951
|
Liu T, Zhang J, Han X, Xu J, Wu Y, Fang J. Promotion of HeLa cells apoptosis by cynaropicrin involving inhibition of thioredoxin reductase and induction of oxidative stress. Free Radic Biol Med 2019; 135:216-226. [PMID: 30880248 DOI: 10.1016/j.freeradbiomed.2019.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Cancer is considered as one of the highly mortal diseases globally. This is largely due to the lack of efficacious medicines for tumors, and thus development of potent anticancer agents is urgently needed. The thioredoxin (Trx) system is crucial to the survival ability of cells and its expression is up-regulated in many human tumors. Recently, increasing evidence has been established that mammalian thioredoxin reductase (TrxR), a selenocysteine-containing protein and the core component of the thioredoxin system, is a promising therapeutic target. The sesquiterpene lactone compound cynaropicrin (CYN), a major component of Cynara scolymus L., has shown multiple pharmacological functions, especially the anticancer effect, in many experimental models. Most of these functions are concomitant with the production of reactive oxygen species (ROS). Nevertheless, the target of this promising natural anticancer product in redox control has rarely been explored. In this study, we showed that CYN induces apoptosis of Hela cells. Mechanistic studies demonstrated that CYN impinges on the thioredoxin system via inhibition of TrxR, which leads to Trx oxidation and ROS accumulation in HeLa cells. Particularly, the cytotoxicity of CYN is enhanced through the genetic knockdown of TrxR, supporting the pharmacological effect of CYN is relevant to its inhibition of TrxR. Together, our studies reveal an unprecedented mechanism accounting for the anticancer effect of CYN and identify a promising therapeutic agent worthy of further development for cancer therapy.
Collapse
Affiliation(s)
- Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Yueting Wu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
952
|
EsTrx-2, the mitochondrial thioredoxin from Antarctic microcrustacean (Euphausia superba): Cloning and functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:52-58. [DOI: 10.1016/j.cbpb.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/07/2023]
|
953
|
Kwolek-Mirek M, Maslanka R, Molon M. Disorders in NADPH generation via pentose phosphate pathway influence the reproductive potential of the Saccharomyces cerevisiae yeast due to changes in redox status. J Cell Biochem 2019; 120:8521-8533. [PMID: 30474881 DOI: 10.1002/jcb.28140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Intermediary metabolites have a crucial impact on basic cell functions. There is a relationship between cellular metabolism and redox balance. To maintain redox homoeostasis, the cooperation of both glutathione and nicotine adenine dinucleotides is necessary. Availability of nicotinamide adenine dinucleotide phosphate (NADPH) as a major electron donor is critical for many intracellular redox reactions. The activity of glucose-6-phosphate dehydrogenase (Zwf1p) and 6-phosphogluconate dehydrogenase (Gnd1p and Gnd2p) is responsible for NADPH formation in a pentose phosphate (PP) pathway. In this study, we examine the impact of redox homoeostasis on cellular physiology and proliferation. We have noted that the Δzwf1 mutant lacking the rate-limiting enzyme of the PP pathway shows changes in the cellular redox status caused by disorders in NADPH generation. This leads to a decrease in reproductive potential but without affecting the total lifespan of the cell. The results presented in this paper show that nicotine adenine dinucleotides play a central role in cellular physiology.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| | - Roman Maslanka
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| | - Mateusz Molon
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
954
|
Liu R, Shi D, Zhang J, Li X, Han X, Yao X, Fang J. Virtual screening-guided discovery of thioredoxin reductase inhibitors. Toxicol Appl Pharmacol 2019; 370:106-116. [PMID: 30898620 DOI: 10.1016/j.taap.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/17/2022]
Abstract
The selenoprotein thioredoxin reductase (TXNRD) is a promising therapeutic target for cancer. To discover novel TXNRD inhibitors, a library of α, β-unsaturated carbonyl compounds were applied in structure-based virtual screening for the selection of hit compounds. Fifteen top-ranked compounds were further validated experimentally, exhibiting potent inhibition of TXNRD and remarkable cytotoxicity to cancer cells. The further binding mode analysis indicated that multiple noncovalent interactions between the inhibitors and the active pocket of TXNRD facilitated the formation of covalent bonds between the Sec498 on TXNRD and the α, β-unsaturated carbonyl groups on inhibitors. Results from both simulations and experiments demonstrated that Sec498 is the prime interaction site for the inhibition of TXNRD. Taking compound 7 as an example, the inhibition of TXNRD by compounds promoted oxidative stress-mediated apoptosis of cancer cells. Given these findings, novel TXNRD inhibitors may be discovered and introduced to the growing fields of small molecule drugs against TXNRD.
Collapse
Affiliation(s)
- Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Shi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
955
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
956
|
Guan Y, Ngugi DK, Vinu M, Blom J, Alam I, Guillot S, Ferry JG, Stingl U. Comparative Genomics of the Genus Methanohalophilus, Including a Newly Isolated Strain From Kebrit Deep in the Red Sea. Front Microbiol 2019; 10:839. [PMID: 31068917 PMCID: PMC6491703 DOI: 10.3389/fmicb.2019.00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Halophilic methanogens play an important role in the carbon cycle in hypersaline environments, but are under-represented in culture collections. In this study, we describe a novel Methanohalophilus strain that was isolated from the sulfide-rich brine-seawater interface of Kebrit Deep in the Red Sea. Based on physiological and phylogenomic features, strain RSK, which is the first methanogenic archaeon to be isolated from a deep hypersaline anoxic brine lake of the Red Sea, represents a novel species of this genus. In order to compare the genetic traits underpinning the adaptations of this genus in diverse hypersaline environments, we sequenced the genome of strain RSK and compared it with genomes of previously isolated and well characterized species in this genus (Methanohalophilus mahii, Methanohalophilus halophilus, Methanohalophilus portucalensis, and Methanohalophilus euhalobius). These analyses revealed a highly conserved genomic core of greater than 93% of annotated genes (1490 genes) containing pathways for methylotrophic methanogenesis, osmoprotection through salt-out strategy, and oxidative stress response, among others. Despite the high degree of genomic conservation, species-specific differences in sulfur and glycogen metabolisms, viral resistance, amino acid, and peptide uptake machineries were also evident. Thus, while Methanohalophilus species are found in diverse extreme environments, each genotype also possesses adaptive traits that are likely relevant in their respective hypersaline habitats.
Collapse
Affiliation(s)
- Yue Guan
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David K. Ngugi
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Manikandan Vinu
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jochen Blom
- Bioinformatik und Systembiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sylvain Guillot
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Ulrich Stingl
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Microbiology and Cell Science, UF/IFAS Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
957
|
Lee ES, Kim JS, Lee H, Ryu JY, Lee HJ, Sonn JK, Lim YB. Auranofin, an Anti-rheumatic Gold Drug, Aggravates the Radiation-Induced Acute Intestinal Injury in Mice. Front Pharmacol 2019; 10:417. [PMID: 31105565 PMCID: PMC6492527 DOI: 10.3389/fphar.2019.00417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022] Open
Abstract
Pelvic and abdominal radiotherapy plays an important role in eradication of malignant cells; however, it also results in slight intestinal injury. The apoptosis of cells in the intestinal epithelium is a primary pathological factor that initiates radiation-induced intestinal injury. Auranofin, a gold-containing triethylphosphine, was approved for the treatment of rheumatoid arthritis, and its therapeutic application has been expanded to a number of other diseases, such as parasitic infections, neurodegenerative disorders, AIDS, and bacterial infections. Recently, a treatment strategy combining the use of auranofin and ionizing radiation aimed at increasing the radiosensitivity of cancer cells was proposed for improving the control of local cancers. In this study, we evaluated the effect of auranofin on the radiosensitivity of intestinal epithelial cells. The treatment with a combination of 1 μM auranofin and 5 Gy ionizing radiation showed clear additive effects on caspase 3 cleavage and apoptotic DNA fragmentation in IEC-6 cells, and auranofin administration significantly aggravated the radiation-induced intestinal injury in mice. Auranofin treatment also resulted in the activation of the unfolded protein response and in the inhibition of thioredoxin reductase, which is a key component of the cellular antioxidant system. Pre-treatment with N-acetyl cysteine, a well-known scavenger of reactive oxygen species, but not with a chemical chaperone, which inhibits endoplasmic reticulum stress and the ensuing unfolded protein response, significantly reduced the radiosensitizing effects of auranofin in the IEC-6 cells. In addition, transfection of IEC-6 cells with a small interfering RNA targeted against thioredoxin reductase significantly enhanced the radiosensitivity of these cells. These results suggest that auranofin-induced radiosensitization of intestinal epithelial cells is mediated through oxidative stress caused by the deregulation of thioredoxin redox system, and auranofin treatment can be an independent risk factor for the development of acute pelvic radiation disease.
Collapse
Affiliation(s)
- Eun Sang Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Joong Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hyounji Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jee-Yeon Ryu
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jong Kyung Sonn
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Young-Bin Lim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| |
Collapse
|
958
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
959
|
Thioredoxin H (TrxH) contributes to adversity adaptation and pathogenicity of Edwardsiella piscicida. Vet Res 2019; 50:26. [PMID: 30992061 PMCID: PMC6466703 DOI: 10.1186/s13567-019-0645-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
Thioredoxins (Trxs) play an important role in defending against oxidative stress and keeping disulfide bonding correct to maintain protein function. Edwardsiella piscicida, a severe fish pathogen, has been shown to encode several thioredoxins including TrxA, TrxC, and TrxH, but their biological roles remain unknown. In this study, we characterized TrxH of E. piscicida (named TrxHEp) and examined its expression and function. TrxHEp is composed of 125 residues and possesses typical thioredoxin H motifs. Expression of trxHEp was upregulated under conditions of oxidative stress, iron starvation, low pH, and during infection of host cells. trxHEp expression was also regulated by ferric uptake regulator (Fur), an important global regulatory of E. piscicida. Compared to the wild type TX01, a markerless trxHEp in-frame mutant strain TX01∆trxH exhibited markedly compromised tolerance of the pathogen to hydrogen peroxide, acid stress, and iron deficiency. Deletion of trxHEp significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis shows that the inactivation of trxHEp significantly impaired the ability of E. piscicida to invade host cells, reproduce in macrophages, and infect host tissues. Introduction of a trans-expressed trxH gene restored the lost virulence of TX01∆trxH. There is likely to be a complex relationship of functional complementation or expression regulation between TrxH and another two thioredoxins, TrxA and TrxC, of E. piscicida. This is the first functional report of TrxH in fish pathogens, and the findings suggest that TrxHEp is essential for coping with adverse circumstances and contributes to host infection of E. piscicida.
Collapse
|
960
|
Fidyt K, Pastorczak A, Goral A, Szczygiel K, Fendler W, Muchowicz A, Bartlomiejczyk MA, Madzio J, Cyran J, Graczyk-Jarzynka A, Jansen E, Patkowska E, Lech-Maranda E, Pal D, Blair H, Burdzinska A, Pedzisz P, Glodkowska-Mrowka E, Demkow U, Gawle-Krawczyk K, Matysiak M, Winiarska M, Juszczynski P, Mlynarski W, Heidenreich O, Golab J, Firczuk M. Targeting the thioredoxin system as a novel strategy against B-cell acute lymphoblastic leukemia. Mol Oncol 2019; 13:1180-1195. [PMID: 30861284 PMCID: PMC6487705 DOI: 10.1002/1878-0261.12476] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 01/26/2023] Open
Abstract
B‐cell precursor acute lymphoblastic leukemia (BCP‐ALL) is a genetically heterogeneous blood cancer characterized by abnormal expansion of immature B cells. Although intensive chemotherapy provides high cure rates in a majority of patients, subtypes harboring certain genetic lesions, such as MLL rearrangements or BCR‐ABL1 fusion, remain clinically challenging, necessitating a search for other therapeutic approaches. Herein, we aimed to validate antioxidant enzymes of the thioredoxin system as potential therapeutic targets in BCP‐ALL. We observed oxidative stress along with aberrant expression of the enzymes associated with the activity of thioredoxin antioxidant system in BCP‐ALL cells. Moreover, we found that auranofin and adenanthin, inhibitors of the thioredoxin system antioxidant enzymes, effectively kill BCP‐ALL cell lines and pediatric and adult BCP‐ALL primary cells, including primary cells cocultured with bone marrow‐derived stem cells. Furthermore, auranofin delayed the progression of leukemia in MLL‐rearranged patient‐derived xenograft model and prolonged the survival of leukemic NSG mice. Our results unveil the thioredoxin system as a novel target for BCP‐ALL therapy, and indicate that further studies assessing the anticancer efficacy of combinations of thioredoxin system inhibitors with conventional anti‐BCP‐ALL drugs should be continued.
Collapse
Affiliation(s)
- Klaudyna Fidyt
- Department of Immunology, Medical University of Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Poland
| | | | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Joanna Madzio
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland.,Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - Julia Cyran
- Department of Immunology, Medical University of Warsaw, Poland
| | | | - Eugene Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Ewa Lech-Maranda
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland.,Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Deepali Pal
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Blair
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Poland
| | - Piotr Pedzisz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Poland
| | | | - Michal Matysiak
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Poland
| | | | | | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - Olaf Heidenreich
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Poland.,Centre for Preclinical Research and Technology, Medical University of Warsaw, Poland
| | | |
Collapse
|
961
|
Tawfik KO, Klepper K, Saliba J, Friedman RA. Advances in understanding of presbycusis. J Neurosci Res 2019; 98:1685-1697. [PMID: 30950547 DOI: 10.1002/jnr.24426] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Abstract
The pathophysiology of age-related hearing loss (ARHL), or presbycusis, involves a complex interplay between environmental and genetic factors. The fundamental biomolecular mechanisms of ARHL have been well described, including the roles of membrane transport, reactive oxygen species, cochlear synaptopathy, vascular insults, hormones, and microRNA, to name a few. The genetic basis underlying these mechanisms remains under-investigated and poorly understood. The emergence of genome-wide association studies has allowed for the identification of specific groups of genes involved in ARHL. This review highlights recent advances in understanding of the pathogenesis of ARHL, the genetic basis underlying these processes and suggests future directions for research and potential therapeutic avenues.
Collapse
Affiliation(s)
- Kareem O Tawfik
- Division of Otolaryngology - Head & Neck Surgery, University of California San Diego School of Medicine, San Diego, California
| | - Kristin Klepper
- School of Medicine, University of California San Diego, La Jolla, California
| | - Joe Saliba
- Division of Otolaryngology - Head & Neck Surgery, University of California San Diego School of Medicine, San Diego, California
| | - Rick A Friedman
- Division of Otolaryngology - Head & Neck Surgery, University of California San Diego School of Medicine, San Diego, California
| |
Collapse
|
962
|
Son YW, Cheon MG, Kim Y, Jang HH. Prx2 links ROS homeostasis to stemness of cancer stem cells. Free Radic Biol Med 2019; 134:260-267. [PMID: 30611866 DOI: 10.1016/j.freeradbiomed.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 01/03/2023]
Abstract
Cancer stem cells (CSC) with low levels of reactive oxygen species (ROS) are resistant to conventional chemotherapy or radiation therapy. Peroxiredoxin 2 (Prx2) is a redox regulatory protein that plays a key role in maintaining ROS homeostasis in the tumor microenvironment. However, despite the role of Prx2 in ROS-mediated signal transduction, the association of Prx2 with stemness via ROS in CSC has not been thoroughly investigated. In this study, we investigated the link between Prx2 and CSC stemness through regulation of ROS levels in hepatocellular carcinoma (HCC) cells. ROS induced CSC stemness reduction and downregulated stem cell markers in Huh7 and SK-HEP1 cells. Prx2 knockdown decreased CSC sphere formation and expression of stem cell makers with increasing intracellular ROS levels. This effect was reversed by the ROS scavengers NAC and GSH in Prx2 knockdown cells. Conversely, we found that Prx2 overexpression promotes CSC stemness and the peroxidase activity of Prx2 is essential for CSC stemness using peroxidase inactive mutant, Prx2C51/172S. More importantly, the hyperoxidation-resistant mutant (Prx2ΔYF), which has a constant ROS scavenging activity even at high concentrations of ROS, increased the CSC stemness and expression of stem cell markers more than Prx2WT under oxidative stress. Taken together, our findings demonstrate that Prx2 links ROS homeostasis to CSC stemness; Prx2 is a mediator between ROS homeostasis and CSC stemness.
Collapse
Affiliation(s)
- Ye Won Son
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Min Gyeong Cheon
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Yosup Kim
- Department of Health Sciences and Technology, Graduate School of Medicine, Gachon University, Incheon, South Korea
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea; Department of Health Sciences and Technology, Graduate School of Medicine, Gachon University, Incheon, South Korea.
| |
Collapse
|
963
|
Ren X, Santhosh SM, Coppo L, Ogata FT, Lu J, Holmgren A. The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stress. Free Radic Biol Med 2019; 134:350-358. [PMID: 30703479 DOI: 10.1016/j.freeradbiomed.2019.01.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/21/2022]
Abstract
The combination of ascorbate and menadione (VC:VK3 = 100:1) is an investigational treatment for cancer under clinical trials. Dehydroascorbic acid (DHA), the oxidized form of ascorbate, can be taken up by cells via glucose transporters, over-expressed in many cancer cells. It has been known that the combination of VC/VK3 kills cancer cells by inducing hydrogen peroxide (H2O2) via a redox cycling reaction. However, the mechanism has not been fully understood yet. Intracellularly, DHA is reduced to ascorbate by NADPH via GSH and glutaredoxin as well as by thioredoxin (Trx) and the selenoenzyme thioredoxin reductase (TrxR). These two systems are also critical as electron donors for ribonucleotide reductase (RNR), which produces deoxyribonucleotides de novo for DNA replication and DNA repair and is highly expressed in tumor cells. We found that RNR was highly sensitive to VC/VK3 in vitro with similar effects as observed with H2O2. In cancer cells, VC/VK3 inhibited RNR mainly by targeting its R2 subunit. More importantly, both the Trx and GSH systems were oxidized by the combination, which resulted in the loss of GSH, increased protein glutathionylation, and highly oxidized Trx1. The mechanism of cell death induced by VC/VK3 was also elucidated. We found that VC/VK3 inhibited glutathione peroxidase activity and led to an elevated level of lipid peroxidation, which triggered apoptosis-inducing factor (AIF) mediated cell death pathway. Therefore, the combination not only induced replicative stress by inhibiting RNR, but also oxidative stress by targeting anti-oxidant systems and triggered AIF-mediated cancer cell death.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Sebastin M Santhosh
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Fernando T Ogata
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177, Stockholm, Sweden
| | - Jun Lu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177, Stockholm, Sweden; School of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, China
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177, Stockholm, Sweden.
| |
Collapse
|
964
|
Spiers JG, Chen HJC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease. Free Radic Biol Med 2019; 134:468-483. [PMID: 30716433 DOI: 10.1016/j.freeradbiomed.2019.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Joern R Steinert
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
965
|
Complete genome sequencing of Lactobacillus plantarum CAUH2 reveals a novel plasmid pCAUH203 associated with oxidative stress tolerance. 3 Biotech 2019; 9:116. [PMID: 30854276 DOI: 10.1007/s13205-019-1653-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022] Open
Abstract
Lactobacillus plantarum is remarkably adaptable to diverse habitats and is widely used in food industry. In this study, the genome sequence of L. plantarum CAUH2 was analyzed and compared with other L. plantarum genome sequences. A comparison of the genome sequence of CAUH2 to L. plantarum ST-III reveals that the similarity of these two genomes reached up to 99% identity with 98% coverage, but the plasmid profiles of CAUH2 and ST-III are different. Notably, plasmid pCAUH203 in L. plantarum CAUH2 harbors seven genes involved in oxidative stress response, such as genes encoding thioredoxin-disulfide reductase, thioredoxin and DNA protection protein. Due to plasmid pCAUH203, the thioredoxin reductase activity of CAUH2 was 2.1-fold higher than that of ST-III. When exposed to 5 mM H2O2, this activity was further increased to 9.87 ± 1.60 mU per mg protein in CAUH2, which was 2.7-fold higher than that of ST-III, indicating that thioredoxin antioxidant system encoded by pCAUH203 might contribute to the H2O2 resistance. This hypothesis was further confirmed by survival assay under 10 mM H2O2 stress. The survival rate of CAUH2 was 12-fold higher than that of ST-III. Therefore, the complete genome sequencing of L. plantarum CAUH2 provides new insights into the molecular mechanism of its oxidative stress resistance.
Collapse
|
966
|
Inactivation of cysL Inhibits Biofilm Formation by Activating the Disulfide Stress Regulator Spx in Bacillus subtilis. J Bacteriol 2019; 201:JB.00712-18. [PMID: 30718304 DOI: 10.1128/jb.00712-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/27/2019] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms biofilms in response to internal and external stimuli. I previously showed that the cysL deletion mutant was defective in biofilm formation, but the reason for this remains unidentified. CysL is a transcriptional activator of the cysJI operon, which encodes sulfite reductase, an enzyme involved in cysteine biosynthesis. Decreased production of sulfite reductase led to biofilm formation defects in the ΔcysL mutant. The ΔcysL mutation was suppressed by disrupting cysH operon genes, whose products function upstream of sulfite reductase in the cysteine biosynthesis pathway, indicating that defects in cysteine biosynthesis were not a direct cause for the defective biofilm formation observed in the ΔcysL mutant. The cysH gene encodes phosphoadenosine phosphosulfate reductase, which requires a reduced form of thioredoxin (TrxA) as an electron donor. High expression of trxA inhibited biofilm formation in the ΔcysL mutant but not in the wild-type strain. Northern blot analysis showed that trxA transcription was induced in the ΔcysL mutant in a disulfide stress-induced regulator Spx-dependent manner. On the basis of these results, I propose that the ΔcysL mutation causes phosphoadenosine phosphosulfate reductase to consume large amounts of reduced thioredoxin, inducing disulfide stress and activating Spx. The spx mutation restored biofilm formation to the ΔcysL mutant. The ΔcysL mutation reduced expression of the eps operon, which is required for exopolysaccharide production. Moreover, overexpression of the eps operon restored biofilm formation to the ΔcysL mutant. Taken together, these results suggest that the ΔcysL mutation activates Spx, which then inhibits biofilm formation through repression of the eps operon.IMPORTANCE Bacillus subtilis has been studied as a model organism for biofilm formation. In this study, I explored why the cysL deletion mutant was defective in biofilm formation. I demonstrated that the ΔcysL mutation activated the disulfide stress response regulator Spx, which inhibits biofilm formation by repressing biofilm matrix genes. Homologs of Spx are highly conserved among Gram-positive bacteria with low G+C contents. In some pathogens, Spx is also reported to inhibit biofilm formation by repressing biofilm matrix genes, even though these genes and their regulation are quite different from those of B. subtilis Thus, the negative regulation of biofilm formation by Spx is likely to be well conserved across species and may be an appropriate target for control of biofilm formation.
Collapse
|
967
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019; 24:101171. [PMID: 30901603 PMCID: PMC6429583 DOI: 10.1016/j.redox.2019.101171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.
Collapse
Affiliation(s)
- Gavin Douglas Ferguson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
968
|
Liu P, Huang J, Zhong L. Role and mechanism of homocysteine in affecting hepatic protein-tyrosine phosphatase 1B. Biochim Biophys Acta Gen Subj 2019; 1863:941-949. [PMID: 30853337 DOI: 10.1016/j.bbagen.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Elevated homocysteine is epidemiologically related to insulin resistance. Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling. However, the effect of homocysteine on PTP1B remains unclear. METHODS S-homocysteinylated PTP1B was identified by LC-ESI-MS/MS. The ability of thioredoxin system to recover active PTP1B from S-homocysteinylated PTP1B was confirmed by RNA interference. To address the mechanism for homocysteine to affect PTP1B activity, we performed 5-IAF insertion, activity assays, Western blotting, co-immunoprecipitation and glucose uptake experiments. RESULTS The thiol-containing form of homocysteine (HcySH) suppressed phosphorylation of insulin receptor-β subunit, but enhanced PTP1B activity. This phenomenon was partially related to the fact that HcySH promoted PTP1B expression. Although the disulfide-bonded form of homocysteine (HSSH) modified PTP1B to form an inactive S-homocysteinylated PTP1B, HcySH-induced increase in the activities of cellular thioredoxin and thioredoxin reductase, components of thioredoxin system, could recover active PTP1B from S-homocysteinylated PTP1B. Thioredoxin system transferred electrons from NADPH to S-homocysteinylated PTP1B, regenerating active PTP1B in vitro and in hepatocytes. The actions of HcySH were also related with decrease in hepatic glucose uptake. CONCLUSIONS The effect of HcySH/HSSH on PTP1B activity depends, at least partially, on the ratio of active PTP1B and S-homocysteinylated PTP1B. High HcySH-induced an increase in thioredoxin system activity is beneficial to de-S-homocysteinylation and is good for PTP1B activity. GENERAL SIGNIFICANCE Our data provide a novel insight into post-translational regulation of PTP1B, and expand the biological functions of thioredoxin system.
Collapse
Affiliation(s)
- Ping Liu
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, 101407 Beijing, China
| | - Jin Huang
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, 101407 Beijing, China
| | - Liangwei Zhong
- Medical School, University of Chinese Academy of Sciences, the Campus of Yanqi, Huai Rou, 101407 Beijing, China.
| |
Collapse
|
969
|
Floberg JM, Schwarz JK. Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response. Semin Radiat Oncol 2019; 29:33-41. [PMID: 30573182 DOI: 10.1016/j.semradonc.2018.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysregulated glucose and redox metabolism are near universal features of cancers. They therefore represent potential selectively toxic metabolic targets. This review outlines the preclinical and clinical data for targeting glucose and hydroperoxide metabolism in cancer, with a focus on drug strategies that have the most available evidence. In particular, inhibition of glycolysis using 2-deoxyglucose, and inhibition of redox metabolism using the glutathione pathway inhibitor buthionine sulfoximine and the thioredoxin pathway inhibitor auranofin, have shown promise in preclinical studies to increase sensitivity to chemotherapy and radiation by increasing intracellular oxidative stress. Combined inhibition of glycolysis, glutathione, and thioredoxin pathways sensitizes highly glycolytic, radioresistant cancer models in vitro and in vivo. Although the preclinical data support this approach, clinical data are limited to exploratory trials using a single drug in combination with either chemotherapy or radiation. Open research questions include optimizing drug strategies for targeting glycolysis and redox metabolism, determining the appropriate timing for administering this therapy with concurrent chemotherapy and radiation, and identifying biomarkers to determine the cancers that would benefit most from this approach. Given the quality of preclinical evidence, dual targeting of glycolysis and redox metabolism in combination with chemotherapy and radiation should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- John M Floberg
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
970
|
Tuladhar A, Hondal RJ, Colon R, Hernandez EL, Rein KS. Effectors of thioredoxin reductase: Brevetoxins and manumycin-A. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:76-86. [PMID: 30476593 PMCID: PMC7485175 DOI: 10.1016/j.cbpc.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 02/03/2023]
Abstract
The activities of two effectors, brevetoxin (PbTx) and manumycin-A (Man-A), of thioredoxin reductase (TrxR) have been evaluated against a series of fourteen TrxR orthologs originating from mammals, insects and protists and several mutants. Man-A, a molecule with numerous electrophilic sites, forms a covalent adduct with most selenocystine (Sec)-containing TrxR enzymes. The evidence also demonstrates that Man-A can form covalent adducts with some non-Sec-containing enzymes. The activities of TrxR enzymes towards various substrates are moderated by Man-A either positively or negatively depending on the enzyme. In general, the reduction of substrates by Sec-containing TrxR is inhibited and NADPH oxidase activity is activated. For non-Sec-containing TrxR the effect of Man-A on the reduction of substrates is variable, but NADPH oxidase activity can be activated even in the absence of covalent modification of TrxR. The effect of PbTx is less pronounced. A smaller subset of enzymes is affected by PbTx. With a single exception, the activities of most of this subset are activated. Although both PbTx variants can react with selenocysteine, a stable covalent adduct is not formed with any of the TrxR enzymes. The key findings from this work are (i) the identification of an alternate mechanism of toxicity for the algal toxin brevetoxin (ii) the demonstration that covalent modification of TrxR is not a prerequisite for the activation of NADPH oxidase activity of TrxR and (iii) the identification of an inhibitor which can discriminate between cytosolic and mitochondrial TrxR.
Collapse
Affiliation(s)
- Anupama Tuladhar
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room 413B, Burlington, VT 05405, United States
| | - Ricardo Colon
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Elyssa L Hernandez
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, United States.
| |
Collapse
|
971
|
Tang J, Wang X, Yin J, Han Y, Yang J, Lu X, Xie T, Akbar S, Lyu K, Yang Z. Molecular characterization of thioredoxin reductase in waterflea Daphnia magna and its expression regulation by polystyrene microplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:90-97. [PMID: 30639982 DOI: 10.1016/j.aquatox.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Global scale concerns regarding rise in microplastics pollution in the environment have recently aroused. Ingestion of microplastics by biota, including freshwater zooplankton has been well studied, however, despite keystone species in freshwater food webs, the molecular response (e.g. oxidative defense) of zooplankton in response to microplastics is still in its infancy. The thioredoxin (TRx) system has a vital function in cellular antioxidative defense via eliminating the excessive generation of reactive oxygen species (ROS). Therefore, it is necessary to investigate the effects of thioredoxin reductase (TRxR), due to its triggering the TRx catalysis cascade. The present study identified TRxR in Daphnia magna (Dm-TRxR) for the first time, and found that the full-length cDNA was 1862 bp long, containing an 1821-bp open reading frame. Homologous alignments showed the presence of conserved catalytic domain CVNVGC and the seleocysteine (SeCys) residue (U) located in the N- and C- terminal portions. Subsequently, the expression of Dm-TRxR, together with permease, arginine kinase (AK), was investigated by approach of quantitative real-time PCR after exposure to four (1.25-μm) polystyrene (PS) microbeads concentrations: 0 (control), 2, 4 and 8 mg L-1 for 10 days. Dm-TRxR, permease and AK mRNA were significantly upregulated after exposure to 2, 4 mg L-1 of PS, but then declined in the presence of 8 mg L-1 PS. The gene expression results suggested that oxidative defense, energy production and substance extra cellular transportation were significantly regulated by microplastic exposure. Collectively, the present study will advance our knowledge regarding the biological effects of microplastic pollution on zooplankton, and builds a foundation for freshwater environmental studies on mechanistic and biochemical responses to microplastics.
Collapse
Affiliation(s)
- Jinghong Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xuan Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jun Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yiran Han
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jian Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tianchen Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Siddiq Akbar
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China; School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
972
|
Guo NN, Sun XJ, Xie YK, Yang GW, Kang CJ. Cloning and functional characterization of thioredoxin gene from kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:429-435. [PMID: 30502470 DOI: 10.1016/j.fsi.2018.11.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
As an important disulfide reductase of the intracellular antioxidant system, Thioredoxin (Trx) plays an important role in maintaining oxidative stress balance and protecting cells from oxidative damage. In recent years, there is increasing evidence that Trx is a key molecule in the pathogenesis of various diseases and a potential therapeutic target for major diseases including lung, colon, cervical, gastric and pancreatic cancer. However, few knowledge is known about the function of Trx in virus infection. In this study, we reported the cloning and functional investigation of a Trx homologue gene, named MjTrx, in shrimp Marsupenaeus japonicus suffered white spot syndrome virus (WSSV) infection. MjTrx is a 105-amino acid polypeptide with a conservative Cys-Gly-Pro-Cys motif in the catalytic center. Phylogenetic trees analysis showed that MjTrx has a higher relationship with Trx from other invertebrate and clustered with Trx1 from arthropod. MjTrx transcripts is abundant in the gill and intestine tissues and can be detected in the hemocytes, heart, stomach, and hepatopancreas tissues. The transcription levels of MjTrx in hemocytes, gills and intestine tissues of shrimp were significantly up-regulated after white spot syndrome virus infection. MjTrx was recombinant expressed in vitro and exhibited obvious disulfide reductase activity. In addition, overexpression MjTrx in shrimp resulted in the increase of hydrogen peroxide (H2O2) concentration in vivo. All these results strongly suggested that MjTrx functioned in redox homeostasis regulating and played an important role in shrimp antiviral immunity.
Collapse
Affiliation(s)
- Ning-Ning Guo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xue-Jun Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Kai Xie
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Cui-Jie Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
973
|
Liu H, Shukla S, Vera-González N, Tharmalingam N, Mylonakis E, Fuchs BB, Shukla A. Auranofin Releasing Antibacterial and Antibiofilm Polyurethane Intravascular Catheter Coatings. Front Cell Infect Microbiol 2019; 9:37. [PMID: 30873389 PMCID: PMC6403144 DOI: 10.3389/fcimb.2019.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Intravascular catheter related bloodstream infections (CRBSIs) are a leading cause of hospital-acquired infections worldwide, resulting not only in the burden of cost and morbidity for patients but also in the over-consumption of medical resources for hospitals and health care organizations. In this study, a novel auranofin releasing antibacterial and antibiofilm polyurethane (PU) catheter coating was developed and investigated for future use in preventing CRBSIs. Auranofin is an antirheumatic drug with recently identified antimicrobial properties. The drug carrier, PU, acts as a barrier surrounding the antibacterial agent, auranofin, to extend the drug release profile and improve its long-term antibacterial and antibiofilm efficacy and potentially the length of catheter implantation within a patient. The PU+auranofin coatings developed here were found to be highly stretchable (exhibiting ~500% percent elongation), which is important for the compliance of the material on a flexible catheter. PU+auranofin coated catheters were able to inhibit the growth of methicillin-resistant Staphylococcus aureus (MRSA) for 8 to 26 days depending on the specific drug concentration utilized during the dip coating process. The PU+auranofin coated catheters were also able to completely inhibit MRSA biofilm formation in vitro, an effect that was not observed with auranofin or PU alone. Lastly, these coatings were found to be hemocompatible with human erythrocytes and maintain liver cell viability.
Collapse
Affiliation(s)
- Hanyang Liu
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Shashank Shukla
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Noel Vera-González
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Anita Shukla
- Center for Biomedical Engineering, School of Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| |
Collapse
|
974
|
Structure, Mechanism, and Inhibition of Aspergillus fumigatus Thioredoxin Reductase. Antimicrob Agents Chemother 2019; 63:AAC.02281-18. [PMID: 30642940 DOI: 10.1128/aac.02281-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/29/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus infections are associated with high mortality rates and high treatment costs. Limited available antifungals and increasing antifungal resistance highlight an urgent need for new antifungals. Thioredoxin reductase (TrxR) is essential for maintaining redox homeostasis and presents as a promising target for novel antifungals. We show that ebselen [2-phenyl-1,2-benzoselenazol-3(2H)-one] is an inhibitor of A. fumigatus TrxR (Ki = 0.22 μM) and inhibits growth of Aspergillus spp., with in vitro MIC values of 16 to 64 µg/ml. Mass spectrometry analysis demonstrates that ebselen interacts covalently with a catalytic cysteine of TrxR, Cys148. We also present the X-ray crystal structure of A. fumigatus TrxR and use in silico modeling of the enzyme-inhibitor complex to outline key molecular interactions. This provides a scaffold for future design of potent and selective antifungal drugs that target TrxR, improving the potency of ebselen toward inhbition of A. fumigatus growth.
Collapse
|
975
|
Nagar M, Tilvawala R, Thompson PR. Thioredoxin Modulates Protein Arginine Deiminase 4 (PAD4)-Catalyzed Citrullination. Front Immunol 2019; 10:244. [PMID: 30853960 PMCID: PMC6396667 DOI: 10.3389/fimmu.2019.00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/28/2019] [Indexed: 01/01/2023] Open
Abstract
Protein citrullination is a post-translational modification catalyzed by the protein arginine deiminases (PADs). This modification plays a crucial role in the pathophysiology of numerous autoimmune disorders including RA. Recently, there has been a growing interest in investigating physiological regulators of PAD activity to understand the primary cause of the associated disorders. Apart from calcium, it is well-documented that a reducing environment activates the PADs. Although the concentration of thioredoxin (hTRX), an oxidoreductase that maintains the cellular reducing environment, is elevated in RA patients, its contribution toward RA progression or PAD activity has not been explored. Herein, we demonstrate that hTRX activates PAD4. Kinetic characterization of PAD4 using hTRX as the reducing agent yielded parameters that are comparable to those obtained with a routinely used non-physiological reducing agent, e.g., DTT, suggesting the importance of hTRX in PAD regulation under physiological conditions. Furthermore, we show that various hTRX mutants, including redox inactive hTRX variants, are capable of activating PAD4. This indicates a mechanism that does not require oxidoreductase activity. Indeed, we observed non-covalent interactions between PAD4 and hTRX variants, and propose that these redox-independent interactions are sufficient for hTRX-mediated PAD4 activation.
Collapse
Affiliation(s)
- Mitesh Nagar
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States.,Program in Chemical Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ronak Tilvawala
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States.,Program in Chemical Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States.,Program in Chemical Biology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
976
|
Shang W, Xie Z, Lu F, Fang D, Tang T, Bi R, Chen L, Jiang L. Increased Thioredoxin-1 Expression Promotes Cancer Progression and Predicts Poor Prognosis in Patients with Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9291683. [PMID: 30911354 PMCID: PMC6398115 DOI: 10.1155/2019/9291683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Thioredoxin-1 (Trx-1) is a small redox protein, which plays an important role in many biological processes. Although increased expression of Trx-1 in various solid tumors has been reported, the prognostic significance and function of Trx-1 in human gastric cancer (GC) are still unclear. Here, we investigated the clinical and prognostic significance of Trx-1 expression and the function and mechanism of Trx-1 in human GC. METHODS We analyzed Trx-1 mRNA expression from the GEO database and Trx-1 protein expression in 144 GC tissues using immunohistochemistry. Effects of Trx-1 on GC cell were assessed in vitro and in vivo through Trx-1 knockdown or overexpression. The antitumor effects of the Trx-1 inhibitor, PX-12, on GC cells were investigated. PTEN and p-AKT expressions were evaluated by Western blotting. RESULTS Increased Trx-1 expression was found in GC tissues and associated with poor prognosis and aggressive clinicopathological characteristics in patients with GC. High Trx-1 expression predicted poor prognosis, and its expression was an independent prognostic factor for overall survival of GC patients. Knockdown of Trx-1 expression inhibited GC cell growth, migration, and invasion in vitro and tumor growth and lung metastasis in vivo. Conversely, overexpression of Trx-1 promoted GC cell growth, migration, and invasion. We also found that PX-12 inhibited GC cell growth, migration, and invasion. Overexpression of Trx-1 caused a decrease in PTEN and increase in p-AKT levels whereas silencing Trx-1 caused an increase in PTEN and decrease in p-AKT levels in GC cells. Inhibition of AKT signaling pathway by MK2206 also inhibited GC cell growth, migration, and invasion. CONCLUSION Our results indicate that Trx-1 may be a promising prognostic indicator and therapeutic target for GC patients.
Collapse
Affiliation(s)
- Wenjing Shang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongdong Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fengying Lu
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Daoquan Fang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Tianbin Tang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ruichun Bi
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lingli Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
977
|
Léveillard T, Philp NJ, Sennlaub F. Is Retinal Metabolic Dysfunction at the Center of the Pathogenesis of Age-related Macular Degeneration? Int J Mol Sci 2019; 20:ijms20030762. [PMID: 30754662 PMCID: PMC6387069 DOI: 10.3390/ijms20030762] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023] Open
Abstract
The retinal pigment epithelium (RPE) forms the outer blood⁻retina barrier and facilitates the transepithelial transport of glucose into the outer retina via GLUT1. Glucose is metabolized in photoreceptors via the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS) but also by aerobic glycolysis to generate glycerol for the synthesis of phospholipids for the renewal of their outer segments. Aerobic glycolysis in the photoreceptors also leads to a high rate of production of lactate which is transported out of the subretinal space to the choroidal circulation by the RPE. Lactate taken up by the RPE is converted to pyruvate and metabolized via OXPHOS. Excess lactate in the RPE is transported across the basolateral membrane to the choroid. The uptake of glucose by cone photoreceptor cells is enhanced by rod-derived cone viability factor (RdCVF) secreted by rods and by insulin signaling. Together, the three cells act as symbiotes: the RPE supplies the glucose from the choroidal circulation to the photoreceptors, the rods help the cones, and both produce lactate to feed the RPE. In age-related macular degeneration this delicate ménage à trois is disturbed by the chronic infiltration of inflammatory macrophages. These immune cells also rely on aerobic glycolysis and compete for glucose and produce lactate. We here review the glucose metabolism in the homeostasis of the outer retina and in macrophages and hypothesize what happens when the metabolism of photoreceptors and the RPE is disturbed by chronic inflammation.
Collapse
Affiliation(s)
- Thierry Léveillard
- . Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Nancy J Philp
- . Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Florian Sennlaub
- . Department of Therapeutics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
978
|
Loberg MA, Hurtig JE, Graff AH, Allan KM, Buchan JA, Spencer MK, Kelly JE, Clodfelter JE, Morano KA, Lowther WT, West JD. Aromatic Residues at the Dimer-Dimer Interface in the Peroxiredoxin Tsa1 Facilitate Decamer Formation and Biological Function. Chem Res Toxicol 2019; 32:474-483. [PMID: 30701970 DOI: 10.1021/acs.chemrestox.8b00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To prevent the accumulation of reactive oxygen species and limit associated damage to biological macromolecules, cells express a variety of oxidant-detoxifying enzymes, including peroxiredoxins. In Saccharomyces cerevisiae, the peroxiredoxin Tsa1 plays a key role in peroxide clearance and maintenance of genome stability. Five homodimers of Tsa1 can assemble into a toroid-shaped decamer, with the active sites in the enzyme being shared between individual dimers in the decamer. Here, we have examined whether two conserved aromatic residues at the decamer-building interface promote Tsa1 oligomerization, enzymatic activity, and biological function. When substituting either or both of these aromatic residues at the decamer-building interface with either alanine or leucine, we found that the Tsa1 decamer is destabilized, favoring dimeric species instead. These proteins exhibit varying abilities to rescue the phenotypes of oxidant sensitivity and genomic instability in yeast lacking Tsa1 and Tsa2, with the individual leucine substitutions at this interface partially complementing the deletion phenotypes. The ability of Tsa1 decamer interface variants to partially rescue peroxidase function in deletion strains is temperature-dependent and correlates with their relative rate of reactivity with hydrogen peroxide and their ability to interact with thioredoxin. Based on the combined results of in vitro and in vivo assays, our findings indicate that multiple steps in the catalytic cycle of Tsa1 may be impaired by introducing substitutions at its decamer-building interface, suggesting a multifaceted biological basis for its assembly into decamers.
Collapse
Affiliation(s)
- Matthew A Loberg
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Jennifer E Hurtig
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States.,Department of Microbiology & Molecular Genetics, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Aaron H Graff
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - Kristin M Allan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - John A Buchan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Matthew K Spencer
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Joseph E Kelly
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Jill E Clodfelter
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - W Todd Lowther
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| |
Collapse
|
979
|
Neidhardt S, Garbade J, Emrich F, Klaeske K, Borger MA, Lehmann S, Jawad K, Dieterlen MT. Ischemic Cardiomyopathy Affects the Thioredoxin System in the Human Myocardium. J Card Fail 2019; 25:204-212. [PMID: 30721734 DOI: 10.1016/j.cardfail.2019.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/03/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Oxidative stress due to reactive oxygen species (ROS) production is a key factor in the development of heart failure (HF). This study investigated the thioredoxin (Trx) system, which plays a major role in antioxidant defense, in patients suffering from ischemic (ICM) or dilated (DCM) cardiomyopathy. METHODS AND RESULTS Myocardial tissue from ICM (n = 13) and DCM (n = 13) patients, as well as septal tissue of patients with aortic stenosis but without diagnosed hypertrophic cardiomyopathy or subaortic stenosis (control; n = 12), was analyzed for Trx1, Trx-interacting protein (TXNIP) and E3 ligase ITCH (E3 ubiquitin-protein ligase Itchy homolog) expression. Trx-reductase 1 (TXNRD1) amount and activity, cytosolic cytochrome C content, and apoptosis markers were quantified by means of enzyme-linked immunosorbent assay and multiplexing. Compared with control samples, ITCH and Trx1 expression, TXNRD1 amount and activity were reduced and TXNIP expression was increased in ICM (ITCH: P = .013; Trx1: P = .028; TXNRD1 amount: P = .035; TXNRD1 activity: P = .005; TXNIP: P = .014) but not in DCM samples. A higher level of the downstream apoptosis marker caspase-9 (ICM: 582 ± 262 MFI [P = .995]; DCM: 1251 ± 548 MFI [P = .002], control: 561 ± 214 MFI) was detected in DCM tissue. A higher expression of Bcl-2 was found in DCM (P = .011). CONCLUSION The Trx system was impaired in ICM but not in DCM. ITCH appeared to be responsible for the down-regulation of the Trx system. ROS-induced mitochondrial instability appeared to play a role in DCM.
Collapse
Affiliation(s)
- Stephan Neidhardt
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Jens Garbade
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Fabian Emrich
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Kristin Klaeske
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Michael A Borger
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Sven Lehmann
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Khalil Jawad
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, University of Leipzig, Heart Center Leipzig, Helios Clinic, Leipzig, Germany.
| |
Collapse
|
980
|
Ertl NG, O'Connor WA, Elizur A. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect. Mar Genomics 2019; 43:19-32. [DOI: 10.1016/j.margen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022]
|
981
|
Mitochondrial dynamics in exercise physiology. Pflugers Arch 2019; 472:137-153. [DOI: 10.1007/s00424-019-02258-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
982
|
Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:240-251. [DOI: 10.1016/j.bbamcr.2018.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
|
983
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
984
|
Ozgencli I, Budak H, Ciftci M, Anar M. Lichen Acids May Be Used as A Potential Drug For Cancer Therapy; by Inhibiting Mitochondrial Thioredoxin Reductase Purified From Rat Lung. Anticancer Agents Med Chem 2019; 18:1599-1605. [DOI: 10.2174/1871520618666180525095520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 11/22/2022]
Abstract
Background:
Thioredoxin reductase (E.C 1.6.4.5.; TrxR) is a widely distributed flavoprotein that
catalyzes the NADPH-dependent reduction of thioredoxin (Trx) in many cellular events such as DNA synthesis,
DNA repair, angiogenesis, antioxidative defense, and regulating apoptosis. Although TrxR is indispensible in
protecting cells against oxidative stress, the overexpression of TrxR is seen in many aggressive tumors. Therefore,
targeted inhibition of TrxR has been accepted as a new approach for chemotherapy.
Objective:
In this study, in vitro inhibition effect of the lichen acids (diffractaic, evernic, lobaric, lecanoric, and
vulpinic acid) on mitochondrial TrxR purified from rat lung was investigated.
Method:
It was the first time the enzyme was purified from rat lungs by using 2’, 5’-ADP Sepharose 4B affinity
chromatography. The purity of the enzyme was checked with SDS-PAGE. In vitro inhibition effect of the lichen
acids was investigated spectrophotometrically. To emphasize the importance of the obtained data, the commercial
anticancer drugs cisplatin and doxorubicin were used as positive controls.
Results:
Molecular mass of the enzyme was calculated as approximately 52.4 kDa. The enzyme was purified
with a 63.6% yield, 208.3 fold, and 0.5 EU/mg proteins specific activity. The IC50 values of five lichen acids
were significantly lower than IC50 values of anticancer drugs.
Conclusion:
All of the lichen acids, especially lecanoric and vulpinic acid, exhibited much stronger inhibitory
effect on TrxR than the anticancer drugs cisplatin and doxorubicin. These lichen acids have pharmacological
potential as effective natural antioxidants, antimicrobials, and anticancer agents.
Collapse
Affiliation(s)
- Ilknur Ozgencli
- Department of Chemisrty, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Mehmet Ciftci
- Department of Chemisrty, Art and Science Faculty, Bingol University, Bingol, Turkey
| | - Mustafa Anar
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
985
|
Zou Q, Chen YF, Zheng XQ, Ye SF, Xu BY, Liu YX, Zeng HH. Novel thioredoxin reductase inhibitor butaselen inhibits tumorigenesis by down-regulating programmed death-ligand 1 expression. J Zhejiang Univ Sci B 2019; 19:689-698. [PMID: 30178635 DOI: 10.1631/jzus.b1700219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The thioredoxin system plays a role in a variety of physiological functions, including cell growth, differentiation, apoptosis, tumorigenesis, and immunity. We previously confirmed that butaselen (BS), a novel thioredoxin reductase inhibitor, can inhibit the growth of various human cancer cell lines, yet the underlying mechanism remains elusive. In this study, we investigated the anti-tumor effect of BS in vivo through regulating the immune system of KM mice. We found that BS inhibits tumor proliferation by promoting the activation of splenic lymphocytes in mice. BS can elevate the percentage of CD4-CD8+ T lymphocytes and the secretion of downstream cytokines in mice via down-regulating the expression of programmed death-ligand 1 (PD-L1) on the tumor cells' surface in vivo. Further study in HepG2 and BEL-7402 cells showed that decrease of PD-L1 level after BS treatment was achieved by inhibiting signal transducer and activator of transcription 3 (STAT3) phosphorylation. Taken together, our results suggest that BS has a role in promoting the immune response by reducing PD-L1 expression via the STAT3 pathway, and subsequently suppresses tumorigenesis.
Collapse
Affiliation(s)
- Qiao Zou
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Fan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Qing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suo-Fu Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bin-Yuan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yu-Xi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui-Hui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
986
|
Pacifici F, Della Morte D, Capuani B, Pastore D, Bellia A, Sbraccia P, Di Daniele N, Lauro R, Lauro D. Peroxiredoxin6, a Multitask Antioxidant Enzyme Involved in the Pathophysiology of Chronic Noncommunicable Diseases. Antioxid Redox Signal 2019; 30:399-414. [PMID: 29160110 DOI: 10.1089/ars.2017.7427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Chronic noncommunicable diseases (NCDs) are the leading causes of disability and death worldwide. NCDs mainly comprise diabetes mellitus, cardiovascular diseases, chronic obstructive pulmonary disease, cancer, and neurological degenerative diseases, which kill more than 80% of population, especially the elderly, worldwide. Recent Advances: Several recent theories established NCDs as multifactorial diseases, where a combination of genetic, epigenetic, and environmental factors contributes to their pathogenesis. Nevertheless, recent findings suggest that the common factor linking all these pathologies is an increase in oxidative stress and the age-related loss of the antioxidant mechanisms of defense against it. Impairment in mitochondrial homeostasis with consequent deregulation in oxidative stress balance has also been suggested. CRITICAL ISSUES Therefore, antioxidant proteins deserve particular attention for their potential role against NCDs. In particular, peroxiredoxin(Prdx)6 is a unique antioxidant enzyme, belonging to the Prdx family, with double properties, peroxidase and phospholipase activities. Through these activities, Prdx6 has been shown to be a powerful antioxidant enzyme, implicated in the pathogenesis of different NCDs. Recently, we described a phenotype of diabetes mellitus in Prdx6 knockout mice, suggesting a pivotal role of Prdx6 in the pathogenesis of cardiometabolic diseases. FUTURE DIRECTIONS Increasing awareness on the role of antioxidant defenses in the pathogenesis of NCDs may open novel therapeutic approaches to reduce the burden of this pandemic phenomenon. However, knowledge of the role of Prdx6 in NCD prevention and pathogenesis is still not clarified.
Collapse
Affiliation(s)
- Francesca Pacifici
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - David Della Morte
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 2 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
| | - Barbara Capuani
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Donatella Pastore
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Alfonso Bellia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Paolo Sbraccia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Nicola Di Daniele
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Renato Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Davide Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| |
Collapse
|
987
|
Farina M, Aschner M. Glutathione antioxidant system and methylmercury-induced neurotoxicity: An intriguing interplay. Biochim Biophys Acta Gen Subj 2019; 1863:129285. [PMID: 30659883 DOI: 10.1016/j.bbagen.2019.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/09/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
Methylmercury (MeHg) is a toxic chemical compound naturally produced mainly in the aquatic environment through the methylation of inorganic mercury catalyzed by aquatic microorganisms. MeHg is biomagnified in the aquatic food chain and, consequently, piscivorous fish at the top of the food chain possess huge amounts of MeHg (at the ppm level). Some populations that have fish as main protein's source can be exposed to exceedingly high levels of MeHg and develop signs of toxicity. MeHg is toxic to several organs, but the central nervous system (CNS) represents a preferential target, especially during development (prenatal and early postnatal periods). Though the biochemical events involved in MeHg-(neuro)toxicity are not yet entirely comprehended, a vast literature indicates that its pro-oxidative properties explain, at least partially, several of its neurotoxic effects. As result of its electrophilicity, MeHg interacts with (and oxidize) nucleophilic groups, such as thiols and selenols, present in proteins or low-molecular weight molecules. It is noteworthy that such interactions modify the redox state of these groups and, therefore, lead to oxidative stress and impaired function of several molecules, culminating in neurotoxicity. Among these molecules, glutathione (GSH; a major thiol antioxidant) and thiol- or selenol-containing enzymes belonging to the GSH antioxidant system represent key molecular targets involved in MeHg-neurotoxicity. In this review, we firstly present a general overview concerning the neurotoxicity of MeHg. Then, we present fundamental aspects of the GSH-antioxidant system, as well as the effects of MeHg on this system.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
988
|
Nikolaevskaya EN, Kansuzyan AV, Filonova GE, Zelenova VA, Pechennikov VM, Krylova IV, Egorov MP, Jouikov VV, Syroeshkin MA. Germanium Dioxide and the Antioxidant Properties of Catechols. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Artem V. Kansuzyan
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russia
- UMR CNRS 6226 ISCR; University of Rennes 1; 35042 Rennes France
| | - Galina E. Filonova
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russia
- Pharmaceutical Department; I.M. Sechenov First Moscow State Medical University; Moscow Russia
| | - Vera A. Zelenova
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russia
- Pharmaceutical Department; I.M. Sechenov First Moscow State Medical University; Moscow Russia
| | - Valery M. Pechennikov
- Pharmaceutical Department; I.M. Sechenov First Moscow State Medical University; Moscow Russia
| | - Irina V. Krylova
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russia
| | - Mikhail P. Egorov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russia
| | | | - Mikhail A. Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky prosp. 47 119991 Moscow Russia
| |
Collapse
|
989
|
Yanxiao G, Mei T, Gang G, Xiaochun W, Jianxiang L. Changes of 8-OHdG and TrxR in the Residents Who Bathe in Radon Hot Springs. Dose Response 2019; 17:1559325818820974. [PMID: 30670939 PMCID: PMC6327335 DOI: 10.1177/1559325818820974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 12/30/2022] Open
Abstract
This study explored the effects of long-term bathing in radon hot springs on oxidative damage and antioxidation function in humans. In this study, blood was collected from residents in the Pingshan radon hot spring area (RHSA), Jiangzha RHSA, and control area (CA). 8-Hydroxydeoxyguanosine (8-OHdG) and thioredoxin reductase (TrxR), representing oxidation and antioxidant levels, respectively, were analyzed as indices. Compared to the CA group, the RHSA group in the Pingshan and Jiangzha areas showed significantly decreased 8-OHdG levels (Z = -3.350, -3.316, respectively, P < .05) and increased TrxR levels (Z = 2.394, 3.773, respectively, P < .05). The RHSA and CA groups in Jiangzha had lower levels of TrxR and 8-OHdG compared to those in Pingshan. This finding may be related to the different radon concentration levels, bathing time and other factors. Results suggested that long-term bathing in radon hot spring may activate antioxidant function and reduce oxidative damage in the body.
Collapse
Affiliation(s)
- Gao Yanxiao
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China.,Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, China
| | - Tian Mei
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gao Gang
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wang Xiaochun
- Beijing Institute of Occupational Disease Prevention and Treatment, Beijing, China
| | - Liu Jianxiang
- Key Laboratory of Radiological Protection and Nuclear Emergency, Department of Radiation Epidemiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
990
|
Reichmann D, Voth W, Jakob U. Maintaining a Healthy Proteome during Oxidative Stress. Mol Cell 2019; 69:203-213. [PMID: 29351842 DOI: 10.1016/j.molcel.2017.12.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Some of the most challenging stress conditions that organisms encounter during their lifetime involve the transient accumulation of reactive oxygen and chlorine species. Extremely reactive to amino acid side chains, these oxidants cause widespread protein unfolding and aggregation. It is therefore not surprising that cells draw on a variety of different strategies to counteract the damage and maintain a healthy proteome. Orchestrated largely by direct changes in the thiol oxidation status of key proteins, the response strategies involve all layers of protein protection. Reprogramming of basic biological functions helps decrease nascent protein synthesis and restore redox homeostasis. Mobilization of oxidative stress-activated chaperones and production of stress-resistant non-proteinaceous chaperones prevent irreversible protein aggregation. Finally, redox-controlled increase in proteasome activity removes any irreversibly damaged proteins. Together, these systems pave the way to restore protein homeostasis and enable organisms to survive stress conditions that are inevitable when living an aerobic lifestyle.
Collapse
Affiliation(s)
- Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Wilhelm Voth
- Department of Molecular, Cellular, and Developmental Biology and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
991
|
CNDP1, NOS3, and MnSOD Polymorphisms as Risk Factors for Diabetic Nephropathy among Type 2 Diabetic Patients in Malaysia. J Nutr Metab 2019; 2019:8736215. [PMID: 30719346 PMCID: PMC6335667 DOI: 10.1155/2019/8736215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a high incidence of nephropathy. The aim of this study was to investigate the association of a genetic polymorphism of carnosinase (CNDP1-D18S880 and -rs2346061), endothelial nitric oxide synthase (NOS3-rs1799983), and manganese superoxide dismutase (MnSOD-rs4880) genes with the development of diabetic nephropathy among Malaysian type 2 diabetic patients. A case-control association study was performed using 652 T2DM patients comprising 227 Malays (without nephropathy = 96 and nephropathy = 131), 203 Chinese (without nephropathy = 95 and nephropathy = 108), and 222 Indians (without nephropathy = 136 and nephropathy = 86). DNA sequencing was performed for the D18S880 of CNDP1, while the rest were tested using DNA Sequenom MassARRAY to identify the polymorphisms. DNA was extracted from the secondary blood samples taken from the T2DM patients. The alleles and genotypes were tested using four genetic models, and the best mode of inheritance was chosen based on the least p value. The rs2346061 of CNDP1 was significantly associated with diabetic nephropathy among the Indians only with OR = 1.94 and 95% CI = (1.76–3.20) and fitted best the multiplicative model, while D18S880 was associated among all the three major races with the Malays having the strongest association with OR = 2.46 and 95% CI = (1.48–4.10), Chinese with OR = 2.26 and 95% CI = (1.34–3.83), and Indians with OR = 1.77 and 95% CI = (1.18–2.65) in the genotypic multiplicative model. The best mode of inheritance for both MnSOD and NOS3 was the additive model. For MnSOD-rs4880, the Chinese had OR = 2.8 and 95% CI = (0.53–14.94), Indians had OR = 2.4 and 95% CI = (0.69–2.84), and Malays had OR = 2.16 and 95% CI = (0.54–8.65), while for NOS3-rs1799983, the Indians had the highest risk with OR = 3.16 and 95% CI = (0.52–17.56), followed by the Chinese with OR = 3.55 and 95% CI = (0.36–35.03) and the Malays with OR = 2.89 and 95% CI = (0.29–28.32). The four oxidative stress-related polymorphisms have significant effects on the development of nephropathy in type 2 diabetes patients. The genes may, therefore, be considered as risk factors for Malaysian subjects who are predisposed to T2DM nephropathy.
Collapse
|
992
|
Ruszkiewicz JA, Miranda-Vizuete A, Tinkov AA, Skalnaya MG, Skalny AV, Tsatsakis A, Aschner M. Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. J Mol Neurosci 2019; 67:312-342. [DOI: 10.1007/s12031-018-1241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
993
|
Su T, Si M, Zhao Y, Yao S, Che C, Liu Y, Chen C. Function of alkyl hydroperoxidase AhpD in resistance to oxidative stress in Corynebacterium glutamicum. J GEN APPL MICROBIOL 2019; 65:72-79. [DOI: 10.2323/jgam.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tao Su
- College of Life Sciences, Qufu Normal University
| | - Meiru Si
- College of Life Sciences, Qufu Normal University
| | - Yunfeng Zhao
- College of Life Sciences, Qufu Normal University
| | - Shumin Yao
- College of Life Sciences, Qufu Normal University
| | | | - Yan Liu
- School of Ggeography and Tourism, Qufu Normal University
| | - Can Chen
- College of Life Science and Agronomy, Zhoukou Normal University
| |
Collapse
|
994
|
Zuo H, Yuan J, Yang L, Liang Z, Weng S, He J, Xu X. Characterization and immune function of the thioredoxin-interacting protein (TXNIP) from Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 84:20-27. [PMID: 30261300 DOI: 10.1016/j.fsi.2018.09.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
The thioredoxin (Trx) system plays essential roles in maintenance and regulation of the redox state of cysteine residues in cellular proteins. The Trx-interacting protein (TXNIP) is a TRX inhibitory protein that works as a negative regulator in the TRX system. The function of TXNIP in invertebrates, in particular in immunity, remains unclear to date. In the current study, a novel TXNIP from Pacific white shrimp Litopenaeus vannamei was identified and characterized and its roles in immune responses was investigated. TXNIP could interact with Trx and inhibit its redox regulatory activity, suggesting that TXNIP was involved in regulation of the cellular redox state in shrimp. The expression of TXNIP was high in the stomach, gill, scape, eyestalk, epithelium, pyloric and muscle and low in the hepatopancreas, intestine, nerve, hemocytes and heart. Stimulations with pathogens white spot syndrome virus (WSSV) and Vibrio parahaemolyticus and immune stimulants poly (I:C) and LPS could significantly increase the expression of TXNIP in vivo. Silencing of TXNIP using RNAi strategy significantly facilitated the infection of V. parahaemolyticus but inhibited the infection of WSSV in shrimp. These indicated that TXNIP could be positively involved in antibacterial responses but negatively involved in antiviral responses in shrimp. Moreover, knockdown of TXNIP in vivo exerted opposite effects on expression of antimicrobial peptides anti-lipopolysaccharide factors and penaeidins and enhanced the phagocytic activity of hemocytes against bacteria. These suggested that TXNIP could play a complex role in regulation of humoral and cellular immune responses in shrimp.
Collapse
Affiliation(s)
- Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, PR China
| | - Jia Yuan
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Zhiwei Liang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, PR China.
| |
Collapse
|
995
|
Krysiak R, Kowalcze K, Okopień B. Selenomethionine potentiates the impact of vitamin D on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis and low vitamin D status. Pharmacol Rep 2018; 71:367-373. [PMID: 30844687 DOI: 10.1016/j.pharep.2018.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Both exogenous vitamin D and selenium reduce thyroid antibody titers. The aim of the study was to investigate whether the impact of vitamin D on thyroid autoimmunity is affected by selenium intake. METHODS The study included 47 euthyroid women with Hashimoto's thyroiditis and low vitamin D status, 23 of whom had been treated with selenomethionine (200 μg daily) for at least 12 months before the beginning of the study. During the study, all patients were treated with vitamin D preparations (4000 IU daily). Serum titers of thyroid peroxidase and thyroglobulin antibodies, as well as circulating levels of thyrotropin, free thyroid hormones and 25-hydroxyvitamin D were measured before vitamin D supplementation and 6 months later. Moreover, at the beginning and at the end of the study, we calculated Jostel's thyrotropin index, the SPINA-GT index and the SPINA-GD index. RESULTS With the exception of the free triiodothyronine/free thyroxine ratio and the SPINA-GD index, there were no differences between the study groups. In both groups, vitamin D increased 25-hydroxyvitamin D levels, reduced thyroid peroxidase and thyroglobulin antibody titers, as well as increased the SPINA-GT index. The effects on antibody titers and the SPINA-GT index were more pronounced in women receiving selenomethionine. Neither in selenomethionine-treated nor in selenomethionine-naïve women vitamin D affected serum hormone levels, Jostel's index and the SPINA-GD index. CONCLUSIONS The results of the study suggest that selenium intake enhances the effect of vitamin D on thyroid autoimmunity.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland.
| | - Karolina Kowalcze
- Department of Paediatrics in Bytom, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
996
|
The Oxidized Protein Repair Enzymes Methionine Sulfoxide Reductases and Their Roles in Protecting against Oxidative Stress, in Ageing and in Regulating Protein Function. Antioxidants (Basel) 2018; 7:antiox7120191. [PMID: 30545068 PMCID: PMC6316033 DOI: 10.3390/antiox7120191] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/31/2022] Open
Abstract
Cysteine and methionine residues are the amino acids most sensitive to oxidation by reactive oxygen species. However, in contrast to other amino acids, certain cysteine and methionine oxidation products can be reduced within proteins by dedicated enzymatic repair systems. Oxidation of cysteine first results in either the formation of a disulfide bridge or a sulfenic acid. Sulfenic acid can be converted to disulfide or sulfenamide or further oxidized to sulfinic acid. Disulfide can be easily reversed by different enzymatic systems such as the thioredoxin/thioredoxin reductase and the glutaredoxin/glutathione/glutathione reductase systems. Methionine side chains can also be oxidized by reactive oxygen species. Methionine oxidation, by the addition of an extra oxygen atom, leads to the generation of methionine sulfoxide. Enzymatically catalyzed reduction of methionine sulfoxide is achieved by either methionine sulfoxide reductase A or methionine sulfoxide reductase B, also referred as to the methionine sulfoxide reductases system. This oxidized protein repair system is further described in this review article in terms of its discovery and biologically relevant characteristics, and its important physiological roles in protecting against oxidative stress, in ageing and in regulating protein function.
Collapse
|
997
|
Zur Hausen H, Bund T, de Villiers EM. Specific nutritional infections early in life as risk factors for human colon and breast cancers several decades later. Int J Cancer 2018; 144:1574-1583. [PMID: 30246328 DOI: 10.1002/ijc.31882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Harald Zur Hausen
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Timo Bund
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Ethel-Michele de Villiers
- Division Episomal-Persistent DNA in Cancer- and Chronic Diseases, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
998
|
Itaba N, Noda I, Oka H, Kono Y, Okinaka K, Yokobata T, Okazaki S, Morimoto M, Shiota G. Hepatic cell sheets engineered from human mesenchymal stem cells with a single small molecule compound IC-2 ameliorate acute liver injury in mice. Regen Ther 2018; 9:45-57. [PMID: 30525075 PMCID: PMC6222293 DOI: 10.1016/j.reth.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION We previously reported that transplantation of hepatic cell sheets from human bone marrow-derived mesenchymal stem cells (BM-MSCs) with hexachlorophene, a Wnt/β-catenin signaling inhibitor, ameliorated acute liver injury. In a further previous report, we identified IC-2, a newly synthesized derivative of the Wnt/β-catenin signaling inhibitor ICG-001, as a potent inducer of hepatic differentiation of BM-MSCs. METHODS We manufactured hepatic cell sheets by engineering from human BM-MSCs using the single small molecule IC-2. The therapeutic potential of IC-2-induced hepatic cell sheets was assessed by transplantation of IC-2- and hexachlorophene-treated hepatic cell sheets using a mouse model of acute liver injury. RESULTS Significant improvement of liver injury was elicited by the IC-2-treated hepatic cell sheets. The expression of complement C3 was enhanced by IC-2, followed by prominent hepatocyte proliferation stimulated through the activation of NF-κB and its downstream molecule STAT-3. Indeed, IC-2 also enhanced the expression of amphiregulin, resulting in the activation of the EGFR pathway and further stimulation of hepatocyte proliferation. As another important therapeutic mechanism, we revealed prominent reduction of oxidative stress mediated through upregulation of the thioredoxin (TRX) system by IC-2-treated hepatic cell sheets. The effects mediated by IC-2-treated sheets were superior compared with those mediated by hexachlorophene-treated sheets. CONCLUSION The single compound IC-2 induced hepatic cell sheets that possess potent regeneration capacity and ameliorate acute liver injury.
Collapse
Key Words
- 8-OHdG, 8-hydroxydeoxyguanosine
- A1AT, α1-antitrypsin
- ALT, alanine aminotransferase
- APOE, apolipoprotein E
- AREG, amphiregulin
- AST, aspartate aminotransferase
- Acute liver failure
- BM-MSCs, bone marrow-derived mesenchymal stem cells
- C3, complement C3
- C4A, complement C4A
- C5aR, complement C5a receptor
- CBP, CREB-binding protein
- CCl4, carbon tetrachloride
- CP, ceruloplasmin
- ChREBP, Carbohydrate-responsive element-binding protein
- ChoREs, carbohydrate response elements
- DMSO, dimethyl sulfoxide
- EGFR, epidermal growth factor receptor
- ERK, extracellular signal-regulated kinase
- GPX, glutathione peroxidase
- GR, Glutathione reductase
- GRX, glutaredoxin
- GSH, glutathione
- HB-EGF, heparin binding-epidermal growth factor-like growth factor
- HGFR, hepatocyte growth factor receptor
- Hepatic cell sheets
- IL-1ra, interleukin-1 receptor antagonist
- IL-6, interleukin-6
- LXR, liver X receptor
- Liver regeneration
- MDA, malondialdehyde
- Mesenchymal stem cells
- NF-κB, nuclear factor-kappa B
- PCNA, proliferating cell nuclear antigen
- PRX, peroxiredoxin
- RBP4, retinol binding protein 4
- SOD, superoxide dismutase
- STAT-3, Signal Tranducer and Activator of Transcription 3
- TF, transferrin
- TGFα, transforming growth factor alpha
- TNFα, tumor necrosis factor alpha
- TRX, thioredoxin
- TRXR, thioredoxin reductase
- Wnt/β-catenin signal inhibitor
- hGAPDH, human glyceraldehyde 3-phosphate dehydrogenase
- mActb, mouse actin, beta
Collapse
Affiliation(s)
- Noriko Itaba
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Ikuya Noda
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Hiroyuki Oka
- Research Initiative Center, Tottori University, 4-101 Koyama, Tottori 680-8550, Japan
| | - Yohei Kono
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kaori Okinaka
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Tsuyoshi Yokobata
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Shizuma Okazaki
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Minoru Morimoto
- Research Initiative Center, Tottori University, 4-101 Koyama, Tottori 680-8550, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Graduate School of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| |
Collapse
|
999
|
Alborzinia H, Ignashkova TI, Dejure FR, Gendarme M, Theobald J, Wölfl S, Lindemann RK, Reiling JH. Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol 2018; 1:210. [PMID: 30511023 PMCID: PMC6262011 DOI: 10.1038/s42003-018-0212-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic activities of several Golgi-dispersing compounds including AMF-26/M-COPA, brefeldin A and golgicide A have previously been shown to induce autophagy or apoptosis. Here, we demonstrate that these Golgi disruptors also trigger ferroptosis, a non-apoptotic form of cell death characterized by iron-dependent oxidative degradation of lipids. Inhibitors of ferroptosis not only counteract cell death, but they also protect from Golgi dispersal and inhibition of protein secretion in response to several Golgi stress agents. Furthermore, the application of sublethal doses of ferroptosis-inducers such as erastin and sorafenib, low cystine growth conditions, or genetic knockdown of SLC7A11 and GPX4 all similarly protect cells from Golgi stress and lead to modulation of ACSL4, SLC7A5, SLC7A11 or GPX4 levels. Collectively, this study suggests a previously unrecognized function of the Golgi apparatus, which involves cellular redox control and prevents ferroptotic cell death. Hamed Alborzinia et al. show that Golgi-dispersing compounds trigger iron-dependent oxidative degradation of lipids, inducing a non-apoptotic cell death called ferroptosis. This study provides insight into the role of Golgi apparatus for preventing ferroptotic cell death through its cellular redox control.
Collapse
Affiliation(s)
- Hamed Alborzinia
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany.,4Present Address: Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | - Francesca R Dejure
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
| | - Mathieu Gendarme
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
| | - Jannick Theobald
- 2Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Stefan Wölfl
- 2Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Ralph K Lindemann
- 3Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany.,5Present Address: Institute for Applied Cancer Science and Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
1000
|
Piecing Together How Peroxiredoxins Maintain Genomic Stability. Antioxidants (Basel) 2018; 7:antiox7120177. [PMID: 30486489 PMCID: PMC6316004 DOI: 10.3390/antiox7120177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxins, a highly conserved family of thiol oxidoreductases, play a key role in oxidant detoxification by partnering with the thioredoxin system to protect against oxidative stress. In addition to their peroxidase activity, certain types of peroxiredoxins possess other biochemical activities, including assistance in preventing protein aggregation upon exposure to high levels of oxidants (molecular chaperone activity), and the transduction of redox signals to downstream proteins (redox switch activity). Mice lacking the peroxiredoxin Prdx1 exhibit an increased incidence of tumor formation, whereas baker's yeast (Saccharomyces cerevisiae) lacking the orthologous peroxiredoxin Tsa1 exhibit a mutator phenotype. Collectively, these findings suggest a potential link between peroxiredoxins, control of genomic stability, and cancer etiology. Here, we examine the potential mechanisms through which Tsa1 lowers mutation rates, taking into account its diverse biochemical roles in oxidant defense, protein homeostasis, and redox signaling as well as its interplay with thioredoxin and thioredoxin substrates, including ribonucleotide reductase. More work is needed to clarify the nuanced mechanism(s) through which this highly conserved peroxidase influences genome stability, and to determine if this mechanism is similar across a range of species.
Collapse
|