951
|
Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F, Jin W. Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 2014; 9:e98958. [PMID: 24892290 PMCID: PMC4044008 DOI: 10.1371/journal.pone.0098958] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/09/2014] [Indexed: 01/20/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) represent a class of riboregulators that either directly act in long form or are processed to shorter miRNAs and siRNAs. Emerging evidence shows that lncRNAs participate in stress responsive regulation. In this study, to identify the putative maize lncRNAs responsive to drought stress, 8449 drought responsive transcripts were first uploaded to the Coding Potential Calculator website for classification as protein coding or non-coding RNAs, and 1724 RNAs were identified as potential non-coding RNAs. A Perl script was written to screen these 1724 ncRNAs and 664 transcripts were ultimately identified as drought-responsive lncRNAs. Of these 664 transcripts, 126 drought-responsive lncRNAs were highly similar to known maize lncRNAs; the remaining 538 transcripts were considered as novel lncRNAs. Among the 664 lncRNAs identified as drought responsive, 567 were upregulated and 97 were downregulated in drought-stressed leaves of maize. 8 lncRNAs were identified as miRNA precursor lncRNAs, 62 were classified as both shRNA and siRNA precursors, and 279 were classified as siRNA precursors. The remaining 315 lncRNAs were classified as other lncRNAs that are likely to function as longer molecules. Among these 315 lncRNAs, 10 are identified as antisense lncRNAs and 7 could pair with 17 CDS sequences with near-perfect matches. Finally, RT-qPCR results confirmed that all selected lncRNAs could respond to drought stress. These findings extend the current view on lncRNAs as ubiquitous regulators under stress conditions.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhaoxue Han
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qingli Guo
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yu Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yuxian Zheng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Fangli Wu
- Institute of Bioengineering, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weibo Jin
- College of Life Sciences, Northwest A&F University, Yangling, China
- Institute of Bioengineering, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- * E-mail:
| |
Collapse
|
952
|
He H, He L, Gu M. Role of microRNAs in aluminum stress in plants. PLANT CELL REPORTS 2014; 33:831-6. [PMID: 24413694 DOI: 10.1007/s00299-014-1565-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 05/04/2023]
Abstract
Aluminum (Al) stress is a major factor limiting crop production. The primary symptom of Al toxicity is to inhibit root growth. Plant responses to Al require precise regulation of gene expression at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are 20-23 nucleotides length non-coding RNAs, which promote the cleavage of target mRNAs. We have summarized some Al-responsive miRNAs identified, especially proposed the regulatory roles of miR319, miR390, miR393, miR319a.2, and miR398 in Al stress signaling network. The cross-talk between miRNAs and signaling pathways also has been discussed.
Collapse
Affiliation(s)
- Huyi He
- College of Agronomy, Guangxi University, Nanning, 530004, People's Republic of China,
| | | | | |
Collapse
|
953
|
Quinn CR, Iriyama R, Fernando DD. Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda). PLANT REPRODUCTION 2014; 27:69-78. [PMID: 24664256 DOI: 10.1007/s00497-014-0241-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate genes involved in various aspects of plant development, but their presence and expression patterns in the male gametophytes of gymnosperms have not yet been established. Therefore, this study identified and compared the expression patterns of conserved miRNAs from two stages of the male gametophyte of loblolly pine (Pinus taeda), which are the mature (ungerminated) and germinated pollen. Microarray was used to identify conserved miRNAs that varied in expression between these two stages of the loblolly pine male gametophyte. Forty-seven conserved miRNAs showed significantly different expression levels between mature and germinated loblolly pine pollen. In particular, miRNAs representing 14 and 8 families were up- and down-regulated in germinated loblolly pine pollen, respectively. qRT-PCR was used to validate their expression patterns using representative miRNAs. Target genes and proteins were identified using psRNATarget program. Predicted targets of the 22 miRNA families belong mostly to classes of genes involved in defense/stress response, metabolism, regulation, and signaling. qRT-PCR was also used to validate the expression patterns of representative target genes. This study shows that conserved miRNAs are expressed in mature and germinated loblolly pine pollen. Many of these miRNAs are differentially expressed, which indicates that the two stages of the male gametophyte examined are regulated at the miRNA level. This study also expands our knowledge of the male gametophytes of seed plants by providing insights on some similarities and differences in the types and expression patterns of conserved miRNAs between loblolly pine with those of rice and Arabidopsis.
Collapse
Affiliation(s)
- Christina R Quinn
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, One Forestry Drive, Syracuse, NY, 13210, USA
| | | | | |
Collapse
|
954
|
Yagi Y, Nakamura T, Small I. The potential for manipulating RNA with pentatricopeptide repeat proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:772-82. [PMID: 24471963 DOI: 10.1111/tpj.12377] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 05/04/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family, which is particularly prevalent in plants, includes many sequence-specific RNA-binding proteins involved in all aspects of organelle RNA metabolism, including RNA stability, processing, editing and translation. PPR proteins consist of a tandem array of 2-30 PPR motifs, each of which aligns to one nucleotide in the RNA target. The amino acid side chains at two or three specific positions in each motif confer nucleotide specificity in a predictable and programmable manner. Thus, PPR proteins appear to provide an extremely promising opportunity to create custom RNA-binding proteins with tailored specificity. We summarize recent progress in understanding RNA recognition by PPR proteins, with a particular focus on potential applications of PPR-based tools for manipulating RNA, and on the challenges that remain to be overcome before these tools may be routinely used by the scientific community.
Collapse
Affiliation(s)
- Yusuke Yagi
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
955
|
Zhang ZJ. Artificial trans-acting small interfering RNA: a tool for plant biology study and crop improvements. PLANTA 2014; 239:1139-46. [PMID: 24643516 DOI: 10.1007/s00425-014-2054-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/05/2014] [Indexed: 05/25/2023]
Abstract
Completion of whole genome sequencing in many plant species including economically important crop species not only opens up new opportunities but also imposes challenges for plant science research community. Functional validation and utilization of these enormous DNA sequences necessitate new or improved tools with high accuracy and efficiency. Of various tools, small RNA-mediated gene silencing platform plays an important and unique role in functional verification of plant genes and trait improvements. Artificial trans-acting small interfering RNA (atasiRNA) has emerged as a potent and specific gene silencing platform which overcomes major limitations of other small RNA silencing approaches including double-stranded RNA, artificial microRNA (amiRNA), and microRNA-induced gene silencing. To best utilize atasiRNA platform, it is essential to be able to test candidate atasiRNAs efficiently through either in vivo or in vitro validation approach. Very recently, a breakthrough has been made in developing a new method for in vitro screen of amiRNA candidates, named "epitope-tagged protein-based amiRNA screens". Such a screen can be readily employed to validate atasiRNA candidates and thus accelerate the deployment of atasiRNA technology. Therefore, atasiRNA as an emerging tool shall accelerate both plant biology study and crop genetic improvements including trait stacking.
Collapse
Affiliation(s)
- Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, 1-33 Agriculture Building, Columbia, MO, 65211, USA,
| |
Collapse
|
956
|
Burklew CE, Xie F, Ashlock J, Zhang B. Expression of microRNAs and their targets regulates floral development in tobacco (Nicotiana tabacum). Funct Integr Genomics 2014; 14:299-306. [PMID: 24448659 DOI: 10.1007/s10142-014-0359-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are an extensive class of endogenous posttranscriptional gene regulators that function to mediate gene expression by cleaving target mRNAs or by preventing protein translation. Because of their importance in mediating gene regulation, identifying and elucidating the function of miRNAs have been the primary focus of many researchers. Now that many miRNAs have been identified and assessed for their functionality, the next step is to create expression profiles for miRNAs, so that gene expression studies can be further enhanced with knowledge of the basal expression levels of miRNAs and their targets. In a previous study, 259 putative miRNAs were identified in tobacco, in which 11 of them were confirmed. The primary goal of this study was to further expand on that study and create an expression profile for nine miRNAs and their targets in a tissue-specific manner in tobacco. We chose to study miRNAs that largely play a role in floral development and nutrient stress response. The results of our study show that all tested miRNAs and their targets were expressed in a differential manner. The results of our study also show that out of the tested miRNAs and their targets, miR159, miR157, miR167, miR172, and superoxide dismutase were expressed the highest, suggesting that these genes may play a vital role in the growth and development of tobacco. Corrected expression of miRNAs and their targets regulates floral development.
Collapse
Affiliation(s)
- Caitlin E Burklew
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | | | | | | |
Collapse
|
957
|
Tang L, Zhang Z, Gu P, Chen M. Construction and analysis of microRNA‐transcription factor regulation network in arabidopsis. IET Syst Biol 2014; 8:76-86. [DOI: 10.1049/iet-syb.2013.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Lie Tang
- Department of BioinformaticsCollege of Life SciencesHangzhouZhejiangPeople's Republic China
- Department of Applied BioscienceCollege of Agronomy and BiotechnologyHangzhou310058People's Republic of China
| | - Zhao Zhang
- Department of BioinformaticsCollege of Life SciencesHangzhouZhejiangPeople's Republic China
| | - Peizhen Gu
- Department of Control Science and EngineeringZhejiang UniversityHangzhou310058People's Republic of China
| | - Ming Chen
- Department of BioinformaticsCollege of Life SciencesHangzhouZhejiangPeople's Republic China
| |
Collapse
|
958
|
Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotechnol 2014; 174:93-115. [PMID: 24869742 DOI: 10.1007/s12010-014-0914-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/09/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNAs (18-24 nucleotides) which regulate gene expression at posttranscriptional level either by degrading the target mRNA (plants) or by blocking the protein translation through binding with 3' UTR of the target mRNA (animals). Though miRNAs are known to play key roles in animal development, miRNAs that are involved in plant developmental timing, cell proliferation, and several other physiological functions need to be investigated. In addition, plant miRNAs have been shown to be involved in various biotic (bacterial and viral pathogenesis) and abiotic stress responses such as oxidative, mineral nutrient deficiency, drought, salinity, temperature, cold (chilling), and other abiotic stress. miRNA expression profiling reveals that miRNAs which are involved in the progression of plant growth and development are differentially expressed during abiotic stress responses. The high-throughout techniques can provide genome-wide identification of stress-associated miRNAs under various abiotic stresses in plants. Various web-based and non-web-based computational tools facilitate in the identification and characterization of biotic/abiotic stress associated miRNAs and their target genes. In the future, miRNA-mediated RNA interference (RNAi) approach might help in developing transgenic crop plants for better crop improvement by conferring resistance against biotic (pathogens) as well as abiotic stress responses.
Collapse
|
959
|
Han J, Xie H, Sun Q, Wang J, Lu M, Wang W, Guo E, Pan J. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica). Gene 2014; 546:367-77. [PMID: 24862217 DOI: 10.1016/j.gene.2014.05.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method.
Collapse
Affiliation(s)
- Jun Han
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Hao Xie
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qingpeng Sun
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi 046011, China
| | - Min Lu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Weixiang Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Erhu Guo
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi 046011, China
| | - Jinbao Pan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
960
|
Connecting the dots of RNA-directed DNA methylation in Arabidopsis thaliana. Chromosome Res 2014; 22:225-40. [PMID: 24846724 DOI: 10.1007/s10577-014-9425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Noncoding RNAs are the rising stars of genome regulation and are crucial to an organism's metabolism, development, and defense. One of their most notable functions is its ability to direct epigenetic modifications through small RNA molecules to specific genomic regions, ensuring transcriptional regulation, proper genome organization, and maintenance of genome integrity. Here, we review the current knowledge of the spatial organization of the Arabidopsis thaliana RNA-directed DNA methylation pathway within the cell nucleus, which, while known to be essential for the proper establishment of epigenetic modifications, remains poorly understood. We will also discuss possible future cytological approaches that have the potential of unveiling functional insights into how small RNA-directed epigenetics is regulated through the spatiotemporal regulation of its major components within the cell.
Collapse
|
961
|
Sun F, Guo G, Du J, Guo W, Peng H, Ni Z, Sun Q, Yao Y. Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2014; 14:142. [PMID: 24885911 PMCID: PMC4048363 DOI: 10.1186/1471-2229-14-142] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/19/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, non-coding RNAs playing essential roles in plant growth, development, and stress responses. Sequencing of small RNAs is a starting point for understanding their number, diversity, expression and possible roles in plants. RESULTS In this study, we conducted a genome-wide survey of wheat miRNAs from 11 tissues, characterizing a total of 323 novel miRNAs belonging to 276 families in wheat. A miRNA conservation analysis identified 191 wheat-specific miRNAs, 2 monocot-specific miRNAs, and 30 wheat-specific variants from 9 highly conserved miRNA families. To understand possible roles of wheat miRNAs, we determined 524 potential targets for 124 miRNA families through degradome sequencing, and cleavage of a subset of them was validated via 5' RACE. Based on the genome-wide identification and characterization of miRNAs and their associated target genes, we further identified 64 miRNAs preferentially expressing in developing or germinating grains, which could play important roles in grain development. CONCLUSION We discovered 323 wheat novel miRNAs and 524 target genes for 124 miRNA families in a genome-wide level, and our data will serve as a foundation for future research into the functional roles of miRNAs in wheat.
Collapse
Affiliation(s)
- Fenglong Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Guanghui Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Weiwei Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
962
|
The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-like MADS-box gene as a new miRNA target. PLoS One 2014; 9:e97839. [PMID: 24832004 PMCID: PMC4022656 DOI: 10.1371/journal.pone.0097839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/25/2014] [Indexed: 01/08/2023] Open
Abstract
Plant microRNAs (miRNAs) are small, regulatory non-coding RNAs involved in a wide range of biological processes, from organ development to response to stimuli. In recent years, an increasing number of studies on model plant species have highlighted the evolutionary conservation of a high number of miRNA families and the existence of taxon-specific ones. However, few studies have examined miRNAs in non-model species such as orchids, which are characterized by highly diversified floral structures and pollination strategies. Therefore, we analysed a small RNA library of inflorescence tissue of the Mediterranean orchid Orchis italica to increase the knowledge on miRNAs in a non-model plant species. The high-throughput sequencing and analysis of a small RNA library of inflorescence of O. italica revealed 23 conserved and 161 putative novel miRNA families. Among the putative miRNA targets, experimental validation demonstrated that a DEF-like MADS-box transcript is cleaved by the homolog of miR5179 of O. italica. The presence of conserved miRNA families in the inflorescence of O. italica indicates that the basic developmental flower regulatory mechanisms mediated by miRNAs are maintained through evolution. Because, according to the "orchid code" theory, DEF-like genes exert a key function in the diversification of tepals and lip, the cleavage-mediated inhibitory activity of miR5179 on a OitaDEF-like transcript suggests that, in orchids, miRNAs play an important role in the diversification of the perianth organs.
Collapse
|
963
|
Srivastava PK, Moturu TR, Pandey P, Baldwin IT, Pandey SP. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics 2014; 15:348. [PMID: 24885295 PMCID: PMC4035075 DOI: 10.1186/1471-2164-15-348] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making the high-throughput target identification a main limiting factor in defining their function. In plants, several tools have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis. Nor, these have not been evaluated for their suitability for high-throughput target prediction at genome level. RESULTS We evaluated the performance of 11 computational tools in identifying genome-wide targets in Arabidopsis and other plants with procedures that optimized score-cutoffs for estimating targets. Targetfinder was most efficient [89% 'precision' (accuracy of prediction), 97% 'recall' (sensitivity)] in predicting 'true-positive' targets in Arabidopsis miRNA-mRNA interactions. In contrast, only 46% of true positive interactions from non-Arabidopsis species were detected, indicating low 'recall' values. Score optimizations increased the 'recall' to only 70% (corresponding 'precision': 65%) for datasets of true miRNA-mRNA interactions in species other than Arabidopsis. Combining the results of Targetfinder and psRNATarget delivers high true positive coverage, whereas the intersection of psRNATarget and Tapirhybrid outputs deliver highly 'precise' predictions. The large number of 'false negative' predictions delivered from non-Arabidopsis datasets by all the available tools indicate the diversity in miRNAs-mRNA interaction features between Arabidopsis and other species. A subset of miRNA-mRNA interactions differed significantly for features in seed regions as well as the total number of matches/mismatches. CONCLUSION Although, many plant miRNA target prediction tools may be optimized to predict targets with high specificity in Arabidopsis, such optimized thresholds may not be suitable for many targets in non-Arabidopsis species. More importantly, non-conventional features of miRNA-mRNA interaction may exist in plants indicating alternate mode of miRNA target recognition. Incorporation of these divergent features would enable next-generation of algorithms to better identify target interactions.
Collapse
Affiliation(s)
- Prashant K Srivastava
- />Department of Biological Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur Campus, Mohanpur, 741252 West Bengal India
- />Integrative Genomics and Medicine, MRC clinical sciences, Imperial College, London, UK
| | - Taraka Ramji Moturu
- />Department of Biological Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur Campus, Mohanpur, 741252 West Bengal India
| | - Priyanka Pandey
- />National Institute of Biomedical Genomics, Kalyani, 741251 West Bengal India
| | - Ian T Baldwin
- />Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany
| | - Shree P Pandey
- />Department of Biological Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur Campus, Mohanpur, 741252 West Bengal India
| |
Collapse
|
964
|
Lu YB, Yang LT, Qi YP, Li Y, Li Z, Chen YB, Huang ZR, Chen LS. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC PLANT BIOLOGY 2014; 14:123. [PMID: 24885979 PMCID: PMC4041134 DOI: 10.1186/1471-2229-14-123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/30/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Boron (B)-deficiency is a widespread problem in many crops, including Citrus. MicroRNAs (miRNAs) play important roles in nutrient deficiencies. However, little is known on B-deficiency-responsive miRNAs in plants. In this study, we first identified miRNAs and their expression pattern in B-deficient Citrus sinensis roots by Illumina sequencing in order to identify miRNAs that might be involved in the tolerance of plants to B-deficiency. RESULTS We isolated 52 (40 known and 12 novel) up-regulated and 82 (72 known and 10 novel) down-regulated miRNAs from B-deficient roots, demonstrating remarkable metabolic flexibility of roots, which might contribute to the tolerance of plants to B-deficiency. A model for the possible roles of miRNAs in the tolerance of roots to B-deficiency was proposed. miRNAs might regulate the adaptations of roots to B-deficiency through following several aspects: (a) inactivating reactive oxygen species (ROS) signaling and scavenging through up-regulating miR474 and down-regulating miR782 and miR843; (b) increasing lateral root number by lowering miR5023 expression and maintaining a certain phenotype favorable for B-deficiency-tolerance by increasing miR394 expression; (c) enhancing cell transport by decreasing the transcripts of miR830, miR5266 and miR3465; (d) improving osmoprotection (miR474) and regulating other metabolic reactions (miR5023 and miR821). Other miRNAs such as miR472 and miR2118 in roots increased in response to B-deficiency, thus decreasing the expression of their target genes, which are involved in disease resistance, and hence, the disease resistance of roots. CONCLUSIONS Our work demonstrates the possible roles of miRNAs and related mechanisms in the response of plant roots to B-deficiency.
Collapse
Affiliation(s)
- Yi-Bin Lu
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Yan Li
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong Li
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan-Bin Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeng-Rong Huang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
965
|
Liu YX, Wang M, Wang XJ. Endogenous small RNA clusters in plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:64-71. [PMID: 24769055 PMCID: PMC4411336 DOI: 10.1016/j.gpb.2014.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 11/25/2022]
Abstract
In plants, small RNAs (sRNAs) usually refer to non-coding RNAs (ncRNAs) with lengths of 20–24 nucleotides. sRNAs are involved in the regulation of many essential processes related to plant development and environmental responses. sRNAs in plants are mainly grouped into microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the latter can be further classified into trans-acting siRNAs (ta-siRNAs), repeat-associated siRNAs (ra-siRNAs), natural anti-sense siRNAs (nat-siRNAs), etc. Many sRNAs exhibit a clustered distribution pattern in the genome. Here, we summarize the features and functions of cluster-distributed sRNAs, aimed to not only provide a thorough picture of sRNA clusters (SRCs) in plants, but also shed light on the identification of new classes of functional sRNAs.
Collapse
Affiliation(s)
- Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Jie Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
966
|
Pasini L, Bergonti M, Fracasso A, Marocco A, Amaducci S. Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:537-548. [PMID: 24655390 DOI: 10.1016/j.jplph.2013.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Sorghum is a C4 plant adapted to semi-arid environments, and characterized by high water-use efficiency. To better understand the molecular and physiological basis of drought response the sorghum genotype IS19453, selected as a drought tolerant line during field trials, was evaluated in a "dry-down" experiment under controlled conditions. The incoming stress was monitored by determining the water potential available for 4-leaf-old plants. Control plants were maintained at approximately 2.5 pF, while water stressed plants were sampled at 3.12, 3.65 and 4.14 pF. Transcriptome analysis was monitored using a high density microarray containing all available sorghum TC sequences. Drought affected gene expression at 4.14 pF; 1205 genes resulted up-regulated. Most of the differentially expressed genes were involved in regulation of transcription (bZIPs, MYBs, HOXs), signal transduction (phosphoesterases, kinases, phosphatases), carbon metabolism (NADP-ME), detoxification (CYPs, GST, AKRs), osmoprotection mechanisms (P5CS) and stability of protein membranes (DHN1, LEA, HSPs). Several of them could be located in stay green QTLs. Eight were selected and validated by qRT-PCR. A dedicated miRNA microarray allowed the identification of four families of miRNAs up-regulated in the earlier phase of stress, while one family was down-regulated. The selected drought related genes could be used to screen for potential drought tolerance in other sorghum genotypes.
Collapse
Affiliation(s)
- Luca Pasini
- Istituto di Agronomia, Genetica e Coltivazioni erbacee, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 20122 Piacenza, Italy
| | - Mauro Bergonti
- Istituto di Agronomia, Genetica e Coltivazioni erbacee, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 20122 Piacenza, Italy
| | - Alessandra Fracasso
- Istituto di Agronomia, Genetica e Coltivazioni erbacee, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 20122 Piacenza, Italy
| | - Adriano Marocco
- Istituto di Agronomia, Genetica e Coltivazioni erbacee, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 20122 Piacenza, Italy
| | - Stefano Amaducci
- Istituto di Agronomia, Genetica e Coltivazioni erbacee, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 20122 Piacenza, Italy.
| |
Collapse
|
967
|
Li C, Lu S. Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genomics 2014; 15:277. [PMID: 24725266 PMCID: PMC4023596 DOI: 10.1186/1471-2164-15-277] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 04/09/2014] [Indexed: 12/23/2022] Open
Abstract
Background MYB is the largest plant transcription factor gene family playing vital roles in plant growth and development. However, it has not been systematically studied in Salvia miltiorrhiza, an economically important medicinal plant. Results Here we report the genome-wide identification and characterization of 110 R2R3-MYBs, the largest subfamily of MYBs in S. miltiorrhiza. The MYB domain and other motifs of SmMYBs are largely conserved with Arabidopsis AtMYBs, whereas the divergence of SmMYBs and AtMYBs also exists, suggesting the conservation and diversity of plant MYBs. SmMYBs and AtMYBs may be classified into 37 subgroups, of which 31 include proteins from S. miltiorrhiza and Arabidopsis, whereas 6 are specific to a species, indicating that the majority of MYBs play conserved roles, while others may exhibit species-specialized functions. SmMYBs are differentially expressed in various tissues of S. miltiorrhiza. The expression profiles are largely consistent with known functions of their Arabidopsis counterparts. The expression of a subset of SmMYBs is regulated by microRNAs, such as miR159, miR319, miR828 and miR858. Based on functional conservation of MYBs in a subgroup, SmMYBs potentially involved in the biosynthesis of bioactive compounds were identified. Conclusions A total of 110 R2R3-MYBs were identified and analyzed. The results suggest the complexity of MYB-mediated regulatory networks in S. miltiorrhiza and provide a foundation for understanding the regulatory mechanism of SmMYBs.
Collapse
Affiliation(s)
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No,151, Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
968
|
Liu W, Yu W, Hou L, Wang X, Zheng F, Wang W, Liang D, Yang H, Jin Y, Xie X. Analysis of miRNAs and their targets during adventitious shoot organogenesis of Acacia crassicarpa. PLoS One 2014; 9:e93438. [PMID: 24718555 PMCID: PMC3981707 DOI: 10.1371/journal.pone.0093438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/03/2014] [Indexed: 12/11/2022] Open
Abstract
Organogenesis is an important process for plant regeneration by tissue or cell mass differentiation to regenerate a complete plant. MicroRNAs (miRNAs) play an essential role in regulating plant development by mediating target genes at transcriptional and post-transcriptional levels, but the diversity of miRNAs and their potential roles in organogenesis of Acacia crassicarpa have rarely been investigated. In this study, approximately 10 million sequence reads were obtained from a small RNA library, from which 189 conserved miRNAs from 57 miRNA families, and 7 novel miRNAs from 5 families, were identified from A. crassicarpa organogenetic tissues. Target prediction for these miRNAs yielded 237 potentially unique genes, of which 207 received target Gene Ontology annotations. On the basis of a bioinformatic analysis, one novel and 13 conserved miRNAs were selected to investigate their possible roles in A. crassicarpa organogenesis by qRT-PCR. The stage-specific expression patterns of the miRNAs provided information on their possible regulatory functions, including shoot bud formation, modulated function after transfer of the culture to light, and regulatory roles during induction of organogenesis. This study is the first to investigate miRNAs associated with A. crassicarpa organogenesis. The results provide a foundation for further characterization of miRNA expression profiles and roles in the regulation of diverse physiological pathways during adventitious shoot organogenesis of A. crassicarpa.
Collapse
Affiliation(s)
- Weina Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Wangning Yu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Lingyu Hou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Xiaoyu Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Fei Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Weixuan Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Di Liang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Hailun Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yi Jin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- * E-mail: (XX); (YJ)
| | - Xiangming Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- * E-mail: (XX); (YJ)
| |
Collapse
|
969
|
Ma X, Shao C, Jin Y, Wang H, Meng Y. Long non-coding RNAs: a novel endogenous source for the generation of Dicer-like 1-dependent small RNAs in Arabidopsis thaliana. RNA Biol 2014; 11:373-90. [PMID: 24717238 DOI: 10.4161/rna.28725] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The biological relevance of long non-coding RNAs (lncRNAs) is emerging. Whether the lncRNAs could form structured precursors for small RNAs (sRNAs) production remains elusive. Here, 172 713 DCL1 (Dicer-like 1)-dependent sRNAs were identified in Arabidopsis. Except for the sRNAs mapped onto the microRNA precursors, the remaining ones led us to investigate their originations. Intriguingly, 65 006 sRNAs found their loci on 5891 lncRNAs. These sRNAs were sent to AGO (Argonaute) enrichment analysis. As a result, 1264 sRNAs were enriched in AGO1, which were then subjected to target prediction. Based on degradome sequencing data, 109 transcripts were validated to be targeted by 96 sRNAs. Besides, 44 lncRNAs were targeted by 23 sRNAs. To further support the origination of the DCL1-dependent sRNAs from lncRNAs, we searched for the degradome-based cleavage signals at either ends of the sRNA loci, which were supposed to be produced during DCL1-mediated processing of the long-stem structures. As a result, 63 612 loci were supported by degradome signatures. Among these loci, 6606 reside within the dsRNA-seq (double-stranded RNA sequencing) read-covered regions of 100 nt or longer. These regions were subjected to secondary structure prediction. And, 43 regions were identified to be capable of forming highly complementary long-stem structures. We proposed that these local long-stem structures could be recognized by DCL1 for cropping, thus serving as the sRNA precursors. We hope that our study could inspire more research efforts to study on the biological roles of the lncRNAs in plants.
Collapse
Affiliation(s)
- Xiaoxia Ma
- College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou, P.R. China
| | - Chaogang Shao
- College of Life Sciences; Huzhou Teachers College; Huzhou, P.R. China
| | - Yongfeng Jin
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou, P.R. China
| | - Huizhong Wang
- College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou, P.R. China
| | - Yijun Meng
- College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou, P.R. China
| |
Collapse
|
970
|
Yan Y, Wang H, Hamera S, Chen X, Fang R. miR444a has multiple functions in the rice nitrate-signaling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:44-55. [PMID: 24460537 DOI: 10.1111/tpj.12446] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 05/02/2023]
Abstract
Nitrate (NO3-) is a key signaling molecule in plant metabolism and development, in addition to its role as a nutrient. It has been shown previously in Arabidopsis that ANR1, a MADS-box transcription factor, is a major component in the NO3--signaling pathway that triggers lateral root growth and that miR444, which is specific to monocots, targets four genes that are homologous to ANR1 in rice. Here, we show that miR444a plays multiple roles in the rice NO3--signaling pathway - not only in root development, but also involving nitrate accumulation and even Pi -starvation responses. miR444a overexpression resulted in reduced rice lateral root elongation, but promoted rice primary and adventitious root growth, in a nitrate-dependent manner. In addition, overexpression of miR444a improved nitrate accumulation and expression of nitrate transporter genes under high nitrate concentration conditions, but reduced the remobilization of nitrate from old leaves to young leaves thus affecting the plant's ability to adapt to nitrogen-limitating conditions. Intriguingly, we found that Pi starvation strongly induced miR444 accumulation in rice roots and that overexpression of miR444a altered Pi -starvation-induced root architecture and enhanced Pi accumulation and expression of three Pi transporter genes. We further provide evidence that miR444a is involved in the interaction between the NO3--signaling and Pi -signaling pathways in rice. Taken together, our observations demonstrated that miR444a plays multiple roles in the rice NO3--signaling pathway in nitrate-dependent root growth, nitrate accumulation and phosphate-starvation responses.
Collapse
Affiliation(s)
- Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; National Plant Gene Research Center, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
971
|
Liu B, Dou W, Ding TB, Zhong R, Liao CY, Xia WK, Wang JJ. An analysis of the small RNA transcriptome of four developmental stages of the citrus red mite (Panonychus citri). INSECT MOLECULAR BIOLOGY 2014; 23:216-229. [PMID: 24330037 DOI: 10.1111/imb.12075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The citrus red mite (Panonychus citri) can feed on more than 112 plant species around the world. Endogenous small RNAs (sRNAs) have proved to be important components of gene regulation in many eukaryotes. Recently, many sRNAs have been shown to be involved in various biological processes, such as development in many animals, including insects; however, to date, no sRNAs have been reported in the citrus red mite. Using Illumina sequencing, several categories of sRNAs were identified, including 594 known microRNAs (miRNAs) grouped into 206 families and 31 novel miRNAs in the four developmental stages of citrus red mite. In addition, according to bioinformatics analysis and S-Poly(T) miRNA assays, the expression level of many miRNAs varied among the developmental stages. Furthermore, the prediction of miRNAs target genes and their functional annotation indicated that miRNAs are involved in the regulation of multiple pathways in the citrus red mite. As the first report of the sRNA world in citrus red mite, the present study furthers our understanding of the roles played by sRNAs in the development of citrus red mite and the data may help to develop methods of controlling the pests in the field.
Collapse
Affiliation(s)
- B Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
972
|
Xie F, Stewart CN, Taki FA, He Q, Liu H, Zhang B. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:354-66. [PMID: 24283289 DOI: 10.1111/pbi.12142] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/22/2013] [Accepted: 10/03/2013] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are an important class of small regulatory RNAs. The goal of this study was to analyse stress-responsive miRNAs in switchgrass (Panicum virgatum), the emerging biofuel crop, to facilitate choosing gene targets for improving biomass and biofuel yield. After sequencing three small RNA libraries constructed from control, salt- and drought-treated switchgrass using Illumina sequencing technology, we identified 670 known miRNA families from a total of more than 50 million short reads. A total of 273 miRNAs were identified with precursors: 126 conserved miRNAs and 147 novel miRNAs. Of them, 265 miRNAs were found to have their opposite sequences (miRNA*) with 2-nt overhang on the 3' end. Of them, 194 were detected in switchgrass transcriptome sequences generated from 31 high-throughput RNA sequencing (RNA-Seq) data sets in NCBI. Many miRNAs were differentially or uniquely expressed during salinity or drought stress treatment. We also discovered 11 miRNA clusters containing 29 miRNAs. These identified miRNAs potentially targeted 28549 genes with a various function, including transcription factors, stress-response proteins and cellulose biosynthesis-related proteins. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the identified miRNAs and their targets were classified to 3779 GO terms including 1534 molecular functions, 1851 biological processes and 394 cellular components and were enriched to 147 KEGG pathways. Interestingly, 195 miRNA families and 450 targets were involved in the biosynthesis pathways of carbon, glucose, starch, fatty acid and lignin and in xylem formation, which could aid in designing next-generation switchgrass for biomass and biofuel.
Collapse
Affiliation(s)
- Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | | | |
Collapse
|
973
|
Gupta OP, Meena NL, Sharma I, Sharma P. Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol Biol Rep 2014; 41:4623-9. [PMID: 24682922 DOI: 10.1007/s11033-014-3333-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/14/2014] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) are tiny non-coding regulatory molecules that modulate plant's gene expression either by cleaving or repressing their mRNA targets. To unravel the plant actions in response to various environmental factors, identification of stress related miRNAs is essential. For understanding the regulatory behaviour of various abiotic stresses and miRNAs in wheat genotype C-306, we examined expression profile of selected conserved miRNAs viz. miR159, miR164, miR168, miR172, miR393, miR397, miR529 and miR1029 tangled in adapting osmotic, salt and cold stresses. The investigation revealed that two miRNAs (miR168, miR397) were down-regulated and miR172 was up-regulated under all the stress conditions. However, miR164 and miR1029 were up-regulated under cold and osmotic stresses in contrast to salt stress. miR529 responded to cold alone and does not change under osmotic and salt stress. miR393 showed up-regulation under osmotic and salt, and down-regulation under cold stress indicating auxin based differential cold response. Variation in expression level of studied miRNAs in presence of target genes delivers a likely elucidation of miRNAs based abiotic stress regulation. In addition, we reported new stress induced miRNAs Ta-miR855 using computational approach. Results revealed first documentation that miR855 is regulated by salinity stress in wheat. These findings indicate that diverse miRNAs were responsive to osmotic, salt and cold stress and could function in wheat response to abiotic stresses.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Quality and Basic Sciences Division, Directorate of Wheat Research, Karnal, 132001, Haryana, India
| | | | | | | |
Collapse
|
974
|
Wang TZ, Zhang WH. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2014; 1069:67-80. [PMID: 23996309 DOI: 10.1007/978-1-62703-613-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively regulating gene expression post-transcriptionally. Medicago truncatula has been used as a model plant to study functional genomics of legume plants. It has also been widely used to functionally study miRNAs. Identification of miRNAs at the whole-genome level is essential for functional characterization of miRNAs in plants. High-throughput sequencing is a powerful technology to identify miRNAs. In this chapter, the methods used for construction of a small RNA library and high-throughput sequencing involving total RNA isolation, small RNA purification, adapter ligation, reverse transcription, PCR amplification, and Solexa sequencing are described. Bioinformatics and analysis of differential expression of miRNAs including primary disposal, miRNA identification, target prediction, and expression analysis are also discussed. These methodologies associated with identification and functional characterization of miRNAs may provide useful tools for readers to study miRNAs in plants in general and Medicago truncatula in particular.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
975
|
A genome-wide perspective of miRNAome in response to high temperature, salinity and drought stresses in Brassica juncea (Czern) L. PLoS One 2014; 9:e92456. [PMID: 24671003 PMCID: PMC3966790 DOI: 10.1371/journal.pone.0092456] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/21/2014] [Indexed: 11/23/2022] Open
Abstract
Micro RNAs (miRNAs) are involved in diverse biological processes including adaptive response towards abiotic stresses. To unravel small RNAs and more specifically miRNAs that can potentially regulate determinants of abiotic stress tolerance, next generation sequencing of B. juncea seedlings subjected to high temperature, high salt and drought conditions was carried out. With the help of UEA sRNA workbench software package, 51 conserved miRNAs belonging to 30 miRNA families were identified. As there was limited genomic information available for B. juncea, we generated and assembled its genome sequence at a low coverage. Using the generated sequence and other publically available Brassica genomic/transcriptomic resources as mapping reference, 126 novel (not reported in any plant species) were discovered for the first time in B. juncea. Further analysis also revealed existence of 32 and 37 star sequences for conserved and novel miRNAs, respectively. The expression of selected conserved and novel miRNAs under conditions of different abiotic stresses was revalidated through universal TaqMan based real time PCR. Putative targets of identified conserved and novel miRNAs were predicted in B. rapa to gain insights into functional roles manifested by B. juncea miRNAs. Furthermore, SPL2-like, ARF17-like and a NAC domain containing protein were experimentally validated as targets of miR156, miR160 and miR164 respectively. Investigation of gene ontologies linked with targets of known and novel miRNAs forecasted their involvement in various biological functions.
Collapse
|
976
|
Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Sun MZ, Duan XB, Zhu YM. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One 2014; 9:e91357. [PMID: 24667308 PMCID: PMC3965387 DOI: 10.1371/journal.pone.0091357] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
The microRNA319 (miR319) family is conserved among diverse plant species. In rice (Oryza sativa L.), the miR319 gene family is comprised of two members, Osa-miR319a and Osa-miR319b. We found that overexpressing Osa-miR319b in rice resulted in wider leaf blades and delayed development. Here, we focused on the biological function and potential molecular mechanism of the Osa-miR319b gene in response to cold stress in rice. The expression of Osa-miR319b was down-regulated by cold stress, and the overexpression of Osa-miR319b led to an enhanced tolerance to cold stress, as evidenced by higher survival rates and proline content. Also, the expression of a handful of cold stress responsive genes, such as DREB1A/B/C, DREB2A, TPP1/2, was increased in Osa-miR319b transgenic lines. Furthermore, we demonstrated the nuclear localization of the transcription factors, OsPCF6 and OsTCP21, which may be Osa-miR319b-targeted genes. We also showed that OsPCF6 and OsTCP21 expression was largely induced by cold stress, and the degree of induction was obviously repressed in plants overexpressing Osa-miR319b. As expected, the down-regulation of OsPCF6 and OsTCP21 resulted in enhanced tolerance to cold stress, partially by modifying active oxygen scavenging. Taken together, our findings suggest that Osa-miR319b plays an important role in plant response to cold stress, maybe by targeting OsPCF6 and OsTCP21.
Collapse
Affiliation(s)
- Sun-ting Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Xiao-li Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Yoichiro Hoshino
- Field Science Center for Northern Biosphere, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Bei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Zhong-wen Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Ming-zhe Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Xiang-bo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Yan-ming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
- * E-mail:
| |
Collapse
|
977
|
Abstract
The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.
Collapse
Affiliation(s)
- Manoj K Rai
- a Department of Botany , Biotechnology Centre, Jai Narain Vyas University , Jodhpur , Rajasthan , India
| | - N S Shekhawat
- a Department of Botany , Biotechnology Centre, Jai Narain Vyas University , Jodhpur , Rajasthan , India
| |
Collapse
|
978
|
Luan M, Xu M, Lu Y, Zhang Q, Zhang L, Zhang C, Fan Y, Lang Z, Wang L. Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. PLoS One 2014; 9:e91369. [PMID: 24633051 PMCID: PMC3954700 DOI: 10.1371/journal.pone.0091369] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/08/2014] [Indexed: 11/18/2022] Open
Abstract
Previous studies have identified miR169/NF-YA modules are important regulators of plant development and stress responses. Currently, reported genome sequence data offers an opportunity for global characterization of miR169 and NF-YA genes, which may provide insights into the molecular mechanisms of the miR169/NF-YA modules in maize. In our study, fourteen NF-YA transcription factors with conserved domains were identified based on maize genome loci. The miR169 gene family has 18 members that generate 10 mature products, and 8 of these mature miR169 members could target 7 of 14 ZmNF-YA genes in maize. The seven ZmNF-YA proteins were localized to the nucleus while lacked transcriptional activity. We investigated the expression patterns of the zma-miR169 members and their targeted ZmNF-YA genes in maize roots treated by drought stress (polyethylene glycol, PEG), hormone stress (abscisic acid, ABA), and salt stress (NaCl). The zma-miR169 family members were downregulated in short term (0∼48 h) and generally upregulated over the long term (15 days) in response to the three abiotic stress conditions. Most of the targeted ZmNF-YA genes exhibited a reverse correlation with zma-miR169 gene expression over both the short term and long term. Maize root elongation was promoted by PEG and ABA but repressed by NaCl over the long term. Apparently, ZmNF-YA14 expression perfectly matched the zma-miR169 expression and corresponded to root growth reversely.
Collapse
Affiliation(s)
- Mingda Luan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China; Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miaoyun Xu
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunming Lu
- Shenzhen Nongke Group CO., LTD, Shenzhen, China
| | - Qiuxue Zhang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunliu Fan
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihong Lang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China; Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China; Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
979
|
Li J, Reichel M, Millar AA. Determinants beyond both complementarity and cleavage govern microR159 efficacy in Arabidopsis. PLoS Genet 2014; 10:e1004232. [PMID: 24626050 PMCID: PMC3953016 DOI: 10.1371/journal.pgen.1004232] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 01/27/2014] [Indexed: 12/20/2022] Open
Abstract
Plant microRNAs (miRNAs) are critical regulators of gene expression, however little attention has been given to the principles governing miRNA silencing efficacy. Here, we utilize the highly conserved Arabidopsis miR159-MYB33/MYB65 regulatory module to explore these principles. Firstly, we show that perfect central complementarity is not required for strong silencing. Artificial miR159 variants with two cleavage site mismatches can potently silence MYB33/MYB65, fully complementing a loss-of-function mir159 mutant. Moreover, these miR159 variants can cleave MYB33/MYB65 mRNA, however cleavage appears attenuated, as the ratio of cleavage products to full length transcripts decreases with increasing central mismatches. Nevertheless, high levels of un-cleaved MYB33/MYB65 transcripts are strongly silenced by a non-cleavage mechanism. Contrary to MIR159a variants that strongly silenced endogenous MYB33/MYB65, artificial MYB33 variants with central mismatches to miR159 are not efficiently silenced. We demonstrate that differences in the miRNA:target mRNA stoichiometry underlie this paradox. Increasing miR159 abundance in the MYB33 variants results in a strong silencing outcome, whereas increasing MYB33 transcript levels in the MIR159a variants results in a poor silencing outcome. Finally, we identify highly conserved nucleotides that flank the miR159 binding site in MYB33, and demonstrate that they are critical for efficient silencing, as mutation of these flanking nucleotides attenuates silencing at a level similar to that of central mismatches. This implies that the context in which the miRNA binding site resides is a key determinant in controlling the degree of silencing and that a miRNA "target site" encompasses sequences that extend beyond the miRNA binding site. In conclusion, our findings dismiss the notion that miRNA:target complementarity, underpinned by central matches, is the sole dictator of the silencing outcome.
Collapse
Affiliation(s)
- Junyan Li
- Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Marlene Reichel
- Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Anthony A. Millar
- Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
980
|
Chi M, Bhagwat B, Lane WD, Tang G, Su Y, Sun R, Oomah BD, Wiersma PA, Xiang Y. Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC PLANT BIOLOGY 2014; 14:62. [PMID: 24618103 PMCID: PMC4007649 DOI: 10.1186/1471-2229-14-62] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/04/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polyphenol oxidase (PPO), often encoded by a multi-gene family, causes oxidative browning, a significant problem in many food products. Low-browning potatoes were produced previously through suppression of PPO gene expression, but the contribution of individual PPO gene isoform to the oxidative browning process was unknown. Here we investigated the contributions of different PPO genes to total PPO protein activity, and the correlations between PPO protein level, PPO activity and tuber tissue browning potential by suppression of all previously characterized potato PPO genes, both individually and in combination using artificial microRNAs (amiRNAs) technology. RESULTS Survey of the potato genome database revealed 9 PPO-like gene models, named StuPPO1 to StuPPO9 in this report. StuPPO1, StuPPO2, StuPPO3 and StuPPO4 are allelic to the characterized POTP1/P2, POT32, POT33 and POT72, respectively. Fewer ESTs were found to support the transcriptions of StuPPO5 to StuPPO8. StuPPO9 related ESTs were expressed at significant higher levels in pathogen-infected potato tissues. A series of browning phenotypes were obtained by suppressing StuPPO1 to StuPPO4 genes alone and in combination. Down-regulation of one or several of the PPO genes did not usually cause up-regulation of the other PPO genes in the transgenic potato tubers, but resulted in reduced PPO protein levels. The different PPO genes did not contribute equally to the total PPO protein content in the tuber tissues, with StuPPO2 accounting for ~ 55% as the major contributor, followed by StuPPO1, ~ 25-30% and StuPPO3 and StuPPO4 together with less than 15%. Strongly positive correlations between PPO protein level, PPO activity and browning potential were demonstrated in our analysis. Low PPO activity and low-browning potatoes were produced by simultaneous down-regulation of StuPPO2 to StuPPO4, but the greatest reduction occurred when StuPPO1 to StuPPO4 were all suppressed. CONCLUSION StuPPO1 to StuPPO4 genes contributed to browning reactions in tuber tissues but their effect was not equal. Different PPO genes may be regulated independently reflecting their diversified functions. Our results show that amiRNAs can be used to suppress closely related members of highly conserved multi-gene family. This approach also suggests a new strategy for breeding low-browning crops using small DNA inserts.
Collapse
Affiliation(s)
- Ming Chi
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Basdeo Bhagwat
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W David Lane
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Yinquan Su
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Runcang Sun
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - B Dave Oomah
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Paul A Wiersma
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Yu Xiang
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| |
Collapse
|
981
|
Chao YT, Su CL, Jean WH, Chen WC, Chang YCA, Shih MC. Identification and characterization of the microRNA transcriptome of a moth orchid Phalaenopsis aphrodite. PLANT MOLECULAR BIOLOGY 2014; 84:529-48. [PMID: 24173913 PMCID: PMC3920020 DOI: 10.1007/s11103-013-0150-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/24/2013] [Indexed: 05/21/2023]
Abstract
Orchids display unique phenotypes, functional characteristics and ecological adaptations that are not found in model plants. In this study, we aimed to characterize the microRNA (miRNA) transcriptome and identify species- and tissue-specific miRNAs in Phalaenopsis aphrodite. After data filtering and cleanup, a total of 59,387,374 reads, representing 1,649,996 unique reads, were obtained from four P. aphrodite small RNA libraries. A systematic bioinformatics analysis pipeline was developed that can be used for miRNA and precursor mining, and target gene prediction in non-model plants. A total of 3,251 unique reads for 181 known plant miRNAs (belonging to 88 miRNA families), 23 new miRNAs and 91 precursors were identified. All the miRNA star sequences (miRNA*), the complementary strands of miRNA that from miRNA/miRNA* duplexes, of the predicted new miRNAs were detected in our small RNA libraries, providing additional evidence for their existence as new miRNAs in P. aphrodite. Furthermore, 240 potential miRNA-targets that appear to be involved in many different biological activities and molecular functions, especially transcription factors, were identified, suggesting that miRNAs can impact multiple processes in P. aphrodite. We also verified the cleavage sites for six targets using RNA ligase-mediated rapid amplification of 5' ends assay. The results provide valuable information about the composition, expression and function of miRNA in P. aphrodite, and will aid functional genomics studies of orchids.
Collapse
Affiliation(s)
- Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Chun-Lin Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Wen-Han Jean
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Wan-Chieh Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Yao-Chien Alex Chang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 10617 Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
982
|
Xu W, Meng Y, Wise RP. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. THE NEW PHYTOLOGIST 2014; 201:1396-1412. [PMID: 24246006 DOI: 10.1111/nph.12598] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/08/2013] [Indexed: 05/07/2023]
Abstract
• Barley (Hordeum vulgare L.) Mildew resistance locus a (Mla) confers allele-specific interactions with natural variants of the ascomycete fungus Blumeria graminis f. sp. hordei (Bgh), the causal agent of powdery mildew disease. Significant reprogramming of Mla-mediated gene expression occurs upon infection by this obligate biotrophic pathogen. • We utilized a proteomics-based approach, combined with barley mla, required for Mla12 resistance1 (rar1), and restoration of Mla resistance1 (rom1) mutants, to identify components of Mla-directed signaling. • Loss-of-function mutations in Mla and Rar1 both resulted in the reduced accumulation of chloroplast copper/zinc superoxide dismutase 1 (HvSOD1), whereas loss of function in Rom1 re-established HvSOD1 levels. In addition, both Mla and Rom1 negatively regulated hvu-microRNA398 (hvu-miR398), and up-regulation of miR398 was coupled to reduced HvSOD1 expression. Barley stripe mosaic virus (BSMV)-mediated over-expression of both barley and Arabidopsis miR398 repressed accumulation of HvSOD1, and BSMV-induced gene silencing of HvSod1 impeded Mla-triggered H₂O₂ and hypersensitive reaction (HR) at barley-Bgh interaction sites. • These data indicate that Mla- and Rom1-regulated hvu-miR398 represses HvSOD1 accumulation, influencing effector-induced HR in response to the powdery mildew fungus.
Collapse
Affiliation(s)
- Weihui Xu
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
| | - Yan Meng
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
| | - Roger P Wise
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Iowa State University, Ames, IA, 50011-1020, USA
| |
Collapse
|
983
|
Jiang J, Lv M, Liang Y, Ma Z, Cao J. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis. BMC Genomics 2014; 15:146. [PMID: 24559317 PMCID: PMC3936892 DOI: 10.1186/1471-2164-15-146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/07/2014] [Indexed: 11/21/2022] Open
Abstract
Background microRNAs (miRNAs) are endogenous, noncoding, small RNAs that have essential regulatory functions in plant growth, development, and stress response processes. However, limited information is available about their functions in sexual reproduction of flowering plants. Pollen development is an important process in the life cycle of a flowering plant and is a major factor that affects the yield and quality of crop seeds. Results This study aims to identify miRNAs involved in pollen development. Two independent small RNA libraries were constructed from the flower buds of the male sterile line (Bcajh97-01A) and male fertile line (Bcajh97-01B) of Brassica campestris ssp. chinensis. The libraries were subjected to high-throughput sequencing by using the Illumina Solexa system. Eight novel miRNAs on the other arm of known pre-miRNAs, 54 new conserved miRNAs, and 8 novel miRNA members were identified. Twenty-five pairs of novel miRNA/miRNA* were found. Among all the identified miRNAs, 18 differentially expressed miRNAs with over two-fold change between flower buds of male sterile line (Bcajh97-01A) and male fertile line (Bcajh97-01B) were identified. qRT-PCR analysis revealed that most of the differentially expressed miRNAs were preferentially expressed in flower buds of the male fertile line (Bcajh97-01B). Degradome analysis showed that a total of 15 genes were predicted to be the targets of seven miRNAs. Conclusions Our findings provide an overview of potential miRNAs involved in pollen development and interactions between miRNAs and their corresponding targets, which may provide important clues on the function of miRNAs in pollen development.
Collapse
Affiliation(s)
| | | | | | | | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
984
|
Glazińska P, Wojciechowski W, Wilmowicz E, Zienkiewicz A, Frankowski K, Kopcewicz J. The involvement of InMIR167 in the regulation of expression of its target gene InARF8, and their participation in the vegetative and generative development of Ipomoea nil plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:225-34. [PMID: 24094462 DOI: 10.1016/j.jplph.2013.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 05/13/2023]
Abstract
The plant hormone auxin plays a critical role in regulating plant growth and development. Recent advances have been made that having improved our understanding of auxin response pathways, primarily by characterizing the genes encoding auxin response factors (ARFs) in Arabidopsis. In addition, the expression of some ARFs is regulated by microRNAs (miRNAs). In Arabidopsis thaliana, ARF6 and ARF8 are targeted by miR167, whereas ARF10, ARF16 and ARF17 are targeted by miR160. Nevertheless, little is known about any possible interactions between miRNAs and the auxin signaling pathway during plant development. In this study, we isolated the miR167 target gene InARF8 cDNA from the cotyledons of the short day plant (SDP) Ipomoea nil (named also Pharbitis nil). Additionally, the In-miR167 precursor was identified from the I. nil EST database and analyses of InARF8 mRNA, In-pre-miR167 and mature miR167 accumulation in the plant's vegetative and generative organs were performed. The identified cDNA of InARF8 contains a miR167 complementary sequence and shows significant similarity to ARF8 cDNAs of other plant species. The predicted amino acid sequence of InARF8 includes all of the characteristic domains for ARF family transcription factors (B3 DNA-binding domain, AUX/IAA-CTD and a glutamine-rich region). Quantitative RT-PCR reactions and in situ hybridization indicated that InARF8 was expressed primarily in the shoot apices, leaf primordia and hypocotyls of I. nil seedlings, as well as in flower pistils and petals. The InARF8 transcript level increased consistently during the entire period of pistil development, whereas in the stamens, the greatest transcriptional activity occurred only during the intensive elongation phase. Additionally, an expression analysis of both the precursor In-pre-miR167 molecules identified and mature miRNA was performed. We observed that, in most of the organs examined, the InARF8 expression pattern was opposite to that of MIR167, indicating that the gene's activity was regulated by mRNA cleavage. Our findings suggested that InARF8 and InMIR167 participated in the development of young tissues, especially the shoot apices and flower elements. The main function of MIR167 appears to be to regulate InARF8 organ localization.
Collapse
Affiliation(s)
- Paulina Glazińska
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland.
| | - Waldemar Wojciechowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
| | - Agnieszka Zienkiewicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
| | - Kamil Frankowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland
| | - Jan Kopcewicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland
| |
Collapse
|
985
|
Geng M, Li H, Jin C, Liu Q, Chen C, Song W, Wang C. Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings. PLANTA 2014; 239:341-356. [PMID: 24170336 DOI: 10.1007/s00425-013-1986-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that have key regulatory functions in plant growth, development, and other biological processes. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Tissue culture experiments have indicated that the regenerative abilities of these two tissues are significantly different. However, the characterization of miRNAs and their roles in regulating organ development in cauliflower remain unexplored. In the present study, two small RNA libraries were sequenced by Solexa sequencing technology. 99 known miRNAs belonging to 28 miRNA families were identified, in which 6 miRNA families were detected only in Brassicaceae. A total of 162 new miRNA sequences with single nucleotide substitutions corresponding to the known miRNAs, and 32 potentially novel miRNAs were also first discovered. Comparative analysis indicated that 42 of 99 known miRNAs and 17 of 32 novel miRNAs exhibited significantly differential expression between hypocotyl and cotyledon, and the differential expression of several miRNAs was further validated by stem-loop RT-PCR. In addition, 235 targets for 89 known miRNAs and 198 targets for 24 novel miRNAs were predicted, and their functions were further discussed. The expression patterns of several representative targets were also confirmed by qRT-PCR analysis. The results identified that the transcriptional expression patterns of miRNAs were negatively correlated with their targets. These findings gave new insights into the characteristics of miRNAs in cauliflower, and provided important clues to elucidate the roles of miRNAs in the tissue differentiation and development of cauliflower.
Collapse
Affiliation(s)
- Meijuan Geng
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | |
Collapse
|
986
|
Meng Y, Shao C, Wang H, Chen M. Uncovering DCL1-dependent small RNA loci on plant genomes: a structure-based approach. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:395-400. [PMID: 24336345 DOI: 10.1093/jxb/ert409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In plants, Dicer-like 1 (DCL1)-mediated two-step cleavages are essential for the processing of microRNA (miRNA) gene products. Interestingly, DCL1 has been indicated to be involved in the production of many small RNAs (sRNAs) that cannot be classified as canonical miRNAs. However, genomic and functional information on the non-miRNA, DCL1-dependent sRNAs is still limited. Here, we propose a secondary structure-based approach for identification of the precursors containing novel DCL1-dependent sRNA loci. To demonstrate the utility of the workflow: first, 5898 DCL1-dependent sRNAs of 20-24 nucleotides were identified from the sRNA high-throughput sequencing data sets prepared from rice DCL1 RNA interference transgenic lines. Those perfectly mapped to the rice pre-miRNAs (precursor microRNAs) were removed. The remaining 5795 sRNAs were then mapped onto the rice genome, obtaining 30 902 perfectly matched loci belonging to 2310 sRNAs. A total of 4631 clusters of sRNA loci were defined for secondary structure prediction by using RNAfold. The prediction results generated by two algorithms, namely MFE (minimum free energy) and centroid, were manually compared to identify the conserved long-stem structures containing DCL1-dependent sRNA loci. For the purpose of a case study, a portion of the prediction results was screened manually. As a result, 60 clusters displayed great potential for forming featured long-stem structures for the generation of DCL1-dependent sRNAs. Together, the results indicate that the proposed workflow is applicable for the identification of novel DCL1-dependent sRNA loci on plant genomes.
Collapse
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | | | | | | |
Collapse
|
987
|
Kravchik M, Sunkar R, Damodharan S, Stav R, Zohar M, Isaacson T, Arazi T. Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:725-39. [PMID: 24376253 PMCID: PMC3904720 DOI: 10.1093/jxb/ert428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DICER-like 1 (DCL1) is a major player in microRNA (miRNA) biogenesis and accordingly, its few known loss-of-function mutants are either lethal or display arrested development. Consequently, generation of dcl1 mutants by reverse genetics and functional analysis of DCL1 in late-developing organs are challenging. Here, these challenges were resolved through the unique use of trans-activated RNA interference. Global, as well as organ-specific tomato DCL1 (SlDCL1) silencing was induced by crossing the generated responder line (OP:SlDCL1IR) with the appropriate driver line. Constitutive trans-activation knocked down SlDCL1 levels by ~95%, resulting in severe abnormalities including post-germination growth arrest accompanied by decreased miRNA and 21-nucleotide small RNA levels, but prominently elevated levels of 22-nucleotide small RNAs. The increase in the 22-nucleotide small RNAs was correlated with specific up-regulation of SlDCL2b and SlDCL2d, which are probably involved in their biogenesis. Leaf- and flower-specific OP:SlDCL1IR trans-activation inhibited blade outgrowth, induced premature bud senescence and produced pale petals, respectively, emphasizing the importance of SlDCL1-dependent small RNAs in these processes. Together, these results establish OP:SlDCL1IR as an efficient tool for analysing processes regulated by SlDCL1-mediated gene regulation in tomato.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Ramanjulu Sunkar
- Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Subha Damodharan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Ran Stav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
| | - Matat Zohar
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Tal Isaacson
- Unit of Deciduous Fruit Tree Sciences, Newe Ya’ar Research Center, Agricultural Research Organization, PO Box 1021, Ramat Yishay 30095, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, PO Box 6, Bet Dagan 50250, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
988
|
Shangguan L, Song C, Han J, Leng X, Kibet KN, Mu Q, Kayesh E, Fang J. Characterization of regulatory mechanism of Poncirus trifoliata microRNAs on their target genes with an integrated strategy of newly developed PPM-RACE and RLM-RACE. Gene 2014; 535:42-52. [PMID: 24275346 DOI: 10.1016/j.gene.2013.10.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 09/25/2013] [Accepted: 10/27/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) play an important role in post-transcriptional gene regulation that involved various biological and metabolic processes. Many extensive studies have been done in model plant species, to discover miRNAs' regulating expression of their target genes and analyze their functions. But, the function of Poncirus trifoliata miRNAs has not been properly investigated. In this study, we employed the RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-RACE) and the newly developed method called poly (A) polymerase-mediated 3' rapid amplification of cDNA ends (PPM-RACE), which mapped the cleavage site of target mRNAs and detected expression patterns of cleaved fragments that could in turn indicate the regulatory functions of the miRNAs on their target genes. Furthermore, the spatiotemporal expression levels of target genes were analyzed by qRT-PCR, with exhibiting different expression trends from their corresponding miRNAs, thus indicating the cleavage mode of miRNAs on their target genes. The expression patterns of miRNAs, their target mRNAs and cleaved target mRNAs in different organs of juvenile and adult trifoliate orange were studied. The results showed that the expression of miRNAs and their target mRNAs was in a trade-off trend. When the miRNA expression was high, its corresponding target mRNA expression was low, while the cleaved target mRNA expression was high; when the miRNA expression was low, its target mRNA expression was high, while the expression of cleaved target mRNAs follows that of the miRNA. The validation of the cleavage site of target mRNAs and the detection of expression patterns of cleaved fragments can further broaden the knowledge of small RNA-mediated regulation in P. trifoliate.
Collapse
Affiliation(s)
- Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changnian Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Korir Nicholas Kibet
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Emrul Kayesh
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
989
|
Spanudakis E, Jackson S. The role of microRNAs in the control of flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:365-80. [PMID: 24474808 DOI: 10.1093/jxb/ert453] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The onset of flowering in plants is regulated by complex gene networks that integrate multiple environmental and endogenous cues to ensure that flowering occurs at the appropriate time. This is achieved by precise control of the expression of key flowering genes at both the transcriptional and post-transcriptional level. In recent years, a class of small non-coding RNAs, called microRNAs (miRNAs), has been shown to regulate gene expression in a number of plant developmental processes and stress responses. MiRNA-based biotechnology, which harnesses the regulatory functions of such endogenous or artificial miRNAs, therefore represents a highly promising area of research. In this review, the process of plant miRNA biogenesis, their mode of action, and multiple regulatory functions are summarized. The roles of the miR156, miR172, miR159/319, miR390, and miR399 families in the flowering time regulatory network in Arabidopsis thaliana are discussed in depth.
Collapse
|
990
|
Han YQ, Hu Z, Zheng DF, Gao YM. Analysis of promoters of microRNAs from a Glycine max degradome library. J Zhejiang Univ Sci B 2014; 15:125-32. [PMID: 24510705 PMCID: PMC3924388 DOI: 10.1631/jzus.b1300179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/25/2013] [Indexed: 11/11/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are genome-encoded, small non-coding RNAs that play important functions in development, biotic and abiotic stress responses, and other processes. Our aim was to explore the regulation of miRNA expression. METHODS We used bioinformatics methods to predict the core promoters of 440 miRNAs identified from a soybean (Glycine max) degradome library and to analyze cis-acting elements for 369 miRNAs. RESULTS The prediction results showed that 83.86% of the 440 miRNAs contained promoters in their upstream sequences, and 8.64% (38 loci) in their downstream sequences. The distributions of two core promoter elements, TATA-boxes and transcription start sites (TSSs), were similar. The cis-acting elements were examined to provide clues to the function and regulation of spatiotemporal expression of the miRNAs. Analyses of miRNA cis-elements and targets indicated a potential auxin response factor (ARF)- and gibberellin response factor (GARF)-mediated negative feedback loop for miRNA expression. CONCLUSIONS The features of miRNAs from a Glycine max degradome library obtained here provide insights into the transcription regulation and functions of miRNAs in soybean.
Collapse
Affiliation(s)
- Yi-qiang Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zheng Hu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dian-feng Zheng
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ya-mei Gao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
991
|
Goettel W, Liu Z, Xia J, Zhang W, Zhao PX, An YQ(C. Systems and evolutionary characterization of microRNAs and their underlying regulatory networks in soybean cotyledons. PLoS One 2014; 9:e86153. [PMID: 24475082 PMCID: PMC3903507 DOI: 10.1371/journal.pone.0086153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/05/2013] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs (miRNAs) are an emerging class of small RNAs regulating a wide range of biological processes. Soybean cotyledons evolved as sink tissues to synthesize and store seed reserves which directly affect soybean seed yield and quality. However, little is known about miRNAs and their regulatory networks in soybean cotyledons. We sequenced 292 million small RNA reads expressed in soybean cotyledons, and discovered 130 novel miRNA genes and 72 novel miRNA families. The cotyledon miRNAs arose at various stages of land plant evolution. Evolutionary analysis of the miRNA genes in duplicated genome segments from the recent Glycine whole genome duplication revealed that the majority of novel soybean cotyledon miRNAs were young, and likely arose after the duplication event 13 million years ago. We revealed the evolutionary pathway of a soybean cotyledon miRNA family (soy-miR15/49) that evolved from a neutral invertase gene through an inverted duplication and a series of DNA amplification and deletion events. A total of 304 miRNA genes were expressed in soybean cotyledons. The miRNAs were predicted to target 1910 genes, and form complex miRNA networks regulating a wide range of biological pathways in cotyledons. The comprehensive characterization of the miRNAs and their underlying regulatory networks at gene, pathway and system levels provides a foundation for further studies of miRNAs in cotyledons.
Collapse
Affiliation(s)
- Wolfgang Goettel
- United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Zongrang Liu
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
| | - Jing Xia
- Department of Computer Science and Engineering, Washington University, Saint Louis, Missouri, United States of America
| | - Weixiong Zhang
- Department of Computer Science and Engineering, Washington University, Saint Louis, Missouri, United States of America
| | - Patrick X. Zhao
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Yong-Qiang (Charles) An
- United States Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| |
Collapse
|
992
|
Liu H, Qin C, Chen Z, Zuo T, Yang X, Zhou H, Xu M, Cao S, Shen Y, Lin H, He X, Zhang Y, Li L, Ding H, Lübberstedt T, Zhang Z, Pan G. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genomics 2014; 15:25. [PMID: 24422852 PMCID: PMC3901417 DOI: 10.1186/1471-2164-15-25] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, microRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in many aspects of plant biology, including metabolism, hormone response, epigenetic control of transposable elements, and stress response. Extensive studies of miRNAs have been performed in model plants such as rice and Arabidopsis thaliana. In maize, most miRNAs and their target genes were analyzed and identified by clearly different treatments, such as response to low nitrate, salt and drought stress. However, little is known about miRNAs involved in maize ear development. The objective of this study is to identify conserved and novel miRNAs and their target genes by combined small RNA and degradome sequencing at four inflorescence developmental stages. RESULTS We used deep-sequencing, miRNA microarray assays and computational methods to identify, profile, and describe conserved and non-conserved miRNAs at four ear developmental stages, which resulted in identification of 22 conserved and 21-maize-specific miRNA families together with their corresponding miRNA*. Comparison of miRNA expression in these developmental stages revealed 18 differentially expressed miRNA families. Finally, a total of 141 genes (251 transcripts) targeted by 102 small RNAs including 98 miRNAs and 4 ta-siRNAs were identified by genomic-scale high-throughput sequencing of miRNA cleaved mRNAs. Moreover, the differentially expressed miRNAs-mediated pathways that regulate the development of ears were discussed. CONCLUSIONS This study confirmed 22 conserved miRNA families and discovered 26 novel miRNAs in maize. Moreover, we identified 141 target genes of known and new miRNAs and ta-siRNAs. Of these, 72 genes (117 transcripts) targeted by 62 differentially expressed miRNAs may attribute to the development of maize ears. Identification and characterization of these important classes of regulatory genes in maize may improve our understanding of molecular mechanisms controlling ear development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhiming Zhang
- Maize Research Institute of Sichuan Agricultural University/Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu 611130, China.
| | | |
Collapse
|
993
|
Conserved miRNAs and their response to salt stress in wild eggplant Solanum linnaeanum roots. Int J Mol Sci 2014; 15:839-49. [PMID: 24413753 PMCID: PMC3907842 DOI: 10.3390/ijms15010839] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/19/2013] [Accepted: 12/30/2013] [Indexed: 11/17/2022] Open
Abstract
The Solanaceae family includes some important vegetable crops, and they often suffer from salinity stress. Some miRNAs have been identified to regulate gene expression in plant response to salt stress; however, little is known about the involvement of miRNAs in Solanaceae species. To identify salt-responsive miRNAs, high-throughput sequencing was used to sequence libraries constructed from roots of the salt tolerant species, Solanum linnaeanum, treated with and without NaCl. The sequencing identified 98 conserved miRNAs corresponding to 37 families, and some of these miRNAs and their expression were verified by quantitative real-time PCR. Under the salt stress, 11 of the miRNAs were down-regulated, and 3 of the miRNAs were up-regulated. Potential targets of the salt-responsive miRNAs were predicted to be involved in diverse cellular processes in plants. This investigation provides valuable information for functional characterization of miRNAs in S. linnaeanum, and would be useful for developing strategies for the genetic improvement of the Solanaceae crops.
Collapse
|
994
|
Kurtoglu KY, Kantar M, Budak H. New wheat microRNA using whole-genome sequence. Funct Integr Genomics 2014; 14:363-79. [PMID: 24395439 DOI: 10.1007/s10142-013-0357-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 11/25/2022]
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, taking roles in a variety of fundamental biological processes. Hence, their identification, annotation and characterization are of great significance, especially in bread wheat, one of the main food sources for humans. The recent availability of 5× coverage Triticum aestivum L. whole-genome sequence provided us with the opportunity to perform a systematic prediction of a complete catalogue of wheat microRNAs. Using an in silico homology-based approach, stem-loop coding regions were derived from two assemblies, constructed from wheat 454 reads. To avoid the presence of pseudo-microRNAs in the final data set, transposable element related stem-loops were eliminated by repeat analysis. Overall, 52 putative wheat microRNAs were predicted, including seven, which have not been previously published. Moreover, with distinct analysis of the two different assemblies, both variety and representation of putative microRNA-coding stem-loops were found to be predominant in the intergenic regions. By searching available expressed sequences and small RNA library databases, expression evidence for 39 (out of 52) putative wheat microRNAs was provided. Expression of three of the predicted microRNAs (miR166, miR396 and miR528) was also comparatively quantified with real-time quantitative reverse transcription PCR. This is the first report on in silico prediction of a whole repertoire of bread wheat microRNAs, supported by the wet-lab validation.
Collapse
|
995
|
Abstract
Next-generation sequencing has resulted in a massive flow of new information predicting the existence of many new genes, their putative promoters, as well as long and small noncoding RNA. However, this is currently largely unmatched by functional studies. A cost-effective and high-throughput cloning system for PCR products and synthetic sequences was therefore developed to allow the rapid evaluation of coding and noncoding sequences in functional expression and reporter assays. Unlike traditional cloning approaches that involve subcloning or a special recipient vector and special flanking sequences, this protocol describes a rapid and cost-effective method for the direct insertion into the vector of choice. Restriction enzymes are only needed once to prepare the vector, which is blunt ended and dephosphorylated, and can then serve as the recipient vector for many hundreds of sequences to be tested. Examples are provided of how this method can be used to rapidly reveal functionality of regulatory genes, promoters, and microRNAs.
Collapse
Affiliation(s)
- Peer M Schenk
- School of Agriculture and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
996
|
Kumar SP, Pandya HA, Jasrai YT. A computational model for non-conserved mature miRNAs from the rice genome. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:205-20. [PMID: 24601753 DOI: 10.1080/1062936x.2013.875941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Several computational approaches employ the high complementarity of plant miRNAs to target mRNAs as a filter to recognize miRNA. Numerous non-conserved miRNAs are known with more recent evolutionary origin as a result of target gene duplication events. We present here a computational model with knowledge inputs from reported non-conserved mature miRNAs of Oryza sativa (rice). Sequence- and structure-based approaches were used to retrieve miRNA features based on rice Argonaute protein and develop a multiple linear regression (MLR) model (r(2) = 0.996, q(2)cv = 0.989) which scored mature miRNAs as predicted by the MaturePred program. The model was validated by scoring test set (q(2) = 0.990) and computationally predicted mature miRNAs as external test set (q(2)test = 0.895). This strategy successfully enhanced the confidence of retrieving most probable non-conserved miRNAs from the rice genome. We anticipate that this computational model would recognize unknown non-conserved miRNA candidates and nurture the current mechanistic understanding of miRNA sorting to unveil the role of non-conserved miRNAs in gene silencing.
Collapse
Affiliation(s)
- S P Kumar
- a Department of Bioinformatics, Applied Botany Centre (ABC) , Gujarat University , Ahmedabad , India
| | | | | |
Collapse
|
997
|
Jagadeeswaran G, Li YF, Sunkar R. Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:85-96. [PMID: 24164591 DOI: 10.1111/tpj.12364] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/09/2013] [Accepted: 10/18/2013] [Indexed: 05/07/2023]
Abstract
MicroRNA395 (miR395) is a conserved miRNA that targets a low-affinity sulfate transporter (AST68) and three ATP sulfurylases (APS1, APS3 and APS4) in higher plants. In this study, At2g28780 was confirmed as another target of miR395 in Arabidopsis. Interestingly, several dicots contained genes homologous to At2g28780 and a cognate miR395 complementary site but possess a gradient of mismatches at the target site. It is well established that miR395 is induced during S deprivation in Arabidopsis; however, the signaling pathways that mediate this regulation are unknown. Several findings in the present study demonstrate that redox signaling plays an important role in induction of miR395 during S deprivation. These include the following results: (i) glutathione (GSH) supplementation suppressed miR395 induction in S-deprived plants (ii) miR395 is induced in Arabidopsis seedlings exposed to Arsenate or Cu(2+) , which induces oxidative stress (iii), S deprivation-induced oxidative stress, and (iv) compromised induction of miR395 during S deprivation in cad2 mutant (deficient in GSH biosynthesis) that is defective in glutaredoxin-dependent redox signaling and ntra/ntrb (defective in thioredoxin reductases a and b) double mutants that are defective in thioredoxin-dependent redox signaling. Collectively, these findings strongly support the involvement of redox signaling in inducing the expression of miR395 during S deprivation in Arabidopsis.
Collapse
Affiliation(s)
- Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 740748, USA
| | | | | |
Collapse
|
998
|
|
999
|
Abstract
MicroRNAs (miRNAs) are important regulators of diverse biologic processes. In the hematopoietic system, miRNAs have been shown to regulate lineage fate decisions, mature immune effector cell function, apoptosis, and cell cycling, and a more limited number of miRNAs has been shown to regulate hematopoietic stem cell (HSC) self-renewal. Many of these miRNAs were initially identified as candidate regulators of HSC function by comparing miRNA expression in hematopoietic stem and progenitors cells (HSPCs) to their mature progeny. While the measurement of miRNA expression in rare cell populations such as HSCs poses practical challenges due to the low amount of RNA present, a number of techniques have been developed to measure miRNAs in small numbers of cells. Here, we describe our protocol for measuring miRNAs in purified mouse HSCs using a highly sensitive real-time quantitative PCR strategy that utilizes microfluidic array cards containing pre-spotted TaqMan probes that allows the detection of mature miRNAs in small reaction volumes. We also describe a simple data analysis method to evaluate miRNA expression profiling data using an open-source software package (HTqPCR) using mouse HSC miRNA profiling data generated in our lab.
Collapse
Affiliation(s)
- Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
1000
|
Zhang L, Wu B, Zhao D, Li C, Shao F, Lu S. Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:38-50. [PMID: 24112769 DOI: 10.1111/jipb.12111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/22/2013] [Indexed: 05/09/2023]
Abstract
SQUAMOSA promoter binding protein-likes (SPLs) are plant-specific transcription factors playing vital regulatory roles in plant growth and development. There is no information about SPLs in Salvia miltiorrhiza (Danshen), a significant medicinal plant widely used in Traditional Chinese medicine (TCM) for >1,700 years and an emerging model plant for TCM studies. Through genome-wide identification and subsequent molecular cloning, we identified a total 15 SmSPLs with divergent sequence features, gene structures, and motifs. Comparative analysis showed sequence conservation between SmSPLs and their Arabidopsis counterparts. A phylogenetic tree clusters SmSPLs into six groups. Many of the motifs identified commonly exist in a group/subgroup, implying their functional redundancy. Eight SmSPLs were predicted and experimentally validated to be targets of miR156/157. SmSPLs were differentially expressed in various tissues of S. milltiorrhiza. The expression of miR156/157-targeted SmSPLs was increased with the maturation of S. miltiorrhiza, whereas the expression of miR156/157 was decreased, confirming the regulatory roles of miR156/157 in SmSPLs and suggesting the functions of SmSPLs in S. miltiorrhiza development. The expression of miR156/157 was negatively correlated with miR172 during the maturation of S. miltiorrhiza. The results indicate the significance and complexity of SmSPL-, miR156-, and miR172-mediated regulation of developmental timing in S. miltiorrhiza.
Collapse
Affiliation(s)
- Linsu Zhang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China; Institute of Medicinal Plant Development, the Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Qiannan Medical College for Nationalities, Duyun, 558003, China
| | | | | | | | | | | |
Collapse
|