effects when used as both prophylactic and therapeutic vaccines in murine tumor models. Mechanistically, OVA-MITO and TRP2-MITO potently recruited and activated dendritic cells (DCs) and induced a tumor-specific cell-mediated immunity. Moreover, DC activation by mitochondria vaccine critically involves TLR2 pathway and its lipid agonist, namely, cardiolipin derived from the mitochondrial membrane. The results demonstrated that engineered mitochondria are natively well-orchestrated carriers full of immune stimulants for antigen delivery, which could preferably target local dendritic cells and exert strong adaptive cellular immunity. This proof-of-concept study established a universal platform for vaccine construction with engineered mitochondria bearing alterable antigens for cancers as well as other diseases.
Collapse
Affiliation(s)
- Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunju Fang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Wu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chong Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
89
|
Al Zein M, Khazzeka A, El Khoury A, Al Zein J, Zoghaib D, Eid AH. Revisiting high-density lipoprotein cholesterol in cardiovascular disease: Is too much of a good thing always a good thing? Prog Cardiovasc Dis 2024; 87:50-59. [PMID: 39442601 DOI: 10.1016/j.pcad.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of global mortality and morbidity. Various established risk factors are linked to CVD, and modifying these risk factors is fundamental in CVD management. Clinical studies underscore the association between dyslipidemia and CVD, and therapeutic interventions that target low-density lipoprotein cholesterol elicit clear benefits. Despite the correlation between low high-density lipoprotein cholesterol (HDLC) and heightened CVD risk, HDL-raising therapies have yet to showcase significant clinical benefits. Furthermore, evidence from epidemiological and genetic studies reveals that not only low HDL-C levels, but also very high levels of HDL-C are linked to increased risk of CVD. In this review, we focus on HDL metabolism and delve into the relationship between HDL and CVD, exploring HDL functions and the observed alterations in its roles in disease. Altogether, the results discussed herein support the conventional wisdom that "too much of a good thing is not always a good thing". Thus, our recommendation is that a careful reconsideration of the impact of high HDL-C levels is warranted, and shall be revisited in future research.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Alicia Khazzeka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Dima Zoghaib
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
90
|
Ghemiș L, Goriuc A, Minea B, Botnariu GE, Mârțu MA, Ențuc M, Cioloca D, Foia LG. Myeloid-Derived Suppressor Cells (MDSCs) and Obesity-Induced Inflammation in Type 2 Diabetes. Diagnostics (Basel) 2024; 14:2453. [PMID: 39518420 PMCID: PMC11544947 DOI: 10.3390/diagnostics14212453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes mellitus is a complex metabolic disorder characterized by insulin resistance and, subsequently, decreased insulin secretion. This condition is closely linked to obesity, a major risk factor that boosts the development of chronic systemic inflammation, which, in turn, is recognized for its crucial role in the onset of insulin resistance. Under conditions of obesity, adipose tissue, particularly visceral fat, becomes an active endocrine organ that releases a wide range of pro-inflammatory mediators, including cytokines, chemokines, and adipokines. These mediators, along with cluster of differentiation (CD) markers, contribute to the maintenance of systemic low-grade inflammation, promote cellular signaling and facilitate the infiltration of inflammatory cells into tissues. Emerging studies have indicated the accumulation of a new cell population in the adipose tissue in these conditions, known as myeloid-derived suppressor cells (MDSCs). These cells possess the ability to suppress the immune system, impacting obesity-related chronic inflammation. Given the limited literature addressing the role of MDSCs in the context of type 2 diabetes, this article aims to explore the complex interaction between inflammation, obesity, and MDSC activity. Identifying and understanding the role of these immature cells is essential not only for improving the management of type 2 diabetes but also for the potential development of targeted therapeutic strategies aimed at both glycemic control and the reduction in associated inflammation.
Collapse
Affiliation(s)
- Larisa Ghemiș
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Ancuța Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Bogdan Minea
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Gina Eosefina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Melissa Ențuc
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Daniel Cioloca
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Liliana Georgeta Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| |
Collapse
|
91
|
Sharma V, Fernando V, Zheng X, Sweef O, Choi ES, Thomas V, Furuta S. Immunogenic shift of arginine metabolism triggers systemic metabolic and immunological reprogramming to prevent HER2+ breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619827. [PMID: 39484369 PMCID: PMC11527010 DOI: 10.1101/2024.10.23.619827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Arginine metabolism in tumors is often shunted into the pathway producing pro-tumor and immune suppressive polyamines (PAs), while downmodulating the alternative nitric oxide (NO) synthesis pathway. Aiming to correct arginine metabolism in tumors, arginine deprivation therapy and inhibitors of PA synthesis have been developed. Despite some therapeutic advantages, these approaches have often yielded severe side effects, making it necessary to explore an alternative strategy. We previously reported that supplementing SEP, the endogenous precursor of BH4 (the essential NO synthase cofactor), could correct arginine metabolism in tumor cells and tumor-associated macrophages (TAMs) and induce their metabolic and phenotypic reprogramming. We saw that oral SEP treatment effectively suppressed the growth of HER2-positive mammary tumors in animals. SEP also has no reported dose-dependent toxicity in clinical trials for metabolic disorders. In the present study, we report that a long-term use of SEP in animals susceptible to HER2-positive mammary tumors effectively prevented tumor occurrence. These SEP-treated animals had undergone reprogramming of the systemic metabolism and immunity, elevating total T cell counts in the circulation and bone marrow. Given that bone marrow-resident T cells are mostly memory T cells, it is plausible that chronic SEP treatment promoted memory T cell formation, leading to a potent tumor prevention. These findings suggest the possible roles of the SEP/BH4/NO axis in promoting memory T cell formation and its potential therapeutic utility for preventing HER2-positive breast cancer.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Biological Science Building, Room 319F, Laramie, WY 82071
| | - Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Mail Stop B115, 1775 Aurora Court, Aurora, Colorado 80045
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Osama Sweef
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Eun-Seok Choi
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| | - Venetia Thomas
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| |
Collapse
|
92
|
Medina R, Derias AM, Lakdawala M, Speakman S, Lucke-Wold B. Overview of emerging therapies for demyelinating diseases. World J Clin Cases 2024; 12:6361-6373. [PMID: 39464332 PMCID: PMC11438674 DOI: 10.12998/wjcc.v12.i30.6361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
This paper provides an overview of autoimmune disorders of the central nervous system, specifically those caused by demyelination. We explore new research regarding potential therapeutic interventions, particularly those aimed at inducing remyelination. Remyelination is a detailed process, involving many cell types-oligodendrocyte precursor cells (OPCs), astrocytes, and microglia-and both the innate and adaptive immune systems. Our discussion of this process includes the differentiation potential of neural stem cells, the function of adult OPCs, and the impact of molecular mediators on myelin repair. Emerging therapies are also explored, with mechanisms of action including the induction of OPC differentiation, the transplantation of mesenchymal stem cells, and the use of molecular mediators. Further, we discuss current medical advancements in relation to many myelin-related disorders, including multiple sclerosis, optic neuritis, neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, transverse myelitis, and acute disseminated encephalomyelitis. Beyond these emerging systemic therapies, we also introduce the dimethyl fumarate/silk fibroin nerve conduit and its potential role in the treatment of peripheral nerve injuries. Despite these aforementioned scientific advancements, this paper maintains the need for ongoing research to deepen our understanding of demyelinating diseases and advance therapeutic strategies that enhance affected patients' quality of life.
Collapse
Affiliation(s)
- Robert Medina
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Ann-Marie Derias
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Maria Lakdawala
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Skye Speakman
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
93
|
Liang P, Zhu M, Sun X, Wang L, Li B, Ming S, Younis M, Yang J, Wu Y, Huang X. LncRNA-mRNA co-expression analysis reveals aquaporin-9-promoted neutrophil extracellular trap formation and inflammatory activation in sepsis. Int Immunopharmacol 2024; 140:112916. [PMID: 39133961 DOI: 10.1016/j.intimp.2024.112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
Sepsis is a life-threatening condition caused by an excessive inflammatory response to an infection. However, the precise regulatory mechanism of sepsis remains unclear. Using a strand-specific RNA-sequencing, we identified 115 hub differentially expressed long noncoding RNAs (lncRNAs) and 443 mRNAs in septic patients, primarily participated in crucial pathways including neutrophil extracellular trap (NET) formation and toll-like receptor signaling. Notably, NETs related gene aquaporin-9 (AQP9) and its associated lncRNAs exhibited significant upregulation in septic neutrophils. Functional experiments revealed AQP9 interacts with its lncRNAs to augment the formation of neutrophil NETs. In murine sepsis models, AQP9 inhibition with phloretin reduced proinflammatory cytokine production and lung damage. These findings provide crucial insights into the regulatory role of AQP9 in sepsis, unraveling its interaction with associated lncRNAs in transmitting downstream signals, holding promise in informing the development of novel therapeutic strategies aimed at ameliorating the debilitating effects of sepsis.
Collapse
Affiliation(s)
- Pingping Liang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Manman Zhu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Xingzi Sun
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Muhammad Younis
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China; Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
94
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
95
|
Mwamba TM, Dahan-Moss Y, Munhenga G, Maposa I, Koekemoer LL. Host Preferences and Impact of Climate on Blood Feeding in Anopheles funestus Group from South Africa. Trop Med Infect Dis 2024; 9:251. [PMID: 39453278 PMCID: PMC11511239 DOI: 10.3390/tropicalmed9100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Anopheles vaneedeni and Anopheles parensis (members of the An. funestus group) are generally not considered malaria vectors. However, both species were recently identified as potential vectors in South Africa. A critical factor needed to determine their role in malaria transmission is their preference for human blood. The human blood index of An. vaneedeni and An. parensis and their potential role in the ongoing residual malaria transmission in South Africa is unknown. This study aimed to identify host blood meals from the wild-caught An. funestus group in a longitudinal study, and to establish the relationship between temperature, relative humidity, and precipitation on host feeding preferences. Anopheles leesoni, An. parensis, An. vaneedeni, and Anopheles rivulorum were collected, and females mainly fed on cattle. Climatic parameters did not influence the host feeding preferences of these four members of the An. funestus group, but impacted the proportion of females that took a blood meal. Significant changes in feeding proportions were driven by relative humidity, temperature, and precipitation. The role of these species in the ongoing residual malaria transmission in South Africa needs further investigation, as no human blood meals were identified. It is recommended that vector surveillance teams incorporate climatic monitoring and host blood meal identification into their routine activities. This information could provide the malaria vector control programmes with scientific evidence to evaluate the importance of the An. funestus group in residual malaria transmission.
Collapse
Affiliation(s)
- Tshiama Miriam Mwamba
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (T.M.M.); (Y.D.-M.); (G.M.)
- Division of the National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2192, South Africa
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (T.M.M.); (Y.D.-M.); (G.M.)
- Division of the National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2192, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (T.M.M.); (Y.D.-M.); (G.M.)
- Division of the National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2192, South Africa
| | - Innocent Maposa
- Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7599, South Africa;
- Division of Epidemiology & Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Lizette Leonie Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (T.M.M.); (Y.D.-M.); (G.M.)
- Division of the National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2192, South Africa
| |
Collapse
|
96
|
Tomassetti C, Insinga G, Gimigliano F, Morrione A, Giordano A, Giurisato E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024; 12:2381. [PMID: 39457693 PMCID: PMC11504891 DOI: 10.3390/biomedicines12102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The colony-stimulating factor 1 receptor (CSF-1R) plays a pivotal role in orchestrating cellular interactions within the tumor microenvironment (TME). Although the CSF-1R has been extensively studied in myeloid cells, the expression of this receptor and its emerging role in other cell types in the TME need to be further analyzed. This review explores the multifaceted functions of the CSF-1R across various TME cellular populations, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs). The activation of the CSF-1R by its ligands, colony-stimulating factor 1 (CSF-1) and Interleukin-34 (IL-34), regulates TAM polarization towards an immunosuppressive M2 phenotype, promoting tumor progression and immune evasion. Similarly, CSF-1R signaling influences MDSCs to exert immunosuppressive functions, hindering anti-tumor immunity. In DCs, the CSF-1R alters antigen-presenting capabilities, compromising immune surveillance against cancer cells. CSF-1R expression in CAFs and ECs regulates immune modulation, angiogenesis, and immune cell trafficking within the TME, fostering a pro-tumorigenic milieu. Notably, the CSF-1R in CSCs contributes to tumor aggressiveness and therapeutic resistance through interactions with TAMs and the modulation of stemness features. Understanding the diverse roles of the CSF-1R in the TME underscores its potential as a therapeutic target for cancer treatment, aiming at disrupting pro-tumorigenic cellular crosstalk and enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Caterina Tomassetti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Gaia Insinga
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
97
|
Than NG, Romero R, Fitzgerald W, Gudicha DW, Gomez-Lopez N, Posta M, Zhou F, Bhatti G, Meyyazhagan A, Awonuga AO, Chaiworapongsa T, Matthies D, Bryant DR, Erez O, Margolis L, Tarca AL. Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia. Am J Reprod Immunol 2024; 92:e13928. [PMID: 39347565 DOI: 10.1111/aji.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
PROBLEM Preeclampsia is a heterogeneous syndrome of diverse etiologies and molecular pathways leading to distinct clinical subtypes. Herein, we aimed to characterize the extracellular vesicle (EV)-associated and soluble fractions of the maternal plasma proteome in patients with preeclampsia and to assess their value for disease prediction. METHOD OF STUDY This case-control study included 24 women with term preeclampsia, 23 women with preterm preeclampsia, and 94 healthy pregnant controls. Blood samples were collected from cases on average 7 weeks before the diagnosis of preeclampsia and were matched to control samples. Soluble and EV fractions were separated from maternal plasma; EVs were confirmed by cryo-EM, NanoSight, and flow cytometry; and 82 proteins were analyzed with bead-based, multiplexed immunoassays. Quantile regression analysis and random forest models were implemented to evaluate protein concentration differences and their predictive accuracy. Preeclampsia subgroups defined by molecular profiles were identified by hierarchical cluster analysis. Significance was set at p < 0.05 or false discovery rate-adjusted q < 0.1. RESULTS In preterm preeclampsia, PlGF, PTX3, and VEGFR-1 displayed differential abundance in both soluble and EV fractions, whereas angiogenin, CD40L, endoglin, galectin-1, IL-27, CCL19, and TIMP1 were changed only in the soluble fraction (q < 0.1). The direction of changes in the EV fraction was consistent with that in the soluble fraction for nine proteins. In term preeclampsia, CCL3 had increased abundance in both fractions (q < 0.1). The combined EV and soluble fraction proteomic profiles predicted preterm and term preeclampsia with an AUC of 78% (95% CI, 66%-90%) and 68% (95% CI, 56%-80%), respectively. Three clusters of preeclampsia featuring distinct clinical characteristics and placental pathology were identified based on combined protein data. CONCLUSIONS Our findings reveal distinct alterations of the maternal EV-associated and soluble plasma proteome in preterm and term preeclampsia and identify molecular subgroups of patients with distinct clinical and placental histopathologic features.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology & Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav Bhatti
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leonid Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Adi L Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
98
|
Connell E, Blokker B, Kellingray L, Le Gall G, Philo M, Pontifex MG, Narbad A, Müller M, Vauzour D. Refined diet consumption increases neuroinflammatory signalling through bile acid dysmetabolism. Nutr Neurosci 2024; 27:1088-1101. [PMID: 38170169 DOI: 10.1080/1028415x.2023.2301165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Over recent decades, dietary patterns have changed significantly due to the increasing availability of convenient, ultra-processed refined foods. Refined foods are commonly depleted of key bioactive compounds, which have been associated with several deleterious health conditions. As the gut microbiome can influence the brain through a bidirectional communication system known as the 'microbiota-gut-brain axis', the consumption of refined foods has the potential to affect cognitive health. In this study, multi-omics approaches were employed to assess the effect of a refined diet on the microbiota-gut-brain axis, with a particular focus on bile acid metabolism. Mice maintained on a refined low-fat diet (rLFD), consisting of high sucrose, processed carbohydrates and low fibre content, for eight weeks displayed significant gut microbial dysbiosis, as indicated by diminished alpha diversity metrics (p < 0.05) and altered beta diversity (p < 0.05) when compared to mice receiving a chow diet. Changes in gut microbiota composition paralleled modulation of the metabolome, including a significant reduction in short-chain fatty acids (acetate, propionate and n-butyrate; p < 0.001) and alterations in bile acid concentrations. Interestingly, the rLFD led to dysregulated bile acid concentrations across both the colon (p < 0.05) and the brain (p < 0.05) which coincided with altered neuroinflammatory gene expression. In particular, the concentration of TCA, TDCA and T-α-MCA was inversely correlated with the expression of NF-κB1, a key transcription factor in neuroinflammation. Overall, our results suggest a novel link between a refined low-fat diet and detrimental neuronal processes, likely in part through modulation of the microbiota-gut-brain axis and bile acid dysmetabolism.
Collapse
Affiliation(s)
- Emily Connell
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Britt Blokker
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lee Kellingray
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Mark Philo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
99
|
Ghaderpour A, Jeong JY, Koh YJ, Seong SY. Oral Administration of Taurodeoxycholate, A GPCR19 Agonist, Effectively Ameliorates Atopic Dermatitis in A Mouse Model. Exp Dermatol 2024; 33:1-7. [PMID: 39428869 DOI: 10.1111/exd.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
Atopic dermatitis (AD) is the most prevalent chronic inflammatory skin disorder, characterised by intense pruritus and recurrent eczematous lesions. Recently, the US FDA has approved Janus kinase (JAK) inhibitors for oral treatment in AD patients. However, oral immunomodulatory agents have demonstrated adverse effects. In previous studies, we demonstrated the efficacy of topical taurodeoxycholate (TDCA), a G protein-coupled receptor 19 (GPCR19) agonist, on AD. In this study, we further evaluated the efficacy of orally administered TDCA on MC903- and dinitrochlorobenzene (DNCB)-induced AD mouse models. Oral administration of TDCA significantly ameliorated AD symptoms and reduced both epidermal and dermal thickness. Additionally, oral TDCA treatment inhibited the infiltration of myeloid and lymphoid cells into AD lesions. TDCA also suppressed the expression of thymic stromal lymphopoietin (TSLP), interleukin (IL)-4, IL-13, IL-33, IL-1β, tumour necrosis factor-alpha (TNF-α) and chemokine (C-C motif) ligand 17 in the skin and blood. Given the previously demonstrated safety profiles of TDCA, oral TDCA may offer a beneficial and safer alternative for AD patients.
Collapse
Affiliation(s)
- Aziz Ghaderpour
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
| | | | | | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, South Korea
- Shaperon Inc., Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
100
|
Jha D, Bakker ENTP, Kumar R. Mechanistic and therapeutic role of NLRP3 inflammasome in the pathogenesis of Alzheimer's disease. J Neurochem 2024; 168:3574-3598. [PMID: 36802053 DOI: 10.1111/jnc.15788] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, has emerged as the most common form of dementia in the elderly. Several pathological hallmarks have been identified, including neuroinflammation. A comprehensive insight into the underlying mechanisms that can fuel the development of novel therapeutic approaches is necessary because of the alarmingly rapid increase in the frequency of incidence. Recently, NLRP3 inflammasome was identified as a critical mediator of neuroinflammation. Activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome by amyloid, neurofibrillary tangles, impaired autophagy and endoplasmic reticulum stress, triggers the release of pro-inflammatory cytokines such as IL-1β and IL-18. Subsequently, these cytokines can promote neurodegeneration and cognitive impairment. It is well established that genetic or pharmacological ablation of NLRP3 alleviates AD-related pathological features in in vitro and in vivo models. Therefore, several synthetic and natural compounds have been identified that exhibit the potential to inhibit NLRP3 inflammasome and alleviate AD-associated pathology. The current review article will highlight the various mechanisms by which activation of NLRP3 inflammation occurs during Alzheimer's disease, and how it influences neuroinflammation, neurodegeneration and cognitive impairment. Moreover, we will summarise the different small molecules that possess the potential to inhibit NLRP3 and can pave the path for developing novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Dhanshree Jha
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Rahul Kumar
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Vishakhapatnam, India
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centre, Location University of Amsterdam, and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| |
Collapse
|