951
|
Cheng CK, Wang C, Shang W, Lau CW, Luo JY, Wang L, Huang Y. A high methionine and low folate diet alters glucose homeostasis and gut microbiome. Biochem Biophys Rep 2021; 25:100921. [PMID: 33537464 PMCID: PMC7838713 DOI: 10.1016/j.bbrep.2021.100921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is considered as a risk factor for several complications, including cardiovascular and neurological disorders. A high methionine low folate (HMLF) diet chronically causes HHcy by accumulating homocysteine in the systemic circulation. Elevated Hcy level is also associated with the incidence of diabetes mellitus. However, very few studies focus on the impact of HMLF diet on glucose homeostasis, and that on gut microbiome profile. HHcy was induced by feeding C57BL/6 mice a HMLF diet for 8 weeks. The HMLF diet feeding resulted in a progressive body weight loss, and development of slight glucose intolerance and insulin resistance in HHcy mice. Notably, the HMLF diet alters the gut microbiome profile and increases the relative abundance of porphyromonadaceae family of bacteria in HHcy mice. These findings provide new insights into the roles of dysregulated glucose homeostasis and gut flora in the pathogenesis of HHcy-related complications.
Collapse
Key Words
- 16S rRNA sequencing
- Glucose homeostasis
- Gut microbiome
- HDL, high-density lipoprotein
- HHcy, hyperhomocysteinemia
- HMLF diet
- HMLF, high methionine low folate
- Hcy, homocysteine
- Hyperhomocysteinemia
- LEfSe, linear discriminant analysis effect size
- NAFLD, non-alcoholic fatty liver disease
- NMDS, non-metric multi-dimensional scaling
- OTU, operational taxonomic unit
- PCA, principal component analysis
- Porphyromonadaceae
- SCFA, short-chain fatty acids
- TC, total cholesterol
- TG, triglyceride
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chenguang Wang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenbin Shang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Lau
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiang-Yun Luo
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.,Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
952
|
Mansour SR, Moustafa MAA, Saad BM, Hamed R, Moustafa ARA. Impact of diet on human gut microbiome and disease risk. New Microbes New Infect 2021; 41:100845. [PMID: 34035924 PMCID: PMC8138677 DOI: 10.1016/j.nmni.2021.100845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome of humans comprises a diverse group of trillions of microorganisms including symbiotic organisms, opportunistic pathogens and commensal organisms. This microbiota plays a major role in digesting food; it also helps with absorbing and synthesizing some nutrients and releases their metabolites, which may deliver a variety of growth-promoting and growth-inhibiting factors that influence human health either directly or indirectly. The balance between microbial species, especially those responsible for the fermentation of different substrates within the microbial community, which are in the majority, depends on daily diet. Therefore, an unbalanced diet may lead to the progression and development of human diseases. These include metabolic and inflammatory disorders, cancer and depression, as well as infant health and longevity. We provide an overview of the effect of diet on the human microbiome and assess the related risk of disease development.
Collapse
Affiliation(s)
- S R Mansour
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - M A A Moustafa
- Faculty of Medicine, 6 October University, 6 October, Egypt
| | - B M Saad
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - R Hamed
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - A-R A Moustafa
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
953
|
Gou W, Ling CW, He Y, Jiang Z, Fu Y, Xu F, Miao Z, Sun TY, Lin JS, Zhu HL, Zhou H, Chen YM, Zheng JS. Interpretable Machine Learning Framework Reveals Robust Gut Microbiome Features Associated With Type 2 Diabetes. Diabetes Care 2021; 44:358-366. [PMID: 33288652 PMCID: PMC7818326 DOI: 10.2337/dc20-1536] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/23/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To identify the core gut microbial features associated with type 2 diabetes risk and potential demographic, adiposity, and dietary factors associated with these features. RESEARCH DESIGN AND METHODS We used an interpretable machine learning framework to identify the type 2 diabetes-related gut microbiome features in the cross-sectional analyses of three Chinese cohorts: one discovery cohort (n = 1,832, 270 cases of type 2 diabetes) and two validation cohorts (cohort 1: n = 203, 48 cases; cohort 2: n = 7,009, 608 cases). We constructed a microbiome risk score (MRS) with the identified features. We examined the prospective association of the MRS with glucose increment in 249 participants without type 2 diabetes and assessed the correlation between the MRS and host blood metabolites (n = 1,016). We transferred human fecal samples with different MRS levels to germ-free mice to confirm the MRS-type 2 diabetes relationship. We then examined the prospective association of demographic, adiposity, and dietary factors with the MRS (n = 1,832). RESULTS The MRS (including 14 microbial features) consistently associated with type 2 diabetes, with risk ratio for per 1-unit change in MRS 1.28 (95% CI 1.23-1.33), 1.23 (1.13-1.34), and 1.12 (1.06-1.18) across three cohorts. The MRS was positively associated with future glucose increment (P < 0.05) and was correlated with a variety of gut microbiota-derived blood metabolites. Animal study further confirmed the MRS-type 2 diabetes relationship. Body fat distribution was found to be a key factor modulating the gut microbiome-type 2 diabetes relationship. CONCLUSIONS Our results reveal a core set of gut microbiome features associated with type 2 diabetes risk and future glucose increment.
Collapse
Affiliation(s)
- Wanglong Gou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Chu-Wen Ling
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ting-Yu Sun
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jie-Sheng Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| |
Collapse
|
954
|
Kang GU, Jung DR, Lee YH, Jeon SY, Han HS, Chong GO, Shin JH. Potential Association between Vaginal Microbiota and Cervical Carcinogenesis in Korean Women: A Cohort Study. Microorganisms 2021; 9:294. [PMID: 33572693 PMCID: PMC7912413 DOI: 10.3390/microorganisms9020294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
Convincing studies demonstrated that vaginal flora is one of the most impactful key components for the well-being of the genital tract in women. Nevertheless, the potential capability of vaginal-derived bacterial communities as biomarkers to monitor cervical carcinogenesis (CC) has yet to be studied actively compared to those of bacterial vaginosis (BV). We hypothesized that vaginal microbiota might be associated with the progression of CC. In this study, we enrolled 23 participants, including healthy controls (HC group; n = 7), patients with cervical intraepithelial neoplasia (CIN) 2 and 3 (CIN group, n = 8), and patients with invasive cervical cancer (CAN group; n = 8). Amplicon sequencing was performed using the Ion Torrent PGM to characterize the vaginal microbiota. Patients with CIN and CAN presented vaginal microbiota dysbiosis compared with HC. The alpha diversity analysis revealed that CC has a trend to be increased in terms of diversity indexes. Moreover, CC was associated with the abundance of specific microbes, of which Lactobacillus and Gardnerella were the most significantly different between HC and CIN, whereas Streptococcus was differentially abundant in CAN compared with CIN. We then evaluated their diagnostic abilities. Testing in terms of diagnostic ability using the three genera revealed considerably high performance with an area under the receiver-operating characteristic curve of 0.982, 0.953, and 0.922. The current study suggests that the presence of Gardnerella and Streptococcus may be involved in the advancment of CC.
Collapse
Affiliation(s)
- Gi-Ung Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
| | - Da-Ryung Jung
- Department of Biomedical Convergence Science & Technology, Kyungpook National University, Daegu 41566, Korea;
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41404, Korea; (Y.H.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Se Young Jeon
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41404, Korea; (Y.H.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41405, Korea;
| | - Gun Oh Chong
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41404, Korea; (Y.H.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Biomedical Convergence Science & Technology, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
955
|
Dwiyanto J, Hussain MH, Reidpath D, Ong KS, Qasim A, Lee SWH, Lee SM, Foo SC, Chong CW, Rahman S. Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country. Sci Rep 2021; 11:2618. [PMID: 33514807 PMCID: PMC7846579 DOI: 10.1038/s41598-021-82311-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
No studies have investigated the influence of ethnicity in a multi-ethnic middle-income country with a long-standing history of co-habitation. Stool samples from 214 Malaysian community members (46 Malay, 65 Chinese, 49 Indian, and 54 Jakun) were collected. The gut microbiota of the participants was investigated using 16S amplicon sequencing. Ethnicity exhibited the largest effect size across participants (PERMANOVA Pseudo-F = 4.24, R2 = 0.06, p = 0.001). Notably, the influence of ethnicity on the gut microbiota was retained even after controlling for all demographic, dietary factors and other covariates which were significantly associated with the gut microbiome (PERMANOVA Pseudo-F = 1.67, R2 = 0.02, p = 0.002). Our result suggested that lifestyle, dietary, and uncharacterized differences collectively drive the gut microbiota variation across ethnicity, making ethnicity a reliable proxy for both identified and unidentified lifestyle and dietary variation across ethnic groups from the same community.
Collapse
Affiliation(s)
- Jacky Dwiyanto
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - M H Hussain
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - D Reidpath
- Health System and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.,South East Asia Community Observatory, Segamat, Malaysia
| | - K S Ong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - A Qasim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Genomics Facility, Monash University Malaysia, Bandar Sunway, Malaysia
| | - S W H Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - S M Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - S C Foo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - C W Chong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
956
|
Vignesh R, Swathirajan CR, Tun ZH, Rameshkumar MR, Solomon SS, Balakrishnan P. Could Perturbation of Gut Microbiota Possibly Exacerbate the Severity of COVID-19 via Cytokine Storm? Front Immunol 2021; 11:607734. [PMID: 33569053 PMCID: PMC7868418 DOI: 10.3389/fimmu.2020.607734] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ramachandran Vignesh
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
- Infectious Diseases Laboratory, YR Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | | | - Zaw Htet Tun
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Marimuthu Ragavan Rameshkumar
- Laboratory Division, Indian Council of Medical Research-National Institute of Epidemiology (ICMR-NIE), Indian Council of Medical Research, Chennai, India
| | - Sunil Suhas Solomon
- Infectious Diseases Laboratory, YR Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pachamuthu Balakrishnan
- Infectious Diseases Laboratory, YR Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| |
Collapse
|
957
|
The Fatty Acid Lipid Metabolism Nexus in COVID-19. Viruses 2021; 13:v13010090. [PMID: 33440724 PMCID: PMC7826519 DOI: 10.3390/v13010090] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Enteric symptomology seen in early-stage severe acute respiratory syndrome (SARS)-2003 and COVID-19 is evidence of virus replication occurring in the intestine, liver and pancreas. Aberrant lipid metabolism in morbidly obese individuals adversely affects the COVID-19 immune response and increases disease severity. Such observations are in line with the importance of lipid metabolism in COVID-19, and point to the gut as a site for intervention as well as a therapeutic target in treating the disease. Formation of complex lipid membranes and palmitoylation of coronavirus proteins are essential during viral replication and assembly. Inhibition of fatty acid synthase (FASN) and restoration of lipid catabolism by activation of AMP-activated protein kinase (AMPK) impede replication of coronaviruses closely related to SARS-coronavirus-2 (CoV-2). In vitro findings and clinical data reveal that the FASN inhibitor, orlistat, and the AMPK activator, metformin, may inhibit coronavirus replication and reduce systemic inflammation to restore immune homeostasis. Such observations, along with the known mechanisms of action for these types of drugs, suggest that targeting fatty acid lipid metabolism could directly inhibit virus replication while positively impacting the patient's response to COVID-19.
Collapse
|
958
|
Zhang X, Xu D, Chen M, Wang Y, He L, Wang L, Wu J, Yin J. Impacts of Selected Dietary Nutrient Intakes on Skeletal Muscle Insulin Sensitivity and Applications to Early Prevention of Type 2 Diabetes. Adv Nutr 2021; 12:1305-1316. [PMID: 33418570 PMCID: PMC8321846 DOI: 10.1093/advances/nmaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
As the largest tissue in the body, skeletal muscle not only plays key roles in movement and glucose uptake and utilization but also mediates insulin sensitivity in the body by myokines. Insulin resistance in the skeletal muscle is a major feature of type 2 diabetes (T2D). A weakened response to insulin could lead to muscle mass loss and dysfunction. Increasing evidence in skeletal muscle cells, rodents, nonhuman primates, and humans has shown that restriction of caloric or protein intake positively mediates insulin sensitivity. Restriction of essential or nonessential amino acids was reported to facilitate glucose utilization and regulate protein turnover in skeletal muscle under certain conditions. Furthermore, some minerals, such as zinc, chromium, vitamins, and some natural phytochemicals such as curcumin, resveratrol, berberine, astragalus polysaccharide, emodin, and genistein, have been shown recently to protect skeletal muscle cells, mice, or humans with or without diabetes from insulin resistance. In this review, we discuss the roles of nutritional interventions in the regulation of skeletal muscle insulin sensitivity. A comprehensive understanding of the nutritional regulation of insulin signaling would contribute to the development of tools and treatment programs for improving skeletal muscle health and for preventing T2D.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, China
| | | |
Collapse
|
959
|
Rodrigues RR, Gurung M, Li Z, García-Jaramillo M, Greer R, Gaulke C, Bauchinger F, You H, Pederson JW, Vasquez-Perez S, White KD, Frink B, Philmus B, Jump DB, Trinchieri G, Berry D, Sharpton TJ, Dzutsev A, Morgun A, Shulzhenko N. Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nat Commun 2021; 12:101. [PMID: 33397942 PMCID: PMC7782853 DOI: 10.1038/s41467-020-20313-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Western diet (WD) is one of the major culprits of metabolic disease including type 2 diabetes (T2D) with gut microbiota playing an important role in modulating effects of the diet. Herein, we use a data-driven approach (Transkingdom Network analysis) to model host-microbiome interactions under WD to infer which members of microbiota contribute to the altered host metabolism. Interrogation of this network pointed to taxa with potential beneficial or harmful effects on host's metabolism. We then validate the functional role of the predicted bacteria in regulating metabolism and show that they act via different host pathways. Our gene expression and electron microscopy studies show that two species from Lactobacillus genus act upon mitochondria in the liver leading to the improvement of lipid metabolism. Metabolomics analyses revealed that reduced glutathione may mediate these effects. Our study identifies potential probiotic strains for T2D and provides important insights into mechanisms of their action.
Collapse
Affiliation(s)
| | - Manoj Gurung
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Zhipeng Li
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | - Renee Greer
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | - Franziska Bauchinger
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Hyekyoung You
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Jacob W Pederson
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | - Kimberly D White
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Briana Frink
- Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Benjamin Philmus
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Donald B Jump
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Berry
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | | | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| | | |
Collapse
|
960
|
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes 2021; 13:1-18. [PMID: 33615984 PMCID: PMC7899658 DOI: 10.1080/19490976.2020.1869502] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Gut microbiome composition depends heavily upon diet and has strong ties to human health. Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for particular microbes. This review explores how dietary carbohydrates in general, including individual monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent effects on host health and disease. In particular, the effects of sialic acids, a prominent and influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary fiber, generally promote microbial production of compounds beneficial to the host while preventing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible sugars such as glucose are often associated with adverse effects on health and the microbiome. The monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All aspects of carbohydrate composition are therefore relevant to consider when designing dietary therapeutic strategies to alter the gut microbiome.
Collapse
Affiliation(s)
- Joanna K Coker
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Oriane Moyne
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dmitry A. Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| |
Collapse
|
961
|
Gholam-Mostafaei FS, Didari T, Ramandi M, Vafaee R, Rostami-Nejad M. Gut microbiota, angiotensin-converting enzyme, celiac disease, and risk of COVID-19 infection: a review. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:S24-S31. [PMID: 35154599 PMCID: PMC8817746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022]
Abstract
Celiac disease (CD) is an autoimmune disorder of the gastrointestinal tract in a genetically susceptible person. Gluten is the most crucial trigger factor for CD, and environmental factors such as microbiota and opportunistic infection risk its pathogenesis. Coronavirus disease 19 (COVID-19) spread rapidly and became a problem for healthcare systems worldwide. Little is known about the risk of severe COVID-19 and the role of dysbiosis among patients with CD. There is also a lack of knowledge about the effects of CD gut microbiota on COVID-19 infection. Therefore, the current review discusses the relationship between CD and risk factors such as microbiota for susceptibility to COVID-19.
Collapse
Affiliation(s)
- Fahimeh Sadat Gholam-Mostafaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tina Didari
- Pharmaceutical Products Technology Development Center, Tehran University of Medical Sciences, Tehran, Iran,Co-first author
| | - Marzieh Ramandi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
962
|
Jia R, Huang M, Qian L, Yan X, Lv Q, Ye H, Ye L, Wu X, Chen W, Chen Y, Jia Y, Huang Y, Wu H. The Depletion of Carbohydrate Metabolic Genes in the Gut Microbiome Contributes to the Transition From Central Obesity to Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:747646. [PMID: 34745012 PMCID: PMC8569854 DOI: 10.3389/fendo.2021.747646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, especially central obesity, is a strong risk factor for developing type 2 diabetes (T2D). However, the mechanism underlying the progression from central obesity to T2D remains unknown. Therefore, we analyzed the gut microbial profiles of central obese individuals with or without T2D from a Chinese population. Here we reported both the microbial compositional and gene functional alterations during the progression from central obesity to T2D. Several opportunistic pathogens were enriched in obese T2D patients. We also characterized thousands of genes involved in sugar and amino acid metabolism whose abundance were significantly depleted in obese T2D group. Moreover, the abundance of those genes was negatively associated with plasma glycemia level and percentage of individuals with impaired plasma glucose status. Therefore, our study indicates that the abundance of those depleted genes can be used as a potential biomarker to identify central obese individuals with high risks of developing T2D.
Collapse
MESH Headings
- Adult
- Biomarkers/metabolism
- Carbohydrate Metabolism/genetics
- Case-Control Studies
- China
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Disease Progression
- Disease Susceptibility
- Female
- Gastrointestinal Microbiome/genetics
- Humans
- Male
- Metagenome/physiology
- Obesity, Abdominal/genetics
- Obesity, Abdominal/metabolism
- Obesity, Abdominal/microbiology
- Obesity, Abdominal/pathology
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- Risk Factors
- Transcriptome
Collapse
Affiliation(s)
| | - Min Huang
- Department of General Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | | | - Xiaoye Yan
- Department of General Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qing Lv
- Department of General Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hua Ye
- GENEWIZ Inc., Suzhou, China
| | - Li Ye
- GENEWIZ Inc., Suzhou, China
| | - Xin Wu
- GENEWIZ Inc., Suzhou, China
| | | | | | | | - Yueqing Huang
- Department of General Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Yueqing Huang, ; Huihui Wu,
| | - Huihui Wu
- GENEWIZ Inc., Suzhou, China
- *Correspondence: Yueqing Huang, ; Huihui Wu,
| |
Collapse
|
963
|
Yuan X, Chen R, Zhang Y, Lin X, Yang X, McCormick KL. Gut Microbiota of Chinese Obese Children and Adolescents With and Without Insulin Resistance. Front Endocrinol (Lausanne) 2021; 12:636272. [PMID: 33815293 PMCID: PMC8018175 DOI: 10.3389/fendo.2021.636272] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The intestinal flora of gut microbiota in obese Chinese children and adolescents with and without insulin resistance (IR) was analyzed, as well as associations between the gut microbiota and two serum cytokines related to glucose metabolism, adropin and angiopoietin-like 4 (ANGPTL4). METHODS Clinical data, fecal bacterial composition, glucose-related hormones, and serum adipokines (adropin and ANGPTL4) were analyzed in 65 Chinese children with exogenous obesity. The composition of the gut microbiota was determined by 16S rRNA-based metagenomics and IR was calculated using the homeostasis model assessment (HOMA). RESULTS The 65 obese subjects were divided into two groups: insulin sensitive (IS) (n=40, 57.5% males) or IR (n=25, 60% males). Principal coordinates analysis revealed that the gut microbiota samples from the IS group clustered together and separated partly from the IR group (p=0.008). By Mann-Whitney U-test, at a phylum level, a reduction of Firmicutes and an increase of Bacteroidetes in the IR subjects was observed. LEfSe analysis revealed that IS subject, when compared to their IR counterparts, harbored members of the order Coriobacteriales, Turicibacterales, Pasteurellales and family Turicibacteraceae, that were significantly more abundant. In contrast, the IR subjects had members of family Peptococcaceae that were significantly more prevalent than the IS subjects (all p<0.05). Spearman's correlation analysis revealed that serum ANGPTL4 was positively associated with genus Bacteroides, Butyricimonas, and Alistipes, and adropin was positively associated with genus Anaerostipes and Alistipes, and negatively associated with genus Blautia (all p<0.05). CONCLUSION In obese children, the gut microbiome in IR subjects was significantly discordant from the IS subjects, and the abundance of some metabolism-related bacteria correlated with the serum concentrations of adropin and ANGPTL4. These observations infer that the gut microbiota may be involved in the regulation of glucose metabolism in obesity.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Ruimin Chen,
| | - Ying Zhang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Xiangquan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaohong Yang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Kenneth L. McCormick
- Division of Pediatric Endocrinology and Diabetes, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
964
|
Larsen IS, Jensen BAH, Bonazzi E, Choi BSY, Kristensen NN, Schmidt EGW, Süenderhauf A, Morin L, Olsen PB, Hansen LBS, Schröder T, Sina C, Chassaing B, Marette A. Fungal lysozyme leverages the gut microbiota to curb DSS-induced colitis. Gut Microbes 2021; 13:1988836. [PMID: 34693864 PMCID: PMC8547870 DOI: 10.1080/19490976.2021.1988836] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Colitis is characterized by colonic inflammation and impaired gut health. Both features aggravate obesity and insulin resistance. Host defense peptides (HDPs) are key regulators of gut homeostasis and generally malfunctioning in above-mentioned conditions. We aimed here to improve bowel function in diet-induced obesity and chemically induced colitis through daily oral administration of lysozyme, a well-characterized HDP, derived from Acremonium alcalophilum.C57BL6/J mice were fed either low-fat reference diet or HFD ± daily gavage of lysozyme for 12 weeks, followed by metabolic assessment and evaluation of colonic microbiota encroachment. To further evaluate the efficacy of intestinal inflammation, we next supplemented chow-fed BALB/c mice with lysozyme during Dextran Sulfate Sodium (DSS)-induced colitis in either conventional or microbiota-depleted mice. We assessed longitudinal microbiome alterations by 16S amplicon sequencing in both models.Lysozyme dose-dependently alleviated intestinal inflammation in DSS-challenged mice and further protected against HFD-induced microbiota encroachment and fasting hyperinsulinemia. Observed improvements of intestinal health relied on a complex gut flora, with the observation that microbiota depletion abrogated lysozyme's capacity to mitigate DSS-induced colitis.Akkermansia muciniphila associated with impaired gut health in both models, a trajectory that was mitigated by lysozyme administration. In agreement with this notion, PICRUSt2 analysis revealed specific pathways consistently affected by lysozyme administration, independent of vivarium, disease model and mouse strain.Taking together, lysozyme leveraged the gut microbiota to curb DSS-induced inflammation, alleviated HFD-induced gastrointestinal disturbances and lowered fasting insulin levels in obese mice. Collectively, these data present A. alcalophilum-derived lysozyme as a promising candidate to enhance gut health.
Collapse
Affiliation(s)
- Ida Søgaard Larsen
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | - Benjamin A. H. Jensen
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erica Bonazzi
- Inserm U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Université De Paris, Paris, France
| | - Béatrice S. Y. Choi
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | | | | | - Annika Süenderhauf
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Laurence Morin
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| | | | | | - Torsten Schröder
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Benoît Chassaing
- Inserm U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Université De Paris, Paris, France
| | - André Marette
- Quebec Heart and Lung Institute (Iucpq), Faculty of Medicine, and Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, Canada
| |
Collapse
|
965
|
Tsai CY, Lu HC, Chou YH, Liu PY, Chen HY, Huang MC, Lin CH, Tsai CN. Gut Microbial Signatures for Glycemic Responses of GLP-1 Receptor Agonists in Type 2 Diabetic Patients: A Pilot Study. Front Endocrinol (Lausanne) 2021; 12:814770. [PMID: 35095773 PMCID: PMC8793908 DOI: 10.3389/fendo.2021.814770] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUNDS Glucagon-like peptide-1 receptor agonist (GLP-1 RA) is probably one of more effective antidiabetic agents in treatment of type 2 diabetes mellitus (T2D). However, the heterogenicity in responses to GLP-1 RA may be potentially related to gut microbiota, although no human evidence has been published. This pilot study aims to identify microbial signatures associated with glycemic responses to GLP-1 RA. MATERIALS AND METHODS Microbial compositions of 52 patients with T2D receiving GLP-1 RA were determined by 16S rRNA amplicon sequencing. Bacterial biodiversity was compared between responders versus non-responders. Pearson's correlation and random forest tree algorithm were used to identify microbial features of glycemic responses in T2D patients and multivariable linear regression models were used to validate clinical relevance. RESULTS Beta diversity significantly differed between GLP-1 RA responders (n = 34) and non-responders (n = 18) (ADONIS, P = 0.004). The top 17 features associated with glycohemoglobin reduction had a 0.96 diagnostic ability, based on area under the ROC curve: Bacteroides dorei and Roseburia inulinivorans, the two microbes having immunomodulation effects, along with Lachnoclostridium sp. and Butyricicoccus sp., were positively correlated with glycemic reduction; Prevotella copri, the microbe related to insulin resistance, together with Ruminococcaceae sp., Bacteroidales sp., Eubacterium coprostanoligenes sp., Dialister succinatiphilus, Alistipes obesi, Mitsuokella spp., Butyricimonas virosa, Moryella sp., and Lactobacillus mucosae had negative correlation. Furthermore, Bacteroides dorei, Lachnoclostridium sp. and Mitsuokella multacida were significant after adjusting for baseline glycohemoglobin and C-peptide concentrations, two clinical confounders. CONCLUSIONS Unique gut microbial signatures are associated with glycemic responses to GLP-RA treatment and reflect degrees of dysbiosis in T2D patients.
Collapse
Affiliation(s)
- Chih-Yiu Tsai
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Chen Lu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsien Chou
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Hsin-Yun Chen
- Department of Medical Nutrition Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Meng-Chuan Huang
- Department of Nutrition and Dietetics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine and Department of Public Health and Environmental Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chia-Hung Lin, ; Chi-Neu Tsai,
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan
- *Correspondence: Chia-Hung Lin, ; Chi-Neu Tsai,
| |
Collapse
|
966
|
Wei B, Wang Y, Xiang S, Jiang Y, Chen R, Hu N. Alterations of gut microbiome in patients with type 2 diabetes mellitus who had undergone cholecystectomy. Am J Physiol Endocrinol Metab 2021; 320:E113-E121. [PMID: 33166187 DOI: 10.1152/ajpendo.00471.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) have a high risk of developing cholecystic disease. The gut microbiota has been shown to be strongly associated with cholecystectomy and T2DM pathogenesis. However, alterations of the gut microbiome in patients with T2DM who had undergone cholecystectomy remain unexplored. In this study, the gut microbiomes of 14 long-term patients with T2DM who had undergone cholecystectomy (T2DIIC group) and 21 age- and/or sex-matched subjects with new-onset (T2DI group) and long-term (T2DII group) T2DM without cholecystectomy were assessed using 16S rRNA gene sequencing of stool samples. It was found that cholecystectomy could alleviate the decrease in Pielou's evenness and the increase in the relative abundances of the Firmicutes phylum and Lachnospira genus in long-term patients with T2DM compared with T2DII subjects. Moreover, cholecystectomy also significantly increased the relative abundance of the Fusobacteria phylum, as well as that of the Fusobacterium and Bilophila genera. Interestingly, the T2DIIC and T2DI groups showed higher similarities than the T2DII group with respect to patterns of gut microbiota composition and predicted gut metagenomes. In summary, cholecystectomy could partially alleviate long-term diabetes-induced dysbiosis of the gut microbiota composition and function, but alterations in T2DM patient health warrant further study.NEW & NOTEWORTHY The gut microbiome of long-term T2DM patients who had undergone cholecystectomy and age- and/or sex-matched subjects of new-onset and long-term T2DM without cholecystectomy was assessed using 16S rRNA gene sequencing in stool samples. The findings suggest that, cholecystectomy could partially alleviate long-term diabetes-induced dysbiosis of gut microbiome composition and function.
Collapse
Affiliation(s)
- Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yakun Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Shoukui Xiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rong Chen
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
967
|
Liu Y, Jiang Q, Liu Z, Shen S, Ai J, Zhu Y, Zhou L. Alteration of Gut Microbiota Relates to Metabolic Disorders in Primary Aldosteronism Patients. Front Endocrinol (Lausanne) 2021; 12:667951. [PMID: 34484110 PMCID: PMC8415980 DOI: 10.3389/fendo.2021.667951] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study aimed to determine the relationships among gut microbiota, primary aldosteronism (PA), and related metabolic disorders. METHODS The study enrolled 13 PA patients, 26 sex-matched primary hypertension patients, and 26 sex-matched healthy controls. Demographic and clinical characteristics such as age, body mass index (BMI), blood aldosterone-renin ratio, blood potassium, blood glucose, blood lipid parameters, and history of diabetes mellitus (DM) were compared between the three groups. The gut microbiota of each participant was examined by 16S rRNA gene sequencing. Spearman correlation analysis was performed to demonstrate the relationship between gut microbiota and clinical characteristics. RESULTS BMI and the percentage of DM in PA patients were higher than those in healthy controls (p < 0.05), but not higher than those in primary hypertension patients (p > 0.05). The gut microbiota of healthy controls and primary hypertension patients had a higher alpha diversity level than that of PA patients. PA patients had fewer short-chain fatty acid (SCFA)-producing genera (Prevotella, Blautia, Coprococcus, Anaerostipes, and Ruminococcus) and more inflammation-associated genera (Megamonas, Sutterella, and Streptococcus) than healthy controls (p < 0.05). The gut microbiota of PA patients was more inclined to encode microbial pathways involved in sugar metabolism, such as starch and sucrose metabolism and fructose and mannose metabolism. Blood potassium was negatively correlated with the relative abundance of Romboutsia (R = -0.364, q = 0.023). Diastolic blood pressure (DBP) was positively correlated with Romboutsia (R = 0.386, q = 0.015). Systolic blood pressure (SBP) was negatively correlated with Blautia (R = -0.349, q = 0.030). CONCLUSIONS The alteration of gut microbiota in PA patients, especially bacteria and pathways involved in inflammation, SCFAs, and sugar metabolism, may be associated with chronic metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuchun Zhu
- *Correspondence: Yuchun Zhu, ; Liang Zhou,
| | - Liang Zhou
- *Correspondence: Yuchun Zhu, ; Liang Zhou,
| |
Collapse
|
968
|
Sarkar D, Christopher A, Shetty K. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Front Endocrinol (Lausanne) 2021; 12:727503. [PMID: 35116002 PMCID: PMC8805174 DOI: 10.3389/fendo.2021.727503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Plant-based foods containing phenolic bioactives have human health protective functions relevant for combating diet and lifestyle-influenced chronic diseases, including type 2 diabetes (T2D). The molecular structural features of dietary phenolic bioactives allow antioxidant functions relevant for countering chronic oxidative stress-induced metabolic breakdown commonly associated with T2D. In addition to antioxidant properties, phenolic bioactives of diverse plant foods have therapeutic functional activities such as improving insulin sensitivity, reducing hepatic glucose output, inhibiting activity of key carbohydrate digestive enzymes, and modulating absorption of glucose in the bloodstream, thereby subsequently improving post-prandial glycemic control. These therapeutic functional properties have direct implications and benefits in the dietary management of T2D. Therefore, plant-based foods that are rich in phenolic bioactives are excellent dietary sources of therapeutic targets to improve overall glycemic control by managing chronic hyperglycemia and chronic oxidative stress, which are major contributing factors to T2D pathogenesis. However, in studies with diverse array of plant-based foods, concentration and composition of phenolic bioactives and their glycemic control relevant bioactivity can vary widely between different plant species, plant parts, and among different varieties/genotypes due to the different environmental and growing conditions, post-harvest storage, and food processing steps. This has allowed advances in innovative strategies to screen and optimize whole and processed plant derived foods and their ingredients based on their phenolic bioactive linked antioxidant and anti-hyperglycemic properties for their effective integration into T2D focused dietary solutions. In this review, different pre-harvest and post-harvest strategies and factors that influence phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in diverse plant derived foods and derivation of extracts with therapeutic potential are highlighted and discussed. Additionally, novel bioprocessing strategies to enhance bioavailability and bioactivity of phenolics in plant-derived foods targeting optimum glycemic control and associated T2D therapeutic benefits are also advanced.
Collapse
|
969
|
Polyphenolic fractions isolated from red raspberry whole fruit, pulp, and seed differentially alter the gut microbiota of mice with diet-induced obesity. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
970
|
Lecamwasam A, Nelson TM, Rivera L, Ekinci EI, Saffery R, Dwyer KM. Gut Microbiome Composition Remains Stable in Individuals with Diabetes-Related Early to Late Stage Chronic Kidney Disease. Biomedicines 2020; 9:19. [PMID: 33383810 PMCID: PMC7824346 DOI: 10.3390/biomedicines9010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Individuals with diabetes and chronic kidney disease display gut dysbiosis when compared to healthy controls. However, it is unknown whether there is a change in dysbiosis across the stages of diabetic chronic kidney disease. We investigated a cross-sectional study of patients with early and late diabetes associated chronic kidney disease to identify possible microbial differences between these two groups and across each of the stages of diabetic chronic kidney disease. (2) Methods: This cross-sectional study recruited 95 adults. DNA extracted from collected stool samples were used for 16S rRNA sequencing to identify the bacterial community in the gut. (3) Results: The phylum Firmicutes was the most abundant and its mean relative abundance was similar in the early and late chronic kidney disease group, 45.99 ± 0.58% and 49.39 ± 0.55%, respectively. The mean relative abundance for family Bacteroidaceae, was also similar in the early and late group, 29.15 ± 2.02% and 29.16 ± 1.70%, respectively. The lower abundance of Prevotellaceae remained similar across both the early 3.87 ± 1.66% and late 3.36 ± 0.98% diabetic chronic kidney disease groups. (4) Conclusions: The data arising from our cohort of individuals with diabetes associated chronic kidney disease show a predominance of phyla Firmicutes and Bacteroidetes. The families Ruminococcaceae and Bacteroidaceae represent the highest abundance, while the beneficial Prevotellaceae family were reduced in abundance. The most interesting observation is that the relative abundance of these gut microbes does not change across the early and late stages of diabetic chronic kidney disease, suggesting that this is an early event in the development of diabetes associated chronic kidney disease. We hypothesise that the dysbiotic microbiome acquired during the early stages of diabetic chronic kidney disease remains relatively stable and is only one of many risk factors that influence progressive kidney dysfunction.
Collapse
Affiliation(s)
- Ashani Lecamwasam
- Epigenetics Research, Murdoch Children’s Research Institute, VIC 3052, Australia;
- Department of Endocrinology, Austin Health, VIC 3079, Australia;
- School of Medicine, Faculty of Health, Deakin University, VIC 3220, Australia; (L.R.); (K.M.D.)
| | - Tiffanie M. Nelson
- Menzies Health Institute Queensland, Griffith University, QLD 4222, Australia;
| | - Leni Rivera
- School of Medicine, Faculty of Health, Deakin University, VIC 3220, Australia; (L.R.); (K.M.D.)
| | - Elif I. Ekinci
- Department of Endocrinology, Austin Health, VIC 3079, Australia;
- Department of Medicine, University of Melbourne, VIC 3010, Australia
| | - Richard Saffery
- Epigenetics Research, Murdoch Children’s Research Institute, VIC 3052, Australia;
- Department of Paediatrics, University of Melbourne, VIC 3010, Australia
| | - Karen M. Dwyer
- School of Medicine, Faculty of Health, Deakin University, VIC 3220, Australia; (L.R.); (K.M.D.)
| |
Collapse
|
971
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141364. [PMID: 32836117 PMCID: PMC7836549 DOI: 10.1016/j.scitotenv.2020.141364] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 04/14/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
972
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141364. [PMID: 32836117 DOI: 10.20944/preprints202007.0471.v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
973
|
Jones DL, Baluja MQ, Graham DW, Corbishley A, McDonald JE, Malham SK, Hillary LS, Connor TR, Gaze WH, Moura IB, Wilcox MH, Farkas K. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020. [PMID: 32836117 DOI: 10.1016/j.scitotenv.2020.141364pmid-32836117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
Collapse
Affiliation(s)
- David L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alexander Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus Midlothian, EH25 9RG, UK
| | - James E McDonald
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Luke S Hillary
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Public Health Wales, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE, UK
| | - Ines B Moura
- Leeds Institute for Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, UK
| | - Mark H Wilcox
- Healthcare Associated Infections Research Group, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
974
|
Song K, Wright FA, Zhou YH. Systematic Comparisons for Composition Profiles, Taxonomic Levels, and Machine Learning Methods for Microbiome-Based Disease Prediction. Front Mol Biosci 2020; 7:610845. [PMID: 33392266 PMCID: PMC7772236 DOI: 10.3389/fmolb.2020.610845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiome composition profiles generated from 16S rRNA sequencing have been extensively studied for their usefulness in phenotype trait prediction, including for complex diseases such as diabetes and obesity. These microbiome compositions have typically been quantified in the form of Operational Taxonomic Unit (OTU) count matrices. However, alternate approaches such as Amplicon Sequence Variants (ASV) have been used, as well as the direct use of k-mer sequence counts. The overall effect of these different types of predictors when used in concert with various machine learning methods has been difficult to assess, due to varied combinations described in the literature. Here we provide an in-depth investigation of more than 1,000 combinations of these three clustering/counting methods, in combination with varied choices for normalization and filtering, grouping at various taxonomic levels, and the use of more than ten commonly used machine learning methods for phenotype prediction. The use of short k-mers, which have computational advantages and conceptual simplicity, is shown to be effective as a source for microbiome-based prediction. Among machine-learning approaches, tree-based methods show consistent, though modest, advantages in prediction accuracy. We describe the various advantages and disadvantages of combinations in analysis approaches, and provide general observations to serve as a useful guide for future trait-prediction explorations using microbiome data.
Collapse
Affiliation(s)
- Kuncheng Song
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Fred A Wright
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
975
|
Tanase DM, Gosav EM, Neculae E, Costea CF, Ciocoiu M, Hurjui LL, Tarniceriu CC, Maranduca MA, Lacatusu CM, Floria M, Serban IL. Genetic Basis of Tiller Dynamics of Rice Revealed by Genome-Wide Association Studies. Nutrients 2020; 12:nu12123719. [PMID: 33276482 PMCID: PMC7760723 DOI: 10.3390/nu12123719] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
A tiller number is the key determinant of rice plant architecture and panicle number and consequently controls grain yield. Thus, it is necessary to optimize the tiller number to achieve the maximum yield in rice. However, comprehensive analyses of the genetic basis of the tiller number, considering the development stage, tiller type, and related traits, are lacking. In this study, we sequence 219 Korean rice accessions and construct a high-quality single nucleotide polymorphism (SNP) dataset. We also evaluate the tiller number at different development stages and heading traits involved in phase transitions. By genome-wide association studies (GWASs), we detected 20 significant association signals for all traits. Five signals were detected in genomic regions near known candidate genes. Most of the candidate genes were involved in the phase transition from vegetative to reproductive growth. In particular, HD1 was simultaneously associated with the productive tiller ratio and heading date, indicating that the photoperiodic heading gene directly controls the productive tiller ratio. Multiple linear regression models of lead SNPs showed coefficients of determination (R2) of 0.49, 0.22, and 0.41 for the tiller number at the maximum tillering stage, productive tiller number, and productive tiller ratio, respectively. Furthermore, the model was validated using independent japonica rice collections, implying that the lead SNPs included in the linear regression model were generally applicable to the tiller number prediction. We revealed the genetic basis of the tiller number in rice plants during growth, By GWASs, and formulated a prediction model by linear regression. Our results improve our understanding of tillering in rice plants and provide a basis for breeding high-yield rice varieties with the optimum the tiller number.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700115 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700115 Iasi, Romania
- Correspondence:
| | - Ecaterina Neculae
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Gastroenterology and Hepatology, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania; (D.M.T.); (M.F.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital, 700483 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.L.H.); (M.A.M.); (I.L.S.)
| |
Collapse
|
976
|
Verma A, Zhu P, Xu K, Du T, Liao S, Liang Z, Raizada MK, Li Q. Angiotensin-(1-7) Expressed From Lactobacillus Bacteria Protect Diabetic Retina in Mice. Transl Vis Sci Technol 2020; 9:20. [PMID: 33344064 PMCID: PMC7735952 DOI: 10.1167/tvst.9.13.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose A multitude of animal studies substantiates the beneficial effects of Ang-(1-7), a peptide hormone in the protective axis of the renin angiotensin system, in diabetes and its associated complications including diabetic retinopathy (DR). However, the clinical application of Ang-(1-7) is limited due to unfavorable pharmacological properties. As emerging evidence implicates gut dysbiosis in pathogenesis of diabetes and supports beneficial effects of probiotics, we sought to develop probiotics-based expression and delivery system to enhance Ang-(1-7) and evaluate the efficacy of engineered probiotics expressing Ang-(1-7) in attenuation of DR in animal models. Methods Ang-(1-7) was expressed in the Lactobacillus species as a secreted fusion protein with a trans-epithelial carrier to allow uptake into circulation. To evaluate the effects of Ang-(1-7) expressed from Lactobacillus paracasei (LP), adult diabetic eNOS-/- and Akita mice were orally gavaged with either 1 × 109 CFU of LP secreting Ang-(1-7) (LP-A), LP alone or vehicle, 3 times/week, for 8 and 12 weeks, respectively. Results Ang-(1-7) is efficiently expressed from different Lactobacillus species and secreted into circulation in mice fed with LP-A. Oral administration of LP-A significantly reduced diabetes-induced loss of retinal vascular capillaries. LP-A treatment also prevented loss of retinal ganglion cells, and significantly decreased retinal inflammatory cytokine expression in both diabetic eNOS-/- and Akita mice. Conclusions These results provide proof-of-concept for feasibility and efficacy of using engineered probiotic species as live vector for delivery of Ang-(1-7) with enhanced bioavailability. Translational Relevance Probiotics-based delivery of Ang-(1-7) may hold important therapeutic potential for the treatment of DR and other diabetic complications.
Collapse
Affiliation(s)
- Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kang Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tao Du
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shengquan Liao
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhibing Liang
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohan K. Raizada
- Physiology & Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
977
|
The antidiabetic effect and potential mechanisms of natural polysaccharides based on the regulation of gut microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
978
|
Eyupoglu ND, Ergunay K, Acikgoz A, Akyon Y, Yilmaz E, Yildiz BO. Gut Microbiota and Oral Contraceptive Use in Overweight and Obese Patients with Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2020; 105:5899137. [PMID: 32860695 DOI: 10.1210/clinem/dgaa600] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder. Emerging animal and human data point to various changes in microbiota that could be linked with the syndrome. However, the effects of therapeutic approaches on gut microbial composition in women with PCOS remain unknown. OBJECTIVE We aimed to assess whether gut microbial composition is altered in PCOS and to determine the potential impact of oral contraceptive (OC) use on gut microbiota. DESIGN Prospective observational study. SETTING Tertiary referral hospital. PATIENTS AND OTHER PARTICIPANTS The study included 17 overweight/obese patients with PCOS and 15 age- and body mass index-matched healthy control women. MAIN OUTCOME MEASURES At baseline, clinical, hormonal, and metabolic evaluations and gut microbial composition assessment by 16S rRNA gene amplicon sequencing were performed for both groups. All measurements were repeated in patients after receiving an OC along with general lifestyle advice for 3 months. RESULTS Alpha and beta diversity did not show a difference between patients with PCOS and healthy controls at baseline and remained unaltered after 3 months of OC use in the PCOS group. Relative abundance of Ruminococcaceae was higher in PCOS (P = 0.006) and did not show a significant change after treatment. CONCLUSION Women with PCOS have an increased abundance of Ruminococcaceae, whereas short-term OC use does not alter compositional features of gut microbiota in the syndrome.
Collapse
Affiliation(s)
- Nesrin Damla Eyupoglu
- Hacettepe University School of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Koray Ergunay
- Hacettepe University School of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Aylin Acikgoz
- Hacettepe University School of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Yakut Akyon
- Hacettepe University School of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Engin Yilmaz
- Acıbadem Mehmet Ali Aydınlar University, Department of Medical Biology, Istanbul, Turkey
| | - Bulent Okan Yildiz
- Hacettepe University School of Medicine, Department of Internal Medicine, Ankara, Turkey
- Hacettepe University School of Medicine, Division of Endocrinology and Metabolism, Ankara, Turkey
| |
Collapse
|
979
|
Herrema H, Niess JH. Intestinal microbial metabolites in human metabolism and type 2 diabetes. Diabetologia 2020; 63:2533-2547. [PMID: 32880688 PMCID: PMC7641949 DOI: 10.1007/s00125-020-05268-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Humans with the metabolic syndrome and type 2 diabetes have an altered gut microbiome. Emerging evidence indicates that it is not only the microorganisms and their structural components, but also their metabolites that influences the host and contributes to the development of the metabolic syndrome and type 2 diabetes. Here, we discuss some of the mechanisms underlying how microbial metabolites are recognised by the host or are further processed endogenously in the context of type 2 diabetes. We discuss the possibility that gut-derived microbial metabolites fuel the development of the metabolic syndrome and type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland.
- University Center for Gastrointestinal and Liver Diseases, St Clara Hospital and University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
980
|
Huang R, Ju Z, Zhou PK. A gut dysbiotic microbiota-based hypothesis of human-to-human transmission of non-communicable diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141030. [PMID: 32726703 DOI: 10.1016/j.scitotenv.2020.141030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Non-communicable diseases (NCDs) have replaced communicable diseases as the leading cause of premature death worldwide over the past century. Increasing numbers of studies have reported a link between NCDs and dysbiotic gut microbiota. Some gut microbiota, such as Helicobacter pylori, have been implicated in person-to-person transmission. Based on these reports, we develop a hypothesis regarding dysbiotic microbiota-associated NCDs, and explore how the presence of communicable NCDs could be confirmedexperimentally. We have also reviewed reports on environmental factors, including a high-fat diet, alcohol, smoking, exercise, radiation and air pollution, which have been associated with dysbiotic microbiota, and determined whether any of these parameters were also associated with NCDs. This review discusses the potential mechanism by which dysbiotic microbiota induced by environmental factors are directly or indirectly involved in person-to-person transmission. The hypothetical interplay between the environment, gut microbiota and host can be tested through high-throughput sequencing, animal models, and cell studies, although each of these modalities presents specific challenges. Confirmation of a causative association of dysbiotic microbiota with NCDs would represent a paradigm shift in efforts to prevent and control these diseases, and should stimulate additional studies on the associations among environmental factors, gut microbiota, and NCDs.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Central South University, Changsha, 410078, China.
| | - Zhao Ju
- Department of Occupational and Environmental Health, Central South University, Changsha, 410078, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing 100850, PR China; Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
981
|
Demidova TY, Lobanova KG, Oinotkinova OS. [Gut microbiota is a factor of risk for obesity and type 2 diabetes]. TERAPEVT ARKH 2020; 92:97-104. [PMID: 33346486 DOI: 10.26442/00403660.2020.10.000778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiota (GM) is a set of bacteria which colonize the gastrointestinal tract. GM and its active metabolites take part in intestinal and hepatic gluconeogenesis, in the synthesis of incretin hormones, and affect the regulation of appetite. Thus, GM and its metabolites participate in the homeostasis of carbohydrates and fats. An imbalance in the set of the intestinal flora and a disturbance of the production of active metabolites sharply increases the risk of developing obesity and type 2 diabetes. There are conflicting data in the literature on the role of specific microorganisms in the development of metabolic disorders. Research is needed to identify specific types of bacteria and their active metabolites which affect the development of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- T Y Demidova
- Pirogov Russian National Research Medical University
| | - K G Lobanova
- Pirogov Russian National Research Medical University
| | - O S Oinotkinova
- Pirogov Russian National Research Medical University.,Lomonosov Moscow State University.,Research Institute of Health Organization and Medical Management
| |
Collapse
|
982
|
Segal JP, Mak JWY, Mullish BH, Alexander JL, Ng SC, Marchesi JR. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Therap Adv Gastroenterol 2020; 13:1756284820974914. [PMID: 33281941 PMCID: PMC7692338 DOI: 10.1177/1756284820974914] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 02/04/2023] Open
Abstract
The novel coronavirus infection (COVID-19) caused by the SARS-CoV-2 virus has spread rapidly across the globe, culminating in major global morbidity and mortality. As such, there has been a rapid escalation in scientific and clinical activity aimed at increasing our comprehension of this virus. This volume of work has led to early insights into risk factors associated with severity of disease, and mechanisms that underpin the virulence and dynamics involved in viral transmission. These insights ultimately may help guide potential therapeutics to reduce the human, economic and social impact of this pandemic. Importantly, the gastrointestinal (GI) tract has emerged as an important organ influencing propensity to, and potentially severity of, COVID-19 infection. Furthermore, the gut microbiome has been linked to a variety of risk factors for COVID-19 infection, and manipulation of the gut microbiome is an attractive potential therapeutic target for a number of diseases. While data profiling the gut microbiome in COVID-19 infection to date are limited, they support the possibility of several routes of interaction between COVID-19, the gut microbiome, angiotensin converting enzyme 2 (ACE-2) expression in the small bowel and colon and gut inflammation. This article will explore the evidence that implicates the gut microbiome as a contributing factor to the pathogenesis, severity and disease course of COVID-19, and speculate about the gut microbiome's capability as a therapeutic avenue against COVID-19. LAY SUMMARY It has been noted that certain baseline gut profiles of COVID-19 patients are associated with a more severe disease course, and the gut microbiome impacts the disease course of several contributory risk factors to the severity of COVID-19. A protein called ACE-2, which is found in the small intestine among other sites, is a key receptor for COVID-19 virus entry; there is evidence that the gut microbiome influences ACE-2 receptor expression, and hence may play a role in influencing COVID-19 infectivity and disease severity. Furthermore, the gut microbiome plays a significant role in immune regulation, and hence may be pivotal in influencing the immune response to COVID-19. In terms of understanding COVID-19 treatments, the gut microbiome is known to interact with several drug classes being used to target COVID-19 and should be factored into our understanding of how patients respond to treatment. Importantly, our understanding of the role of the gut microbiome in COVID-19 infection remains in its infancy, but future research may potentially aid our mechanistic understanding of viral infection, and new ways in which we might approach treating it.
Collapse
Affiliation(s)
- Jonathan P. Segal
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY, UK
- Department of Metabolism, Division of Digestive Diseases, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ, UK
| | - Joyce W. Y. Mak
- Centre for Gut Microbiota Research, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS
- Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Benjamin H. Mullish
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - James L. Alexander
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Siew C. Ng
- Centre for Gut Microbiota Research, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS
- Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Julian R. Marchesi
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
983
|
Functional Deficits in Gut Microbiome of Young and Middle-Aged Adults with Prediabetes Apparent in Metabolizing Bioactive (Poly)phenols. Nutrients 2020; 12:nu12113595. [PMID: 33238618 PMCID: PMC7700645 DOI: 10.3390/nu12113595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Gut microbiota metabolize select dietary (poly)phenols to absorbable metabolites that exert biological effects important in metabolic health. Microbiota composition associated with health/disease status may affect its functional capacity to yield bioactive metabolites from dietary sources. Therefore, this study assessed gut microbiome composition and its related functional capacity to metabolize fruit (poly)phenols in individuals with prediabetes and insulin resistance (PreDM-IR, n = 26) compared to a metabolically healthy Reference group (n = 10). Methods: Shotgun sequencing was used to characterize gut microbiome composition. Targeted quantitative metabolomic analyses of plasma and urine collected over 24 h were used to assess microbial-derived metabolites in response to a (poly)phenol-rich raspberry test drink. Results: PreDM-IR compared to the Reference group: (1) enriched Blautia obeum and Blautia wexlerae and depleted Bacteroides dorei and Coprococcus eutactus. Akkermansia muciniphila and Bacteroides spp. were depleted in the lean PreDM-IR subset; and (2) impaired microbial catabolism of select (poly)phenols resulting in lower 3,8-dihydroxy-urolithin (urolithin A), phenyl-γ-valerolactones and various phenolic acids concentrations (p < 0.05). Controlling for obesity revealed relationships with microbial species that may serve as metagenomic markers of diabetes development and therapeutic targets. Conclusions: Data provide insight from multi-omics approaches to advance knowledge at the diet–gut–disease nexus serving as a platform for devising dietary strategies to improve metabolic health.
Collapse
|
984
|
Li M, Ding L, Hu YL, Qin LL, Wu Y, Liu W, Wu LL, Liu TH. Herbal formula LLKL ameliorates hyperglycaemia, modulates the gut microbiota and regulates the gut-liver axis in Zucker diabetic fatty rats. J Cell Mol Med 2020; 25:367-382. [PMID: 33215869 PMCID: PMC7810939 DOI: 10.1111/jcmm.16084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/22/2022] Open
Abstract
LLKL, a new traditional Chinese medicine formula containing Edgeworthia gardneri (Wall.) Meisn., Sibiraea angustata and Crocus sativus L. (saffron), was designed to ameliorate type 2 diabetes mellitus. Despite the therapeutic benefits of LLKL, its underlying mechanisms remain elusive. This study evaluated the LLKL anti-diabetic efficacy and its effect on gut microbiota to elucidate its mechanism of action in Zucker diabetic fatty rats. We found that administration of different LLKL concentrations (4.68, 2.34 and 1.17 g/kg/d) improved several diabetic parameters after a 6-week treatment. Moreover, LLKL modulated gut microbiota dysbiosis, increased the expression of occluding and maintained intestinal epithelial homeostasis, leading to a reduction in LPS, TNF-α and IL-6 levels. Hepatic transcriptomic analysis showed that the Toll-like receptor signalling pathway was markedly enriched by LLKL treatment. RT-qPCR results validated that LLKL treatment decreased the expressions of TLR4, MyD88 and CTSK. Furthermore, a gene set enrichment analysis indicated that LLKL enhanced the insulin signalling pathway and inhibited glycerolipid metabolism and fatty acid metabolism, which were verified by the liver biochemical analysis. These findings demonstrate that LLKL ameliorates hyperglycaemia, modulates the gut microbiota and regulates the gut-liver axis, which might contribute to its anti-diabetic effect.
Collapse
Affiliation(s)
- Mei Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Ding
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Li Hu
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Ling Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Li Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong-Hua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.,Tibetan Medical College, Lhasa, China
| |
Collapse
|
985
|
Choo JM, Tran CD, Luscombe-Marsh ND, Stonehouse W, Bowen J, Johnson N, Thompson CH, Watson EJ, Brinkworth GD, Rogers GB. Almond consumption affects fecal microbiota composition, stool pH, and stool moisture in overweight and obese adults with elevated fasting blood glucose: A randomized controlled trial. Nutr Res 2020; 85:47-59. [PMID: 33444970 DOI: 10.1016/j.nutres.2020.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 01/12/2023]
Abstract
Regular almond consumption has been shown to improve body weight management, lipid profile and blood glucose control. We hypothesized that almond consumption would alter fecal microbiota composition, including increased abundance and activity of potentially beneficial bacterial taxa in adults who are overweight and obese with elevated fasting blood glucose. A total of 69 adults who were overweight or obese with an elevated plasma glucose (age: 60.8 ± 7.4, BMI ≥27 kg/m2, fasting plasma glucose ≥5.6 to <7.0 mmol/L) were randomized to daily consumption of either 2 servings of almonds (AS:56 g/day) or an isocaloric, high carbohydrate biscuit snack for 8 weeks. AS but not biscuit snack experienced significant changes in microbiota composition (P= .011) and increases in bacterial richness, evenness, and diversity (P< .01). Increases in both the relative and absolute abundance of operational taxonomic units in the Ruminococcaceae family, including Ruminiclostridium (false discovery rate P = .002), Ruminococcaceae NK4A214 (P = .002) and Ruminococcaceae UCG-003 (P = .002) were the principal drivers of microbiota-level changes. No changes in fecal short chain fatty acid levels, or in the carriage of the gene encoding butyryl-CoA:acetate CoA-transferase (an enzyme involved in butyrate synthesis) occurred. Almond consumption was not associated with reduced gut permeability, but fecal pH (P= .0006) and moisture content (P = .027) decreased significantly in AS when compared to BS. Regular almond consumption increased the abundance of potentially beneficial ruminococci in the fecal microbiota in individuals with elevated blood glucose. However, fecal short-chain fatty acid levels remained unaltered and the capacity for such microbiological effects to precipitate host benefit is not known.
Collapse
Affiliation(s)
- Jocelyn M Choo
- Microbiome & Host Health, South Australian Health and Medical Research Institute, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Cuong D Tran
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Natalie D Luscombe-Marsh
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Welma Stonehouse
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Jane Bowen
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Nathan Johnson
- Faculty of Health Sciences and Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Lidcombe 2141, Australia
| | | | - Emma-Jane Watson
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, PO Box 10041, Adelaide 5000, Australia
| | - Grant D Brinkworth
- Commonwealth Scientific and Industrial Research Organisation - Health and Biosecurity, 11 Julius Avenue, North Ryde 2113, Australia
| | - Geraint B Rogers
- Microbiome & Host Health, South Australian Health and Medical Research Institute, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
986
|
Xu X, Yi H, Wu J, Kuang T, Zhang J, Li Q, Du H, Xu T, Jiang G, Fan G. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomed Pharmacother 2020; 133:110984. [PMID: 33186794 DOI: 10.1016/j.biopha.2020.110984] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The increased incidence of metabolic diseases (e.g., diabetes and obesity) has seriously affected human health and life safety worldwide. It is of great significance to find effective drugs from natural compounds to treat metabolic diseases. Berberine (BBR), an important quaternary benzylisoquinoline alkaloid, exists in many traditional medicinal plants. In recent years, BBR has received widespread attention due to its good potential in the treatment of metabolic diseases. In order to promote the basic research and clinical application of BBR, this review provides a timely and comprehensive summary of the pharmacological and clinical advances of BBR in the treatment of five metabolic diseases, including type 2 diabetes mellitus, obesity, non-alcoholic fatty liver disease, hyperlipidemia, and gout. Both animal and clinical studies have proved that BBR has good therapeutic effects on these five metabolic diseases. The therapeutic effects of BBR are based on regulating various metabolic aspects and pathophysiological procedures. For example, it can promote insulin secretion, improve insulin resistance, inhibit lipogenesis, alleviate adipose tissue fibrosis, reduce hepatic steatosis, and improve gut microbiota disorders. Collectively, BBR may be a good and promising drug candidate for the treatment of metabolic diseases. More studies, especially clinical trials, are needed to further confirm its molecular mechanisms and targets. In addition, large-scale, long-term and multi-center clinical trials are necessary to evaluate the efficacy and safety of BBR in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Xinmei Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tong Xu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guihua Jiang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
987
|
Koszewicz M, Jaroch J, Brzecka A, Ejma M, Budrewicz S, Mikhaleva LM, Muresanu C, Schield P, Somasundaram SG, Kirkland CE, Avila-Rodriguez M, Aliev G. Dysbiosis is one of the risk factor for stroke and cognitive impairment and potential target for treatment. Pharmacol Res 2020; 164:105277. [PMID: 33166735 DOI: 10.1016/j.phrs.2020.105277] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
More than 50 million people have various forms of cognitive impairment basically caused by neurodegenerative diseases, such as Alzheimer's, Parkinson's, and cerebrovascular diseases as well as stroke. Often these conditions coexist and exacerbate one another. The damaged area in post-stroke dementia may lead to neurodegenerative lesions. Gut microbiome functions like an endocrine organ by generating bioactive metabolites that can directly or indirectly impact human physiology. An alteration in the composition and function of intestinal flora, i.e. gut dysbiosis, is implicated in neurodegenerative and cerebrovascular diseases. Additionally, gut dysbiosis may accelerate the progression of cognitive impairment. Dysbiosis may result from obesity; metabolic disorders, cardiovascular disease, and sleep disorders, Lack of physical activity is associated with dysbiosis as well. These may coexist in various patterns in older people, enhancing the risk, incidence, and progression of cerebrovascular lesions, neurodegenerative disorders, and cognitive impairment, creating a vicious circle. Recently, it has been reported that several metabolites produced by gut microbiota (e.g., trimethylamine/trimethylamine N-oxide, short-chain fatty acids, secondary bile acids) may be linked to neurodegenerative and cerebrovascular diseases. New treatment modalities, including prebiotic and probiotics, may normalize the gut microbiota composition, change the brain-gut barrier, and decrease the risk of the pathology development. Fecal microbiota transplantation, sometimes in combination with other methods, is used for remodeling and replenishing the symbiotic gut microbiome. This promising field of research is associated with basic findings of bidirectional communication between body organs and gut microbiota that creates new possibilities of pharmacological treatments of many clinical conditions. The authors present the role of gut microbiota in physiology, and the novel therapeutic targets in modulation of intestinal microbiota Personalized therapies based on their personal genome make up could offer benefits by modulating microbiota cross-talk with brain and cardiovascular system. A healthy lifestyle, including pre and probiotic nutrition is generally recommended. Prevention may also be enhanced by correcting gut dysbiosis resulting a reduced risk of post-stroke cognitive impairment including dementia.
Collapse
Affiliation(s)
- Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213, Poland
| | - Joanna Jaroch
- Faculty of Health Sciences, Wroclaw Medical University, 51-618 Wrocław, Bartla 5, Poland; Department of Cardiology, Lower Silesian Specialist Hospital, Fieldorfa 2, 54-049 Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439, Wroclaw, Grabiszynska 105, Poland
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213, Poland
| | - Slawomir Budrewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213, Poland
| | - Liudmila M Mikhaleva
- Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation
| | - Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Str. Trifoiului nr. 12 G, 400478, Cluj-Napoca, Romania
| | - Pamela Schield
- School of Education & Athletics, Salem University, Salem, WV 26426, United States
| | | | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, USA
| | - Marco Avila-Rodriguez
- Health Sciences Faculty, Clinic Sciences Department, University of Tolima, 730006 Ibague, Colombia
| | - Gjumrakch Aliev
- Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
988
|
Patil R, Arvindekar A. Glycation of gut proteins initiates microbial dysbiosis and can promote establishment of diabetes in experimental animals. Microb Pathog 2020; 152:104589. [PMID: 33171259 DOI: 10.1016/j.micpath.2020.104589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Diabetes and obesity is associated with change in the gut microbiota, however, the reason for such transition is still unknown. The secondary complications in diabetes mainly stem from protein glycation, oxidative stress and inflammatory response. It is intended to study the correlation between gut proteins glycation and microbial dysbiosis and thereby progression to diabetes. The study was carried out through feeding high fructose to male Wistar rats and evaluating their gut microbiota. The rate of gut flora excretion via faecal matter was found to decrease on fructose feed for 7 days. Intestinal flora was drastically reduced and pathogenic succession observed. Intestinal fluorescence studies confirmed that there is heavy glycation of gut proteins. Microbes obtained from fructose fed animals could grow on glycated BSA. There was significant increase in level of TNF-α and IFN-γ providing evidence of inflammation. Though microbial dysbiosis was observed in diabetes, the cause for this remained elusive. In the present study we prove that high fructose feed and glycation of the gut proteins probably prevent adherence/survival of the gut microflora in control animals and promotes transition to a changed microflora which is capable of adhering/utilizing glycated proteins as well as high fructose. The changed microbiota, enhanced protein glycation and inflammation help in establishing insulin resistance.
Collapse
Affiliation(s)
- Rahul Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, M.S, India
| | - Akalpita Arvindekar
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, M.S, India.
| |
Collapse
|
989
|
Abstract
The pandemic of novel coronavirus disease (COVID-19) caused by the Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) creates an immense menace to public health worldwide. Currently, the World Health Organization (WHO) has recognized the novel coronavirus as the main cause of global pandemic. Patients infected with this virus generally show fever, nausea, and respiratory illness, while some patients also manifest gastrointestinal symptoms such as abdominal pain, vomiting, and diarrhea. Traces of SARS-CoV-2 RNA have been found in gastrointestinal cells. Further angiotensin converting enzyme 2 (ACE2) the known receptor for the virus is extensively expressed in these cells. This implies that gastrointestinal tract can be infected and can also present them as a replication site for SARS-CoV-2, but since this infection may lead to multiple organ failure, therefore identification of another receptor is a plausible choice. This review aims to provide comprehensive information about probable receptors such as sialic acid and CD147 which may facilitate the virus entry. Several potential targets are mentioned which can be used as a therapeutic approach for COVID-19 and associated GI disorders. The gut microbiomes are responsible for high levels of interferon-gamma which causes hyper-inflammation and exacerbates the severity of the disease. Briefly, this article highlights the gut microbiome’s relation and provides potential diagnostic approaches like RDT and LC-MS for sensitive and specific identification of viral proteins. Altogether, this article reviews epidemiology, probable receptors and put forward the tentative ideas of the therapeutic targets and diagnostic methods for COVID-19 with gastrointestinal aspect of disease.
Collapse
|
990
|
Elbere I, Silamikelis I, Dindune II, Kalnina I, Briviba M, Zaharenko L, Silamikele L, Rovite V, Gudra D, Konrade I, Sokolovska J, Pirags V, Klovins J. Baseline gut microbiome composition predicts metformin therapy short-term efficacy in newly diagnosed type 2 diabetes patients. PLoS One 2020; 15:e0241338. [PMID: 33125401 PMCID: PMC7598494 DOI: 10.1371/journal.pone.0241338] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The study was conducted to investigate the effects of metformin treatment on the human gut microbiome's taxonomic and functional profile in the Latvian population, and to evaluate the correlation of these changes with therapeutic efficacy and tolerance. METHODS In this longitudinal observational study, stool samples for shotgun metagenomic sequencing-based analysis were collected in two cohorts. The first cohort included 35 healthy nondiabetic individuals (metformin dose 2x850mg/day) at three time-points during metformin administration. The second cohort was composed of 50 newly-diagnosed type 2 diabetes patients (metformin dose-determined by an endocrinologist) at two concordant times. Patients were defined as Responders if their HbA1c levels during three months of metformin therapy had decreased by ≥12.6 mmol/mol (1%), while in Non-responders HbA1c were decreased by <12.6 mmol/mol (1%). RESULTS Metformin reduced the alpha diversity of microbiota in healthy controls (p = 0.02) but not in T2D patients. At the species level, reduction in the abundance of Clostridium bartlettii and Barnesiella intestinihominis, as well as an increase in the abundance of Parabacteroides distasonis and Oscillibacter unclassified overlapped between both study groups. A large number of group-specific changes in taxonomic and functional profiles was observed. We identified an increased abundance of Prevotella copri (FDR = 0.01) in the Non-Responders subgroup, and enrichment of Enterococcus faecium, Lactococcus lactis, Odoribacter, and Dialister at baseline in the Responders group. Various taxonomic units were associated with the observed incidence of side effects in both cohorts. CONCLUSIONS Metformin effects are different in T2D patients and healthy individuals. Therapy induced changes in the composition of gut microbiome revealed possible mediators of observed short-term therapeutic effects. The baseline composition of the gut microbiome may influence metformin therapy efficacy and tolerance in T2D patients and could be used as a powerful prediction tool.
Collapse
Affiliation(s)
- Ilze Elbere
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Monta Briviba
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dita Gudra
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilze Konrade
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | | | - Valdis Pirags
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
991
|
The Role of Dietary Fibre in Modulating Gut Microbiota Dysbiosis in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2020; 12:nu12113239. [PMID: 33113929 PMCID: PMC7690692 DOI: 10.3390/nu12113239] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Background: The prevalence of type 2 diabetes is on the increase worldwide, and it represents about 90% of adults who are diagnosed with diabetes. Overweight and obesity, lifestyle, genetic predisposition and gut microbiota dysbiosis have been implicated as possible risk factors in the development of type 2 diabetes. In particular, low intake of dietary fibre and consumption of foods high in fat and sugar, which are common in western lifestyle, have been reported to contribute to the depletion of specific bacterial taxa. Therefore, it is possible that intake of high dietary fibre may alter the environment in the gut and provide the needed substrate for microbial bloom. Aim: The current review is a systematic review and meta-analysis which evaluated the role of dietary fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes. Methods: This is a systematic review and meta-analysis of randomised controlled trials which relied on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. Electronic searches were conducted using EBSCOHost with links to Health Sciences Research Databases, EMBASE and Google Scholar. The reference lists of articles were also searched for relevant studies. Searches were conducted from date of commencement of the database to 5 August 2020. The search strategy was based on the Population, Intervention, Comparator, Outcomes, Studies (PICOS) framework and involved the use of synonyms and medical subject headings (MesH). Search terms were combined with Boolean operators (OR/AND). Results: Nine studies which met the inclusion criteria were selected for the systematic review and meta-analysis, and four distinct areas were identified: the effect of dietary fibre on gut microbiota; the role of dietary fibre on short-chain fatty acids (SCFAs); glycaemic control; and adverse events. There was significant difference (p < 0.01) in the relative abundance of Bifidobacterium with a mean difference of 0.72 (95% CI, 0.56, 0.89) between the dietary fibre group compared with placebo. In relation to the meta-analysis for SCFAs, while there was significant difference (p = 0.02) between the dietary fibre group and placebo with a standardised mean difference of 0.5 (95% CI, 0.08, 0.91) regarding total SCFAs, the differences were not significant (p > 0.05) in relation to acetic acid, propionic acid and butyric acid. There was only significant improvement (p = 0.002) with respect to glycated haemoglobin with a mean difference of −0.18 (95% CI, −0.29, −0.06) between the dietary fibre group and placebo group. Differences between the two groups were not significant (p > 0.05) in relation to fasting blood glucose and homeostatic model assessment of insulin resistance (HOMA-IR). Furthermore, there were no significant differences between the two groups in subjects who reported adverse events. It is possible that the promotion of SCFA producers in greater diversity and abundance by dietary fibre in this review led to improvement in glycated haemoglobin, partly due to increased glucagon-like peptide-1 (GLP-1) production. In addition, Bifidobacterium lactis has been reported to increase glycogen synthesis, decrease expression of hepatic gluconeogenesis genes, improve translocation of glucose transport-4 and promote glucose uptake. It is also possible that the reduction in body weight of participants in the intervention group compared with control may have contributed to the observed improvement in glycated haemoglobin. Conclusion: This systematic review and meta-analysis have demonstrated that dietary fibre can significantly improve (p < 0.05) the relative abundance of Bifidobacterium, total SCFAs and glycated haemoglobin. However, dietary fibre did not appear to have significant effect (p > 0.05) on fasting blood glucose, HOMA-IR, acetic acid, propionic acid, butyric acid and adverse events.
Collapse
|
992
|
Cao H, Li C, Lei L, Wang X, Liu S, Liu Q, Huan Y, Sun S, Shen Z. Stachyose Improves the Effects of Berberine on Glucose Metabolism by Regulating Intestinal Microbiota and Short-Chain Fatty Acids in Spontaneous Type 2 Diabetic KKAy Mice. Front Pharmacol 2020; 11:578943. [PMID: 33192521 PMCID: PMC7642818 DOI: 10.3389/fphar.2020.578943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023] Open
Abstract
Berberine (BBR) has the beneficial effects of anti-inflammation, anti-bacteria, and anti-diabetes. The clinical application of BBR has been hindered by its poor gastrointestinal absorption. Stachyose (Sta), a prebiotic agent, improves the composition of gut microbiota and benefits for diabetes. We therefore investigated whether Sta improves the anti-diabetic actions of BBR using KKAy mice. Here, we find that the combination of BBR and Sta is more effective than BBR alone in blood glucose control, improvement of insulin resistance and islet functions, inflammatory mediators decrease, and maintenance of intestinal barrier integrity. Gut microbiota analysis demonstrates that both BBR and combined administration enhance the abundance of Bacteroidaceae and Akkermansiaceae and decrease Lachnospiraceae levels, whereas Akkermansiaceae elevation due to the administration of BBR with Sta is more significant than BBR alone. Interestingly, the proportion of Lactobacillaceae increases with combination treatment, but is diminished by BBR. Additionally, BBR with Sta significantly reduces the concentrations of fecal short-chain fatty acids compared to BBR. Collectively, these results indicate that the combination of BBR and Sta imparts better effects on the maintenance of glycemia and intestinal homeostasis than BBR alone by modulating gut microbiota and short-chain fatty acids, thereby providing a novel approach for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - Caina Li
- *Correspondence: Zhufang Shen, , Caina Li,
| | | | | | | | | | | | | | - Zhufang Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
993
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
994
|
Jadhav K, Cohen TS. Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Front Endocrinol (Lausanne) 2020; 11:592157. [PMID: 33193105 PMCID: PMC7641624 DOI: 10.3389/fendo.2020.592157] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disorders, ranging from fatty liver to a more insulin resistant, inflammatory and fibrotic state collectively termed non-alcoholic steatohepatitis (NASH). In the United States, 30%-40% of the adult population has fatty liver and 3%-12% has NASH, making it a major public health concern. Consumption of diets high in fat, obesity and Type II diabetes (T2D) are well-established risk factors; however, there is a growing body of literature suggesting a role for the gut microbiome in the development and progression of NAFLD. The gut microbiota is separated from the body by a monolayer of intestinal epithelial cells (IECs) that line the small intestine and colon. The IEC layer is exposed to luminal contents, participates in selective uptake of nutrients and acts as a barrier to passive paracellular permeability of luminal contents through the expression of tight junctions (TJs) between adjacent IECs. A dysbiotic gut microbiome also leads to decreased gut barrier function by disrupting TJs and the gut vascular barrier (GVB), thus exposing the liver to microbial endotoxins. These endotoxins activate hepatic Toll-like receptors (TLRs), further promoting the progression of fatty liver to a more inflammatory and fibrotic NASH phenotype. This review will summarize major findings pertaining to aforementioned gut-liver interactions and its role in the pathophysiology of NAFLD.
Collapse
Affiliation(s)
| | - Taylor S. Cohen
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
995
|
Improvement of glucose metabolism in pregnant women through probiotic supplementation depends on gestational diabetes status: meta-analysis. Sci Rep 2020; 10:17796. [PMID: 33082439 PMCID: PMC7576147 DOI: 10.1038/s41598-020-74773-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to assess the effects of probiotic and synbiotic supplementation on glucose metabolism in pregnant women using data from randomized controlled trials. Furthermore, this meta-analysis examines whether the observed effects depend on the presence or absence of gestational diabetes mellitus (GDM), and if the effect is dependent on the type of supplement used (probiotic or synbiotic). We performed a literature search of databases (Medline, Scopus, Web of Knowledge, and Cochrane Library) and identified all relevant randomized controlled trials (RCTs) published prior to May 2019. We compared the effects of probiotic supplementation with the administration of placebos in pregnant women with and without GDM. The systematic review and meta-analysis protocol were registered in the International Prospective Register of Systematic Reviews as number CRD 42019111467. 1119 study participants from 15 selected studies were included. The participants in four studies did not have GDM (being recruited to the study before week 20 of pregnancy) and the participants in the rest of the studies were diagnosed with GDM between weeks 24 and 28 of gestation. The meta-analysis showed that supplementation lowers serum glucose, insulin levels, and HOMA-IR index, but only in pregnant women with GDM. Moreover, both probiotics and synbiotics lower serum insulin level and HOMA-IR index, but the glucose lowering effect is specific only to probiotics and not synbiotics. Probiotic supplementation may improve glucose metabolism in pregnant women with GDM. There is a need for more RCT studies with larger groups to better estimate this effect.
Collapse
|
996
|
The Gut Microbiota and Inflammation: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207618. [PMID: 33086688 PMCID: PMC7589951 DOI: 10.3390/ijerph17207618] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field. Based on the current literature, it appears that as the gut microbiota composition differs between individuals and is contingent on a variety of factors like diet and genetics, some individuals may possess bacteria associated with pro-inflammatory effects whilst others may harbour those with anti-inflammatory effects. Recent technological advancements have allowed for better methods of characterising the gut microbiota. Further research to continually improve our understanding of the inflammatory pathways that interact with bacteria may elucidate reasons behind varying presentations of the same disease and varied responses to the same treatment in different individuals. Furthermore, it can inform clinical practice as anti-inflammatory microbes can be employed in probiotic therapies or used to identify suitable prebiotic therapies.
Collapse
|
997
|
Guo Y, Huang Z, Sang D, Gao Q, Li Q. The Role of Nutrition in the Prevention and Intervention of Type 2 Diabetes. Front Bioeng Biotechnol 2020; 8:575442. [PMID: 33042976 PMCID: PMC7523408 DOI: 10.3389/fbioe.2020.575442] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a rapidly growing epidemic, which leads to increased mortality rates and health care costs. Nutrients (namely, carbohydrates, fat, protein, mineral substances, and vitamin), sensing, and management are central to metabolic homeostasis, therefore presenting a leading factor contributing to T2D. Understanding the comprehensive effects and the underlying mechanisms of nutrition in regulating glucose metabolism and the interactions of diet with genetics, epigenetics, and gut microbiota is helpful for developing new strategies to prevent and treat T2D. In this review, we discuss different mechanistic pathways contributing to T2D and then summarize the current researches concerning associations between different nutrients intake and glucose homeostasis. We also explore the possible relationship between nutrients and genetic background, epigenetics, and metagenomics in terms of the susceptibility and treatment of T2D. For the specificity of individual, precision nutrition depends on the person’s genotype, and microbiota is vital to the prevention and intervention of T2D.
Collapse
Affiliation(s)
- Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dan Sang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiong Gao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
998
|
Ibrahim KS, Bourwis N, Dolan S, Lang S, Spencer J, Craft JA. Characterisation of gut microbiota of obesity and type 2 diabetes in a rodent model. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 40:65-74. [PMID: 33520571 PMCID: PMC7817511 DOI: 10.12938/bmfh.2019-031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Various studies have suggested that the gut microbiome interacts with the host and may have a significant role in the aetiology of obesity and Type 2 Diabetes (T2D). It was hypothesised that bacterial communities in obesity and T2D differ from control and compromise normal interactions between host and microbiota. Obesity and T2D were developed in rats by feeding a high-fat diet or a high-fat diet plus a single low-dose streptozotocin administration, respectively. The microbiome profiles and their metabolic potentials were established by metagenomic 16S rRNA sequencing and bioinformatics. Taxonomy and predicted metabolism-related genes in obesity and T2D were markedly different from controls and indeed from each other. Diversity was reduced in T2D but not in Obese rats. Factors likely to compromise host intestinal, barrier integrity were found in Obese and T2D rats including predicted, decreased bacterial butyrate production. Capacity to increase energy extraction via ABC-transporters and carbohydrate metabolism were enhanced in Obese and T2D rats. T2D was characterized by increased proinflammatory molecules. While obesity and T2D show distinct differences, results suggest that in both conditions Bacteroides and Blautia species were increased indicating a possible mechanistic link.
Collapse
Affiliation(s)
- Khalid S Ibrahim
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom.,Department of Biology, Faculty of Science, University of Zakho, Zakho International Road, Kurdistan Region-Iraq
| | - Nowara Bourwis
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Sharron Dolan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - Sue Lang
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom.,Present address: School of Clinical and Applied Sciences, Leeds Beckett University, Portland Building, City Campus, Leeds, LS1 3HE, United Kingdom
| | - Janice Spencer
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| | - John A Craft
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom
| |
Collapse
|
999
|
Walrath T, Dyamenahalli KU, Hulsebus HJ, McCullough RL, Idrovo JP, Boe DM, McMahan RH, Kovacs EJ. Age-related changes in intestinal immunity and the microbiome. J Leukoc Biol 2020; 109:1045-1061. [PMID: 33020981 DOI: 10.1002/jlb.3ri0620-405rr] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
The gastrointestinal (GI) tract is a vitally important site for the adsorption of nutrients as well as the education of immune cells. Homeostasis of the gut is maintained by the interplay of the intestinal epithelium, immune cells, luminal Ags, and the intestinal microbiota. The well-being of the gut is intrinsically linked to the overall health of the host, and perturbations to this homeostasis can have severe impacts on local and systemic health. One factor that causes disruptions in gut homeostasis is age, and recent research has elucidated how critical systems within the gut are altered during the aging process. Intestinal stem cell proliferation, epithelial barrier function, the gut microbiota, and the composition of innate and adaptive immune responses are all altered in advanced age. The aging population continues to expand worldwide, a phenomenon referred to as the "Silver Tsunami," and every effort must be made to understand how best to prevent and treat age-related maladies. Here, recent research about changes observed in the intestinal epithelium, the intestinal immune system, the microbiota, and how the aging gut interacts with and influences other organs such as the liver, lung, and brain are reviewed. Better understanding of these age-related changes and their impact on multi-organ interactions will aid the development of therapies to increase the quality of life for all aged individuals.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Kiran U Dyamenahalli
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Rebecca L McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Devin M Boe
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Denver, Aurora, Colorado, USA.,Immunology Graduate Program, University of Colorado Denver, Aurora, Colorado, USA.,Medical Scientist Training Program, University of Colorado Denver, Aurora, Colorado, USA.,GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
1000
|
Kim HK, Chijiki H, Nanba T, Ozaki M, Sasaki H, Takahashi M, Shibata S. Ingestion of Helianthus tuberosus at Breakfast Rather Than at Dinner Is More Effective for Suppressing Glucose Levels and Improving the Intestinal Microbiota in Older Adults. Nutrients 2020; 12:nu12103035. [PMID: 33022987 PMCID: PMC7600786 DOI: 10.3390/nu12103035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
To date, nutritional studies have focused on the total intake of dietary fiber rather than intake timing. In this study, we examined the effect of the timing of daily Helianthus tuberosus ingestion on postprandial and 24 h glucose levels, as well as on intestinal microbiota in older adults. In total, 37 healthy older adults (age = 74.9 ± 0.8 years) were recruited. The participants were randomly assigned to either a morning group (MG, n = 18) or an evening group (EG, n = 17). The MG and EG groups were instructed to take Helianthus tuberosus powder (5 g/day) just before breakfast or dinner, respectively, for 1 week after the 1-week control period. The glucose levels of all participants were monitored using a continuous glucose monitoring system throughout the 2 weeks. The intestinal microbiota was analyzed by sequencing 16S rRNA genes from feces before and after the intervention. There were no significant differences in the physical characteristics or energy intake between groups. Helianthus tuberosus intake led to decreases in tissue glucose levels throughout the day in both groups (p < 0.01, respectively). As a result of examining the fluctuations in tissue glucose levels up to 4 hours after each meal, significant decreases in the areas under the curves (AUCs) were observed for all three meals after intervention, but only in the MG (breakfast: p = 0.012, lunch: p = 0.002, dinner: p = 0.005). On the other hand, in the EG, there was a strong decrease in the AUC after dinner, but only slight decreases after breakfast and lunch (breakfast: p = 0.017, lunch: p = 0.427, dinner: p = 0.002). Moreover, the rate of change in the peak tissue glucose level at breakfast was significantly decreased in the MG compared to the EG (p = 0.027). A greater decrease was observed in the change in the blood glucose level after the ingestion of Helianthus tuberosus in the MG than in the EG. Furthermore, the relative abundance of Ruminococcus in the MG at the genus level was significantly higher at baseline than in the EG (p = 0.016) and it was also significantly lower after the intervention (p = 0.013). Our findings indicate that Helianthus tuberosus intake in the morning might have relatively stronger effects on the intestinal microbiota and suppress postprandial glucose levels to a greater extent than when taken in the evening.
Collapse
Affiliation(s)
- Hyeon-Ki Kim
- Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; (H.-K.K.); (H.S.)
| | - Hanako Chijiki
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 1628480, Japan; (H.C.); (T.N.); (M.O.)
| | - Takuya Nanba
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 1628480, Japan; (H.C.); (T.N.); (M.O.)
| | - Mamiho Ozaki
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho Shinjuku, Tokyo 1628480, Japan; (H.C.); (T.N.); (M.O.)
| | - Hiroyuki Sasaki
- Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; (H.-K.K.); (H.S.)
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, 2-12-1, Ookayama Meguro-ku, Tokyo 152-8550, Japan;
| | - Shigenobu Shibata
- Faculty of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; (H.-K.K.); (H.S.)
- Correspondence: ; Tel.: +81-3-5369-7318
| |
Collapse
|