951
|
Spalinger MR, Atrott K, Baebler K, Schwarzfischer M, Melhem H, Peres DR, Lalazar G, Rogler G, Scharl M, Frey-Wagner I. Administration of the Hyper-immune Bovine Colostrum Extract IMM-124E Ameliorates Experimental Murine Colitis. J Crohns Colitis 2019; 13:785-797. [PMID: 30590526 DOI: 10.1093/ecco-jcc/jjy213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/18/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease [IBD] is accompanied by lesions in the epithelial barrier, which allow translocation of bacterial products from the gut lumen to the host's circulation. IMM-124E is a colostrum-based product containing high levels of anti-E.coli-LPS IgG, and might limit exposure to bacterial endotoxins. Here, we investigated whether IMM-124E can ameliorate intestinal inflammation. METHODS Acute colitis was induced in WT C57Bl/6J mice by administration of 2.5% dextran sodium sulphate [DSS] for 7 days. T cell transfer colitis was induced via transfer of 0.5 x 106 naïve T cells into RAG2-/- C57Bl/6J mice. IMM-124E was administered daily by oral gavage, either preventively or therapeutically. RESULTS Treatment with IMM-124E significantly ameliorated colitis in acute DSS colitis and in T cell transfer colitis. Maximum anti-inflammatory effects were detected at an IMM-124E concentration of 100 mg/kg body weight, whereas 25 mg/kg and 500 mg/kg were less effective. Histology revealed reduced levels of infiltrating immune cells and less pronounced mucosal damage. Flow cytometry revealed reduced numbers of effector T helper cells in the intestine, whereas levels of regulatory T cells were enhanced. IMM-124E treatment reduced the DSS-induced increase of serum levels of lipopolysaccharide [LPS]-binding protein, indicating reduced systemic LPS exposure. CONCLUSIONS Our results demonstrate that oral treatment with IMM-124E significantly reduces intestinal inflammation, via decreasing the accumulation of pathogenic T cells and concomitantly increasing the induction of regulatory T cells. Our study confirms the therapeutic efficacy of IMM-124E in acute colitis and suggests that administration of IMM-124E might represent a novel therapeutic strategy to induce or maintain remission in chronic colitis.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Katharina Baebler
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Gadi Lalazar
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY, USA
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Division of Gastroenterology and Hepatology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
952
|
Lactobacillus casei protects dextran sodium sulfate- or rapamycin-induced colonic inflammation in the mouse. Eur J Nutr 2019; 59:1443-1451. [PMID: 31123864 DOI: 10.1007/s00394-019-02001-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/16/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Human colon inflammation is associated with changes in the diverse and abundant microorganisms in the gut. As important beneficial microbes, Lactobacillus contributes to the immune responses and intestinal integrity that may alleviate experimental colitis. However, the mechanisms underlying probiotic benefits have not been fully elucidated. METHODS Dextran sodium sulfate or rapamycin-challenged mice were used as model for colon inflammation evaluation. Histological scores of the colon, levels of colonic myeloperoxidase, serum tumor necrosis factor-α and interleukin-6 were assessed as inflammatory markers and the gut microbiota profiles of each mouse were studied. RESULTS We found that Lactobacillus casei Zhang (LCZ) can prevent experimental colitis and rapamycin-induced inflammation in intestinal mucosa by improving histological scores, decreasing host inflammatory cytokines, modulating gut-dominated bacteria, enhancing cystic fibrosis transmembrane conductance regulator (CFTR) expression and downregulating the expression of p-STAT3 (phosphorylated signal transducer and activator of transcription 3) or Akt/NF-κB (AKT serine/threonine kinase and nuclear factor kappa B). CONCLUSION Our results suggest that LCZ may provide effective prevention against colitis.
Collapse
|
953
|
Autotaxin-Lysophosphatidic Acid Axis Blockade Improves Inflammation by Regulating Th17 Cell Differentiation in DSS-Induced Chronic Colitis Mice. Inflammation 2019; 42:1530-1541. [DOI: 10.1007/s10753-019-01015-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
954
|
Li H, Fan C, Feng C, Wu Y, Lu H, He P, Yang X, Zhu F, Qi Q, Gao Y, Zuo J, Tang W. Inhibition of phosphodiesterase-4 attenuates murine ulcerative colitis through interference with mucosal immunity. Br J Pharmacol 2019; 176:2209-2226. [PMID: 30883697 DOI: 10.1111/bph.14667] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ulcerative colitis (UC) is an aetiologically refractory inflammatory disease, accompanied by dysfunction of the epithelial barrier and intestinal inflammation. Phosphodiesterase-4 (PDE4) serves as an intracellular proinflammatory enzyme, hydrolyzing and inactivating cAMP. Though PDE4 inhibitors have been approved for pulmonary and dermatological diseases, the role of PDE4 inhibition in modulating mucosal immunity in the intestine remains ill-defined. This study was designed to explore whether PDE4 inhibition by apremilast exerts protective effects in dextran sulfate sodium-induced murine UC. EXPERIMENTAL APPROACH Intestinal inflammation and disease severity were evaluated by morphological, histopathological and biochemical assays, and in vivo imaging. Expression of inflammatory mediators, components of PDE4-mediated pathways in colon and macrophages were determined using quantitative real-time PCR, ELISA, Luminex assay, immunostaining, or western blotting, along with siRNA knockdown. Immune cells in mesenteric lymph nodes and colonic lamina propria were analysed by flow cytometry. KEY RESULTS Apremilast attenuated clinical features of UC, suppressing microscopic colon damage, production of inflammatory mediators, oxidative stresses, and fibrosis. Apremilast also promoted epithelial barrier function and inhibited infiltration of immune cells into inflamed tissues, through decreasing expression of chemokines and chemokine receptors. Furthermore, in UC, PDE4A, PDE4B, and PDE4D were highly expressed in colon. Apremilast not only inhibited PDE4 isoform expression but also activated PKA-CREB and Epac-Rap1 pathways and subsequently suppressed MAPK, NF-κB, PI3K-mTOR, and JAK-STAT-SOCS3 activation. CONCLUSION AND IMPLICATIONS Inhibition of PDE4 by apremilast protected against UC, by interfering with mucosal immunity. These findings represent a promising strategy for regulating intestinal inflammation.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Fan
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huimin Lu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Peilan He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Qi
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanzhuo Gao
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Zuo
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
955
|
Wang L, Tang H, Wang C, Hu Y, Wang S, Shen L. Aquaporin 4 deficiency alleviates experimental colitis in mice. FASEB J 2019; 33:8935-8944. [PMID: 31034776 DOI: 10.1096/fj.201802769rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aquaporin (AQP) 4 is expressed in the basolateral membrane of colonic epithelial cells, and the purpose of this study was to explore the mechanistic role of AQP4 in experimental colitis. Experimental colitis was induced in AQP4 knockout (AQP4-/-) CD-1 mice and AQP4 wild-type (AQP4wt) mice by oral administration of dextran sulfate sodium (DSS). Experimental colitis was clinically established. Compared with AQP4wt mice, AQP4-/- mice showed increased tolerance to DSS-induced experimental colitis, including lesser degree of weight loss, diarrhea and bleeding, lower disease activity index scores, longer colon lengths, and lesser histologic scores. DSS-treated AQP4-/- mice had lower serum levels of IL-6 and TNF, higher IL-10 level, and lesser inflammatory cell infiltration. DSS-treated AQP4-/- mice also had lower immunostaining of NF-κB p65 as well as nuclear levels of p65 and phosphorylated p65. Sequencing of 16S rRNA indicated that DSS-treated AQP4-/- mice maintained intestinal microbial diversity and had higher Firmicutes/Bacteroidetes ratios and greater relative abundance of Erysipelotrichaceae species. These results suggested for the first time that AQP4 deficiency alleviates experimental colitis in mice. Our study helps to understand the pathogenesis of inflammatory bowel diseases, and blocking AQP4 may represent a novel therapeutic approach for ulcerative colitis.-Wang, L., Tang, H., Wang, C., Hu, Y., Wang, S., Shen, L. Aquaporin 4 deficiency alleviates experimental colitis in mice.
Collapse
Affiliation(s)
- Liuhua Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
| | - Hua Tang
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Wang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuhuan Hu
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shoulin Wang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
956
|
Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int J Mol Sci 2019; 20:ijms20081887. [PMID: 30995806 PMCID: PMC6515381 DOI: 10.3390/ijms20081887] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium constitutes an indispensable single-layered barrier to protect the body from invading pathogens, antigens or toxins. At the same time, beneficial nutrients and water have to be absorbed by the epithelium. To prevent development of intestinal inflammation or tumour formation, intestinal homeostasis has to be tightly controlled and therefore a strict balance between cell death and proliferation has to be maintained. The proinflammatory cytokine tumour necrosis factor alpha (TNFα) was shown to play a striking role for the regulation of this balance in the gut. Depending on the cellular conditions, on the one hand TNFα is able to mediate cell survival by activating NFκB signalling. On the other hand, TNFα might trigger cell death, in particular caspase-dependent apoptosis but also caspase-independent programmed necrosis. By regulating these cell death and survival mechanisms, TNFα exerts a variety of beneficial functions in the intestine. However, TNFα signalling is also supposed to play a critical role for the pathogenesis of inflammatory bowel disease (IBD), infectious diseases, intestinal wound healing and tumour formation. Here we review the literature about the physiological and pathophysiological role of TNFα signalling for the maintenance of intestinal homeostasis and the benefits and difficulties of anti-TNFα treatment during IBD.
Collapse
|
957
|
Tan B, Luo W, Shen Z, Xiao M, Wu S, Meng X, Wu X, Yang Z, Tian L, Wang X. Roseburia intestinalis inhibits oncostatin M and maintains tight junction integrity in a murine model of acute experimental colitis. Scand J Gastroenterol 2019; 54:432-440. [PMID: 30946611 DOI: 10.1080/00365521.2019.1595708] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Levels of oncostatin M (OSM) and the composition of gut microbiota predict responses to anti-TNF agents used for IBD therapy. Here, the aim was to investigate the effects of Roseburia intestinalis, a gut microbiota, on OSM and on intestinal barrier in colitis. Methods: In the murine model of 3% dextran sulfate sodium (DSS)-induced colitis, we tested disease activity index (DAI), colon length, histological score and expression of tight junction (TJ) proteins (ZO-1, occludin and claudin-1), OSM, TNF-α and TLR5. In addition, a cellular model was used to examine the role of R. intestinalis during secretion of OSM by lipopolysaccharide (LPS)-induced bone marrow-derived macrophages (BMDMs) isolated from wild-type (WT) and TLR5 knockout (TLR5 KO) mice. Furthermore, we evaluated the impact of OSM on expressions of TJ proteins by Caco-2 cells. Results: R. intestinalis in DSS-induced colitis decreased DAI score (p < .001), colon length shortening (6.46 ± 0.36 cm vs 5.65 ± 0.47 cm, p = .022), histological score (2.667 ± 1.15 vs 5.33 ± 1.14, p = .018) and increased expression of TJ proteins (p < .05). In addition, R. intestinalis reduced expression of OSM (p < .05) and TNF-α (p < .05), while increasing expression of TLR5 (p < .05). Furthermore, R. intestinalis reduced secretion of OSM (p < .05) by LPS-induced BMDMs isolated from WT and TLR5 KO mice. Moreover, OSM downregulated expression of TJ proteins (p < .05) by Caco-2 cells in a concentration-dependent manner. Conclusions: These results indicate that R. intestinalis attenuates inflammation in IBD by decreasing secretion of OSM and by promoting intestinal barrier function. Taken together, the data provide insight into the role of the gut microbiota in patients with IBD who are resistant to anti-TNF therapy.
Collapse
Affiliation(s)
- Bei Tan
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Weiwei Luo
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Zhaohua Shen
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Mengwei Xiao
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Shuai Wu
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Xiangrui Meng
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Xing Wu
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Zhenyu Yang
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Li Tian
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| | - Xiaoyan Wang
- a Department of Gastroenterology , Third Xiangya Hospital, Central South University , Changsha , China.,b Hunan Key Laboratory of Nonresolving Inflammation and Cancer , Changsha , China
| |
Collapse
|
958
|
Liu R, Moriggl R, Zhang D, Li H, Karns R, Ruan HB, Niu H, Mayhew C, Watson C, Bangar H, Cha SW, Haslam D, Zhang T, Gilbert S, Li N, Helmrath M, Wells J, Denson L, Han X. Constitutive STAT5 activation regulates Paneth and Paneth-like cells to control Clostridium difficile colitis. Life Sci Alliance 2019; 2:e201900296. [PMID: 30948494 PMCID: PMC6451325 DOI: 10.26508/lsa.201900296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile impairs Paneth cells, driving intestinal inflammation that exaggerates colitis. Besides secreting bactericidal products to restrain C. difficile, Paneth cells act as guardians that constitute a niche for intestinal epithelial stem cell (IESC) regeneration. However, how IESCs are sustained to specify Paneth-like cells as their niche remains unclear. Cytokine-JAK-STATs are required for IESC regeneration. We investigated how constitutive STAT5 activation (Ca-pYSTAT5) restricts IESC differentiation towards niche cells to restrain C. difficile infection. We generated inducible transgenic mice and organoids to determine the effects of Ca-pYSTAT5-induced IESC lineages on C. difficile colitis. We found that STAT5 absence reduced Paneth cells and predisposed mice to C. difficile ileocolitis. In contrast, Ca-pYSTAT5 enhanced Paneth cell lineage tracing and restricted Lgr5 IESC differentiation towards pYSTAT5+Lgr5-CD24+Lyso+ or cKit+ niche cells, which imprinted Lgr5hiKi67+ IESCs. Mechanistically, pYSTAT5 activated Wnt/β-catenin signaling to determine Paneth cell fate. In conclusion, Ca-pYSTAT5 gradients control niche differentiation. Lack of pYSTAT5 reduces the niche cells to sustain IESC regeneration and induces C. difficile ileocolitis. STAT5 may be a transcription factor that regulates Paneth cells to maintain niche regeneration.
Collapse
Affiliation(s)
- Ruixue Liu
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Dongsheng Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Haifeng Li
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MI, USA
| | - Haitao Niu
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | | | - Carey Watson
- Division of Pediatric Surgery, CCHMC, Cincinnati, OH, USA
| | - Hansraj Bangar
- Division of Infectious Diseases, CCHMC, Cincinnati, OH, USA
| | - Sang-Wook Cha
- Division of Developmental Biology, CCHMC, Cincinnati, OH, USA
| | - David Haslam
- Division of Infectious Diseases, CCHMC, Cincinnati, OH, USA
| | - Tongli Zhang
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, OH, USA
| | - Shila Gilbert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Na Li
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | | | - James Wells
- Division of Developmental Biology, CCHMC, Cincinnati, OH, USA
- Division of Endocrinology, CCHMC, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, CCHMC, Cincinnati, OH, USA
| | - Lee Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy Institute of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
959
|
Guo K, Ren J, Gu G, Wang G, Gong W, Wu X, Ren H, Hong Z, Li J. Hesperidin Protects Against Intestinal Inflammation by Restoring Intestinal Barrier Function and Up-Regulating Treg Cells. Mol Nutr Food Res 2019; 63:e1800975. [PMID: 30817082 DOI: 10.1002/mnfr.201800975] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/20/2019] [Indexed: 12/19/2022]
Abstract
SCOPE Hesperidin is an important natural phenolic compound and is considered beneficial to health. The purpose of this study is to investigate the protective effects of hesperidin on DSS-induced colitis in mice and Caco-2 cells. METHODS The DSS-induced colitis mice are assigned to 10, 20, and 40 mg kg-g hesperidin diets after DSS treatment. For in vitro experiments, Caco-2 cells are treated with TNF-α/ IFN-γ for 48 h without or with hesperidin. RESULTS Hesperidin supplementation ameliorates DSS-induced colitis. Specifically, hesperidin ameliorates intestinal inflammation through decreasing MDA activity and enhancing SOD and GSH activities. Hesperidin also obviously upregulates Nrf2 antioxidant pathway and increases the protein expression of HO-1 and NQO1. Additionally, hesperidin significantly reduces the levels of inflammatory factors and increases the levels of anti-inflammatory factors in the colon tissues. Further analysis shows that hesperidin can improve the expression of tight junction proteins and intestinal permeability, as well as increases the Treg population. In Caco-2 cells, it is shown that hesperidin prevents TNF-α/IFN-γ-induced reduction in TEER and morphological disruption. Moreover, hesperidin also decreases the epithelial permeability and suppresses proinflammatory responses. CONCLUSION Hesperidin can protect against intestinal inflammation via enhanced Nrf2 antioxidant pathway, increases the Treg population, and restores intestinal barrier function.
Collapse
Affiliation(s)
- Kun Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jianan Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Guosheng Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Gefei Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Wenbin Gong
- Department of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210002, China
| | - Xiuwen Wu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Huajian Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Zhiwu Hong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| |
Collapse
|
960
|
De Vries LCS, Duarte JM, De Krijger M, Welting O, Van Hamersveld PHP, Van Leeuwen-Hilbers FWM, Moerland PD, Jongejan A, D'Haens GR, De Jonge WJ, Wildenberg ME. A JAK1 Selective Kinase Inhibitor and Tofacitinib Affect Macrophage Activation and Function. Inflamm Bowel Dis 2019; 25:647-660. [PMID: 30668755 DOI: 10.1093/ibd/izy364] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Janus kinases (JAKs) mediate cytokine signaling involved in inflammatory bowel disease. The pan-JAK inhibitor tofacitinib has shown efficacy in the treatment of ulcerative colitis. However, concerns regarding adverse events due to their wide spectrum inhibition fueled efforts to develop selective JAK inhibitors. Given the crucial role of myeloid cells in intestinal immune homeostasis, we evaluated the effect of pan-JAK and selective JAK inhibitors on pro- and anti-inflammatory macrophage polarization and function (M1/M2) and in experimental colitis. METHODS Murine bone marrow-derived macrophages or human monocytes were treated using JAK1 and JAK3 selective inhibitors (JAK1i;JAK3i) and tofacitinib and were evaluated by transcriptional, functional, and metabolic analyses. In vivo, oral administration of JAK1i and tofacitinib (10 or 30 mg/kg) was tested in both acute and acute rescue dextran sodium sulfate (DSS) colitis. RESULTS Both tofacitinib and JAK1i but not JAK3i effectively inhibited STAT1 phosphorylation and interferon gamma-induced transcripts in M1 polarized macrophages. Strikingly, transcriptional profiling suggested a switch from M1 to M2 type macrophages, which was supported by increased protein expression of M2-associated markers. In addition, both inhibitors enhanced oxidative phosphorylation rates. In vivo, JAK1i and tofacitinib did not protect mice from acute DSS-induced colitis but ameliorated recovery from weight loss and disease activity during acute rescue DSS-induced colitis at the highest dose. CONCLUSION JAK1i and tofacitinib but not JAK3i induce phenotypical and functional characteristics of anti-inflammatory macrophages, suggesting JAK1 as the main effector pathway for tofacitinib in these cells. In vivo, JAK1i and tofacitinib modestly affect acute rescue DSS-induced colitis.
Collapse
Affiliation(s)
- L C S De Vries
- Tytgat Institute for Liver and Intestinal Research, AMC, Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, AMC, Amsterdam, the Netherlands
| | - J M Duarte
- Tytgat Institute for Liver and Intestinal Research, AMC, Amsterdam, the Netherlands
| | - M De Krijger
- Tytgat Institute for Liver and Intestinal Research, AMC, Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, AMC, Amsterdam, the Netherlands
| | - O Welting
- Tytgat Institute for Liver and Intestinal Research, AMC, Amsterdam, the Netherlands
| | - P H P Van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, AMC, Amsterdam, the Netherlands
| | | | - P D Moerland
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, AMC, Amsterdam, the Netherlands
| | - A Jongejan
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, AMC, Amsterdam, the Netherlands
| | - G R D'Haens
- Department of Gastroenterology and Hepatology, AMC, Amsterdam, the Netherlands
| | - W J De Jonge
- Tytgat Institute for Liver and Intestinal Research, AMC, Amsterdam, the Netherlands
| | - M E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, AMC, Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, AMC, Amsterdam, the Netherlands
| |
Collapse
|
961
|
Transcriptional factor ATF3 protects against colitis by regulating follicular helper T cells in Peyer's patches. Proc Natl Acad Sci U S A 2019; 116:6286-6291. [PMID: 30862736 DOI: 10.1073/pnas.1818164116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Disruption of mucosal immunity plays a critical role in the pathogenesis of inflammatory bowel disease, yet its mechanism remains not fully elucidated. Here, we found that activating transcription factor 3 (ATF3) protects against colitis by regulating follicular helper T (TFH) cells in the gut. The expression of ATF3 in CD4+ T cells was negatively correlated with the severity of ulcerative colitis in clinical patients. Mice with ATF3 deficiency in CD4+ T cells (CD4 cre Atf3 fl/fl ) were much more susceptible to dextran sulfate sodium-induced colitis. The frequencies of TFH cells, not other T cell subsets, were dramatically decreased in Peyer's patches from CD4 cre Atf3 fl/fl mice compared with Atf3 fl/fl littermate controls. The defective TFH cells significantly diminished germinal center formation and IgA production in the gut. Importantly, adoptive transfer of TFH or IgA+ B cells caused significant remission of colitis in CD4 cre Atf3 fl/fl mice, indicating the TFH-IgA axis mediated the effect of ATF3 on gut homeostasis. Mechanistically, B cell lymphoma 6 was identified as a direct transcriptional target of ATF3 in CD4+ T cells. In summary, we demonstrated ATF3 as a regulator of TFH cells in the gut, which may represent a potential immunotherapeutic target in colitis.
Collapse
|
962
|
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol 2019; 10:277. [PMID: 30915065 PMCID: PMC6421268 DOI: 10.3389/fimmu.2019.00277] [Citation(s) in RCA: 2107] [Impact Index Per Article: 351.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD), collectively known as Inflammatory Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic, microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly considered to be causatively related to IBD and is strongly affected by components of a Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs) are typically reduced in mucosa and feces of patients with IBD, as compared to healthy individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites in maintaining intestinal homeostasis. Several studies have indeed shown that fecal SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial cells and are known to strengthen the gut barrier function. Recent findings, however, show that SCFAs, and in particular butyrate, also have important immunomodulatory functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and SMCT1 to promote cellular metabolism. Moreover, SCFAs may signal through cell surface G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate signaling cascades that control immune functions. Transgenic mouse models support the key role of these GPCRs in controlling intestinal inflammation. Here, we present an overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing bacteria through pre- or probiotic approaches.
Collapse
Affiliation(s)
- Daniela Parada Venegas
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marjorie K De la Fuente
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Julieta González
- Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Rodrigo Quera
- Inflammatory Bowel Diseases Program, Department of Gastroenterology, Clínica Las Condes, Santiago, Chile
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
963
|
Dendritic cells treated by Trichinella spiralis muscle larval excretory/secretory products alleviate TNBS-induced colitis in mice. Int Immunopharmacol 2019; 70:378-386. [PMID: 30852293 DOI: 10.1016/j.intimp.2019.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Therapeutic potential of helminth have been shown to have a protective effect on immune-mediated diseases such as Crohn's disease (CD), which is associated with increased production of T helper cell type 1. However, helminth therapy is unacceptable to patients due to side-effects and the fear of parasites. As helminths regulate the cellular immune responses through innate cells such as dendritic cells (DCs), cellular immunotherapy has been considered a therapeutic option to treat CD. METHODS Bone marrow-dendritic cells were generated, enriched and treated with Trichinella spiralis muscle larval excretory/secretory products (Ts-MLES). DCs maturation was measured by flow cytometry and cytokine production of DCs were measured by ELISA. Colitis was generated by intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) solution. For adoptive transfer, Ts-MLES treated-DCs injected intravenously 24 h prior to TNBS challenge. Disease activity index (DAI) including weight loss, diarrhea, and bloody stool were measured. Colon segments were stained with hematoxylin and eosin (H.E.) and periodic acid schiff (PAS) staining for histological damage scoring. The relative mRNA expression of cytokines in colon was analyzed by RT-PCR. Cytokine production in colon was measured by ELISA. Splenocytes were separated and cytokine profiles including Th1 (IFN-γ), Th2 (IL-4, IL-13), and Treg subsets (IL-10, TGF-β) were analyzed by flow cytometry. RESULTS Ts-MLES regulated the maturation and cytokine production of DCs. Ts-MLES -DC ameliorated the severity of the TNBS-induced colitis. In the colon and the spleen, Ts-MLES-DC decreased IFN-γ (Th1) significantly and increased Th2 (IL-4, IL-13)- and Treg (IL-10, TGF-β)- related cytokines. CONCLUSIONS Ts-MLES-DC ameliorated the severity of the TNBS-induced colitis through decreasing IFN-γ. Ts-MLES-DC skewed the Th1-mediated response toward the Th2 type and regulatory T cell response.
Collapse
|
964
|
Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, Enyati N, Pasia G, Maesincee D, Ocon V, Abdulridha M, Longo VD. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep 2019; 26:2704-2719.e6. [PMID: 30840892 PMCID: PMC6528490 DOI: 10.1016/j.celrep.2019.02.019] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary interventions are potentially effective therapies for inflammatory bowel diseases (IBDs). We tested the effect of 4-day fasting-mimicking diet (FMD) cycles on a chronic dextran sodium sulfate (DSS)-induced murine model resulting in symptoms and pathology associated with IBD. These FMD cycles reduced intestinal inflammation, increased stem cell number, stimulated protective gut microbiota, and reversed intestinal pathology caused by DSS, whereas water-only fasting increased regenerative and reduced inflammatory markers without reversing pathology. Transplants of Lactobacillus or fecal microbiota from DSS- and FMD-treated mice reversed DSS-induced colon shortening, reduced inflammation, and increased colonic stem cells. In a clinical trial, three FMD cycles reduced markers associated with systemic inflammation. The effect of FMD cycles on microbiota composition, immune cell profile, intestinal stem cell levels and the reversal of pathology associated with IBD in mice, and the anti-inflammatory effects demonstrated in a clinical trial show promise for FMD cycles to ameliorate IBD-associated inflammation in humans.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Inyoung Choi
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Min Wei
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Gerardo Navarrete
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Nobel Enyati
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA
| | - Gab Pasia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Daral Maesincee
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Vanessa Ocon
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Maya Abdulridha
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano 20139, Italy.
| |
Collapse
|
965
|
Zundler S, Becker E, Spocinska M, Slawik M, Parga-Vidal L, Stark R, Wiendl M, Atreya R, Rath T, Leppkes M, Hildner K, López-Posadas R, Lukassen S, Ekici AB, Neufert C, Atreya I, van Gisbergen KPJM, Neurath MF. Hobit- and Blimp-1-driven CD4 + tissue-resident memory T cells control chronic intestinal inflammation. Nat Immunol 2019; 20:288-300. [PMID: 30692620 DOI: 10.1038/s41590-018-0298-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
Abstract
Although tissue-resident memory T cells (TRM cells) have been shown to regulate host protection in infectious disorders, their function in inflammatory bowel disease (IBD) remains to be investigated. Here we characterized TRM cells in human IBD and in experimental models of intestinal inflammation. Pro-inflammatory TRM cells accumulated in the mucosa of patients with IBD, and the presence of CD4+CD69+CD103+ TRM cells was predictive of the development of flares. In vivo, functional impairment of TRM cells in mice with double knockout of the TRM-cell-associated transcription factors Hobit and Blimp-1 attenuated disease in several models of colitis, due to impaired cross-talk between the adaptive and innate immune system. Finally, depletion of TRM cells led to a suppression of colitis activity. Together, our data demonstrate a central role for TRM cells in the pathogenesis of chronic intestinal inflammation and suggest that these cells could be targets for future therapeutic approaches in IBD.
Collapse
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
| | - Emily Becker
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Marta Spocinska
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Monique Slawik
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
| | - Maximilian Wiendl
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sören Lukassen
- Institute of Human Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, The University of Amsterdam, Amsterdam, Netherlands
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research and Translational Research Center, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
966
|
The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol 2019; 12:468-478. [PMID: 30542111 DOI: 10.1038/s41385-018-0119-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic inflammatory conditions of the intestinal tract. IBD are believed to result from an inappropriate immune response against the intestinal flora in genetically predisposed patients. The precise etiology of these diseases is not fully understood, therefore treatments rely on the dampening of symptoms, essentially inflammation, rather than on the cure of the disease. Despite the availability of biologics, such as anti-TNF antibodies, some patients remain in therapeutic failure and new treatments are thus needed. The multiligand receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor implicated in inflammatory reactions and immune system activation. Here, we investigated the role of RAGE in intestinal inflammation and its potential as a therapeutic target in IBD. We showed that RAGE was upregulated in inflamed tissues from IBD patients compared to controls. Rage-/- mice were less susceptible to intestinal and colonic inflammation development than WT mice. WT mice treated with the RAGE-specific inhibitor FPS-ZM1 experienced less severe enteritis and colitis. We demonstrated that RAGE could induce intestinal inflammation by promoting oxidative stress and endothelial activation which were diminished by FPS-ZM1 treatment. Our results revealed the RAGE signaling pathway as a promising therapeutic target for IBD patients.
Collapse
|
967
|
Abstract
NLRP3 inflammasome can be widely found in epithelial cells and immune cells. The NOD-like receptors (NLRs) family member NLRP3 contains a central nucleotide-binding and oligomerization (NACHT) domain which facilitates self-oligomerization and has ATPase activity. The C-terminal conserves a leucine-rich repeats (LRRs) domain which can modulate NLRP3 activity and sense endogenous alarmins and microbial ligands. In contrast, the N-terminal pyrin domain (PYD) can account for homotypic interactions with the adaptor protein-ASC of NLRP3 inflammasome. These characters enable it function in innate immunity. Its downstream effector proteins include caspase-1 and IL-1β etc. which exhibit protective or detrimental roles in mucosal immunity in different studies. Here, we comprehensively review the current literature regarding the physiology of NLRP3 inflammasome and its potential roles in the pathogenesis of IBD. We also discuss about the complex interactions among the NLRP3 inflammasome, mucosal immune response, and gut homeostasis as found in experimental models and IBD patients.
Collapse
Affiliation(s)
- Yu Zhen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- The Centre of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- The Centre of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
968
|
Zhang YS, Xin DE, Wang Z, Song X, Sun Y, Zou QC, Yue J, Zhang C, Zhang JM, Liu Z, Zhang X, Zhao TC, Su B, Chin YE. STAT4 activation by leukemia inhibitory factor confers a therapeutic effect on intestinal inflammation. EMBO J 2019; 38:embj.201899595. [PMID: 30770344 DOI: 10.15252/embj.201899595] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
T helper 17 (Th17)-cell differentiation triggered by interleukin-6 (IL-6) via STAT3 activation promotes inflammation in inflammatory bowel disease (IBD) patients. However, leukemia inhibitory factor (LIF), an IL-6 family cytokine, restricts inflammation by blocking Th17-cell differentiation via an unknown mechanism. Here, we report that microbiota dysregulation promotes LIF secretion by intestinal epithelial cells (IECs) in a mouse colitis model. LIF greatly activates STAT4 phosphorylation on multiple SPXX elements within the C-terminal transcription regulation domain. STAT4 and STAT3 act reciprocally on both canonical cis-inducible elements (SIEs) and noncanonical "AGG" elements at different loci. In lamina propria lymphocytes (LPLs), STAT4 activation by LIF blocks STAT3-dependent Il17a/Il17f promoter activation, whereas in IECs, LIF bypasses the extraordinarily low level of STAT4 to induce YAP gene expression via STAT3 activation. In addition, we found that the administration of LIF is sufficient to restore microbiome homeostasis. Thus, LIF effectively inhibits Th17 accumulation and promotes repair of damaged intestinal epithelium in inflamed colon, serves as a potential therapy for IBD.
Collapse
Affiliation(s)
- Yanan S Zhang
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China.,Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dazhuan E Xin
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhizhang Wang
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Yanyun Sun
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Quanli C Zou
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jichen Yue
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Chenxi Zhang
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junxun M Zhang
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Liu
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xiaoren Zhang
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Boston University, Providence, RI, USA
| | - Bing Su
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu, China .,Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
969
|
ILC3-derived OX40L is essential for homeostasis of intestinal Tregs in immunodeficient mice. Cell Mol Immunol 2019; 17:163-177. [PMID: 30760919 DOI: 10.1038/s41423-019-0200-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
OX40L is one of the co-stimulatory molecules that can be expressed by splenic lymphoid tissue inducer (Lti) cells, a subset of group 3 innate lymphoid cells (ILC3s). OX40L expression in subsets of intestinal ILC3s and the molecular regulation of OX40L expression in ILC3s are unknown. Here, we showed intestinal ILC3s marked as an OX40Lhigh population among all the intestinal leukocytes and were the dominant source of OX40L in Rag1-/- mice. All ILC3 subsets expressed OX40L, and NCR-ILC3s were the most abundant source of OX40L. The expression of OX40L in ILC3s could be upregulated during inflammation. In addition to tumor necrosis factor (TNF)-like cytokine 1A (TL1A), which has been known as a trigger for OX40L, we found that Poly (I:C) representing viral stimulus promoted OX40L expression in ILC3s via a cell-autonomous manner. Furthermore, we demonstrated that IL-7-STAT5 signaling sustained OX40L expression by ILC3s. Intestinal regulatory T cells (Tregs), most of which expressed OX40, had defective expansion in chimeric mice, in which ILC3s were specifically deficient for OX40L expression. Consistently, co-localization of Tregs and ILC3s was found in the cryptopatches of the intestine, which suggests the close interaction between ILC3s and Tregs. Our study has unveiled the crosstalk between Tregs and ILC3s in mucosal tissues through OX40-OX40L signaling, which is crucial for the homeostasis of intestinal Tregs.
Collapse
|
970
|
Dou D, Chen L, Di H, Song Z, Li S, Bu X, Dai Q, Wang S, Li JX, Zhu X, Jing H. Vasopressin augments TNBS-induced colitis through enteric neuronal V 1a receptor-mediated COX-2-dependent prostaglandin release from mast cells in mice. Neurogastroenterol Motil 2019; 31:e13493. [PMID: 30334342 DOI: 10.1111/nmo.13493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/04/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a functional disorder with chronic and relapsing clinical features. Vasopressin (VP) is a hormone responsible for water and stress homeostasis and also regulates gastrointestinal inflammation and motility. We explored whether VP was related to IBD pathogenesis and its possible pathway. METHODS Colitis was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) in mice. The disease activity and colonic damage were evaluated through a scoring system. Locations of the V1a receptor were revealed by immunochemistry method in colon. Ussing chamber technique was performed for the electrophysiological characterization by using rat ileum. The (Arg8 )-Vasopressin (AVP)-evoked short-circuit current (Isc) was recorded in the presence of conivaptan (V1a and V2 receptor antagonist), tolvaptan (V1b receptor antagonist), tetrodotoxin (TTX), atropine, cyclooxygenase (COX) inhibitors (indomethacin, nonspecific COX antagonist; SC560, COX-1 antagonist; NS560, COX-2 antagonist), and a stabilizer of mast cell (cromolyn sodium), respectively. KEY RESULTS TNBS resulted in the obvious loss of body weight and tissue damages in mice. AVP significantly aggravated the TNBS-induced colitis, which was attenuated by conivaptan but not tolvaptan. V1a receptors were found immunopositive in neurons among the enteric nervous system. AVP evoked a pulsatile response in Isc. Its amplitude, frequency, and cycle duration were around 8-15 µA/cm2 , 10-11 mHz, and 1.5 minutes, respectively. Notably, the AVP-evoked change in Isc was abolished by TTX, atropine, conivaptan, indomethacin, NS560, and cromolyn sodium, respectively. CONCLUSIONS AND INFERENCES VP-V1a receptor played the proinflammatory role in TNBS-induced colitis by promoting COX-2-dependent prostaglandin release from mucosal mast cells, which was mediated by the cholinergic pathway.
Collapse
Affiliation(s)
- Dandan Dou
- Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lixin Chen
- School of Medicine, Shandong University, Jinan, China
| | - Hong Di
- School of Medicine, Shandong University, Jinan, China
| | - Zhuoran Song
- School of Medicine, Shandong University, Jinan, China
| | - Shirui Li
- School of Medicine, Shandong University, Jinan, China
| | - Xinjie Bu
- School of Medicine, Shandong University, Jinan, China
| | - Qing Dai
- School of Medicine, Shandong University, Jinan, China
| | - Shuai Wang
- School of Medicine, Shandong University, Jinan, China
| | - Jing Xin Li
- Department of Physiology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xiaolong Zhu
- Department of Cardiac Surgery Cardiac, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
971
|
Ling K, Wu H, Neish AS, Champion JA. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J Control Release 2019; 295:174-186. [DOI: 10.1016/j.jconrel.2018.12.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023]
|
972
|
Xu X, An H, Zhang D, Tao H, Dou Y, Li X, Huang J, Zhang J. A self-illuminating nanoparticle for inflammation imaging and cancer therapy. SCIENCE ADVANCES 2019; 5:eaat2953. [PMID: 30662940 PMCID: PMC6326751 DOI: 10.1126/sciadv.aat2953] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/04/2018] [Indexed: 05/05/2023]
Abstract
Nanoparticles have been extensively used for inflammation imaging and photodynamic therapy of cancer. However, the major translational barriers to most nanoparticle-based imaging and therapy applications are the limited depth of tissue penetration, inevitable requirement of external irradiation, and poor biocompatibility of the nanoparticles. To overcome these critical limitations, we synthesized a sensitive, specific, biodegradable luminescent nanoparticle that is self-assembled from an amphiphilic polymeric conjugate with a luminescent donor (luminol) and a fluorescent acceptor [chlorin e6 (Ce6)] for in vivo luminescence imaging and photodynamic therapy in deep tissues. Mechanistically, reactive oxygen species (ROS) and myeloperoxidase generated in inflammatory sites or the tumor microenvironment trigger bioluminescence resonance energy transfer and the production of singlet oxygen (1O2) from the nanoparticle, enabling in vivo imaging and cancer therapy, respectively. This self-illuminating nanoparticle shows an excellent in vivo imaging capability with suitable tissue penetration and resolution in diverse animal models of inflammation. It is also proven to be a selective, potent, and safe antitumor nanomedicine that specifically kills cancer cells via in situ 1O2 produced in the tumor microenvironment, which contains a high level of ROS.
Collapse
Affiliation(s)
- Xiaoqiu Xu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Huijie An
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Third Military Medical University, Chongqing 400038, China
| | - Hui Tao
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xiaohui Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
- Corresponding author.
| |
Collapse
|
973
|
Li T, Hui H, Hu C, Ma H, Yang X, Tian J. Multiscale imaging of colitis in mice using confocal laser endomicroscopy, light-sheet fluorescence microscopy, and magnetic resonance imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 30701723 PMCID: PMC6985686 DOI: 10.1117/1.jbo.24.1.016003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The objective of our study is to develop a multimodality approach by combining magnetic resonance imaging (MRI) and optical imaging methods to assess acute murine colitis at the macro- and microscopic level. In vivo MRI is used to measure the cross-sectional areas of colons at the macroscopic level. Dual-color confocal laser endomicroscopy (CLE) allows in vivo examination of the fluorescently labeled epithelial cells and microvessels in the mucosa with a spatial resolution of ∼1.4 μm during ongoing endoscopy. To further validate the structural changes of the colons in three-dimensions, ex vivo light-sheet fluorescence microscopy (LSFM) is applied for in-toto imaging of cleared colon sections. MRI, LSFM, and CLE findings are significantly correlated with histological scoring (p < 0.01) and the inflammation-associated activity index (p < 0.01). Our multimodality imaging technique permits visualization of mucosa in colitis at different scales, which can enhance our understanding of the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tianmeng Li
- Northeastern University, Sino-Dutch Biomedical and Information Engineering School, Shenyang, China
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
| | - Hui Hui
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoen Hu
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
| | - He Ma
- Northeastern University, Sino-Dutch Biomedical and Information Engineering School, Shenyang, China
| | - Xin Yang
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
| | - Jie Tian
- Chinese Academy of Sciences, Institute of Automation, CAS Key Laboratory of Molecular Imaging, Beijing, China
- Institute of Automation, Beijing Key Laboratory of Molecular Imaging, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
974
|
Schneditz G, Elias JE, Pagano E, Zaeem Cader M, Saveljeva S, Long K, Mukhopadhyay S, Arasteh M, Lawley TD, Dougan G, Bassett A, Karlsen TH, Kaser A, Kaneider NC. GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump. Sci Signal 2019; 12:12/562/eaau9048. [PMID: 30600262 DOI: 10.1126/scisignal.aau9048] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca2+ to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.
Collapse
Affiliation(s)
- Georg Schneditz
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,Norwegian PSC Research Center, Department of Transplantation Medicine and Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Joshua E Elias
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ester Pagano
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - M Zaeem Cader
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Svetlana Saveljeva
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kathleen Long
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | | | | | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | | | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine and Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, 0027 Oslo, Norway
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nicole C Kaneider
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
975
|
Effect of compound sophorae decoction on dextran sodium sulfate (DSS)-induced colitis in mice by regulating Th17/Treg cell balance. Biomed Pharmacother 2019; 109:2396-2408. [DOI: 10.1016/j.biopha.2018.11.087] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 12/20/2022] Open
|
976
|
Delday M, Mulder I, Logan ET, Grant G. Bacteroides thetaiotaomicron Ameliorates Colon Inflammation in Preclinical Models of Crohn's Disease. Inflamm Bowel Dis 2019; 25:85-96. [PMID: 30215718 PMCID: PMC6290787 DOI: 10.1093/ibd/izy281] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Background Alterations in the gut microbiota are strongly associated with the development of inflammatory bowel disease (IBD), particularly with Crohn's disease, which is characterized by reduced abundance of commensal anaerobic bacteria including members of the Bacteroides genus. Our aim was to investigate the protective effects of Bacteroides thetaiotaomicron, an abundant member of this genus, in different rodent models of IBD. Methods We assessed the effect of B. thetaiotaomicron administration on primary readouts of colitis (weight loss, histopathology, and immune parameters) in dextran sodium sulphate (DSS) and interleukin-10 knockout (IL10KO) models of IBD. Efficacy of a freeze-dried bacterial formulation and a purified recombinant protein of B. thetaiotaomicron was also investigated. Results B. thetaiotaomicron showed protective effects in both DSS and IL10KO rodent models, as demonstrated by significant amelioration of weight loss, colon shortening, histopathological damage and immune activation. This efficacy was not exclusive to actively growing bacterial preparations but was retained by freeze-dried cells of B. thetaiotaomicron. A pirin-like protein (PLP) of B. thetaiotaomicron, identified by microarray analysis during coculture of the bacterial strain with Caco-2 cells, reduced pro-inflammatory NF-κB signalling in these intestinal epithelial cells. Recombinant PLP partially recapitulated the effect of the whole strain in a rat DSS model. Conclusions B. thetaiotaomicron displays strong efficacy in preclinical models of IBD and protects against weight loss, histopathological changes in the colon and inflammatory markers. These data indicate that the live strain or its products may be a novel alternative to current treatment options for Crohn's disease.
Collapse
Affiliation(s)
- Margaret Delday
- 4D Pharma Research Ltd, Life Science Innovation Building, Aberdeen, UK
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen UK
| | - Imke Mulder
- 4D Pharma Research Ltd, Life Science Innovation Building, Aberdeen, UK
| | - Elizabeth T Logan
- 4D Pharma Research Ltd, Life Science Innovation Building, Aberdeen, UK
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen UK
| | - George Grant
- 4D Pharma Research Ltd, Life Science Innovation Building, Aberdeen, UK
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen UK
| |
Collapse
|
977
|
Moreira TG, Horta LS, Gomes-Santos AC, Oliveira RP, Queiroz NMGP, Mangani D, Daniel B, Vieira AT, Liu S, Rodrigues AM, Gomes DA, Gabriely G, Ferreira E, Weiner HL, Rezende RM, Nagy L, Faria AMC. CLA-supplemented diet accelerates experimental colorectal cancer by inducing TGF-β-producing macrophages and T cells. Mucosal Immunol 2019; 12:188-199. [PMID: 30279515 DOI: 10.1038/s41385-018-0090-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
Conjugated linoleic acid (CLA) has been shown to activate the nuclear receptor PPAR-γ and modulate metabolic and immune functions. Despite the worldwide use of CLA dietary supplementation, strong scientific evidence for its proposed beneficial actions are missing. We found that CLA-supplemented diet reduced mucosal damage and inflammatory infiltrate in the dextran sodium sulfate (DSS)-induced colitis model. Conditional deletion of PPAR-γ in macrophages from mice supplemented with CLA diet resulted in loss of this protective effect of CLA, suggesting a PPAR-γ-dependent mechanism mediated by macrophages. However, CLA supplementation significantly worsened colorectal tumor formation induced by azoxymethane and DSS by inducing macrophage and T-cell-producing TGF-β via PPAR-γ activation. Accordingly, either macrophage-specific deletion of PPAR-γ or in vivo neutralization of latency-associated peptide (LAP, a membrane-bound TGF-β)-expressing cells abrogated the protumorigenic effect of CLA. Thus, the anti-inflammatory properties of CLA are associated with prevention of colitis but also with development of colorectal cancer.
Collapse
Affiliation(s)
- T G Moreira
- Departamento de Alimentos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil. .,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | - L S Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - A C Gomes-Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - R P Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - N M G P Queiroz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D Mangani
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - B Daniel
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.,Department of Medicine, School of Medicine, Johns Hopkins All Children's Hospital, Johns Hopkins University, St. Petersburg, FL, 33701, USA
| | - A T Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - S Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A M Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D A Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - G Gabriely
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - H L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R M Rezende
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Nagy
- Diabetes and Obesity Research Center, Sanford Burnham Medical Research Institute, Lake Nona, Orlando, FL, USA.,Department of Medicine, School of Medicine, Johns Hopkins All Children's Hospital, Johns Hopkins University, St. Petersburg, FL, 33701, USA
| | - A M C Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
978
|
da Silva VC, de Araújo AA, de Souza Araújo DF, Souza Lima MCJ, Vasconcelos RC, de Araújo Júnior RF, Langasnner SMZ, de Freitas Fernandes Pedrosa M, de Medeiros CACX, Guerra GCB. Intestinal Anti-Inflammatory Activity of the Aqueous Extract from Ipomoea asarifolia in DNBS-Induced Colitis in Rats. Int J Mol Sci 2018; 19:ijms19124016. [PMID: 30545135 PMCID: PMC6321343 DOI: 10.3390/ijms19124016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease is triggered by an uncontrolled immune response associated with genetic, environmental, and intestinal microbiota imbalance. Ipomoea asarifolia (IA), popularly known as “salsa” or “brave salsa”, belongs to the Convolvulaceae family. The aim of this approach was to study the preventive effect of IA aqueous extract in 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Rats pretreated with IA extract or sulfasalazine (SSZ) received intracolonic instillation of DNBS in 50% ethanol (v/v). IA extract presented a protective effect against intestinal inflammation, with improvement in the disease activity index and macroscopic damage. IA or SSZ significantly reduced myeloperoxidase activity, and also down-regulation of the gene expression of JNK1, NF-κβ-p65, STAT3, and decreased levels of TNFα, IL-1β, and increased IL-10, associated with a significant improvement of oxidative stress, in addition to a reduction in MDA and an increase of glutathione in colonic tissue. The protective effect of the extract was also confirmed in histological evaluation, showing preservation of the colonic cytoarchitecture. Immunohistochemical analysis revealed down-regulation of NF-κβ-p65, iNOS, IL-17, and up-regulation of SOCs-1 and MUC-2. IA extract presents antioxidant and anti-inflammatory intestinal properties, and proved to be a potential application for preventing damage induced by DNBS.
Collapse
Affiliation(s)
- Valéria Costa da Silva
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | | | - Maíra Conceição Jerônimo Souza Lima
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Roseane Carvalho Vasconcelos
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | - Raimundo Fernandes de Araújo Júnior
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | - Silvana Maria Zucolotto Langasnner
- Research Group on Bioactive Natural Products, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Matheus de Freitas Fernandes Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | | | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| |
Collapse
|
979
|
Qu S, Shen Y, Wang M, Wang X, Yang Y. Suppression of miR-21 and miR-155 of macrophage by cinnamaldehyde ameliorates ulcerative colitis. Int Immunopharmacol 2018; 67:22-34. [PMID: 30530166 DOI: 10.1016/j.intimp.2018.11.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/07/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a major form of inflammatory bowel disease which involved mucosal immune dysfunction. Cinnamaldehyde (CA) is major active compound from cinnamon, a useful traditional medicine in Asia which shows superior antibacterial and anti-inflammatory activity. In this study, we investigated the effects of CA on UC both in vivo and in vitro. We showed that CA attenuated the symptoms of DSS-induced colitis, including loss of body weights, disease activity index (DAI), shortening of the colon lengths and infiltration of inflammatory cells. Moreover, CA decreased the pro-inflammatory cytokines and NLRP3 inflammasome, miR-21 and miR-155 in colon tissues, in addition, the percentage of macrophages was reduced based on the surface marker F4/80 and IL-10 secretion in CA-treated group, suggesting that the CA ameliorate the UC via activation of macrophage. Herein, the effects of CA on macrophage cells were examined in vitro. We found that CA reduced the level of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, in the activation of RAW264.7, human macrophage-like cells U937, and primary peritoneal macrophages. Furthermore, the suppression of NLRP3 inflammasome, miR-21 and miR-155 was also found in CA-treated LPS-stimulated RAW264.7 cells. CA also reduced the production of reactive oxygen species, the phosphorylation of AKT, mTOR and COX2 protein level in the RAW264.7. Meanwhile, data revealed that transferred miR-21 or miR-155 inhibitor suppressed levels of IL-1β and IL-6, whereas miR-21 or miR-155 mimics increased expressions of these, and CA suppressed these expressions. Our results indicate that CA could ameliorate DSS-induced colitis through inhibition of NLRP3 inflammasome activation and miR-21 and miR-155 levels in colons and macrophage, suggesting that CA might be a potentially effective drug for UC.
Collapse
Affiliation(s)
- Shulan Qu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunhui Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengjie Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yifu Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
980
|
Zhou J, Lai W, Yang W, Pan J, Shen H, Cai Y, Yang C, Ma N, Zhang Y, Zhang R, Xie X, Dong Z, Gao Y, Du C. BLT1 in dendritic cells promotes Th1/Th17 differentiation and its deficiency ameliorates TNBS-induced colitis. Cell Mol Immunol 2018; 15:1047-1056. [PMID: 29670278 PMCID: PMC6269524 DOI: 10.1038/s41423-018-0030-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Leukotriene B4 (LTB4) synthesis is enhanced in the colonic mucosa in patients with inflammatory bowel disease (IBD). BLT1, a high-affinity receptor for LTB4, exhibits no effect on the progression of dextran sodium sulfate (DSS)-induced colitis, which mostly relies on innate immunity. Here, we reported that BLT1 regulates trinitrobenzene sulfonic acid (TNBS)-induced colitis, which reflects CD4+ T-cell-dependent adaptive immune mechanisms of IBD. We found that BLT1 signaling enhanced the progression of colitis through controlling the production of proinflammatory cytokines by dendritic cells (DCs) and modulating the differentiation of Th1 and Th17. BLT1-/- mice displayed an alleviated severity of TNBS-induced colitis with reduced body weight loss and infiltrating cells in the lamina propria. BLT1 deficiency in DCs led to reduced production of proinflammatory cytokines, including IL-6, TNF-α, and IL-12, and these results were further confirmed via treatment with a BLT1 antagonist. The impaired cytokine production by BLT1-/- DCs subsequently led to reduced Th1 and Th17 differentiation both in vitro and in vivo. We further performed a conditional DC reconstitution experiment to assess whether BLT1 in DCs plays a major role in regulating the pathogenesis of TNBS-induced colitis, and the results indicate that BLT1 deficiency in DCs also significantly reduces disease severity. The mechanistic study demonstrated that BLT1-regulated proinflammatory cytokine production through the Gαi βγ subunit-phospholipase Cβ (PLCβ)-PKC pathway. Notably, we found that treatment with the BLT1 antagonist also reduced the production of proinflammatory cytokines by human peripheral blood DCs. Our findings reveal the critical role of BLT1 in regulating adaptive immunity and TNBS-induced colitis, which further supports BLT1 as a potential drug target for adaptive immunity-mediated IBD.
Collapse
Affiliation(s)
- Jinfeng Zhou
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weiming Lai
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wanjie Yang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Juping Pan
- Tongji Hospital of Tongji University branch, Tongji University, Shanghai, 200092, China
| | - Hu Shen
- Tongji Hospital of Tongji University branch, Tongji University, Shanghai, 200092, China
| | - Yingying Cai
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Cuixia Yang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ningjia Ma
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yue Zhang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ru Zhang
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100086, China
| | - Yuan Gao
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Changsheng Du
- Putuo District People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
981
|
Kesharwani SS, Ahmad R, Bakkari MA, Rajput MK, Dachineni R, Valiveti CK, Kapur S, Jayarama Bhat G, Singh AB, Tummala H. Site-directed non-covalent polymer-drug complexes for inflammatory bowel disease (IBD): Formulation development, characterization and pharmacological evaluation. J Control Release 2018; 290:165-179. [DOI: 10.1016/j.jconrel.2018.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
|
982
|
Dysregulated Up-Frameshift Protein 1 Promotes Ulcerative Colitis Pathogenesis Through the TNFR1-NF-κB/MAPKs Pathway. Dig Dis Sci 2018; 63:2593-2603. [PMID: 29959727 DOI: 10.1007/s10620-018-5171-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is an idiopathic colonic mucosal disease, and its pathogenesis has not been fully understood. Up-frameshift protein 1 (UPF1) is a potential molecule for UC predicted by a computational approach. AIM The present study aimed to validate the underlying mechanism of UPF1 in UC. METHODS UPF1 expression was detected by qRT-PCR, western blotting, and immunohistochemistry in dextran sulfate sodium-induced colitis in mice. To simulate the intestinal inflammation microenvironment, NCM460 human colonic epithelial cells were exposed to a mixture of inflammatory mediators. The potential mechanism involving TNFR1-NF-κB/MAPKs pathway activation was addressed by western blotting, reporter gene assays, and siRNA (siUPF1) or UPF1-expressing plasmid pENTER-transfected cells. RESULTS UPF1 was downregulated in colonic epithelial cells of colitic mice, and in vitro, contrary to the mRNA levels of the associated cytokines enhanced in the UPF1 dysregulation group within stimulatory factors, most relevant cytokines were significantly decreased in UPF1 overexpression group. Mechanistically, the increased expression of tumor necrosis factor receptor 1 (TNFR1) was found in NCM460 cells pre-treated with siUPF1, with the activation of IKK/NF-κB and MAPKs pathways, including JNK/AP-1 and P38, but not the ERK1/2 pathway. Moreover, the repression of TNFR1 required the interaction of UPF1 with the promoter. CONCLUSION UPF1, which negatively regulated the transcription of TNFR1, is a novel factor regulating intestinal inflammation. The downregulation of UPF1 activated the TNFR1-dependent NF-κB/MAPKs pathway, and promoting inflammatory responses in colon might act as a causal role in UC.
Collapse
|
983
|
Chen X, He X, Luo S, Feng Y, Liang F, Shi T, Huang R, Pei Z, Li Z. Vagus Nerve Stimulation Attenuates Cerebral Microinfarct and Colitis-induced Cerebral Microinfarct Aggravation in Mice. Front Neurol 2018; 9:798. [PMID: 30319530 PMCID: PMC6168656 DOI: 10.3389/fneur.2018.00798] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022] Open
Abstract
Cerebral cortical microinfarct (CMI) is common in patients with dementia and cognitive decline. Emerging studies reported that intestinal dysfunction influenced the outcome of ischemic stroke and that vagus nerve stimulation (VNS) protected against ischemic stroke. However, the effects of intestinal dysfunction and VNS on CMI are not clear. Therefore, we examined the influence of colitis and VNS on CMI and the mechanisms of VNS attenuating CMI in mice with colitis. CMI was induced using a two-photon laser. Colitis was induced using oral dextran sodium sulfate (DSS). The cervical vagus nerve was stimulated using a constant current. In vivo blood-brain barrier (BBB) permeability was evaluated using two-photon imaging. Infarct volume, microglial and astrocyte activation, oxidative stress and proinflammatory cytokine levels were assessed using immunofluorescent and immunohistochemical staining. The BBB permeability, infarct volume, activation of microglia and astrocytes and oxidative stress increased significantly in mice with colitis and CMI compared to those in mice with CMI. However, these processes were reduced in CMI mice when VNS was performed. Brain lesions in mice with colitis and CMI were significantly ameliorated when VNS was performed during the acute phase of colitis. Our study demonstrated that VNS alleviated CMI and this neuroprotection was associated with the suppression of BBB permeability, neuroinflammation and oxidative stress. Also, our results indicated that VNS reduced colitis-induced microstroke aggravation.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaofei He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shijian Luo
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yukun Feng
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Fengyin Liang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Taotao Shi
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ruxun Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhendong Li
- Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
984
|
Zhou X, Qi W, Hong T, Xiong T, Gong D, Xie M, Nie S. Exopolysaccharides from Lactobacillus plantarum NCU116 Regulate Intestinal Barrier Function via STAT3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9719-9727. [PMID: 30134660 DOI: 10.1021/acs.jafc.8b03340] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lactic acid bacteria (LAB) and their exopolysaccharides (EPS) are recognized to promote intestinal barrier function by mechanisms that remain incompletely understood. Herein, we sought to identify the roles of exopolysaccharides from Lactobacillus plantarum NCU116 (EPS116) in intestinal barrier function. Our data showed that EPS116 attenuated dextran sodium sulfate (DSS) induced colitis and promoted epithelial barrier function and the expression of tight junction (TJ) proteins in vivo and in vitro. Moreover, chromatin immunoprecipitation data showed that EPS116 facilitated STAT3 (signal transducer and activator of transcription 3) binding to the promoter of occludin and ZO-1. Furthermore, knockdown of STAT3 in Caco-2 cell with EPS116 treatment led to decreased expression of occludin and ZO-1 and increased intestinal permeability, suggesting that the regulation of epithelial barrier function by EPS116 should be STAT3 dependent. Thus, our data revealed a novel mechanism that EPS116 inhibited intestinal inflammation via regulating intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Xingtao Zhou
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , China
| | - Wucheng Qi
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , China
| | - Tao Hong
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , China
- New Zealand Institute of Natural Medicine Research , 8 Ha Crescent , Auckland 2104 , New Zealand
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , China
| |
Collapse
|
985
|
Trapani V, Petito V, Di Agostini A, Arduini D, Hamersma W, Pietropaolo G, Luongo F, Arena V, Stigliano E, Lopetuso LR, Gasbarrini A, Wolf FI, Scaldaferri F. Dietary Magnesium Alleviates Experimental Murine Colitis Through Upregulation of the Transient Receptor Potential Melastatin 6 Channel. Inflamm Bowel Dis 2018; 24:2198-2210. [PMID: 29788266 DOI: 10.1093/ibd/izy186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Magnesium (Mg) is essential for human health and is absorbed mainly in the intestine. In view of the likely occurrence of an Mg deficit in inflammatory bowel disease (IBD) and the documented role of Mg in modulating inflammation, the present study addresses whether Mg availability can affect the onset and progression of intestinal inflammation. METHODS To study the correlation between Mg status and disease activity, we measured magnesemia by atomic absorption spectroscopy in a cohort of IBD patients. The effects of dietary Mg modulation were assessed in a murine model of dextran sodium sulfate (DSS)-induced colitis by monitoring magnesemia, weight, fecal occult blood, diarrhea, colon length, and histology. Expression of the transient receptor potential melastatin (TRPM) 6 channel was assessed by real-time reverse transcription polymerase chain reaction and immunohistochemistry in murine colon tissues. The effect of Mg on epithelial barrier formation/repair was evaluated in human colon cell lines. RESULTS Inflammatory bowel disease patients presented with a substantial Mg deficit, and serum Mg levels were inversely correlated with disease activity. In mice, an Mg-deficient diet caused hypomagnesemia and aggravated DSS-induced colitis. Colitis severely compromised intestinal Mg2+ absorption due to mucosal damage and reduction in TRPM6 expression, but Mg supplementation resulted in better restoration of mucosal integrity and channel expression. CONCLUSIONS Our results highlight the importance of evaluating and correcting magnesemia in IBD patients. The murine model suggests that Mg supplementation may represent a safe and cost-effective strategy to reduce inflammation and restore normal mucosal function.
Collapse
Affiliation(s)
- Valentina Trapani
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Valentina Petito
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Angelica Di Agostini
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Daniela Arduini
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Willem Hamersma
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Giuseppe Pietropaolo
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Francesca Luongo
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Vincenzo Arena
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Egidio Stigliano
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Loris R Lopetuso
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Antonio Gasbarrini
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Federica I Wolf
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Franco Scaldaferri
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| |
Collapse
|
986
|
Koh GY, Kane A, Lee K, Xu Q, Wu X, Roper J, Mason JB, Crott JW. Parabacteroides distasonis
attenuates toll‐like receptor 4 signaling and Akt activation and blocks colon tumor formation in high‐fat diet‐fed azoxymethane‐treated mice. Int J Cancer 2018; 143:1797-1805. [DOI: 10.1002/ijc.31559] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Gar Yee Koh
- Jean Mayer USDA Human Nutrition Research on Aging at Tufts UniversityBoston MA
| | - Anne Kane
- Phoenix LaboratoryTufts Medical CenterBoston MA
| | - Kyongbum Lee
- Department of Chemical and Biological EngineeringTufts UniversityMedford MA
| | - Qiaobing Xu
- Department of Chemical and Biological EngineeringTufts UniversityMedford MA
- Department of Biomedical EngineeringTufts UniversityMedford MA
- Tufts University School of MedicineBoston MA
| | - Xian Wu
- Jean Mayer USDA Human Nutrition Research on Aging at Tufts UniversityBoston MA
| | - Jatin Roper
- Tufts University School of MedicineBoston MA
| | - Joel B. Mason
- Jean Mayer USDA Human Nutrition Research on Aging at Tufts UniversityBoston MA
- Tufts University School of MedicineBoston MA
- Friedman School of Nutrition Science and PolicyBoston MA
| | - Jimmy W. Crott
- Jean Mayer USDA Human Nutrition Research on Aging at Tufts UniversityBoston MA
| |
Collapse
|
987
|
Lin WC, Pan WY, Liu CK, Huang WX, Song HL, Chang KS, Li MJ, Sung HW. In situ self-spray coating system that can uniformly disperse a poorly water-soluble H 2S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials 2018; 182:289-298. [PMID: 30144577 DOI: 10.1016/j.biomaterials.2018.07.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an intestinal inflammatory disorder. Exogenous hydrogen sulfide (H2S) donors such as diallyl trisulfide (DATS) have been used as anti-inflammatory mediators. However, an ideal method of administering DATS has yet to be established owing to its poor water solubility. Herein, a self-spray coating system that is derived from a DATS-loaded capsule with foaming capability (CAP-w-FC) is proposed for treating colitis. Following the rectal administration of CAP-w-FC into rats bearing colitis and its subsequent dissolution in the intestinal fluid, a spray coating system is self-assembled in situ. This system greatly promotes the dissolution of the poorly water-soluble DATS by producing nano-scaled micellar particles that are sprayed onto the large luminal surface of the colorectal tract. Following the internalization of the micellar particles by colon epithelial cells, their loaded DATS reacts with intracellular glutathione to yield H2S. This exogenous H2S then diffuses through plasma membranes to carry out its biological functions, including suppressing the overproduction of pro-inflammatory cytokines, inhibiting the adhesion of macrophages on the vascular endothelium, and repairing colonic inflamed tissues. Analytical results demonstrate that this self-spray coating system may be used as a unique drug delivery technique for covering the large colorectal surface to treat IBD.
Collapse
Affiliation(s)
- Wei-Chih Lin
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Wen-Yu Pan
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Chen-Kao Liu
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Wu-Xuan Huang
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Hsiang-Lin Song
- Department of Pathology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan ROC
| | - Kai-Sheng Chang
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Meng-Ju Li
- Department of Pediatrics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan ROC.
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan ROC.
| |
Collapse
|
988
|
Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat Commun 2018; 9:3261. [PMID: 30111884 PMCID: PMC6093916 DOI: 10.1038/s41467-018-05800-6] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammation and its resolution is under-studied in medicine despite being essential for understanding the development of chronic inflammatory disease. In this review article, we discuss the resolution of inflammation in both a biological and translational context. We introduce the concept of impaired resolution leading to diseases like rheumatoid arthritis, Crohn's disease, and asthma, as well as the cellular and molecular components that contribute to resolution of joint, gut, and lung inflammation, respectively. Finally, we discuss potential intervention strategies for fostering the resolution process, and their implications for the therapy of inflammatory diseases.
Collapse
|
989
|
Longitudinal PET/CT evaluation of TNBS-induced inflammatory bowel disease rat model. Int J Pharm 2018; 549:335-342. [PMID: 30081226 DOI: 10.1016/j.ijpharm.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic disorders of the gastrointestinal tract, which two main types are Crohn's disease and ulcerative colitis. It has multifactorial etiologies, being essential the use of animal models and disease activity measures to develop new therapies. With this aim, the use of animal models in combination with non-invasive molecular imaging can play an important role in the development of new treatments. In this study, IBD was induced in rats using 2,4,6-trinitrobenzenesulfonic acid (TNBS) and longitudinal [18F]FDG PET/CT scans were conducted to assess disease progression post-TNBS administration. Afterwards, [18F]FDG PET/CT scans were carried out after treatment with methylprednisolone to validate the model. In non-treated rats, SUVmax (Standardized Uptake Value) rapidly increased after IBD induction, being particularly significant (p < 0.01) on days 7-13 after induction. There were no significant differences between non-treated and treated IBD rats from days 0-3. Nevertheless, treated IBD rats showed a significant decrease in SUVmax between days 7-13 (p < 0.01). Histological examination showed descending and transverse colon as the most affected regions. There was a moderate (R2 = 0.61) and strong (R2 = 0.82) correlation of SUVmax with Nancy grade (parameter for histological assessment of disease activity) and weight changes, respectively. In this study, we have performed the first longitudinal [18F]FDG PET/CT assessment of TNBS-induced IBD in rats, demonstrating the potential role of preclinical molecular imaging for the evaluation of new therapies in combination with IBD rat models.
Collapse
|
990
|
Mikami Y, Takada Y, Hagihara Y, Kanai T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev 2018; 42:27-36. [PMID: 30104153 DOI: 10.1016/j.cytogfr.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently identified family of lymphoid effector cells. ILCs are mainly clustered into 3 groups based on their unique cytokine profiles and transcription factors typically attributed to the subsets of T helper cells. ILCs have a critical role in the mucosal immune response through promptly responding to pathogens and producing large amount of effector cytokines of type 1, 2, or 3 responses. In addition to the role of early immune responses against infections, ILCs, particularly group 2 ILCs (ILC2), have recently gained attention for modulating remodeling and fibrosis especially in the mucosal tissues. Herein, we overview the current knowledge in this area, highlighting roles of ILCs on fibrosis in the mucosal tissues, especially focusing on the gut and lung. We also discuss some new directions for future research by extrapolating from knowledge derived from studies on Th cells.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| | - Yoshiaki Takada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yuya Hagihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| |
Collapse
|
991
|
Oldak B, Cruz-Rivera M, Flisser A, Mendlovic F. RNA Purity, Real-Time PCR Sensitivity, and Colon Segment Influence mRNA Relative Expression in Murine Dextran Sodium Sulfate Experimental Colitis. J Biomol Tech 2018; 29:61-70. [PMID: 30034295 DOI: 10.7171/jbt.18-2903-001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dextran sodium sulfate (DSS) model of colitis is widely used as a result of its simplicity and reproducibility and because it mimics clinicopathological disease features. Its effectiveness depends on the mouse strain, DSS MW, and brand. Quantitative RT-PCR (qRT-PCR) is highly sensitive for analyzing cytokine mRNA expression. We analyzed an acute model of DSS treatment in Balb/c mice for the onset of colitis using qRT-PCR for the quantification of a mouse cytokine transcript. We compared differences among 1--and 2-step qRT-PCR for transcript quantification, the effect of multiple concentrations of DSS, and the use of 2 reference genes in 3 portions of the colon. A reliable and sensitive 1-step protocol for qRT-PCR was established with a modified double LiCl precipitation for RNA isolation. The variability of 2 reference genes, β-actin and eukaryotic elongation factor 2, was compared, and expression of IL-6 was analyzed in 3 segments of the colon. The RNA cleaning protocol prevented inhibition of qRT-PCR by DSS, and RNA loss was minimized. No clinical differences among the different DSS concentrations were seen on d 7, but higher concentrations resulted in the appearance of earlier symptoms. Higher efficiency and sensitivity of the 1-step qRT-PCR reaction using eukaryotic elongation factor 2 were obtained and also less variability. Although expression levels of IL-6 were high in the middle and distal colon, the middle section had consistently less variability in values. Thus, this segment is recommended for future studies. These factors influence the statistical significance of data and need to be considered to get accurate and reliable results and to improve comparisons of the published colitis experiments.
Collapse
Affiliation(s)
- Bernardo Oldak
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, State of Mexico, Mexico; and
| | - Mayra Cruz-Rivera
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Ana Flisser
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Fela Mendlovic
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, State of Mexico, Mexico; and.,Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
992
|
Lavoie B, Roberts JA, Haag MM, Spohn SN, Margolis KG, Sharkey KA, Lian JB, Mawe GM. Gut-derived serotonin contributes to bone deficits in colitis. Pharmacol Res 2018; 140:75-84. [PMID: 30030171 PMCID: PMC6336528 DOI: 10.1016/j.phrs.2018.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
Osteoporosis and bone fractures occur at higher frequency in patients with inflammatory bowel disease (IBD), and decreased bone mass is observed in animal models of colitis. Another consistent feature of colitis is increased serotonin (5-HT) availability in the intestinal mucosa. Since gut-derived 5-HT can decrease bone mass, via activation of 5-HT1B receptors on pre-osteoblasts, we tested the hypothesis that 5-HT contributes to bone loss in colitis. Colitis was chronically induced in mice by adding dextran sodium sulfate (DSS) to their drinking water for 21 days. At day 21, circulating 5-HT levels were elevated in DSS-inflamed mice. Micro-computed tomography of femurs showed a decrease in trabecular bone volume fraction, formation, and surface area, due largely to decreased trabecular numbers in DSS-treated mice. The colitis-induced loss of trabecular bone was significantly suppressed in mice treated with the 5-HT synthesis inhibitor, p-chloro-DL-phenylalanine (PCPA; 300 mg/kg/day IP daily), and in mice treated with the 5-HT1B receptor antagonist GR55562 (1 mg/Kg/day SC daily). The 5-HT reuptake transporter (SERT) is critical for moving 5-HT from the interstitial space into enterocytes and from serum into platelets. Mice lacking SERT exhibited significant deficits in trabecular bone mass that are similar to those observed in DSS-inflamed mice, and these deficits were not extensively worsened by DSS-induced colitis in the SERT-/- mice. Taken together, findings from both the DSS and SERT-/- mouse models support a contributing role for 5-HT as a significant factor in bone loss induced by colitis.
Collapse
Affiliation(s)
- B Lavoie
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA.
| | - J A Roberts
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - M M Haag
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - S N Spohn
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| | - K G Margolis
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - K A Sharkey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - J B Lian
- Department of Biochemistry, The University of Vermont, Burlington, VT, USA
| | - G M Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, VT, USA
| |
Collapse
|
993
|
Chen S, Chen L, Chen L, Ren X, Ge H, Li B, Ma G, Ke X, Zhu J, Li L, Feng Y, Li Y. Potential probiotic characterization of Lactobacillus reuteri from traditional Chinese highland barley wine and application for room-temperature-storage drinkable yogurt. J Dairy Sci 2018; 101:5780-5788. [DOI: 10.3168/jds.2017-14139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/11/2018] [Indexed: 01/01/2023]
|
994
|
Lenzen H, Qian J, Manns MP, Seidler U, Jörns A. Restoration of mucosal integrity and epithelial transport function by concomitant anti-TNFα treatment in chronic DSS-induced colitis. J Mol Med (Berl) 2018; 96:831-843. [DOI: 10.1007/s00109-018-1658-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 12/25/2022]
|
995
|
He S, Xue M, Liu C, Xie F, Bai L. Parathyroid Hormone-Like Hormone Induces Epithelial-to-Mesenchymal Transition of Intestinal Epithelial Cells by Activating the Runt-Related Transcription Factor 2. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1374-1388. [PMID: 29577935 DOI: 10.1016/j.ajpath.2018.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key contributor to fibroblast activation in fibrosis of multiple organs, including the intestine. Parathyroid hormone-like hormone (PTHLH) is an important factor in renal fibrosis and regulates several processes, including EMT. Herein, we investigated the role of PTHLH-induced EMT in intestinal fibrosis associated with Crohn disease. The expression levels of the EMT-related proteins, PTHLH, and parathyroid hormone receptor 1 (PTH1R) in intestinal tissues were determined by immunohistochemistry, and our results revealed that PTHLH and PTH1R were significantly elevated and associated with EMT marker expression. Moreover, neutralizing PTH1R and antagonizing PTHLH bioactivity prevented transforming growth factor-β1-induced EMT. PTH1R can propagate the protein kinase A (PKA) signal and activate downstream nuclear transcription factors, including runt-related transcription factor 2 (Runx2). In addition, lentiviral vector-PTHLH-treated mice were highly sensitive to 2,4,6-trinitrobenzene sulfonic acid, and analysis of the PTHLH-PTH1R axis revealed the involvement of PKA-Runx2 in PTHLH-induced EMT. Our results indicate that PTHLH triggered EMT in intestinal epithelial cells through the PKA-Runx2 pathway, which might serve as a therapeutic target for intestinal fibrosis in Crohn disease.
Collapse
Affiliation(s)
- Shuying He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minmin Xue
- Department of Gastroenterology, Chinese People's Liberation Army 254 Hospital, Tianjin, China
| | - Cuiping Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
996
|
Wang S, Chen YG. BMP signaling in homeostasis, transformation and inflammatory response of intestinal epithelium. SCIENCE CHINA-LIFE SCIENCES 2018; 61:800-807. [PMID: 29855793 DOI: 10.1007/s11427-018-9310-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Intestine is the organ for food digestion, nutrient absorption and pathogen defense, in which processes intestinal epithelium plays a central role. Intestinal epithelium undergoes fast turnover, and its homeostasis is regulated by multiple signaling pathways, including Wnt, Notch, Hippo and BMP pathways. BMP signaling has been shown to negatively regulate self-renewal of Lgr5+ intestinal stem cells, constrains the expansion of intestinal epithelium, therefore attenuating colorectal cancer formation. BMPs and their receptors are expressed in both epithelial and mesenchymal cells, suggesting a two-way interaction between the mesenchyme and epithelium. In this review, we summarize the current understanding of the function of BMP signaling in homeostasis, cancerous transformation and inflammatory response of intestinal epithelium.
Collapse
Affiliation(s)
- Shan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
997
|
Peng K, Su G, Ji J, Yang X, Miao M, Mo P, Li M, Xu J, Li W, Yu C. Histone demethylase JMJD1A promotes colorectal cancer growth and metastasis by enhancing Wnt/β-catenin signaling. J Biol Chem 2018; 293:10606-10619. [PMID: 29802196 DOI: 10.1074/jbc.ra118.001730] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/25/2018] [Indexed: 01/19/2023] Open
Abstract
The histone demethylase Jumonji domain containing 1A (JMJD1A) is overexpressed in multiple tumors and promotes cancer progression. JMJD1A has been shown to promote colorectal cancer (CRC) progression, but its molecular role in CRC is unclear. Here, we report that JMJD1A is overexpressed in CRC specimens and that its expression is positively correlated with that of proliferating cell nuclear antigen (PCNA). JMJD1A knockdown decreased the expression of proliferative genes such as c-Myc, cyclin D1, and PCNA, suppressed CRC cell proliferation, arrested cell cycle progression, and reduced xenograft tumorigenesis. Furthermore, JMJD1A knockdown inhibited CRC cell migration, invasion, and lung metastasis by decreasing matrix metallopeptidase 9 (MMP9) expression and enzymatic activity. Moreover, bioinformatics analysis of GEO profile datasets revealed that JMJD1A expression in human CRC specimens is positively correlated with the expression of Wnt/β-catenin target genes, including c-Myc, cyclin D1, and MMP9. Mechanistically, JMJD1A enhanced Wnt/β-catenin signaling by promoting β-catenin expression and interacting with β-catenin to enhance its transactivation. JMJD1A removed the methyl groups of H3K9me2 at the promoters of c-Myc and MMP9 genes. In contrast, the JMJD1AH1120Y variant, which lacked demethylase activity, did not demethylate H3K9me2 at these promoters, failed to assist β-catenin to induce the expression of Wnt/β-catenin target genes, and failed to promote CRC progression. These findings suggest that JMJD1A's demethylase activity is required for Wnt/β-catenin activation. Of note, high JMJD1A levels in CRC specimens predicted poor cancer outcomes. In summary, JMJD1A promotes CRC progression by enhancing Wnt/β-catenin signaling, implicating JMJD1A as a potential molecular target for CRC management.
Collapse
Affiliation(s)
- Kesong Peng
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guoqiang Su
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Jinmeng Ji
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaojia Yang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengmeng Miao
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pingli Mo
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Li
- the Xiamen City Key Laboratory of Biliary Tract Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, China, and
| | - Jianming Xu
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Wengang Li
- the Xiamen City Key Laboratory of Biliary Tract Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, China, and
| | - Chundong Yu
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China,
| |
Collapse
|
998
|
Paiatto LN, Silva FGD, Yamada ÁT, Tamashiro WMSC, Simioni PU. Adoptive transfer of dendritic cells expressing CD11c reduces the immunological response associated with experimental colitis in BALB/c mice. PLoS One 2018; 13:e0196994. [PMID: 29738575 PMCID: PMC5940207 DOI: 10.1371/journal.pone.0196994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 04/24/2018] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION In addition to conventional therapies, several new strategies have been proposed for modulating autoimmune diseases, including the adoptive transfer of immunological cells. In this context, dendritic cells (DCs) appear to be one of the most promising treatments for autoimmune disorders. The present study aimed to evaluate the effects of adoptive transfer of DCs obtained from both naïve and ovalbumin (OVA)-tolerant mice on the severity of TNBS induced colitis and analyze the eventual protective mechanisms. METHODS AND RESULTS To induce oral tolerance, BALB/c mice were fed 4mg/mL OVA solution for seven consecutive days. Spleen DCs were isolated from tolerant (tDC) and naïve (nDC) mice, and then adoptively transferred to syngeneic mice. Three days later, colitis was induced in DC treated mice by intrarectal instillation of 100μg2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in 50% ethanol. Control subjects received only intrarectal instillation of either TNBS solution or a vehicle. Five days later, mice from all groups were euthanized and examined for physiological and immunological parameters. Regarding the phenotype, we observed that the frequencies of CD11+ MHC II+ and CD11+ MHCII+ CD86+ cells were significantly lower in DCs isolated from tolerant mice than in those from naive mice. However, pretreatment with both types of DCs was able to significantly reduce clinical signs of colitis such as diarrhea, rectal prolapse, bleeding, and cachexia, although only treatment with tDCs was able to prevent weight loss from instillation of TNBS. In vitro proliferation of spleen cells from mice treated with either type of DCs was significantly lower than that observed in splenic cell cultures of naïve mice. Although no significant difference was observed in the frequencies of Treg cells in the experimental groups, the frequency of Th17+CD4+cellsand the secretion of IL-17 were more reduced in the cultures of spleen cells from mice treated with either type of DCs. The levels of IL-9 and IFN-γ were lower in supernatants of cells from mice treated with nDCs. CONCLUSION The results allow us to conclude that the adoptive transfer of cells expressing CD11c is able to reduce the clinical and immunological signs of drug-induced colitis. Adoptive transfer of CD11c+DC isolated from both naive and tolerant mice altered the proliferative and T cell responses. To the best of our knowledge, there is no previously published data showing the protective effects of DCs from naïve or tolerant mice in the treatment of colitis.
Collapse
Affiliation(s)
- Lisiery N. Paiatto
- Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Fernanda G. D. Silva
- Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Department of Food, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Áureo T. Yamada
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Wirla M. S. C. Tamashiro
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Patricia U. Simioni
- Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Department of Biomedical Science, Faculty of Americana, FAM, Americana, São Paulo, Brazil
| |
Collapse
|
999
|
PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc Natl Acad Sci U S A 2018; 115:E4061-E4070. [PMID: 29632181 DOI: 10.1073/pnas.1712345115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression. To elucidate its function in CRC, PARP-1 deficient (PARP-1-/-) and wild-type animals (WT) were subjected to azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced colorectal carcinogenesis. Miniendoscopy showed significantly more tumors in WT than in PARP-1-/- mice. Although the lack of PARP-1 moderately increased DNA damage, both genotypes exhibited comparable levels of AOM-induced autophagy and cell death. Interestingly, miniendoscopy revealed a higher AOM/DSS-triggered intestinal inflammation in WT animals, which was associated with increased levels of innate immune cells and proinflammatory cytokines. Tumors in WT animals were more aggressive, showing higher levels of STAT3 activation and cyclin D1 up-regulation. PARP-1-/- animals were then crossed with O6-methylguanine-DNA methyltransferase (MGMT)-deficient animals hypersensitive to AOM. Intriguingly, PARP-1-/-/MGMT-/- double knockout (DKO) mice developed more, but much smaller tumors than MGMT-/- animals. In contrast to MGMT-deficient mice, DKO animals showed strongly reduced AOM-dependent colonic cell death despite similar O6-methylguanine levels. Studies with PARP-1-/- cells provided evidence for increased alkylation-induced DNA strand break formation when MGMT was inhibited, suggesting a role of PARP-1 in the response to O6-methylguanine adducts. Our findings reveal PARP-1 as a double-edged sword in colorectal carcinogenesis, which suppresses tumor initiation following DNA alkylation in a MGMT-dependent manner, but promotes inflammation-driven tumor progression.
Collapse
|
1000
|
Nyuyki KD, Cluny NL, Swain MG, Sharkey KA, Pittman QJ. Altered Brain Excitability and Increased Anxiety in Mice With Experimental Colitis: Consideration of Hyperalgesia and Sex Differences. Front Behav Neurosci 2018; 12:58. [PMID: 29670513 PMCID: PMC5893896 DOI: 10.3389/fnbeh.2018.00058] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are incurable lifelong inflammatory bowel diseases (IBD) with a rising worldwide incidence. IBD is characterized by diarrhea, rectal bleeding, severe cramping and weight loss. However, there is a growing evidence that IBD is also associated with anxiety- and depression-related disorders, which further increase the societal burden of these diseases. Given the limited knowledge of central nervous system (CNS) changes in IBD, we investigated CNS-related comorbidities in a mouse model of experimental colitis induced by dextran sulfate sodium (DSS) administration in drinking water for 5 days. In male and female C57BL6J mice, DSS treatment caused increased brain excitability, revealed by a decrease in seizure onset times after intraperitoneal administration of kainic acid. Moreover, both sexes showed increased anxiety-related behavior in the elevated plus-maze (EPM) and open field (OF) paradigms. We assessed somatic pain levels, because they may influence behavioral responses. Only male mice were hyperalgesic when tested with calibrated von Frey hairs and on the hotplate for mechanical and thermal pain sensitivity respectively. Administration of diazepam (DZP; ip, 1 mg/kg) 30 min before EPM rescued the anxious phenotype and improved locomotion, even though it significantly increased thermal sensitivity in both sexes. This indicates that the altered behavioral response is unlikely attributable to an interference with movement due to somatic pain in females. We show that experimental colitis increases CNS excitability in response to administration of kainic acid, and increases anxiety-related behavior as revealed using the EPM and OF tests.
Collapse
Affiliation(s)
- Kewir D Nyuyki
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nina L Cluny
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|