951
|
Ratovitski EA, Bao C, Quick RA, McMillan A, Kozlovsky C, Lowenstein CJ. An inducible nitric-oxide synthase (NOS)-associated protein inhibits NOS dimerization and activity. J Biol Chem 1999; 274:30250-7. [PMID: 10514518 DOI: 10.1074/jbc.274.42.30250] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A variety of transcriptional and post-transcriptional mechanisms regulate the expression of the inducible nitric-oxide synthase (iNOS, or NOS2). Although neurons and endothelial cells express proteins that interact with and inhibit neuronal NOS and endothelial NOS, macrophage proteins that inhibit NOS2 have not been identified. We show that murine macrophages express a 110-kDa protein that interacts with NOS2, which we call NOS-associated protein-110 kDa (NAP110). NAP110 directly interacts with the amino terminus of NOS2, and inhibits NOS catalytic activity by preventing formation of NOS2 homodimers. Expression of NAP110 may be a mechanism by which macrophages expressing NOS2 protect themselves from cytotoxic levels of nitric oxide.
Collapse
Affiliation(s)
- E A Ratovitski
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
952
|
Both the neuronal and inducible isoforms contribute to upregulation of retinal nitric oxide synthase activity by brain-derived neurotrophic factor. J Neurosci 1999. [PMID: 10493752 DOI: 10.1523/jneurosci.19-19-08517.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although neurotrophins are best known for their trophic functions, growing evidence suggests that neurotrophins can also be neurotoxic, for instance by enhancing excitotoxic insults. We have shown recently that brain-derived neurotrophic factor (BDNF) limits its neuroprotective action on axotomized rat retinal ganglion cells (RGCs) by upregulating nitric oxide synthase (NOS) activity (Klöcker et al., 1998). The aim of the present study was to investigate this interaction of BDNF and NOS in the lesioned adult rat retina in more detail. We used NOS immunohistochemistry and NADPH-diaphorase (NADPH-d) reaction to characterize morphologically retinal NOS expression and activity. Using reverse transcription-PCR and Western blot analysis, we were able to identify the NOS isoforms being regulated. Six days after optic nerve lesion, we observed an increase in neuronal NOS (NOS-I) mRNA and protein expression in the inner retina. This did not lead to a marked increase in overall retinal NOS activity. Only RGC axons displayed strong de novo NADPH-d reactivity. In contrast, intraocular injection of BDNF resulted in a marked upregulation of NOS activity in NOS-I-immunoreactive structures, leaving the level of NOS-I expression unchanged. In addition, an induction of inducible NOS (NOS-II) was found after BDNF treatment. We identified microglial cells increasing in number and being activated by BDNF, which could serve as the cellular source of NOS-II. In summary, our data suggest that BDNF upregulates retinal NOS activity by both a post-translational regulation of NOS-I activity and an induction of NOS-II. These findings might be useful for developing pharmacological strategies to improve BDNF-mediated neuroprotection.
Collapse
|
953
|
Wang Y, Newton DC, Robb GB, Kau CL, Miller TL, Cheung AH, Hall AV, VanDamme S, Wilcox JN, Marsden PA. RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc Natl Acad Sci U S A 1999; 96:12150-5. [PMID: 10518591 PMCID: PMC18427 DOI: 10.1073/pnas.96.21.12150] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive analysis of the structure of neuronal nitric oxide synthase (nNOS; EC 1.14.13.39) mRNA species revealed NOS1 to be the most structurally diverse human gene described to date in terms of promoter usage. Nine unique exon 1 variants are variously used for transcript initiation in diverse tissues, and each is expressed from a unique 5'-flanking region. The dependence on unique genomic regions to control transcription initiation in a cell-specific fashion burdens the transcripts with complex 5'-mRNA leader sequences. Elaborate splicing patterns that involve alternatively spliced leader exons and exon skipping have been superimposed on this diversity. Highly structured nNOS mRNA 5'-untranslated regions, which have profound effects on translation both in vitro and in cells, contain cis RNA elements that modulate translational efficiency in response to changes in cellular phenotype.
Collapse
Affiliation(s)
- Y Wang
- Renal Division and Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON M4X 1B1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
954
|
Madhavan R, Jarrett HW. Phosphorylation of dystrophin and alpha-syntrophin by Ca(2+)-calmodulin dependent protein kinase II. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1434:260-74. [PMID: 10525145 DOI: 10.1016/s0167-4838(99)00193-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A Ca(2+)-calmodulin dependent protein kinase activity (DGC-PK) was previously shown to associate with skeletal muscle dystrophin glycoprotein complex (DGC) preparations, and phosphorylate dystrophin and a protein with the same electrophoretic mobility as alpha-syntrophin (R. Madhavan, H.W. Jarrett, Biochemistry 33 (1994) 5797-5804). Here, we show that DGC-PK and Ca(2+)-calmodulin dependent protein kinase II (CaM kinase II) phosphorylate a common site (RSDS(3616)) within the dystrophin C terminal domain that fits the consensus CaM kinase II phosphorylation motif (R/KXXS/T). Furthermore, both kinase activities phosphorylate exactly the same three fusion proteins (dystrophin fusions DysS7 and DysS9, and the syntrophin fusion) out of a panel of eight fusion proteins (representing nearly 100% of syntrophin and 80% of dystrophin protein sequences), demonstrating that DGC-PK and CaM kinase II have the same substrate specificity. Complementing these results, anti-CaM kinase II antibodies specifically stained purified DGC immobilized on nitrocellulose membranes. Renaturation of electrophoretically resolved DGC proteins revealed a single protein kinase band (M(r) approximately 60,000) that, like CaM kinase II, underwent Ca(2+)-calmodulin dependent autophosphorylation. Based on these observations, we conclude DGC-PK represents a dystrophin-/syntrophin-phosphorylating skeletal muscle isoform of CaM kinase II. We also show that phosphorylation of the dystrophin C terminal domain sequences inhibits their syntrophin binding in vitro, suggesting a regulatory role for phosphorylation.
Collapse
Affiliation(s)
- R Madhavan
- Department of Biochemistry, University of Tennessee-Memphis, 858 Madison Ave., Memphis, TN 38163, USA
| | | |
Collapse
|
955
|
Abstract
The neuromuscular junction is specialized for rapid transmission of electrical signals. Nitric oxide synthase (NOS) is concentrated at the junction, and NO modulates transmission and could influence signaling pathways. Increasing evidence suggests that carbon monoxide (CO) serves as a neurotransmitter, and heme oxygenase (HO), the enzyme that catalyzes the formation of CO, is often colocalized with NOS. Immunoreactivity for HO-2 was present at rat neuromuscular junctions of leg muscles and persisted in denervated muscle indicating the localization of the enzyme to the postsynaptic surface. In contrast, HO-2 immunoreactivity was absent from the en grappe and orbital en plaque endplates of extraocular muscle (EOM), while only the global en plaque endplates possessed HO-2 immunoreactivity. The difference between EOM and leg endplates may arise from EOM's unique physiology. The presence of HO-2 at neuromuscular junctions suggests CO could serve as a pre- and post-synaptic messenger.
Collapse
Affiliation(s)
- L L Kusner
- Department of Neurology, Cleveland Case Western Reserve University School of Medicine, University Hospitals of Cleveland, OH 44106, USA
| | | | | |
Collapse
|
956
|
Lim S, Naisbitt S, Yoon J, Hwang JI, Suh PG, Sheng M, Kim E. Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem 1999; 274:29510-8. [PMID: 10506216 DOI: 10.1074/jbc.274.41.29510] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shank1, Shank2, and Shank3 constitute a family of proteins that may function as molecular scaffolds in the postsynaptic density (PSD). Shank directly interacts with GKAP and Homer, thus potentially bridging the N-methyl-D-aspartate receptor-PSD-95-GKAP complex and the mGluR-Homer complex in synapses (Naisbitt, S., Kim, E., Tu, J. C. , Xiao, B., Sala, S., Valtschanoff, J., Weinberg, R. J., Worley, P. F., and Sheng, M. (1999) Neuron 23, 569-582; Tu, J. C., Xiao, B., Naisbitt, S., Yuan, J. P., Petralia, R. S., Brakeman, P., Doan, A., Aakalu, V. K., Lanahan, A. A., Sheng, M., and Worley, P. F. (1999) Neuron 23, 583-592). Shank contains multiple domains for protein-protein interaction including ankyrin repeats, an SH3 domain, a PSD-95/Dlg/ZO-1 domain, a sterile alpha motif domain, and a proline-rich region. By characterizing Shank cDNA clones and RT-PCR products, we found that there are four sites for alternative splicing in Shank1 and another four sites in Shank2, some of which result in deletion of specific domains of the Shank protein. In addition, the expression of the splice variants is differentially regulated in different regions of rat brain during development. Immunoblot analysis of Shank proteins in rat brain using five different Shank antibodies reveals marked heterogeneity in size (120-240 kDa) and differential spatiotemporal expression. Shank1 immunoreactivity is concentrated at excitatory synaptic sites in adult brain, and the punctate staining of Shank1 is seen in developing rat brains as early as postnatal day 7. These results suggest that alternative splicing in the Shank family may be a mechanism that regulates the molecular structure of Shank and the spectrum of Shank-interacting proteins in the PSDs of adult and developing brain.
Collapse
Affiliation(s)
- S Lim
- Department of Pharmacology, Pusan National University, Kumjeong-ku, Pusan 609-735, Korea
| | | | | | | | | | | | | |
Collapse
|
957
|
Gbadegesin M, Vicini S, Hewett SJ, Wink DA, Espey M, Pluta RM, Colton CA. Hypoxia modulates nitric oxide-induced regulation of NMDA receptor currents and neuronal cell death. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C673-83. [PMID: 10516097 DOI: 10.1152/ajpcell.1999.277.4.c673] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) released from a new chemical class of donors enhances N-methyl-D-aspartate (NMDA) channel activity. Using whole cell and single-channel patch-clamp techniques, we have shown that (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]-NO (PAPA-NO) and diethylamine NO, commonly termed NONOates, potentiate the glutamate-mediated response of recombinant rat NMDA receptors (NR1/NR2A) expressed in HEK-293 cells. The overall effect is an increase in both peak and steady-state whole cell currents induced by glutamate. Single-channel studies demonstrate a significant increase in open probability but no change in the mean single-channel open time or mean channel conductance. Reduction in oxygen levels increased and prolonged the PAPA-NO-induced change in both peak and steady-state glutamate currents in transfected HEK cells. PAPA-NO also enhanced cell death in primary cultures of rodent cortical neurons deprived of oxygen and glucose. This potentiation of neuronal injury was blocked by MK-801, indicating a critical involvement of NMDA receptor activation. The NO-induced increase in NMDA channel activity as well as NMDA receptor-mediated cell death provide firm evidence that NO modulates the NMDA channel in a manner consistent with both a physiological role under normoxic conditions and a pathophysiological role under hypoxic conditions.
Collapse
Affiliation(s)
- M Gbadegesin
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia 20007, USA
| | | | | | | | | | | | | |
Collapse
|
958
|
Guidarelli A, Clementi E, Sciorati C, Cantoni O. Different signalling pathways mediate the opposite effects of endogenous versus exogenous nitric oxide on hydroperoxide toxicity in CHP100 neuroblastoma cells. J Neurochem 1999; 73:1667-73. [PMID: 10501214 DOI: 10.1046/j.1471-4159.1999.0731667.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The results presented in this study indicate that the toxic response brought about by increasing concentrations of tert-butylhydroperoxide in CHP100 cells was mitigated significantly by exogenously added nitric oxide donors via a cyclic GMP-independent mechanism. In contrast with these results, endogenous nitric oxide generated by the Ca2+-mobilizing agent caffeine was found to increase hydroperoxide toxicity. Under these conditions, nitric oxide was not directly toxic to the cells. Rather, nitric oxide was found to promote the caffeine-mediated release of Ca2+ from ryanodine-sensitive Ca2+ stores via a cyclic GMP-independent mechanism. Release of the cation from ryanodine-sensitive Ca2+ stores was causally linked with the caffeine/nitric oxide-mediated enhancement of tert-butylhydroperoxide toxicity. It is concluded that endogenous and exogenous nitric oxide activate diverging signalling pathways independent of cyclic GMP formation and causing opposite effects on the toxic response evoked by tert-butylhydroperoxide in CHP100 cells.
Collapse
Affiliation(s)
- A Guidarelli
- Istituto di Farmacologia e Farmacognosia and Centro di Farmacologia Oncologica Sperimentale, Università di Urbino, Italy
| | | | | | | |
Collapse
|
959
|
Kim WK, Choi YB, Rayudu PV, Das P, Asaad W, Arnelle DR, Stamler JS, Lipton SA. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-. Neuron 1999; 24:461-9. [PMID: 10571239 DOI: 10.1016/s0896-6273(00)80859-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent evidence indicates that the NO-related species, nitroxyl anion (NO), is produced in physiological systems by several redox metal-containing proteins, including hemoglobin, nitric oxide synthase (NOS), superoxide dismutase, and S-nitrosothiols (SNOs), which have recently been identified in brain. However, the chemical biology of NO- remains largely unknown. Here, we show that NO- -unlike NO*, but reminiscent of NO+ transfer (or S-nitrosylation)- -reacts mainly with Cys-399 in the NR2A subunit of the N-methyl-D-aspartate (NMDA) receptor to curtail excessive Ca2+ influx and thus provide neuroprotection from excitotoxic insults. This effect of NO- closely resembles that of NOS, which also downregulates NMDA receptor activity under similar conditions in culture.
Collapse
Affiliation(s)
- W K Kim
- Cerebrovascular and NeuroScience Research Institute, Brigham and Women's Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
960
|
Gillis JM. Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J Muscle Res Cell Motil 1999; 20:605-25. [PMID: 10672510 DOI: 10.1023/a:1005545325254] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- J M Gillis
- Département de Physiologie, Université Catholique de Louvain, Bruxelles, Belgium.
| |
Collapse
|
961
|
Abstract
Extracellular-signal-regulated kinases (ERKs) are emerging as important regulators of neuronal function. Recent advances have increased our understanding of ERK signalling at the molecular level. In particular, it has become evident that multiple second messengers, such as cyclic adenosine monophosphate, protein kinase A, calcium, and diacylglycerol, can control ERK signalling via the small G proteins Ras and Rap1. These findings may explain the role of ERKs in the regulation of activity-dependent neuronal events, such as synaptic plasticity, long-term potentiation and cell survival. Moreover, they allow us to begin to develop a model to understand both the control of ERKs at the subcellular level and the generation of ERK signal specificity.
Collapse
Affiliation(s)
- S S Grewal
- Vollum Institute L-474, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201-3098 USA.
| | | | | |
Collapse
|
962
|
Christopherson KS, Hillier BJ, Lim WA, Bredt DS. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 1999; 274:27467-73. [PMID: 10488080 DOI: 10.1074/jbc.274.39.27467] [Citation(s) in RCA: 461] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) biosynthesis in cerebellum is preferentially activated by calcium influx through N-methyl-D-aspartate (NMDA)-type glutamate receptors, suggesting that there is a specific link between these receptors and neuronal NO synthase (nNOS). Here, we find that PSD-95 assembles a postsynaptic protein complex containing nNOS and NMDA receptors. Formation of this complex is mediated by the PDZ domains of PSD-95, which bind to the COOH termini of specific NMDA receptor subunits. In contrast, nNOS is recruited to this complex by a novel PDZ-PDZ interaction in which PSD-95 recognizes an internal motif adjacent to the consensus nNOS PDZ domain. This internal motif is a structured "pseudo-peptide" extension of the nNOS PDZ that interacts with the peptide-binding pocket of PSD-95 PDZ2. This asymmetric interaction leaves the peptide-binding pocket of the nNOS PDZ domain available to interact with additional COOH-terminal PDZ ligands. Accordingly, we find that the nNOS PDZ domain can bind PSD-95 PDZ2 and a COOH-terminal peptide simultaneously. This bivalent nature of the nNOS PDZ domain further expands the scope for assembly of protein networks by PDZ domains.
Collapse
Affiliation(s)
- K S Christopherson
- Department of Physiology, and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0444, USA
| | | | | | | |
Collapse
|
963
|
Yamada Y, Chochi Y, Ko JA, Sobue K, Inui M. Activation of channel activity of the NMDA receptor-PSD-95 complex by guanylate kinase-associated protein (GKAP). FEBS Lett 1999; 458:295-8. [PMID: 10570927 DOI: 10.1016/s0014-5793(99)01171-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The channel-associated protein PSD-95 functionally modulates NMDA receptor channels, interacting with the channels via PDZ domain of PSD-95. PSD-95 also interacts with guanylate kinase-associated protein (GKAP) through the guanylate kinase-like domain of PSD-95. Here we report that GKAP markedly potentiates the channel activity of the receptor-PSD-95 complex. However, GKAP had no effect on basic properties of the channels nor on PSD-95-induced changes in channel properties. Thus, GKAP affects the channel activity of the NMDA receptor via PSD-95 quantitatively, which may make signal transmission more efficient at postsynaptic sites.
Collapse
Affiliation(s)
- Y Yamada
- Department of Pharmacology, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | |
Collapse
|
964
|
Blottner D. Nitric oxide and target-organ control in the autonomic nervous system: Anatomical distribution, spatiotemporal signaling, and neuroeffector maintenance. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<139::aid-jnr14>3.0.co;2-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
965
|
Kawachi H, Tamura H, Watakabe I, Shintani T, Maeda N, Noda M. Protein tyrosine phosphatase zeta/RPTPbeta interacts with PSD-95/SAP90 family. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:47-54. [PMID: 10521598 DOI: 10.1016/s0169-328x(99)00204-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PTPzeta/RPTPbeta is a proteoglycan-type receptor-like protein tyrosine phosphatase specifically expressed in the brain. Although several ligands of PTPzeta have been identified, proteins interacting with the intracellular region of PTPzeta are still unknown. We performed yeast two-hybrid screening using the intracellular region of PTPzeta as a bait, and found that the C-terminal sequence of PTPzeta binds to the PSD-95/SAP90 family through the second PDZ domain. Immunohistochemical analysis revealed that PTPzeta and PSD-95/SAP90 are similarly distributed in the dendrites of pyramidal neurons of the hippocampus and neocortex. Furthermore, subcellular fractionation experiments indicated that PTPzeta is concentrated in the postsynaptic density fraction. These results suggested that PTPzeta is involved in the regulation of synaptic function as postsynaptic macromolecular complexes with PSD-95/SAP90.
Collapse
Affiliation(s)
- H Kawachi
- Division of Molecular Neurobiology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Japan
| | | | | | | | | | | |
Collapse
|
966
|
Segal SS, Brett SE, Sessa WC. Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1167-77. [PMID: 10484439 DOI: 10.1152/ajpheart.1999.277.3.h1167] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In isolated cell systems, nitric oxide synthase (NOS) activity is regulated by caveolin (CAV), a resident caveolae coat protein. Because little is known of this interaction in vivo, we tested whether NOS and caveolin are distributed together in the intact organism. Using immunohistochemistry, we investigated the localization of constitutive neuronal (nNOS) and endothelial (eNOS) enzyme isoforms along with caveolin-1 (CAV-1) and caveolin-3 (CAV-3) throughout the systemic vasculature and peripheral tissues of the hamster. The carotid artery, abdominal aorta, vena cava, femoral artery and vein, feed artery and collecting vein of the cheek pouch retractor muscle, capillaries and muscle fibers of retractor and cremaster muscles, and arterioles and venules of the cheek pouch were studied. In endothelial cells, eNOS and CAV-1 were present throughout the vasculature, whereas nNOS and CAV-3 were absent except in capillaries, which reacted for nNOS. In smooth muscle cells, nNOS and CAV-1 were also expressed systemically, whereas eNOS was absent; CAV-3 was present in the arterial but not the venous vasculature. Both nNOS and CAV-3 were located at the sarcolemma of skeletal muscle fibers, which were devoid of eNOS and CAV-1. These immunolabeling patterns suggest functional interactions between eNOS and CAV-1 throughout the endothelium, regional differences in the modulation of nNOS by caveolin isoforms in vascular smooth muscle, and modulation of nNOS by CAV-3 in skeletal muscle.
Collapse
Affiliation(s)
- S S Segal
- The John B. Pierce Laboratory, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| | | | | |
Collapse
|
967
|
Nitric oxide acts as a postsynaptic signaling molecule in calcium/calmodulin-induced synaptic potentiation in hippocampal CA1 pyramidal neurons. J Neurosci 1999. [PMID: 10436036 DOI: 10.1523/jneurosci.19-16-06784.1999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic injection of Ca(2+)/calmodulin (Ca(2+)/CaM) into hippocampal CA1 pyramidal neurons induces synaptic potentiation, which can occlude tetanus-induced potentiation (Wang and Kelly, 1995). Because Ca(2+)/CaM activates the major forms of nitric oxide synthase (NOS) to produce nitric oxide (NO), NO may play a role during Ca(2+)/CaM-induced potentiation. Here we show that extracellular application of the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) or postsynaptic co-injection of L-NAME with Ca(2+)/CaM blocked Ca(2+)/CaM-induced synaptic potentiation. Thus, NO is necessary for Ca(2+)/CaM-induced synaptic potentiation. In contrast, extracellular perfusion of membrane-impermeable NO scavengers N-methyl-D-glucamine dithiocarbamate/ferrous sulfate mixture (MGD-Fe) or 2-(4-carboxyphenyl)-4,4,5, 5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) did not attenuate Ca(2+)/CaM-induced synaptic potentiation, even though MGD-Fe or carboxy-PTIO blocked tetanus-induced synaptic potentiation. This result indicates that NO is not a retrograde messenger in Ca(2+)/CaM-induced synaptic potentiation. However, postsynaptic co-injection of carboxy-PTIO with Ca(2+)/CaM blocked Ca(2+)/CaM-induced potentiation. Postsynaptic injection of carboxy-PTIO alone blocked tetanus-induced synaptic potentiation without affecting basal synaptic transmission. Our results suggest that NO works as a postsynaptic (intracellular) messenger during Ca(2+)/CaM-induced synaptic potentiation.
Collapse
|
968
|
Abstract
The molecular mechanisms underlying the targeting and localization of glutamate receptors at postsynaptic sites is poorly understood. Recently, we have identified a PDZ domain-containing protein, glutamate receptor-interacting protein 1 (GRIP1), which specifically binds to the C termini of AMPA receptor subunits and may be involved in the synaptic targeting of these receptors. Here, we report the cloning of GRIP2, a homolog of GRIP1, and the characterization of the GRIP1 and GRIP2 proteins in the rat CNS. GRIP1 and GRIP2 are approximately 130 kDa proteins that are highly enriched in brain. GRIP1 and GRIP2 are widely expressed in brain, with the highest levels found in the cerebral cortex, hippocampus, and olfactory bulb. Biochemical studies show that GRIP1 and GRIP2 are enriched in synaptic plasma membrane and postsynaptic density fractions. GRIP1 is expressed early in embryonic development before the expression of AMPA receptors and peaks in expression at postnatal day 8-10. In contrast, GRIP2 is expressed relatively late in development and parallels the expression of AMPA receptors. Immunohistochemistry using the GRIP1 antibodies demonstrated that GRIP1 is expressed in neurons in a somatodendritic staining pattern. At the ultrastructural level, DAB and immunogold electromicroscopy studies showed that GRIP1 was enriched in dendritic spines near the postsynaptic density and was expressed in dendritic shafts and in peri-Golgi regions in the neuronal soma. GRIP1 appeared to be clustered at both glutamatergic and GABAergic synapses. These results suggest that GRIP1 and GRIP2 are AMPA receptor binding proteins potentially involved in the targeting of AMPA receptors to synapses. GRIP1 also may play functional roles at both excitatory and inhibitory synapses, as well as in early neuronal development.
Collapse
|
969
|
Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J Neurosci 1999. [PMID: 10414979 DOI: 10.1523/jneurosci.19-15-06506.1999] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The postsynaptic density (PSD) is crucially involved in the structural and functional organization of the postsynaptic neurotransmitter reception apparatus. Using antisera against rat brain synaptic junctional protein preparations, we isolated cDNAs coding for proline-rich synapse-associated protein-1 (ProSAP1), a PDZ-domain protein. This protein was found to be identical to the recently described cortactin-binding protein-1 (CortBP1). Homology screening identified a related protein, ProSAP2. Specific antisera raised against a C-terminal fusion construct and a central part of ProSAP1 detect a cluster of immunoreactive bands of 180 kDa in the particulate fraction of rat brain homogenates that copurify with the PSD fraction. Transcripts and immunoreactivity are widely distributed in the brain and are upregulated during the period of synapse formation in the brain. In addition, two short N-terminal insertions are detected; they are differentially regulated during brain development. Confocal microscopy of hippocampal neurons showed that ProSAP1 is predominantly localized in synapses, and immunoelectron microscopy in situ revealed a strong association with PSDs of hippocampal excitatory synapses. The accumulation of ProSAP1 at synaptic structures was analyzed in the developing cerebral cortex. During early postnatal development, strong immunoreactivity is detectable in neurites and somata, whereas from postnatal day 10 (P10) onward a punctate staining is observed. At the ultrastructural level, the immunoreactivity accumulates at developing PSDs starting from P8. Both interaction with the actin-binding protein cortactin and early appearance at postsynaptic sites suggest that ProSAP1/CortBP1 may be involved in the assembly of the PSD during neuronal differentiation.
Collapse
|
970
|
Association of AMPA receptors with a subset of glutamate receptor-interacting protein in vivo. J Neurosci 1999. [PMID: 10414981 DOI: 10.1523/jneurosci.19-15-06528.1999] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The NMDA and AMPA classes of ionotropic glutamate receptors are concentrated at postsynaptic sites in excitatory synapses. NMDA receptors interact via their NR2 subunits with PSD-95/SAP90 family proteins, whereas AMPA receptors bind via their GluR2/3 subunits to glutamate receptor-interacting protein (GRIP), AMPA receptor-binding protein (ABP), and protein interacting with C kinase 1 (PICK1). We report here a novel cDNA (termed ABP-L/GRIP2) that is virtually identical to ABP except for additional GRIP-like sequences at the N-terminal and C-terminal ends. Like GRIP (which we now term GRIP1), ABP-L/GRIP2 contains a seventh PDZ domain at its C terminus. Using antibodies that recognize both these proteins, we examined the subcellular localization of GRIP1 and ABP-L/GRIP2 (collectively termed GRIP) and their biochemical association with AMPA receptors. Immunogold electron microscopy revealed the presence of GRIP at excitatory synapses and also at nonsynaptic membranes and within intracellular compartments. The association of native GRIP and AMPA receptors was confirmed biochemically by coimmunoprecipitation from rat brain extracts. A majority of detergent-extractable GluR2/3 was complexed with GRIP in the brain. However, only approximately half of GRIP was associated with AMPA receptors. Unexpectedly, immunocytochemistry of cultured hippocampal neurons and rat brain at the light microscopic level showed enrichment of GRIP in GABAergic neurons and in GABAergic nerve terminals. Thus GRIP is associated with inhibitory as well as excitatory synapses. Collectively, these findings support a role for GRIP in the synaptic anchoring of AMPA receptors but also suggest that GRIP has additional functions unrelated to the binding of AMPA receptors.
Collapse
|
971
|
Qu XW, Wang H, Rozenfeld RA, Huang W, Hsueh W. Type I nitric oxide synthase (NOS) is the predominant NOS in rat small intestine. Regulation by platelet-activating factor. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:211-7. [PMID: 10446403 DOI: 10.1016/s0167-4889(99)00076-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constitutive nitric oxide synthase (cNOS) may play an important protective role in the intestine, since our previous study has shown that the degree of bowel injury induced by platelet-activating factor (PAF), a potent inflammatory mediator, is inversely related to the cNOS content of the intestine. This study aims to examine the composition of the cNOS system in rat small intestine, and its regulation by PAF. We found that an approximately 120 kDa NOS I (neuronal NOS) is the predominant NOS in rat intestine, as evidenced by the following: (a) immunoblotting with specific antibodies detected a NOS I of approximately 120 kDa, but little NOS III; (b) the Ca(2+)-dependent, constitutive NOS (cNOS) activity of the rat intestine was removed by immunoprecipitation with the anti-NOS I, but not anti-NOS II or anti-NOS III antibodies; (c) RT-PCR revealed constitutive expression of NOS I in the intestinal tissue, but only a minute amount of NOS III. Immunofluorescent staining with anti-NOS I located NOS in the Auerbach plexus and nerve fibers in the muscle layer. We also found that this 120 kDa NOS I is rapidly (within 1 h) down-regulated in response to PAF administration. The protein level, enzyme activity as well as mRNA of nNOS were all decreased in the intestine.
Collapse
Affiliation(s)
- X W Qu
- Department of Pathology, Children's Memorial Hospital, Northwestern University Medical School, Chicago, IL 60614, USA
| | | | | | | | | |
Collapse
|
972
|
Cramer KS, Sur M. The neuronal form of nitric oxide synthase is required for pattern formation by retinal afferents in the ferret lateral geniculate nucleus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:79-86. [PMID: 10446349 DOI: 10.1016/s0165-3806(99)00077-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ferret retinogeniculate projection undergoes activity-dependent refinement of connections that become restricted to eye specific laminae and On/Off sublaminae in the lateral geniculate nucleus (LGN). We have previously shown that the developmental process by which On/Off sublaminae form requires N-methyl-D-aspartate (NMDA) receptors and nitric oxide (NO). In this study, we investigate the role of the neuronal form of NO synthase (nNOS) in sublaminar refinement. This isoform of NOS may be coupled with NMDA receptors at postsynaptic sites. We found that nNOS is present in the developing LGN, and that blocking nNOS during development disrupts the formation of On/Off sublaminae. Endothelial NOS (eNOS) is not expressed in the LGN until after sublaminae have formed. These results suggest that the nNOS isoform is the predominant contributor of NO during development, and support the hypothesis that NO acts downstream of NMDA receptor activation to mediate activity-dependent changes in the patterning of connections in the LGN.
Collapse
Affiliation(s)
- K S Cramer
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
973
|
Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 1999. [PMID: 10407030 DOI: 10.1523/jneurosci.19-14-05910.1999] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is a new intercellular messenger that occurs naturally in the brain without causing overt toxicity. Yet, NO has been implicated as a mediator of cell death in cell death. One explanation is that ischemia causes overproduction of NO, allowing it to react with superoxide to form the potent oxidant peroxynitrite. To address this question, we used immunohistochemistry for citrulline, a marker for NO synthase activity, and 3-nitrotyrosine, a marker for peroxynitrite formation, in mice subjected to reversible middle cerebral artery occlusion. We show that ischemia triggers a marked augmentation in citrulline immunoreactivity but more so in the peri-infarct than the infarcted tissue. This increase is attributable to the activation of a large population (approximately 80%) of the neuronal isoform of NO synthase (nNOS) that is catalytically inactive during basal conditions, indicating a tight regulation of physiological NO production in the brain. In contrast, 3-nitrotyrosine immunoreactivity is restricted to the infarcted tissue and is not present in the peri-infarct tissue. In nNOS(Delta/Delta) mice, known to be protected against ischemia, no 3-nitrotyrosine immunoreactivity is detected. Our findings provide a cellular localization for nNOS activation in association with ischemic stroke and establish that NO is not likely a direct neurotoxin, whereas its conversion to peroxynitrite is associated with cell death.
Collapse
|
974
|
Di Stasi AM, Mallozzi C, Macchia G, Petrucci TC, Minetti M. Peroxynitrite induces tryosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem 1999; 73:727-35. [PMID: 10428070 DOI: 10.1046/j.1471-4159.1999.0730727.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxynitrite, the product of the radical-radical reaction between nitric oxide and superoxide anion, is a potent oxidant involved in tissue damage in neurodegenerative disorders. We investigated the modifications induced by peroxynitrite in tyrosine residues of proteins from synaptosomes. Peroxynitrite treatment (> or =50 microM) induced tyrosine nitration and increased tyrosine phosphorylation. Synaptophysin was identified as one of the major nitrated proteins and pp60src kinase as one of the major phosphorylated substrates. Further fractionation of synaptosomes revealed nitrated synaptophysin in the synaptic vesicles, whereas phosphorylated pp60src was enriched in the postsynaptic density fraction. Tyrosine phosphorylation was increased by treatment with 50-500 microM peroxynitrite and decreased by higher concentrations, suggesting a possible activation/inactivation of kinases. Immunocomplex kinase assay proved that peroxynitrite treatment of synaptosomes modulated the pp60src autophosphorylation activity. The addition of bicarbonate (CO2 1.3 mM) produced a moderate enhancing effect on some nitrated proteins but significantly protected the activity of pp60src against peroxynitrite-mediated inhibition so that at 1 mM peroxynitrite, the kinase was still more active than in untreated synaptosomes. The phosphotyrosine phosphatase activity of synaptosomes was inhibited by peroxynitrite (> or =50 microM) but significantly protected by CO2. Thus, the increase of phosphorylation cannot be attributed to peroxynitrite-mediated inhibition of phosphatases. We suggest that peroxynitrite may regulate the posttranslational modification of tyrosine residues in pre- and postsynaptic proteins. Identification of the major protein targets gives insight into the pathways possibly involved in neuronal degeneration associated with peroxynitrite overproduction.
Collapse
Affiliation(s)
- A M Di Stasi
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | |
Collapse
|
975
|
Abstract
Investigations conducted over the past 18 months have shed new light on how modular protein-binding domains, in particular PDZ domains, co-ordinate the assembly of functional plasma membrane domains. Members of the MAGUK (membrane-associated guanylate kinase) protein family, like PSD-95, use multiple domains to cluster ion channels, receptors, adhesion molecules and cytosolic signaling proteins at synapses, cellular junctions, and polarized membrane domains. Other PDZ proteins, like the Drosophila protein INAD and the epithelial Na(+)/H(+) regulatory factor (NHERF), organize cellular signaling by localizing transmembrane and cytosolic components to specific membrane domains and assembling these components into functional complexes. The organization of these proteins into discreet structures has functional consequences for downstream signaling.
Collapse
Affiliation(s)
- A S Fanning
- Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, PO Box 208019, New Haven, CT 06520-8019, USA.
| | | |
Collapse
|
976
|
Grady RM, Grange RW, Lau KS, Maimone MM, Nichol MC, Stull JT, Sanes JR. Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat Cell Biol 1999; 1:215-20. [PMID: 10559919 DOI: 10.1038/12034] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A dystrophin-containing glycoprotein complex (DGC) links the basal lamina surrounding each muscle fibre to the fibre's cytoskeleton, providing both structural support and a scaffold for signalling molecules. Mutations in genes encoding several DGC components disrupt the complex and lead to muscular dystrophy. Here we show that mice deficient in alpha-dystrobrevin, a cytoplasmic protein of the DGC, exhibit skeletal and cardiac myopathies. Analysis of double and triple mutants indicates that alpha-dystrobrevin acts largely through the DGC. Structural components of the DGC are retained in the absence of alpha-dystrobrevin, but a DGC-associated signalling protein, nitric oxide synthase, is displaced from the membrane and nitric-oxide-mediated signalling is impaired. These results indicate that both signalling and structural functions of the DGC are required for muscle stability, and implicate alpha-dystrobrevin in the former.
Collapse
Affiliation(s)
- R M Grady
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
977
|
Kim CD, Goyal RK, Mashimo H. Neuronal NOS provides nitrergic inhibitory neurotransmitter in mouse lower esophageal sphincter. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G280-4. [PMID: 10444441 DOI: 10.1152/ajpgi.1999.277.2.g280] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To identify the enzymatic source of nitric oxide (NO) in the lower esophageal sphincter (LES), studies were performed in wild-type and genetically engineered endothelial nitric oxide synthase [eNOS(-)] and neuronal NOS [nNOS(-)] mice. Under nonadrenergic noncholinergic (NANC) conditions, LES ring preparations developed spontaneous tone in all animals. In the wild-type mice, electrical field stimulation produced frequency-dependent intrastimulus relaxation and a poststimulus rebound contraction. NOS inhibitor N(omega)-nitro-L-arginine methyl ester (100 microM) abolished intrastimulus relaxation and rebound contraction. In nNOS(-) mice, both the intrastimulus relaxation and rebound contraction were absent. However, in eNOS(-) mice there was no significant difference in either the relaxation or rebound contraction from the wild-type animal. Both nNOS(-) and eNOS(-) tissues showed concentration-dependent relaxation to NO donor diethylenetriamine-NO and there was no difference in the sensitivity to the NO donor in nNOS(-), eNOS(-), or wild-type animals. These results indicate that in mouse LES, nNOS rather than eNOS is the enzymatic source of the NO that mediates NANC relaxation and rebound contraction.
Collapse
Affiliation(s)
- C D Kim
- Center for Swallowing and Motility Disorders, Brockton/West Roxbury Veterans Affairs Medical Center, Boston, Massachusetts 02132, USA
| | | | | |
Collapse
|
978
|
|
979
|
Faulkner G, Pallavicini A, Formentin E, Comelli A, Ievolella C, Trevisan S, Bortoletto G, Scannapieco P, Salamon M, Mouly V, Valle G, Lanfranchi G. ZASP: a new Z-band alternatively spliced PDZ-motif protein. J Cell Biol 1999; 146:465-75. [PMID: 10427098 PMCID: PMC3206570 DOI: 10.1083/jcb.146.2.465] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PDZ motifs are modular protein-protein interaction domains, consisting of 80-120 amino acid residues, whose function appears to be the direction of intracellular proteins to multiprotein complexes. In skeletal muscle, there are a few known PDZ-domain proteins, which include neuronal nitric oxide synthase and syntrophin, both of which are components of the dystrophin complex, and actinin-associated LIM protein, which binds to the spectrin-like repeats of alpha-actinin-2. Here, we report the identification and characterization of a new skeletal muscle protein containing a PDZ domain that binds to the COOH-terminal region of alpha-actinin-2. This novel 31-kD protein is specifically expressed in heart and skeletal muscle. Using antibodies produced to a fragment of the protein, we can show its location in the sarcomere at the level of the Z-band by immunoelectron microscopy. At least two proteins, 32 kD and 78 kD, can be detected by Western blot analysis of both heart and skeletal muscle, suggesting the existence of alternative forms of the protein. In fact, several forms were found that appear to be the result of alternative splicing. The transcript coding for this Z-band alternatively spliced PDZ motif (ZASP) protein maps on chromosome 10q22.3-10q23.2, near the locus for infantile-onset spinocerebellar ataxia.
Collapse
MESH Headings
- Actinin/metabolism
- Adaptor Proteins, Signal Transducing
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosomes, Human, Pair 10/genetics
- Cloning, Molecular
- Fluorescent Antibody Technique
- Heart/embryology
- Homeodomain Proteins
- Humans
- LIM Domain Proteins
- Mice
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Molecular Weight
- Muscle Proteins/chemistry
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Myocardium/metabolism
- Myocardium/ultrastructure
- Organ Specificity
- Precipitin Tests
- Protein Binding
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sarcomeres/metabolism
- Sarcomeres/ultrastructure
- Yeasts/genetics
Collapse
Affiliation(s)
- G Faulkner
- International Centre for Genetic Engineering and Biotechnology, I-34012 Trieste, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
980
|
Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, Hidaka H, Watanabe Y. Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem 1999; 274:20597-602. [PMID: 10400690 DOI: 10.1074/jbc.274.29.20597] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of neuronal nitric-oxide synthase (nNOS) by Ca2+/calmodulin (CaM)-dependent protein kinases (CaM kinases) including CaM kinase Ialpha (CaM-K Ialpha), CaM kinase IIalpha (CaM-K IIalpha), and CaM kinase IV (CaM-K IV), was studied. It was found that purified recombinant nNOS was phosphorylated by CaM-K Ialpha, CaM-K IIalpha, and CaM-K IV at Ser847 in vitro. Replacement of Ser847 with Ala (S847A) prevented phosphorylation by CaM kinases. Phosphorylated recombinant wild-type nNOS at Ser847 (approximately 0.5 mol of phosphate incorporation into nNOS) exhibited a 30% decrease of Vmax with little change of both the Km for L-arginine and Kact for CaM relative to unphosphorylated enzyme. The activity of mutant S847D was decreased to a level 50-60% as much as the wild-type enzyme. The decreased NOS enzyme activity of phosphorylated nNOS at Ser847 and mutant S847D was partially due to suppression of CaM binding, but not to impairment of dimer formation which is thought to be essential for enzyme activation. Inactive nNOS lacking CaM-binding ability was generated by mutation of Lys732-Lys-Leu to Asp732-Asp-Glu (Watanabe, Y., Hu, Y., and Hidaka, H. (1997) FEBS Lett. 403, 75-78). It was phosphorylated by CaM kinases, as was the wild-type enzyme, indicating that CaM-nNOS binding was not required for the phosphorylation reaction. We developed antibody NP847, which specifically recognize nNOS in its phosphorylated state at Ser847. Using the antibody NP847, we obtained evidence that nNOS is phosphorylated at Ser847 in rat brain. Thus, our results suggest that CaM kinase-induced phosphorylation of nNOS at Ser847 alters the activity control of this enzyme.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Pharmacology, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
981
|
Hoffmüller U, Russwurm M, Kleinjung F, Ashurst J, Oschkinat H, Volkmer-Engert R, Koesling D, Schneider-Mergener J. Interaktion einer PDZ-Proteindomäne mit einer synthetischen Bibliothek aller C-Termini humaner Proteine. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990712)111:13/14<2180::aid-ange2180>3.0.co;2-g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
982
|
Zhou Q, Ruiz-Lozano P, Martone ME, Chen J. Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem 1999; 274:19807-13. [PMID: 10391924 DOI: 10.1074/jbc.274.28.19807] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized a novel striated muscle-restricted protein (Cypher) that has two mRNA splice variants, designated Cypher1 and Cypher2. Both proteins contain an amino-terminal PDZ domain. Cypher1, but not Cypher2, contains three carboxyl-terminal LIM domains and an amino acid repeat sequence that exhibits homology to a repeat sequence found in the largest subunit of RNA polymerase II. cypher1 and cypher2 mRNAs exhibited identical expression patterns. Both are exclusively expressed in cardiac and striated muscle in embryonic and adult stages. By biochemical assays, we have demonstrated that Cypher1 and Cypher2 bind to alpha-actinin-2 via their PDZ domains. This interaction has been further confirmed by immunohistochemical studies that demonstrated co-localization of Cypher and alpha-actinin at the Z-lines of cardiac muscle. We have also found that Cypher1 binds to protein kinase C through its LIM domains. Phosphorylation of Cypher by protein kinase C has demonstrated the functional significance of this interaction. Together, our data suggest that Cypher1 may function as an adaptor in striated muscle to couple protein kinase C-mediated signaling, via its LIM domains, to the cytoskeleton (alpha-actinin-2) through its PDZ domain.
Collapse
Affiliation(s)
- Q Zhou
- Department of Medicine, UCSD-Salk Program in Molecular Medicine, University of California at San Diego, School of Medicine, La Jolla, California 92093-0613, USA
| | | | | | | |
Collapse
|
983
|
Simpson EH, Suffolk R, Jackson IJ. Identification, sequence, and mapping of the mouse multiple PDZ domain protein gene, Mpdz. Genomics 1999; 59:102-4. [PMID: 10395806 DOI: 10.1006/geno.1999.5853] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PDZ domain gained its name from the three proteins that were first seen to have homology by virtue of these domains, the mammalian postsynaptic density protein, PSD-95, the Drosophila discs-large septate junction protein, DLG, and the mammalian epithelial tight-junction protein zona occludens, ZO-1. Over 50 PDZ domain-containing genes have been recognized so far from almost any organism subjected to sequencing, including mammals, nematodes, yeast, plants, and bacteria. The domain consists of an approximately 90-amino-acid-residue unit, which is often repeated in the protein. The majority of residues form a conserved spatial structure while a few amino acids in critical positions confer protein binding specificity. A subgroup of PDZ domains have been shown to recognize a short carboxy-terminal amino acid motif, T/SXV (Ser/Thr-X-Val-COO-), where X is any amino acid. We have identified and completely sequenced a gene, Mpdz, that encodes a mouse protein containing 13 such domains. We have also mapped the gene to a series of overlapping deletions on mouse chromosome 4 and can therefore determine that its function is not essential for embryonic development or neonatal survival.
Collapse
Affiliation(s)
- E H Simpson
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | | | | |
Collapse
|
984
|
van Rossum D, Hanisch UK. Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci 1999; 22:290-5. [PMID: 10370249 DOI: 10.1016/s0166-2236(99)01404-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide heterogeneity in dendritic-spine morphology is observed and ultrastructural changes can be induced following experimental stimulation of neurons. Morphological adaptation of a given spine might, thus, reflect its history or the current state of synaptic activity. These changes could conceivably result from rearrangements of the cytoskeleton that is subjacent to excitatory synapses. This article dicusses the direct and indirect interactions, between glutamate receptors and the cytoskeletal proteins, which include PDZ-containing proteins, actin and tubulin, as well as associated proteins. In fact, the synaptic-activity-controlled balancing of monomeric, dimeric and polymeric forms of actin and tubulin might underlie the changes in spine shape. These continuous adaptations could be relevant for physiological events, such as learning and the formation of memory.
Collapse
Affiliation(s)
- D van Rossum
- Max Delbrück Centre for Molecular Medicine, 13092 Berlin-Buch, Germany
| | | |
Collapse
|
985
|
Vaillend C, Ungerer A, Billard JM. Facilitated NMDA receptor-mediated synaptic plasticity in the hippocampal CA1 area of dystrophin-deficient mice. Synapse 1999; 33:59-70. [PMID: 10380851 DOI: 10.1002/(sici)1098-2396(199907)33:1<59::aid-syn6>3.0.co;2-k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contribution of the cytoskeletal membrane-associated protein dystrophin in glutamatergic transmission and related plasticity was investigated in the hippocampal CA1 area of wild-type and dystrophin-deficient (mdx) mice, using extracellular recordings in the ex vivo slice preparation. Presynaptic fiber volleys and field excitatory postsynaptic potentials (fEPSPs) mediated through N-methyl-D-Aspartate receptors (NMDAr) or non-NMDAr were compared in both strains. Comparable synaptic responses were observed in wild-type and mdx mice, suggesting that basal glutamatergic transmission is not altered in the mutants. By contrast, the synaptic strengthening induced by a conditioning stimulation of either 10, 30, or 100 Hz was significantly greater in mdx mice during the first minutes posttetanus. Because the posttetanic potentiation induced in the presence of the NMDAr antagonist D-APV was not affected in the mutants, a critical role of NMDAr in this increase was suggested. The magnitude of the potentiation induced by a 30 Hz stimulation in mdx mice was normalized as compared to wild-type mice by increasing the extracellular magnesium concentration from 1.5 to 3 mM. Moreover, the transitory depression of fEPSPs induced by bath-applied NMDA (50 microM for 30s) was more sensitive to an increased extracellular magnesium concentration in wild-type than in mdx mice. Our results suggest that the absence of dystrophin may facilitate NMDAr activation in the CA1 hippocampal subfield of mdx mice, which may be partly due to a reduction of the voltage-dependent block of this receptor by magnesium.
Collapse
Affiliation(s)
- C Vaillend
- Laboratoire d'Ethologie et Neurobiologie, Strasbourg, France
| | | | | |
Collapse
|
986
|
Lumeng C, Phelps S, Crawford GE, Walden PD, Barald K, Chamberlain JS. Interactions between beta 2-syntrophin and a family of microtubule-associated serine/threonine kinases. Nat Neurosci 1999; 2:611-7. [PMID: 10404183 DOI: 10.1038/10165] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A screen for proteins that interact with beta 2-syntrophin led to the isolation of MAST205 (microtubule-associated serine/threonine kinase-205 kD) and a newly identified homologue, SAST (syntrophin-associated serine/threonine kinase). Binding studies showed that beta 2-syntrophin and MAST205/SAST associated via a PDZ-PDZ domain interaction. MAST205 colocalized with beta 2-syntrophin and utrophin at neuromuscular junctions. SAST colocalized with syntrophin in cerebral vasculature, spermatic acrosomes and neuronal processes. SAST and syntrophin were highly associated with purified microtubules and microtubule-associated proteins, whereas utrophin and dystrophin were only partially associated with microtubules. Our data suggest that MAST205 and SAST link the dystrophin/utrophin network with microtubule filaments via the syntrophins.
Collapse
Affiliation(s)
- C Lumeng
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109-0618, USA
| | | | | | | | | | | |
Collapse
|
987
|
Cattabeni F, Gardoni F, Di Luca M. Pathophysiological implications of the structural organization of the excitatory synapse. Eur J Pharmacol 1999; 375:339-47. [PMID: 10443587 DOI: 10.1016/s0014-2999(99)00299-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The glutamatergic synapse is the key structure in the development of activity-dependent synaptic plasticity in the central nervous system. The analysis of the complex biochemical mechanisms at the basis of the long-term changes in synaptic efficacy have received a tremendous impulse by the observation that the post-synaptic constituents of the synapse can be separated and purified through a simple procedure involving detergent treatment of synaptosomes and differential centrifugation. In this fraction, called post-synaptic density (PSD), the functional interactions of its constituents are preserved. The various subunits of ionotropic glutamate receptors are held in register with the presynaptic active zone through their interaction with linker proteins. N-methyl-D-aspartate (NMDA) subunits NR2A and NR2B, bind to the PSD protein called PSD-95, which in turn binds neuroligins, providing a handle for interacting with neurexin, located in the plasma membrane at the presynaptic active zone. Additional clustering of NMDA receptors is provided through the binding of NRI subunits to the cytoskeletal protein alpha-actinin-2. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and kainate receptors are other important constituents of PSDs and bind to different anchoring proteins. Phosphorylation processes have long been known to modulate NMDA receptor functional activity: the finding that several protein kinases, particularly Ca2+/Calmodulin-dependent protein kinase II and protein tyrosine kinases of the src family, are major constituents of PSDs has allowed to demonstrate that these enzymes are localized in a strategic position of the glutamatergic synapse, so that their activation provides a means for NMDA receptor function regulation upon its activation. The relevance of these mechanisms has been demonstrated in experimental models of pathologies involving deficits in synaptic plasticity, such as in streptozotocin-induced diabetes and in an animal model of prenatal induced ablation of hippocampal neurons. Both animal models display disturbances in long-term potentiation and cognitive deficits, thus providing in vivo models to study pathology related changes in both the structure and the function of the excitatory synapse.
Collapse
Affiliation(s)
- F Cattabeni
- Institute of Pharmacological Sciences, School of Pharmacy, University of Milan, Italy
| | | | | |
Collapse
|
988
|
McGee AW, Bredt DS. Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. J Biol Chem 1999; 274:17431-6. [PMID: 10364172 DOI: 10.1074/jbc.274.25.17431] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Postsynaptic density-95 (PSD-95/SAP-90) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins that assemble protein complexes at synapses and other cell junctions. MAGUKs comprise multiple protein-protein interaction motifs including PDZ, SH3 and guanylate kinase (GK) domains, and these binding sites mediate the scaffolding function of MAGUK proteins. Synaptic binding partners for the PDZ and GK domains of PSD-95 have been identified, but the role of the SH3 domain remains elusive. We now report that the SH3 domain of PSD-95 mediates a specific interaction with the GK domain. The GK domain lacks a poly-proline motif that typically binds to SH3 domains; instead, SH3/GK binding is a bi-domain interaction that requires both intact motifs. Although isolated SH3 and GK domains can bind in trans, experiments with intact PSD-95 molecules indicate that intramolecular SH3/GK binding dominates and prevents intermolecular associations. SH3/GK binding is conserved in the related Drosophila MAGUK protein DLG but is not detectable for Caenorhabditis elegans LIN-2. Many previously identified genetic mutations of MAGUKs in invertebrates occur in the SH3 or GK domains, and all of these mutations disrupt intramolecular SH3/GK binding.
Collapse
Affiliation(s)
- A W McGee
- Department of Physiology and Program in Neuroscience, University of California at San Francisco, San Francisco, California 94143-0444, USA
| | | |
Collapse
|
989
|
Iwasaki T, Hori H, Hayashi Y, Nishino T, Tamura K, Oue S, Iizuka T, Ogura T, Esumi H. Characterization of mouse nNOS2, a natural variant of neuronal nitric-oxide synthase produced in the central nervous system by selective alternative splicing. J Biol Chem 1999; 274:17559-66. [PMID: 10364190 DOI: 10.1074/jbc.274.25.17559] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse neuronal nitric-oxide synthase 2 (nNOS2) is a unique natural variant of constitutive neuronal nitric-oxide synthase (nNOS) specifically expressed in the central nervous system having a 105-amino acid deletion in the heme-binding domain as a result of in-frame mutation by specific alternative splicing. The mouse nNOS2 cDNA gene was heterologously expressed in Escherichia coli, and the resultant product was characterized spectroscopically in detail. Purified recombinant nNOS2 contained heme but showed no L-arginine- and NADPH-dependent citrulline-forming activity in the presence of Ca2+-promoted calmodulin, elicited a sharp electron paramagnetic resonance (EPR) signal at g = 6.0 indicating the presence of a high spin ferriheme as isolated and showed a peak at around 420 nm in the CO difference spectrum, instead of a 443-nm peak detected with the recombinant wild-type nNOS1 enzyme. Thus, although the heme domain of nNOS2 is capable of binding heme, the heme coordination geometry is highly abnormal in that it probably has a proximal non-cysteine thiolate ligand both in the ferric and ferrous states. Moreover, negligible spectral perturbation of the nNOS2 ferriheme was detected upon addition of either L-arginine or imidazole. These provide a possible rational explanation for the inability of nNOS2 to catalyze the cytochrome P450-type monooxygenase reaction.
Collapse
Affiliation(s)
- T Iwasaki
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
990
|
Characterization of MALS/Velis-1, -2, and -3: a family of mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex. J Neurosci 1999. [PMID: 10341223 DOI: 10.1523/jneurosci.19-11-04189.1999] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein assembly at the postsynaptic density (PSD) of neuronal synapses is mediated in part by protein interactions with PSD-95/discs large/zona occludens-1 (PDZ) motifs. Here, we identify MALS-1, -2, -3, a family of small synaptic proteins containing little more than a single PDZ domain. MALS-1, -2, and -3 are mammalian homologs LIN-7, a Caenorhabditis elegans protein essential for vulval development. In contrast to functions for LIN-7 in epithelial cells, MALS-1 and -2 are selectively expressed in specific neuronal populations in brain and are enriched in PSD fractions. In cultured hippocampal neurons, MALS proteins are clustered together with PSD-95 and NMDA type glutamate receptors, consistent with a postsynaptic localization for MALS proteins. Immunoprecipitation and affinity chromatography studies readily identify association of MALS with PSD-95 and an NMDA receptor subunit. The PDZ domain of MALS selectively binds to peptides terminating in E-T/S-R/X-V/I/L, which corresponds to the C terminus of NMDA type 2 receptors and numerous other ion channels at the PSD. This work suggests a role for MALS proteins in regulating recruitment of neurotransmitter receptors to the PSD.
Collapse
|
991
|
Judas M, Sestan N, Kostović I. Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 1999; 45:401-19. [PMID: 10402267 DOI: 10.1002/(sici)1097-0029(19990615)45:6<401::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A subpopulation of cerebral cortical neurons constitutively express nitric oxide synthase (NOS) and, upon demand, produce a novel messenger molecule nitric oxide (NO) with a variety of proposed roles in the developing, adult, and diseased brain. With respect to the intensity of their histochemical (NADPH-diaphorase histochemistry) and immunocytochemical (nNOS and eNOS immunocytochemistry) staining, these nitrinergic neurons are generally divided in type I and type II cells. Type I cells are usually large, intensely stained interneurons, scattered throughout all cortical layers; they frequently co-express GABA, neuropeptide Y, and somatostatin, but rarely contain calcium-binding proteins. Type II cells are small and lightly to moderately stained, about 20-fold more numerous than type I cells, located exclusively in supragranular layers, and found almost exclusively in the primate and human brain. In the developing cerebral cortex, nitrinergic neurons are among the earliest differentiating neurons, mostly because the dominant population of prenatal nitrinergic neurons are specific fetal subplate and Cajal-Retzius cells, which are the earliest generated neurons of the cortical anlage. However, at least in the human brain, a subpopulation of principal (pyramidal) cortical neurons transiently express NOS proteins in a regionally specific manner. In fact, transient overexpression of NOS-activity is a well-documented phenomenon in the developing mammalian cerebral cortex, suggesting that nitric oxide plays a significant role in the establishment and refinement of the cortical synaptic circuitry. Nitrinergic neurons are also present in human fetal basal forebrain and basal ganglia from 15 weeks of gestation onwards, thus being among the first chemically differentiated neurons within these brain regions. Finally, a subpopulation of human dorsal pallidal neurons transiently express NADPH-diaphorase activity during midgestation.
Collapse
Affiliation(s)
- M Judas
- Section of Neuroanatomy and Neuroembryology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3b, 10000 Zagreb, Republic of Croatia.
| | | | | |
Collapse
|
992
|
Montanaro F, Lindenbaum M, Carbonetto S. alpha-Dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability. J Biophys Biochem Cytol 1999; 145:1325-40. [PMID: 10366602 PMCID: PMC2133146 DOI: 10.1083/jcb.145.6.1325] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
alpha-Dystroglycan (alpha-DG) is a laminin-binding protein and member of a glycoprotein complex associated with dystrophin that has been implicated in the etiology of several muscular dystrophies. To study the function of DG, C2 myoblasts were transfected stably with an antisense DG expression construct. Myotubes from two resulting clones (11F and 11E) had at least a 40-50% and 80-90% reduction, respectively, in alpha-DG but normal or near normal levels of alpha-sarcoglycan, integrin beta1 subunit, acetylcholine receptors (AChRs), and muscle-specific kinase (MuSK) when compared with parental C2 cells or three clones (11A, 9B, and 10C) which went through the same transfection and selection procedures but expressed normal levels of alpha-DG. Antisense DG-expressing myoblasts proliferate at the same rate as parental C2 cells and differentiate into myotubes, however, a gradual loss of cells was observed in these cultures. This loss correlates with increased apoptosis as indicated by greater numbers of nuclei with condensed chromatin and more nuclei labeled by the TUNEL method. Moreover, there was no sign of increased membrane permeability to Trypan blue as would be expected with necrosis. Unlike parental C2 myotubes, 11F and 11E myotubes had very little laminin (LN) on their surfaces; LN instead tended to accumulate on the substratum between myotubes. Exogenous LN bound to C2 myotubes and was redistributed into plaques along with alpha-DG on their surfaces but far fewer LN/alpha-DG plaques were seen after LN addition to 11F or 11E myotubes. These results suggest that alpha-DG is a functional LN receptor in situ which is required for deposition of LN on the cell and, further, implicate alpha-DG in the maintenance of myotube viability.
Collapse
Affiliation(s)
- F Montanaro
- Center for Research in Neuroscience, McGill University, Montreal General Hospital Research Institute, Montreal, Quebec H3G 1A4, Canada
| | | | | |
Collapse
|
993
|
Songyang Z. Recognition and regulation of primary-sequence motifs by signaling modular domains. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:359-72. [PMID: 10354704 DOI: 10.1016/s0079-6107(98)00045-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Z Songyang
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| |
Collapse
|
994
|
Edwards SW, Limbird LE. Role for the third intracellular loop in cell surface stabilization of the alpha2A-adrenergic receptor. J Biol Chem 1999; 274:16331-6. [PMID: 10347190 DOI: 10.1074/jbc.274.23.16331] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that alpha2A-adrenergic receptor (alpha2A-AR) retention at the basolateral surface of polarized MDCKII cells involves its third intracellular (3i loop). The present studies examining mutant alpha2A-ARs possessing short deletions of the 3i loop indicate that no single region can completely account for the accelerated surface turnover of the Delta3ialpha2A-AR, suggesting that the entire 3i loop is involved in basolateral retention. Both wild-type and Delta3i loop alpha2A-ARs are extracted from polarized Madin-Darby canine kidney (MDCK) cells with 0.2% Triton X-100 and with a similar concentration/response profile, suggesting that Triton X-100-resistant interactions of the alpha2A-AR with cytoskeletal proteins are not involved in receptor retention on the basolateral surface. The indistinguishable basolateral t(1)/(2) for either the wild-type or nonsense 3i loop alpha2A-AR suggests that the stabilizing properties of the alpha2A-AR 3i loop are not uniquely dependent on a specific sequence of amino acids. The accelerated turnover of Delta3i alpha2A-AR cannot be attributed to alteration in agonist-elicited alpha2A-AR redistribution, because alpha2A-ARs are not down-regulated in response to agonist. Taken together, the present studies show that stabilization of the alpha2A-AR on the basolateral surface of MDCKII cells involves multiple mechanisms, with the third intracellular loop playing a central role in regulating these processes.
Collapse
Affiliation(s)
- S W Edwards
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
995
|
Bassand P, Bernard A, Rafiki A, Gayet D, Khrestchatisky M. Differential interaction of the tSXV motifs of the NR1 and NR2A NMDA receptor subunits with PSD-95 and SAP97. Eur J Neurosci 1999; 11:2031-43. [PMID: 10336672 DOI: 10.1046/j.1460-9568.1999.00611.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The NR1 and NR2 subunits of the N-methyl-D-aspartate (NMDA) receptor are encoded by distinct genes. In the rat brain, four C-terminal variants of the NR1 subunit (NR1-1 to NR1-4) are encoded by a single gene, and are generated by alternative splicing of the C1 and C2 exon cassettes, while four different genes encode the NR2 subunits (NR2 A-D). Functional NMDA receptors result from the heteromultimeric assembly of NR1 variants with distinct NR2 subunits. The NR2B subunit interacts with post-synaptic density protein 95 (PSD-95), SAP97 and members of the membrane-associated guanylate-like kinase (MAGUK) family of proteins. This interaction occurs through the binding of the C-terminal tSXV intracellular motif of the NR2B subunit to the N-terminal PDZ (PSD-95, discs-large, ZO-1) domains of the PSD-95 and SAP97 proteins. Both NR1-3 and NR1-4 also display a consensus C-terminal tSXV motif. Using the two-hybrid genetic system in yeast and site-directed mutagenesis, we compared the binding of the NR2A, NR1-3 and NR1-4 tSXV motifs with the PDZ domains of PSD-95 and SAP97. The main conclusions of the present report are that: (i) while NR2A displays a strong interaction with PSD-95 and SAP97, the NR1-3 and NR1-4 NMDA receptor subunits do not display any interaction despite the presence of tSXV motifs; (ii) the C-terminal tSXV motif of the NR2A subunit is mandatory but not sufficient for efficient interaction with the PSD-95 and SAP97 proteins; (iii) as yet unidentified upstream sequences of the receptor subunits determine whether the tSXV motifs will bind to the PSD-95 and SAP97 PDZ domains; (iv) different tSXV motifs elicit interactions of variable strengths; and (v) residues in positions -3 and -4 modulate the binding affinity of the C-terminal tSXV motifs. Using immunohistochemistry, we also compared the distribution of the PSD-95, NR2A and SAP97 proteins in adult rat brain, and we show that in the cortex, hippocampus and cerebellum, there is evidence for colocalization of these proteins.
Collapse
Affiliation(s)
- P Bassand
- Université René Descartes (Paris V), INSERM U-29, Paris, France
| | | | | | | | | |
Collapse
|
996
|
|
997
|
Abstract
The expression of synapse-associated proteins (SAPs) was monitored throughout postnatal development of the rat retina using specific antibodies and immunocytochemistry. The distribution of chapsin-110/postsynaptic density protein (PSD)-93, SAP90/PSD-95, SAP97 and SAP102 immunoreactivity was characterized. All SAPs were found to be expressed in the inner plexiform layer (IPL) from birth on or soon after birth. With the exception of SAP97, the IPL labelling changed from a diffuse pattern staining the whole developing IPL to the typical adult punctate synaptic staining in the second postnatal week. Staining in the outer retina was first observed at postnatal day 5 (P5) for all proteins at the onset of outer plexiform layer (OPL) development. All SAPs showed a differential cellular and temporal distribution being either exclusively pre- or postsynaptically localized. Except for SAP90/PSD-95, immunoreactivity was also detected in the nerve fibre layer throughout postnatal development. Possible functions of the early expression of SAPs well before differentiation and maturation of glutamatergic ribbon synapses are discussed.
Collapse
Affiliation(s)
- P Koulen
- Max-Planck-Institut für Hirnforschung, Abteilung für Neuroanatomie, Frankfurt am Main, Germany.
| |
Collapse
|
998
|
Postsynaptic density-93 interacts with the delta2 glutamate receptor subunit at parallel fiber synapses. J Neurosci 1999. [PMID: 10234023 DOI: 10.1523/jneurosci.19-10-03926.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glutamate receptor subunit delta2 has a unique distribution at the parallel fiber-Purkinje cell synapse of the cerebellum, which is developmentally regulated such that delta2 occurs at both parallel fiber synapses and climbing fiber synapses early in development but is restricted to parallel fiber synapses in adult animals. To identify proteins that might be involved in the trafficking or docking of delta2 receptors, we screened a yeast two-hybrid library with the cytosolic C terminus of delta2 and isolated a member of the postsynaptic density (PSD)-95 family of proteins, which are known to interact with the extreme C termini of NMDA receptors. We find that delta2 binds specifically to PSD-93, which is enriched in Purkinje cells. In addition, PSD-93 clusters delta2 when they are coexpressed in heterologous cells, and clustering is disrupted by point mutations of delta2 that disrupt the delta2-PSD-93 interaction. Ultrastructural localization of PSD-93 and delta2 shows they are colocalized at parallel fiber synapses; however, PSD-93 also is present at climbing fiber synapses of the adult rat, where delta2 is not found, indicating that the presence of PSD-93 alone is not sufficient for determining the synaptic expression of delta2.
Collapse
|
999
|
Guy PM, Kenny DA, Gill GN. The PDZ domain of the LIM protein enigma binds to beta-tropomyosin. Mol Biol Cell 1999; 10:1973-84. [PMID: 10359609 PMCID: PMC25398 DOI: 10.1091/mbc.10.6.1973] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein alpha-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal beta-TM). The interaction between Enigma and skeletal beta-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal beta-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal beta-TM in transfected cells. The association of Enigma with skeletal beta-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells.
Collapse
Affiliation(s)
- P M Guy
- Department of Medicine, University of California at San Diego, La Jolla, California 92093-0650, USA
| | | | | |
Collapse
|
1000
|
De la Porte S, Morin S, Koenig J. Characteristics of skeletal muscle in mdx mutant mice. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:99-148. [PMID: 10343393 DOI: 10.1016/s0074-7696(08)60158-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We review the extensive research conducted on the mdx mouse since 1987, when demonstration of the absence of dystrophin in mdx muscle led to X-chromosome-linked muscular dystrophy (mdx) being considered as a homolog of Duchenne muscular dystrophy. Certain results are contradictory. We consider most aspects of mdx skeletal muscle: (i) the distribution and roles of dystrophin, utrophin, and associated proteins; (ii) morphological characteristics of the skeletal muscle and hypotheses put forward to explain the regeneration characteristic of the mdx mouse; (iii) special features of the diaphragm; (iv) changes in basic fibroblast growth factor, ion flux, innervation, cytoskeleton, adhesive proteins, mastocytes, and metabolism; and (v) different lines of therapeutic research.
Collapse
Affiliation(s)
- S De la Porte
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Gif sur Yvette, France
| | | | | |
Collapse
|