99951
|
Goettsch C, Strzelecka-Kiliszek A, Bessueille L, Quillard T, Mechtouff L, Pikula S, Canet-Soulas E, Luis MJ, Fonta C, Magne D. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res 2022; 118:84-96. [PMID: 33070177 PMCID: PMC8752354 DOI: 10.1093/cvr/cvaa299] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
Collapse
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen
University, Aachen, Germany
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| | - Thibaut Quillard
- PHY-OS Laboratory, UMR 1238 INSERM, Université de Nantes, CHU
de Nantes, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France
- CREATIS Laboratory, CNRS UMR 5220, Inserm U1044, Université Claude Bernard
Lyon 1, Lyon, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude
Bernard Lyon 1, Lyon, France
| | - Millan Jose Luis
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery
Institute, La Jolla, CA 92037, USA
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de
Toulouse, France
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| |
Collapse
|
99952
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
99953
|
Romero JJ, De Rossi MC, Oses C, Echegaray CV, Verneri P, Francia M, Guberman A, Levi V. Nucleus-cytoskeleton communication impacts on OCT4-chromatin interactions in embryonic stem cells. BMC Biol 2022; 20:6. [PMID: 34996451 PMCID: PMC8742348 DOI: 10.1186/s12915-021-01207-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.
Collapse
Affiliation(s)
- Juan José Romero
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Vázquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
99954
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Felsani A, Tringali G, Cifola I, Pozzoli G, Cenciarelli C. Exome sequencing of glioblastoma-derived cancer stem cells reveals rare clinically relevant frameshift deletion in MLLT1 gene. Cancer Cell Int 2022; 22:9. [PMID: 34996478 PMCID: PMC8740446 DOI: 10.1186/s12935-021-02419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a heterogeneous CNS neoplasm which causes significant morbidity and mortality. One reason for the poor prognostic outcome of GBM is attributed to the presence of cancer stem cells (CSC) which confer resistance against standard chemo- and radiotherapeutics modalities. Two types of GBM-associated CSC were isolated from the same patient: tumor core- (c-CSC) and peritumor tissue-derived cancer stem cells (p-CSC). Our experiments are focused on glioblastoma-IDH-wild type, and no disease-defining alterations were present in histone, BRAF or other genes. METHODS In the present study, potential differences in genetic variants between c-CSC versus p-CSC derived from four GBM patients were investigated with the aims of (1) comparing the exome sequences between all the c-CSC or p-CSC to identify the common variants; (2) identifying the variants affecting the function of genes known to be involved in cancer origin and development. RESULTS By comparative analyses, we identified common gene single nucleotide variants (SNV) in all GBM c-CSC and p-CSC, a potentially deleterious variant was a frameshift deletion at Gln461fs in the MLLT1 gene, that was encountered only in p-CSC samples with different allelic frequency. CONCLUSIONS We discovered a potentially harmful frameshift deletion at Gln461fs in the MLLT1 gene. Further investigation is required to confirm the presence of the identified mutations in patient tissue samples, as well as the significance of the frameshift mutation in the MLLT1 gene on GBM biology and response to therapy based on genomic functional experiments.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Armando Felsani
- Genomnia S.R.L, Via Ludovico Ariosto, Bresso, MI, 20091, USA
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Milan, Italy
| | - Giacomo Pozzoli
- Pharmacology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere, 100, 00133, Rome, Italy.
| |
Collapse
|
99955
|
Identification of long non-coding RNAs in Verticillium dahliae following inoculation of cotton. Microbiol Res 2022; 257:126962. [PMID: 35042052 DOI: 10.1016/j.micres.2022.126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. However, these functions have not been assessed in Verticillium dahliae, a soil-borne fungal pathogen that causes devastating wilt diseases in many crops. The discovery and identity of novel lncRNAs and their association with virulence may contribute to an increased understanding of the regulation of virulence in V. dahliae. Here, we identified a total of 352 lncRNAs in V. dahliae. The lncRNAs were transcribed from all V. dahliae chromosomes, typically with shorter open reading frames, lower GC content, and fewer exons than protein-coding genes. In addition, 308 protein-coding genes located within 10 kb upstream and 10 kb downstream of lncRNAs were identified as neighboring genes, and which were considered as potential targets of lncRNA. These neighboring genes encode products involved in development, stress responses, and pathogenicity of V. dahliae, such as transcription factors (TF), kinase, and members of the secretome. Furthermore, 47 lncRNAs were significantly differentially expressed in V. dahliae following inoculation of susceptible cotton (Gossyoiumhisutum) cultivar Junmian No.1, suggesting that lncRNAs may be involved in the regulation of virulence in V. dahliae. Moreover, correlations in expression patterns between lncRNA and their neighboring genes were detected. Expression of lncRNA012077 and its neighboring gene was up-regulated 6 h following inoculation of cotton, while the expression of lncRNA007722 was down-regulated at 6 h but up-regulated at 24 h, in a pattern opposite to that of its neighboring gene. Overexpression of lncRNA012077 in wild-type strain (Vd991) enhanced its virulence on cotton while overexpression of lncRNA009491 reduced virulence. Identification of novel lncRNAs and their association with virulence may provide new targets for disease control.
Collapse
|
99956
|
Zhou H, Wang W, Yan S, Zhang J, Wang D, Shen J. JAK/STAT signaling regulates the Harmonia axyridis leg regeneration by coordinating cell proliferation. Dev Biol 2022; 483:98-106. [PMID: 34999052 DOI: 10.1016/j.ydbio.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
Abstract
Harmonia axyridis presents remarkable appendage regeneration capacity and can therefore be considered as an emerging regeneration research model. Amino acid sequences of the Janus kinase Hopscotch (Hahop) and the transcription factor STAT (HaStat), the main components of the JAK/STAT signaling pathway, conserved with their homologs in other models. The expression levels of these two genes were continuously up-regulated during the appendage regeneration process. To identify the functions of JAK/STAT signaling, we performed RNAi experiments of Hahop and HaStat in H. axyridis, and found regeneration defects following in HahopRNAi and HaStatRNAi treatments at different regeneration stages. Additionally, we confirmed that regeneration defects caused by the low-level of JAK/STAT activity were due to the inhibition of cell proliferation. The results of the current study suggest that JAK/STAT signaling regulates the entire regeneration process by coordinating cell proliferation of regenerating appendages.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Plant Biosecurity and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.
| | - Wei Wang
- Department of Plant Biosecurity and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Junzheng Zhang
- Department of Plant Biosecurity and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Plant Biosecurity and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.
| | - Jie Shen
- Department of Plant Biosecurity and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
99957
|
Identifying Differentially Expressed tRNA-Derived Small Fragments as a Biomarker for the Progression and Metastasis of Colorectal Cancer. DISEASE MARKERS 2022; 2022:2646173. [PMID: 35035608 PMCID: PMC8758288 DOI: 10.1155/2022/2646173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
Objectives. The epithelial-to-mesenchymal transition (EMT) is one key step for the invasion and metastasis of colorectal cancer (CRC). Up until now, the underlying mechanism of EMT in CRC is still unpromising. Thus, it is essential to have a better understanding of its carcinogenesis. The transfer RNA-derived small fragments (tsRNAs) are a new group of small noncoding RNAs (sncRNAs), including tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs), which have been observed to play an important role in many cancers. However, the relationship between tRFs and EMT in CRC is still unknown. Herein, we aimed to investigate the involvement of tRFs in EMT and its contribution to CRC development. Methods. We identified the differentially expressed tsRNAs in colorectal cancer cell line HT29 treated with TGF-β compared with control cells by using high-throughput sequencing and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). QRT-PCR was conducted to validate the differentially expressed fragments in 68 CRC tumor samples (22 women and 46 men) and adjacent nontumor samples. The association of the expression of tRFs with CRC metastasis and clinical stage was analyzed. Meanwhile, the correlation between tRF expression and overall survival (OS) was also analyzed. TargetScan and miRanda and multiple bioinformatic approaches were used to predict the possible target genes of tsRNAs and analyze possible functions of the tRFs. Results. A series of differentially expressed tsRNAs were identified in TGF-β-treated HT29 cells compared with control cells. tRF-phe-GAA-031 and tRF-VAL-TCA-002 were found to be significantly upregulated in CRC tissues compared to adjacent nontumor tissues. They were significantly correlated with distant metastasis and clinical stage. We compared the differences between tumor samples and nontumor tissues from the ROC curves. The area under the ROC curve (AUC) was up to 0.7554 (95% confidence interval: 0.6739 to 0.8369,
) for tRF-Phe-GAA-031 and up to 0.7313 (95% confidence interval: 0.6474 to 0.8151,
) for tRF-VAL-TCA-002. For OS analysis, higher tRF-phe-GAA-031 and tRF-VAL-TCA-002 expressions were associated with shorter survival for CRC patients. Conclusion. A series of differentially expressed tsRNAs are identified in the EMT process of CRC. And tRF-phe-GAA-031 and tRF-VAL-TCA-002 are higher expressed in CRC tissues, and they might play an important role in the metastasis of CRC. Meanwhile, they may be potential biomarkers and intervention targets in the clinical treatment of CRC.
Collapse
|
99958
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
99959
|
Liang J, Zhang Q, Liu Y, Zhang J, Wang W, Zhang Z. Chlorosis seedling lethality 1 encoding a MAP3K protein is essential for chloroplast development in rice. BMC PLANT BIOLOGY 2022; 22:20. [PMID: 34991480 PMCID: PMC8734211 DOI: 10.1186/s12870-021-03404-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/17/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in eukaryotic organisms and play essential roles in immunity and stress responses. However, the role of MAPKs in chloroplast development remains to be evidently established. RESULTS In this study, a rice chlorosis seedling lethality 1 (csl1) mutant with a Zhonghua11 (ZH11, japonica) background was isolated. Seedlings of the mutant were characterized by chlorotic leaves and death after the trefoil stage, and chloroplasts were observed to contain accumulated starch granules. Molecular cloning revealed that OsCSL1 encoded a MAPK kinase kinase22 (MKKK22) targeted to the endoplasmic reticulum (ER), and functional complementation of OsCSL1 was found to restore the normal phenotype in csl1 plants. The CRISPR/Cas9 technology was used for targeted disruption of OsCSL1, and the OsCSL1-Cas9 lines obtained therein exhibited yellow seedlings which phenocopied the csl1 mutant. CSL1/MKKK22 was observed to establish direct interaction with MKK4, and altered expression of MKK1 and MKK4 was detected in the csl1 mutant. Additionally, disruption of OsCSL1 led to reduced expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded RNA polymerases, nuclear-encoded RNA polymerase, and nuclear-encoded chloroplast genes. CONCLUSIONS The findings of this study revealed that OsCSL1 played roles in regulating the expression of multiple chloroplast synthesis-related genes, thereby affecting their functions, and leading to wide-ranging defects, including chlorotic seedlings and severely disrupted chloroplasts containing accumulated starch granules.
Collapse
Affiliation(s)
- Jiayan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuxin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yiran Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
99960
|
Lu G, Cai W, Wang X, Huang B, Zhao Y, Shao Y, Wang D. Identifying prognostic signatures in the microenvironment of prostate cancer. Transl Androl Urol 2022; 10:4206-4218. [PMID: 34984186 PMCID: PMC8661256 DOI: 10.21037/tau-21-819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background An increasing number of studies has indicated that the tumor microenvironment (TME), an important component of tumor tissue, has clinicopathological significance in predicting disease outcome and therapeutic efficacy. However, little evidence in prostate cancer (PCa) is available. Methods The cohort of TCGA-PRAD (n=477) was used in this study. Based on the proportion of 22 types of immune cells calculated by CIBERSORT, the TME was classified by K-means clustering and differentially expressed genes (DEGs) were determined. The TMEscore was calculated based on cluster signature genes, which were obtained from DEGs by the random forest method, and the samples were classified into two subtypes. Analyses of somatic mutation and copy number variation (CNVs) were further conducted to identify the genetic characteristics of the two subtypes. Correlation analysis was performed to explore the correlation between TMEscore and the tumor response to immune checkpoint inhibitors (ICIs) as well as the prognosis of PCa. Results Based on the distribution of infiltrating immune cells in the TME, we constructed the TMEscore model and classified PCa samples into high and low TMEscore groups. Survival analysis indicated that the high TMEscore group had significantly better survival outcome than the low TMEscore group. Correlation analysis showed a significantly positive correlation between TMEscore and the known prognostic factors of PCa. Conclusions Our study indicates that the TMEscore could be a potential prognostic biomarker in PCa. A comprehensive description of the characteristics of TME may help predict the response to therapies and provide new treatment strategies for PCa patients.
Collapse
Affiliation(s)
- Guoliang Lu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co., Ltd., Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baoxing Huang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dawei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
99961
|
Zeng L, Huang J, Feng P, Zhao X, Si Z, Long X, Cheng Q, Yi Y. Transcriptomic analysis of formic acid stress response in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2022; 38:34. [PMID: 34989900 DOI: 10.1007/s11274-021-03222-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/26/2021] [Indexed: 12/23/2022]
Abstract
Formic acid is a representative small molecule acid in lignocellulosic hydrolysate that can inhibit the growth of Saccharomyces cerevisiae cells during alcohol fermentation. However, the mechanism of formic acid cytotoxicity remains largely unknown. In this study, RNA-Seq technology was used to study the response of S. cerevisiae to formic acid stress at the transcriptional level. Scanning electron microscopy and Fourier transform infrared spectroscopy were conducted to observe the surface morphology of yeast cells. A total of 1504 genes were identified as being differentially expressed, with 797 upregulated and 707 downregulated genes. Transcriptomic analysis showed that most genes related to glycolysis, glycogen synthesis, protein degradation, the cell cycle, the MAPK signaling pathway, and redox regulation were significantly induced under formic acid stress and were involved in protein translation and synthesis amino acid synthesis genes were significantly suppressed. Formic acid stress can induce oxidative stress, inhibit protein biosynthesis, cause cells to undergo autophagy, and activate the intracellular metabolic pathways of energy production. The increase of glycogen and the decrease of energy consumption metabolism may be important in the adaptation of S. cerevisiae to formic acid. In addition, formic acid can also induce sexual reproduction and spore formation. This study through transcriptome analysis has preliminarily reveal the molecular response mechanism of S. cerevisiae to formic acid stress and has provided a basis for further research on methods used to improve the tolerance to cell inhibitors in lignocellulose hydrolysate.
Collapse
Affiliation(s)
- Lingjie Zeng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Jinxiang Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Pixue Feng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xuemei Zhao
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Zaiyong Si
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Xiufeng Long
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Qianwei Cheng
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China
| | - Yi Yi
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, 545006, China.
| |
Collapse
|
99962
|
Chaudhary N, Mohan B, Mavuduru RS, Kumar Y, Taneja N. Characterization, genome analysis and in vitro activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant and extensively drug-resistant biofilm-forming uropathogenic Escherichia coli isolates, India. J Appl Microbiol 2022; 132:3387-3404. [PMID: 34989075 DOI: 10.1111/jam.15439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
AIM We aimed to study host range, stability, genome and antibiofilm activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant (MDR) and extensively drug-resistant (XDR) biofilm-forming uropathogenic Escherichia coli isolates. METHODS AND RESULTS A novel lytic phage vB_EcoA_RDN8.1 active against UPEC strains resistant to third-generation cephalosporins, fluoroquinolones, aminoglycosides, imipenem, beta-lactamase inhibitor combination and polymyxins was isolated from community raw sewage water of Chandigarh. It exhibited a clear plaque morphology and a burst size of 250. In the time-kill assay, the maximum amount of killing was achieved at MOI 1.0. vB_EcoA_RDN8.1 belongs to the family Autographiviridae, has a genome size of 39.5 kb with a GC content of 51.6%. It was stable over a wide range of temperatures and pH. It was able to inhibit biofilm formation which may be related to an endolysin encoded by ORF 19. CONCLUSIONS The vB_EcoA_RDN8.1 is a novel lytic phage that has the potential for inclusion into phage cocktails being developed for the treatment of urinary tract infections (UTIs) caused by highly drug-resistant UPEC. SIGNIFICANCE AND IMPACT OF THE STUDY We provide a detailed characterization of a novel lytic Escherichia phage with antibiofilm activity having a potential application against MDR and XDR UPEC causing UTIs.
Collapse
Affiliation(s)
- Naveen Chaudhary
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravimohan S Mavuduru
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Central Research Institute, National Salmonella and Escherichia Centre, Kasauli, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
99963
|
Gjaltema RAF, Schwämmle T, Kautz P, Robson M, Schöpflin R, Ravid Lustig L, Brandenburg L, Dunkel I, Vechiatto C, Ntini E, Mutzel V, Schmiedel V, Marsico A, Mundlos S, Schulz EG. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol Cell 2022; 82:190-208.e17. [PMID: 34932975 DOI: 10.1016/j.molcel.2021.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pauline Kautz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michael Robson
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh EH4 2XU, Edinburgh, UK
| | - Robert Schöpflin
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lennart Brandenburg
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Carolina Vechiatto
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Evgenia Ntini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vera Schmiedel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center München, 85764 Neuherberg, Germany
| | - Stefan Mundlos
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
99964
|
Sura T, Surabhi S, Maaß S, Hammerschmidt S, Siemens N, Becher D. The global proteome and ubiquitinome of bacterial and viral co-infected bronchial epithelial cells. J Proteomics 2022; 250:104387. [PMID: 34600154 DOI: 10.1016/j.jprot.2021.104387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Viral infections facilitate bacterial trafficking to the lower respiratory tract resulting in bacterial-viral co-infections. Bacterial dissemination to the lower respiratory tract is enhanced by influenza A virus induced epithelial cell damage and dysregulation of immune responses. Epithelial cells act as a line of defense and detect pathogens by a high variety of pattern recognition receptors. The post-translational modification ubiquitin is involved in almost every cellular process. Moreover, ubiquitination contributes to the regulation of host immune responses, influenza A virus uncoating and transport within host cells. We applied proteomics with a special focus on ubiquitination to assess the impact of single bacterial and viral as well as bacterial-viral co-infections on bronchial epithelial cells. We used Tandem Ubiquitin Binding Entities to enrich polyubiquitinated proteins and assess changes in the ubiquitinome. Infecting 16HBE cells with Streptococcus pyogenes led to an increased abundance of proteins related to mitochondrial translation and energy metabolism in proteome and ubiquitinome. In contrast, influenza A virus infection mainly altered the ubiquitinome. Co-infections had no additional impact on protein abundances or affected pathways. Changes in protein abundance and enriched pathways were assigned to imprints of both infecting pathogens. SIGNIFICANCE: Viral and bacterial co-infections of the lower respiratory tract are a burden for health systems worldwide. Therefore, it is necessary to elucidate the complex interplay between the host and the infecting pathogens. Thus, we analyzed the proteome and the ubiquitinome of co-infected bronchial epithelial cells to elaborate a potential synergism of the two infecting organisms. The results presented in this work can be used as a starting point for further analyses.
Collapse
Affiliation(s)
- Thomas Sura
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Surabhi Surabhi
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Nikolai Siemens
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
99965
|
Das K, Keshava S, Pendurthi UR, Rao LVM. Factor VIIa suppresses inflammation and barrier disruption through the release of EEVs and transfer of microRNA 10a. Blood 2022; 139:118-133. [PMID: 34469511 PMCID: PMC8718618 DOI: 10.1182/blood.2021012358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
Coagulation protease, factor VIIa (FVIIa), binds to endothelial cell protein C receptor (EPCR) and induces anti-inflammatory and endothelial barrier protective responses via protease-activated receptor-1 (PAR1)-mediated, biased signaling. Our recent studies had shown that the FVIIa-EPCR-PAR1 axis induces the release of extracellular vesicles (EVs) from endothelial cells. In the present study, we investigated the mechanism of FVIIa release of endothelial EVs (EEVs) and the contribution of FVIIa-released EEVs to anti-inflammatory and vascular barrier protective effects, in both in vitro and in vivo models. Multiple signaling pathways regulated FVIIa release of EVs from endothelial cells, but the ROCK-dependent pathway appeared to be a major mechanism. FVIIa-released EEVs were enriched with anti-inflammatory microRNAs (miRs), mostly miR10a. FVIIa-released EEVs were taken up readily by monocytes/macrophages and endothelial cells. The uptake of FVIIa-released EEVs by monocytes conferred anti-inflammatory phenotype to monocytes, whereas EEV uptake by endothelial cells resulted in barrier protection. In additional experiments, EEV-mediated delivery of miR10a to monocytes downregulated the expression of TAK1 and activation of the NF-κB-mediated inflammatory pathway. In in vivo experiments, administration of FVIIa-released EEVs to wild-type mice attenuated LPS-induced increased inflammatory cytokines in plasma and vascular leakage into vital tissues. The incorporation of anti-miR10a into FVIIa-released EEVs diminished the ability of FVIIa-released EEVs to confer cytoprotective effects. Administration of the ROCK inhibitor Y27632, which significantly inhibits FVIIa release of EEVs into the circulation, to mice attenuated the cytoprotective effects of FVIIa. Overall, our study revealed novel insights into how FVIIa induces cytoprotective effects and communicates with various cell types.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
99966
|
Sun (孙迪) D, Chai (柴思敏) S, Huang (黄鑫) X, Wang (王滢莹) Y, Xiao (肖琳琳) L, Xu (徐士霞) S, Yang (杨光) G. Novel Genomic Insights into Body Size Evolution in Cetaceans and a Resolution of Peto’s Paradox. Am Nat 2022; 199:E28-E42. [DOI: 10.1086/717768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Di Sun (孙迪)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Simin Chai (柴思敏)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Xin Huang (黄鑫)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yingying Wang (王滢莹)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Linlin Xiao (肖琳琳)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu (徐士霞)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang (杨光)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| |
Collapse
|
99967
|
Gao L, Harbaugh B, Parr K, Patel P, Golem S, Zhang D, Woodroof J, Cui W. MYC Expression Is Associated With p53 Expression and TP53 Aberration and Predicts Poor Overall Survival in Acute Lymphoblastic Leukemia/Lymphoma. Am J Clin Pathol 2022; 157:119-129. [PMID: 34528662 DOI: 10.1093/ajcp/aqab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We evaluated MYC and p53 expression, TP53 aberration, their relationship, and their impact on overall survival (OS) in acute lymphoblastic leukemia (ALL)/lymphoblastic lymphoma (LBL). METHODS We identified 173 patients with ALL and LBL, including 12 cases of mixed-phenotype acute leukemia, 8 cases of therapy-related B-cell ALL (B-ALL), 119 cases of B-ALL, and 34 cases of T-cell ALL/LBL diagnosed from 2003 to 2019. We retrospectively assessed p53 and MYC expression by immunohistochemistry of bone marrow and correlated MYC expression with p53 expression and TP53 aberration. RESULTS Expression of p53 and MYC was present in 11.5% and 27.7% of ALL/LBL cases (n = 20 and n = 48), respectively. MYC expression was significantly correlated with p53 expression and TP53 aberration (P = .002 and P = .03), and p53 expression and MYC expression had an adverse impact on OS in patients with ALL/LBL (P < .05). MYC and p53 dual expression as well as combined MYC expression and TP53 aberration had a negative impact on OS in patients with ALL/LBL. CONCLUSIONS MYC expression is correlated with p53 overexpression, TP53 aberration, and poor OS in patients with ALL/LBL.
Collapse
Affiliation(s)
- Linlin Gao
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Brent Harbaugh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Kevin Parr
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Payal Patel
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Shivani Golem
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Da Zhang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Janet Woodroof
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Wei Cui
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
99968
|
McKay DW, McFarlane HE, Qu Y, Situmorang A, Gilliham M, Wege S. Plant Trans-Golgi Network/Early Endosome pH regulation requires Cation Chloride Cotransporter (CCC1). eLife 2022; 11:70701. [PMID: 34989335 PMCID: PMC8791640 DOI: 10.7554/elife.70701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
Plant cells maintain a low luminal pH in the trans-Golgi-network/early endosome (TGN/EE), the organelle in which the secretory and endocytic pathways intersect. Impaired TGN/EE pH regulation translates into severe plant growth defects. The identity of the proton pump and proton/ion antiporters that regulate TGN/EE pH have been determined, but an essential component required to complete the TGN/EE membrane transport circuit remains unidentified − a pathway for cation and anion efflux. Here, we have used complementation, genetically encoded fluorescent sensors, and pharmacological treatments to demonstrate that Arabidopsis cation chloride cotransporter (CCC1) is this missing component necessary for regulating TGN/EE pH and function. Loss of CCC1 function leads to alterations in TGN/EE-mediated processes including endocytic trafficking, exocytosis, and response to abiotic stress, consistent with the multitude of phenotypic defects observed in ccc1 knockout plants. This discovery places CCC1 as a central component of plant cellular function.
Collapse
Affiliation(s)
- Daniel W McKay
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Australia.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Yue Qu
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Apriadi Situmorang
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Stefanie Wege
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| |
Collapse
|
99969
|
Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Molecules 2022; 27:347. [PMID: 35056661 PMCID: PMC8779408 DOI: 10.3390/molecules27020347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- KemPharm Inc., 2200 Kraft Drive, Blacksburg, VA 24060, USA
| | - Tuhin Das
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
| | - Athena Choi
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Brooklyn Technical High School, 29 Fort Greene Pl, Brooklyn, NY 11217, USA
| | - Ashif I. Bhuiyan
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Mindich Child Health and Development Institute, Department of Pediatrics, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of the City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA; (D.D.); (T.D.); (A.C.); (A.I.B.)
- Chemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
- Biochemistry Doctoral Program, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
99970
|
Chang CH, Gregory LE, Gordon KE, Meiklejohn CD, Larracuente AM. Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes. eLife 2022; 11:e75795. [PMID: 34989337 PMCID: PMC8794474 DOI: 10.7554/elife.75795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long-read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the Drosophila simulans complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of RochesterRochesterUnited States
| | - Lauren E Gregory
- Department of Biology, University of RochesterRochesterUnited States
| | - Kathleen E Gordon
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-LincolnLincolnUnited States
| | | |
Collapse
|
99971
|
Ganz T, Fainstein N, Elad A, Lachish M, Goldfarb S, Einstein O, Ben-Hur T. Microbial pathogens induce neurodegeneration in Alzheimer's disease mice: protection by microglial regulation. J Neuroinflammation 2022; 19:5. [PMID: 34991645 PMCID: PMC8740456 DOI: 10.1186/s12974-021-02369-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodegeneration is considered the consequence of misfolded proteins' deposition. Little is known about external environmental effects on the neurodegenerative process. Infectious agent-derived pathogen-associated molecular patterns (PAMPs) activate microglia, key players in neurodegenerative diseases. We hypothesized that systemic microbial pathogens may accelerate neurodegeneration in Alzheimer's disease (AD) and that microglia play a central role in this process. METHODS We examined the effect of an infectious environment and of microbial Toll-like receptor (TLR) agonists on cortical neuronal loss and on microglial phenotype in wild type versus 5xFAD transgenic mice, carrying mutated genes associated with familial AD. RESULTS We examined the effect of a naturally bred environment on the neurodegenerative process. Earlier and accelerated cortical neuron loss occurred in 5xFAD mice housed in a natural ("dirty") environment than in a specific-pathogen-free (SPF) environment, without increasing the burden of Amyloid deposits and microgliosis. Neuronal loss occurred in a microglia-rich cortical region but not in microglia-poor CA regions of the hippocampus. Environmental exposure had no effect on cortical neuron density in wild-type mice. To model the neurodegenerative process caused by the natural infectious environment, we injected systemically the bacterial endotoxin lipopolysaccharide (LPS), a TLR4 agonist PAMP. LPS caused cortical neuronal death in 5xFAD, but not wt mice. We used the selective retinoic acid receptor α agonist Am580 to regulate microglial activation. In primary microglia isolated from 5xFAD mice, Am580 markedly attenuated TLR agonists-induced iNOS expression, without canceling their basic immune response. Intracerebroventricular delivery of Am580 in 5xFAD mice reduced significantly the fraction of (neurotoxic) iNOS + microglia and increased the fraction of (neuroprotective) TREM2 + microglia. Furthermore, intracerebroventricular delivery of Am580 prevented neurodegeneration induced by microbial TLR agonists. CONCLUSIONS Exposure to systemic infections causes neurodegeneration in brain regions displaying amyloid pathology and high local microglia density. AD brains exhibit increased susceptibility to microbial PAMPs' neurotoxicity, which accelerates neuronal death. Microglial modulation protects the brain from microbial TLR agonist PAMP-induced neurodegeneration.
Collapse
Affiliation(s)
- Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nina Fainstein
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amit Elad
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marva Lachish
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Smadar Goldfarb
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Tamir Ben-Hur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
99972
|
Zarkasi KA, Abdul Murad NA, Ahmad N, Jamal R, Abdullah N. Coronary Heart Disease in Type 2 Diabetes Mellitus: Genetic Factors and Their Mechanisms, Gene-Gene, and Gene-Environment Interactions in the Asian Populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:647. [PMID: 35055468 PMCID: PMC8775550 DOI: 10.3390/ijerph19020647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/04/2023]
Abstract
Asians are more susceptible to type 2 diabetes mellitus (T2D) and its coronary heart disease (CHD) complications than the Western populations, possibly due to genetic factors, higher degrees of obesity, insulin resistance, and endothelial dysfunction that could occur even in healthy individuals. The genetic factors and their mechanisms, along with gene-gene and gene-environment interactions associated with CHD in T2D Asians, are yet to be explored. Therefore, the objectives of this paper were to review the current evidence of genetic factors for CHD, summarize the proposed mechanisms of these genes and how they may associate with CHD risk, and review the gene-gene and gene-environment interactions in T2D Asians with CHD. The genetic factors can be grouped according to their involvement in the energy and lipoprotein metabolism, vascular and endothelial pathology, antioxidation, cell cycle regulation, DNA damage repair, hormonal regulation of glucose metabolism, as well as cytoskeletal function and intracellular transport. Meanwhile, interactions between single nucleotide polymorphisms (SNPs) from different genes, SNPs within a single gene, and genetic interaction with environmental factors including obesity, smoking habit, and hyperlipidemia could modify the gene's effect on the disease risk. Collectively, these factors illustrate the complexities of CHD in T2D, specifically among Asians.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
- Biochemistry Unit, Preclinical Department, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia;
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (K.A.Z.); (N.A.A.M.); (R.J.)
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| |
Collapse
|
99973
|
Li R, Wang H, Liang Q, Chen L, Ren J. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies. Biomater Sci 2022; 10:892-908. [PMID: 34989724 DOI: 10.1039/d1bm01401c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults with poor prognosis. Despite the current state of knowledge on its genetic characteristics, relatively little progress has been made in improving the treatment of patients with this fatal disease. Radiotherapy (RT) has been identified as a crucial treatment for GBM following surgical resection to improve both local control and survival. Unfortunately, radiotherapy resistance is frequently observed in GBM patients, which is the major reason for the high mortality rate of cancer patients. Radioresistance of GBM is often multifactorial and heterogeneous, and associated with the recurrence of GBM after surgery. Nanotechnology has gained increasing attention and has already been investigated for optimization of radiosensitization due to the unique properties of nanobiomaterials, such as photoelectric decay characteristics or potential as carriers for drug delivery to the central nervous system. A large body of preclinical data has accumulated over the past several years, in which nanotechnology-based strategies exhibit promising potential to enhance the radiosensitivity of GBM, both in cellular and animal models. In this review, we summarize the mechanisms of GBM radioresistance, including tumor cell-intrinsic factors as well as tumor microenvironment (TME). We further discuss current nano-biotechnology-based radiosensitizer in the treatment of GBM, summarize the latest findings, highlight challenges, and put forward prospects for the future of nano-radiosensitizers. These data suggest that nanotechnology has the potential to address many of the clinical challenges and nanobiomaterials would become promising next-generation radiotherapy sensitizers for GBM treatment.
Collapse
Affiliation(s)
- Ruiqi Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Qing Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Lian Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| |
Collapse
|
99974
|
Chen Y, Liu H, Zeng L, Li L, Lu D, Liu Z, Fu R. SUZ12 participates in the proliferation of PNH clones by regulating histone H3K27me3 levels. J Leukoc Biol 2022; 112:243-255. [PMID: 34990019 DOI: 10.1002/jlb.2a1021-564r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a disease involving hematopoietic stem cell membrane defects caused by acquired phosphatidylinositol glycan anchor biosynthesis class A (PIGA) mutations. In this study, 97 target genes were selected as a target gene panel and screened in 23 PNH patients via the sequencing of specific DNA target regions. Through functional analysis, we identified that suppressor-of-Zeste 12 (SUZ12) may be involved in the proliferation of PNH clones. mRNA and protein expression levels of SUZ12 and the trimethylation level of histone H3 at lysine 27 (H3K27) in CD59- peripheral blood leukocytes from PNH patients were higher than those in CD59+ cells from PNH patients and peripheral blood leukocytes from healthy controls. In addition, the relative expression of SUZ12 in PNH patients was positively correlated with Ret% and the proportion of PNH clones. When we knocked down SUZ12 expression in a PIGA knockdown THP-1 cell line (THP-1 KD cells), the trimethylation of histone H3K27(H3K27me3) and cell proliferation decreased, apoptosis increased, and cell cycle arrest occurred in G0/G1 phase. In conclusion, SUZ12 participates in the proliferation of PNH clones by regulating histone H3K27me3 levels. Our results may provide new therapeutic targets and possibilities for PNH patients.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijie Zeng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Liyan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Lu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
99975
|
Cheng C, Kurdistani SK. Chromatin as a metabolic organelle: Integrating the cellular flow of carbon with gene expression. Mol Cell 2022; 82:8-9. [PMID: 34995510 DOI: 10.1016/j.molcel.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hsieh et al. (2022) reveal that carbon starvation elicits an unexpected compensatory reallocation of histone acetylation to establish an adaptive gene expression program, demonstrating how chromatin may integrate cellular carbon flow via histone acetylation with gene regulation.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
99976
|
Chen L, Jung HJ, Datta A, Park E, Poll BG, Kikuchi H, Leo KT, Mehta Y, Lewis S, Khundmiri SJ, Khan S, Chou CL, Raghuram V, Yang CR, Knepper MA. Systems Biology of the Vasopressin V2 Receptor: New Tools for Discovery of Molecular Actions of a GPCR. Annu Rev Pharmacol Toxicol 2022; 62:595-616. [PMID: 34579536 PMCID: PMC10676752 DOI: 10.1146/annurev-pharmtox-052120-011012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systems biology can be defined as the study of a biological process in which all of the relevant components are investigated together in parallel to discover the mechanism. Although the approach is not new, it has come to the forefront as a result of genome sequencing projects completed in the first few years of the current century. It has elements of large-scale data acquisition (chiefly next-generation sequencing-based methods and protein mass spectrometry) and large-scale data analysis (big data integration and Bayesian modeling). Here we discuss these methodologies and show how they can be applied to understand the downstream effects of GPCR signaling, specifically looking at how the neurohypophyseal peptide hormone vasopressin, working through the V2 receptor and PKA activation, regulates the water channel aquaporin-2. The emerging picture provides a detailedframework for understanding the molecular mechanisms involved in water balance disorders, pointing the way to improved treatment of both polyuric disorders and water-retention disorders causing dilutional hyponatremia.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Arnab Datta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
- Yenepoya Research Center, Yenepoya, Mangalore 575018, Karnataka, India
| | - Euijung Park
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Yash Mehta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Spencer Lewis
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Syed J Khundmiri
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Shaza Khan
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| |
Collapse
|
99977
|
Jin Q, Wang Z, Chen Y, Luo Y, Tian N, Liu Z, Huang J, Liu S. Transcriptomics analysis reveals the signal transduction mechanism of brassinolides in tea leaves and its regulation on the growth and development of Camellia sinensis. BMC Genomics 2022; 23:29. [PMID: 34991475 PMCID: PMC8739690 DOI: 10.1186/s12864-021-08179-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Brassinosteroids (BRs) are a type of sterol plant hormone that play an important role in various biochemical and physiological reactions such as promoting cell growth, increasing biomass, and improving stress resistance. RESULTS To investigate the regulatory and molecular mechanism of BRs on the growth and development of tea plants (Camellia sinensis L.), changes in cell structure and gene expression levels of tea leaves treated with exogenous BRs were analyzed by electron microscopy and high-throughput Illumina RNA-Seq technology. The results showed that the number of starch granules in the chloroplasts and lipid globules increased and thylakoids expanded after BR treatment compared with the control. Transcriptome analysis showed that in the four BR treatments (CAA: BR treatment for 3 h, CAB: BR treatment for 9 h, CAC: BR treatment for 24 h, and CAD: BR treatment for 48 h), 3861 (1867 upregulated and 1994 downregulated), 5030 (2461 upregulated and 2569 downregulated), 1626 (815 upregulated and 811 downregulated), and 2050 (1004 upregulated and 1046 downregulated) differentially expressed genes were detected, respectively, compared with CAK (BR treatment for 0 h). Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, metabolic pathway enrichment analysis showed that the differentially expressed genes of CAA vs. CAK, CAB vs. CAK, CAC vs. CAK, and CAD vs. CAK significantly enriched the functional categories of signal transduction, cell cycle regulation, and starch, sucrose, and flavonoid biosynthesis and metabolism pathways. We also found that after spraying BR, the key genes for caffeine synthesis were downregulated. The results of qRT-PCR coincided with the findings of transcriptomic analysis. CONCLUSIONS The present study improved our understanding of the effects of BRs on the growth and development of tea leaves and laid the foundation for the in-depth analysis of signal transduction pathways of BRs in tea leaves.
Collapse
Affiliation(s)
- Qifang Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yanni Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Na Tian
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Shuoqian Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
99978
|
Ferguson CJ, Urso O, Bodrug T, Gassaway BM, Watson ER, Prabu JR, Lara-Gonzalez P, Martinez-Chacin RC, Wu DY, Brigatti KW, Puffenberger EG, Taylor CM, Haas-Givler B, Jinks RN, Strauss KA, Desai A, Gabel HW, Gygi SP, Schulman BA, Brown NG, Bonni A. APC7 mediates ubiquitin signaling in constitutive heterochromatin in the developing mammalian brain. Mol Cell 2022; 82:90-105.e13. [PMID: 34942119 PMCID: PMC8741739 DOI: 10.1016/j.molcel.2021.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Neurodevelopmental cognitive disorders provide insights into mechanisms of human brain development. Here, we report an intellectual disability syndrome caused by the loss of APC7, a core component of the E3 ubiquitin ligase anaphase promoting complex (APC). In mechanistic studies, we uncover a critical role for APC7 during the recruitment and ubiquitination of APC substrates. In proteomics analyses of the brain from mice harboring the patient-specific APC7 mutation, we identify the chromatin-associated protein Ki-67 as an APC7-dependent substrate of the APC in neurons. Conditional knockout of the APC coactivator protein Cdh1, but not Cdc20, leads to the accumulation of Ki-67 protein in neurons in vivo, suggesting that APC7 is required for the function of Cdh1-APC in the brain. Deregulated neuronal Ki-67 upon APC7 loss localizes predominantly to constitutive heterochromatin. Our findings define an essential function for APC7 and Cdh1-APC in neuronal heterochromatin regulation, with implications for understanding human brain development and disease.
Collapse
Affiliation(s)
- Cole J Ferguson
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Neuropathology Division, Physician-Scientist Training Program, Washington University, St. Louis, MO 63110, USA
| | - Olivia Urso
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Tatyana Bodrug
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | - Pablo Lara-Gonzalez
- Department of Cellular and Molecular Medicine, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Raquel C Martinez-Chacin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | | | | | - Cora M Taylor
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Barbara Haas-Givler
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Robert N Jinks
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17603, USA
| | | | - Arshad Desai
- Department of Cellular and Molecular Medicine, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard University, Boston, MA 02138, USA
| | | | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
99979
|
Chromatin alterations during the epididymal maturation of mouse sperm refine the paternally inherited epigenome. Epigenetics Chromatin 2022; 15:2. [PMID: 34991687 PMCID: PMC8734183 DOI: 10.1186/s13072-021-00433-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Paternal lifestyle choices and male exposure history have a critical influence on the health and fitness of the next generation. Accordingly, defining the processes of germline programming is essential to resolving how the epigenetic memory of paternal experiences transmits to their offspring. Established dogma holds that all facets of chromatin organization and histone posttranslational modification are complete before sperm exits the testes. However, recent clinical and animal studies suggest that patterns of DNA methylation change during epididymal maturation. In this study, we used complementary proteomic and deep-sequencing approaches to test the hypothesis that sperm posttranslational histone modifications change during epididymal transit. RESULTS Using proteomic analysis to contrast immature spermatozoa and mature sperm isolated from the mouse epididymis, we find progressive changes in multiple histone posttranslational modifications, including H3K4me1, H3K27ac, H3K79me2, H3K64ac, H3K122ac, H4K16ac, H3K9me2, and H4K20me3. Interestingly, some of these changes only occurred on histone variant H3.3, and most involve chromatin modifications associated with gene enhancer activity. In contrast, the bivalent chromatin modifications, H3K4me3, and H3K27me3 remained constant. Using chromatin immunoprecipitation coupled with deep sequencing, we find that changes in histone h3, lysine 27 acetylation (H3K27ac) involve sharpening broad diffuse regions into narrow peaks centered on the promoter regions of genes driving embryonic development. Significantly, many of these regions overlap with broad domains of H3K4me3 in oocytes and ATAC-seq signatures of open chromatin identified in MII oocytes and sperm. In contrast, histone h3, lysine 9 dimethylation (H3K9me2) becomes enriched within the promoters of genes driving meiosis and in the distal enhancer regions of tissue-specific genes sequestered at the nuclear lamina. Maturing sperm contain the histone deacetylase enzymes HDAC1 and HDAC3, suggesting the NuRD complex may drive some of these changes. Finally, using Western blotting, we detected changes in chromatin modifications between caput and caudal sperm isolated from rams (Ovis aries), inferring changes in histone modifications are a shared feature of mammalian epididymal maturation. CONCLUSIONS These data extend our understanding of germline programming and reveal that, in addition to trafficking noncoding RNAs, changes in histone posttranslational modifications are a core feature of epididymal maturation.
Collapse
|
99980
|
Komirishetty P, Areti A, Arruri VK, Sistla R, Gogoi R, Kumar A. FeTMPyP a peroxynitrite decomposition catalyst ameliorated functional and behavioral deficits in chronic constriction injury induced neuropathic pain in rats. Free Radic Res 2022; 55:1005-1017. [PMID: 34991423 DOI: 10.1080/10715762.2021.2010731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Neuropathic pain is a maladaptive pain phenotype that results from injury or damage to the somatosensory nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammation and apoptosis. Oxidative/nitrosative stress is a critical link between neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of peroxynitrite decomposition catalyst; FeTMPyP in chronic constriction injury (CCI) of sciatic nerve-induced neuropathy in rats. CCI of the sciatic nerve manifested significant deficits in behavioral, biochemical, functional parameters and was markedly reversed by administration of FeTMPyP. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers such as iNOS, NF-kB, TNF-α and IL-6 were elevated in sciatic nerves of CCI rats along with depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR) in both sciatic nerves in ipsilateral (L4-L5) dorsal root ganglions (DRG's), suggesting over activation of PARP. Additionally, CCI resulted in aberrations in mitochondrial function as evident by decreased Mn-SOD levels and respiratory complex activities with increased mitochondrial fission protein DRP-1. These changes were reversed by treatment with FeTMPyP (1 & 3 mg/kg, p.o.). Findings of this study suggest that FeTMPyP, by virtue of its antioxidant properties, reduced both PARP over-activation and subsequent neuroinflammation resulted in protection against CCI-induced functional, behavioral and biochemical deficits.
Collapse
Affiliation(s)
- Prashanth Komirishetty
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Aparna Areti
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vijay Kumar Arruri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ramakrishna Sistla
- Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Ranadeep Gogoi
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
99981
|
Zhang S, Zhou L, El-Deiry WS. Small-molecule NSC59984 induces mutant p53 degradation through a ROS-ERK2-MDM2 axis in cancer cells. Mol Cancer Res 2022; 20:622-636. [PMID: 34992144 DOI: 10.1158/1541-7786.mcr-21-0149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/19/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Increased reactive oxygen species (ROS) and hyper-stabilized mutant p53 are common in cancer. Hyper-stabilized mutant p53 contributes to its gain-of-function (GOF) which confers resistance to chemo- and radio-therapy. Targeting mutant p53 degradation is a promising cancer therapeutic strategy. We used a small-molecule NSC59984 to explore elimination of mutant p53 in cancer cells, and identified an inducible ROS-ERK2-MDM2 axis as a vulnerability for induction of mutant p53 degradation in cancer cells. NSC59984 treatment promotes a constitutive phosphorylation of ERK2 via ROS in cancer cells. The NSC59984-sustained ERK2 activation is required for MDM2 phosphorylation at serine-166. NSC59984 enhances phosphorylated-MDM2 binding to mutant p53, which leads to mutant p53 ubiquitination and degradation. High cellular ROS increases the efficacy of NSC59984 targeting mutant p53 degradation and anti-tumor effects. Our data suggest that mutant p53 stabilization has a vulnerability under high ROS cellular conditions, which can be exploited by compounds to target mutant p53 protein degradation through the activation of a ROS-ERK2-MDM2 axis in cancer cells. Implications: An inducible ROS-ERK2-MDM2 axis exposes a vulnerability in mutant p53 stabilization and can be exploited by small molecule compounds to induce mutant p53 degradation for cancer therapy.
Collapse
Affiliation(s)
- Shengliang Zhang
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University
| | | | - Wafik S El-Deiry
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University
| |
Collapse
|
99982
|
Potier B, Lallemant L, Parrot S, Huguet-Lachon A, Gourdon G, Dutar P, Gomes-Pereira M. DM1 Transgenic Mice Exhibit Abnormal Neurotransmitter Homeostasis and Synaptic Plasticity in Association with RNA Foci and Mis-Splicing in the Hippocampus. Int J Mol Sci 2022; 23:ijms23020592. [PMID: 35054778 PMCID: PMC8775431 DOI: 10.3390/ijms23020592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.
Collapse
Affiliation(s)
- Brigitte Potier
- LuMIn, CNRS FRE2036, ENS Paris-Saclay, CentraleSupelec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (B.P.); (P.D.)
| | - Louison Lallemant
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
| | - Sandrine Parrot
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Université Lyon 1, 69500 Bron, France;
| | - Aline Huguet-Lachon
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
- Correspondence: (G.G.); (M.G.-P.)
| | - Patrick Dutar
- LuMIn, CNRS FRE2036, ENS Paris-Saclay, CentraleSupelec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (B.P.); (P.D.)
| | - Mário Gomes-Pereira
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
- Correspondence: (G.G.); (M.G.-P.)
| |
Collapse
|
99983
|
Hsieh WC, Sutter BM, Ruess H, Barnes SD, Malladi VS, Tu BP. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes. Mol Cell 2022; 82:60-74.e5. [PMID: 34995509 PMCID: PMC8794035 DOI: 10.1016/j.molcel.2021.12.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023]
Abstract
Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.
Collapse
Affiliation(s)
- Wen-Chuan Hsieh
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M. Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Holly Ruess
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer D. Barnes
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Venkat S. Malladi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P. Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA,Correspondence and Lead Contact:
| |
Collapse
|
99984
|
Xu Y, Shi Z, Bao L. An expanding repertoire of protein acylations. Mol Cell Proteomics 2022; 21:100193. [PMID: 34999219 PMCID: PMC8933697 DOI: 10.1016/j.mcpro.2022.100193] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 01/03/2023] Open
Abstract
Protein post-translational modifications play key roles in multiple cellular processes by allowing rapid reprogramming of individual protein functions. Acylation, one of the most important post-translational modifications, is involved in different physiological activities including cell differentiation and energy metabolism. In recent years, the progression in technologies, especially the antibodies against acylation and the highly sensitive and effective mass spectrometry–based proteomics, as well as optimized functional studies, greatly deepen our understanding of protein acylation. In this review, we give a general overview of the 12 main protein acylations (formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, glutarylation, palmitoylation, myristoylation, benzoylation, crotonylation, and 2-hydroxyisobutyrylation), including their substrates (histones and nonhistone proteins), regulatory enzymes (writers, readers, and erasers), biological functions (transcriptional regulation, metabolic regulation, subcellular targeting, protein–membrane interactions, protein stability, and folding), and related diseases (cancer, diabetes, heart disease, neurodegenerative disease, and viral infection), to present a complete picture of protein acylations and highlight their functional significance in future research. Provide a general overview of the 12 main protein acylations. Acylation of viral proteins promotes viral integration and infection. Hyperacylation of histone has antitumous and neuroprotective effects. MS is widely used in the identification of acylation but has its challenges.
Collapse
Affiliation(s)
- Yuxuan Xu
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Zhenyu Shi
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China
| | - Li Bao
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research center for Cancer, 300060, Tianjin, China.
| |
Collapse
|
99985
|
Alternative functions of CRISPR-Cas systems in the evolutionary arms race. Nat Rev Microbiol 2022; 20:351-364. [PMID: 34992260 DOI: 10.1038/s41579-021-00663-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
CRISPR-Cas systems of bacteria and archaea comprise chromosomal loci with typical repetitive clusters and associated genes encoding a range of Cas proteins. Adaptation of CRISPR arrays occurs when virus-derived and plasmid-derived sequences are integrated as new CRISPR spacers. Cas proteins use CRISPR-derived RNA guides to specifically recognize and cleave nucleic acids of invading mobile genetic elements. Apart from this role as an adaptive immune system, some CRISPR-associated nucleases are hijacked by mobile genetic elements: viruses use them to attack their prokaryotic hosts, and transposons have adopted CRISPR systems for guided transposition. In addition, some CRISPR-Cas systems control the expression of genes involved in bacterial physiology and virulence. Moreover, pathogenic bacteria may use their Cas nuclease activity indirectly to evade the human immune system or directly to invade the nucleus and damage the chromosomal DNA of infected human cells. Thus, the evolutionary arms race has led to the expansion of exciting variations in CRISPR mechanisms and functionalities. In this Review, we explore the latest insights into the diverse functions of CRISPR-Cas systems beyond adaptive immunity and discuss the implications for the development of CRISPR-based applications.
Collapse
|
99986
|
Estrogen receptor alpha and NFATc1 bind to a bone mineral density-associated SNP to repress WNT5B in osteoblasts. Am J Hum Genet 2022; 109:97-115. [PMID: 34906330 DOI: 10.1016/j.ajhg.2021.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Genetic factors and estrogen deficiency contribute to the development of osteoporosis. The single-nucleotide polymorphism (SNP) rs2887571 is predicted from genome-wide association studies (GWASs) to associate with osteoporosis but has had an unknown mechanism. Analysis of osteoblasts from 110 different individuals who underwent joint replacement revealed that the genotype of rs2887571 correlates with WNT5B expression. Analysis of our ChIP-sequencing data revealed that SNP rs2887571 overlaps with an estrogen receptor alpha (ERα) binding site. Here we show that 17β-estradiol (E2) suppresses WNT5B expression and further demonstrate the mechanism of ERα binding at the enhancer containing rs2887571 to suppress WNT5B expression differentially in each genotype. ERα interacts with NFATc1, which is predicted to bind directly at rs2887571. CRISPR-Cas9 and ChIP-qPCR experiments confirm differential regulation of WNT5B between each allele. Homozygous GG has a higher binding affinity for ERα than homozygous AA and results in greater suppression of WNT5B expression. Functionally, WNT5B represses alkaline phosphatase expression and activity, decreasing osteoblast differentiation and mineralization. Furthermore, WNT5B increases interleukin-6 expression and suppresses E2-induced expression of alkaline phosphatase during osteoblast differentiation. We show that WNT5B suppresses the differentiation of osteoblasts via receptor tyrosine kinase-like orphan receptor 1/2 (ROR1/2), which activates DVL2/3/RAC1/CDC42/JNK/SIN3A signaling and inhibits β-catenin activity. Together, our data provide mechanistic insight into how ERα and NFATc1 regulate the non-coding SNP rs2887571, as well as the function of WNT5B on osteoblasts, which could provide alternative therapeutic targets for osteoporosis.
Collapse
|
99987
|
Nakamura K, Reid BM, Chen A, Chen Z, Goode EL, Permuth JB, Teer JK, Tyrer J, Yu X, Kanetsky PA, Pharoah PD, Gayther SA, Sellers TA, Lawrenson K, Karreth FA. Functional analysis of the 1p34.3 risk locus implicates GNL2 in high-grade serous ovarian cancer. Am J Hum Genet 2022; 109:116-135. [PMID: 34965383 DOI: 10.1016/j.ajhg.2021.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
The high-grade serous ovarian cancer (HGSOC) risk locus at chromosome 1p34.3 resides within a frequently amplified genomic region signifying the presence of an oncogene. Here, we integrate in silico variant-to-function analysis with functional studies to characterize the oncogenic potential of candidate genes in the 1p34.3 locus. Fine mapping of genome-wide association statistics identified candidate causal SNPs local to H3K27ac-demarcated enhancer regions that exhibit allele-specific binding for CTCF in HGSOC and normal fallopian tube secretory epithelium cells (FTSECs). SNP risk associations colocalized with eQTL for six genes (DNALI1, GNL2, RSPO1, SNIP1, MEAF6, and LINC01137) that are more highly expressed in carriers of the risk allele, and three (DNALI1, GNL2, and RSPO1) were upregulated in HGSOC compared to normal ovarian surface epithelium cells and/or FTSECs. Increased expression of GNL2 and MEAF6 was associated with shorter survival in HGSOC with 1p34.3 amplifications. Despite its activation of β-catenin signaling, RSPO1 overexpression exerted no effects on proliferation or colony formation in our study of ovarian cancer and FTSECs. Instead, GNL2, MEAF6, and SNIP1 silencing impaired in vitro ovarian cancer cell growth. Additionally, GNL2 silencing diminished xenograft tumor formation, whereas overexpression stimulated proliferation and colony formation in FTSECs. GNL2 influences 60S ribosomal subunit maturation and global protein synthesis in ovarian cancer and FTSECs, providing a potential mechanism of how GNL2 upregulation might promote ovarian cancer development and mediate genetic susceptibility of HGSOC.
Collapse
|
99988
|
Emergence of clone with PHF6 nonsense mutation in chronic myelomonocytic leukemia at relapse after allogeneic HCT. Int J Hematol 2022; 115:748-752. [PMID: 34988909 DOI: 10.1007/s12185-021-03284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Disease relapse is a major cause of treatment failure after allogeneic hematopoietic cell transplantation (HCT) and the mechanisms of relapse remain unclear. We encountered a 58-year-old man with chronic myelomonocytic leukemia (CMML) that relapsed after haploidentical HCT from his daughter. Peripheral blood samples collected at HCT and at relapse were analyzed, and CD14+/CD16- monocytes that typically accumulate in CMML were isolated by flow cytometry. Whole-exome sequencing of the monocytes revealed 8 common mutations in CMML at HCT. In addition, a PHF6 nonsense mutation not detected at HCT was detected at relapse. RNA sequencing could not detect changes in expression of HLA or immune-checkpoint molecules, which are important mechanisms of immune evasion. However, gene set enrichment analysis (GSEA) revealed that a TNF-α signaling pathway was downregulated at relapse. Ubiquitination of histone H2B at lysine residue 120 (H2BK120ub) at relapse was significantly decreased at the protein level, indicating that PHF6 loss might downregulate a TNF-α signaling pathway by reduction of H2BK120ub. This case illustrates that PHF6 loss contributes to a competitive advantage for the clone under stress conditions and leads to relapse after HCT.
Collapse
|
99989
|
Zhang L, Li Y, Hu Y, Chen M, Cen C, Chen M, Lin L, Zhou J, Wang M, Cui X, Tang F, Gao F. Somatic cell-derived BMPs induce premature meiosis in male germ cells during the embryonic stage by upregulating Dazl expression. FASEB J 2022; 36:e22131. [PMID: 34985827 DOI: 10.1096/fj.202101585r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
Although germ cell fate is believed to be determined by signaling factors from differentiated somatic cells, the molecular mechanism behind this process remains obscure. In this study, premature meiosis in male germ cells was observed during the embryonic stage by conditional activation of β-catenin in Sertoli cells. Somatic and germ cell transcriptome results indicated that the BMP signaling pathway was enriched after β-catenin activation. In addition, we observed a decreased DNA methylation within a reduction of DNMT3A in germ cells of β-catenin activated testes and reversed increase after inhibiting BMP signaling pathway with LDN-193189. We also found that Dazl expression was increased in β-catenin activated testes and decreased after LDN treatment. Taken together, this study demonstrates that male germ cells entered meiosis prematurely during the embryonic stage after β-catenin activated in Sertoli cells. BMP signaling pathway involved in germ cell meiosis initiation by mediating DNA methylation to induce meiotic genes expression.
Collapse
Affiliation(s)
- Lianjun Zhang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yaqiong Li
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yuqiong Hu
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, P.R. China.,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Beijing, P.R. China
| | - Min Chen
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Changhuo Cen
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Min Chen
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Limei Lin
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jingjing Zhou
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Mengyue Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiuhong Cui
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, P.R. China.,Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Beijing, P.R. China
| | - Fei Gao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
99990
|
Little MH, Howden SE. Forward steps in organoid-based forward screening. Cell Stem Cell 2022; 29:7-8. [PMID: 34995496 DOI: 10.1016/j.stem.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Cell Stem Cell, Ungricht et al. (2022) perform a temporally controlled CRISPR/Cas9-based genome-wide screen in kidney organoids to uncover key gene networks important for the specification of kidney cell types from human pluripotent stem cells, thus furthering our understanding of human kidney development and disease.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Sara E Howden
- Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| |
Collapse
|
99991
|
Hypoxia-Inducible Factor Signaling in Inflammatory Lung Injury and Repair. Cells 2022; 11:cells11020183. [PMID: 35053299 PMCID: PMC8774273 DOI: 10.3390/cells11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory lung injury is characterized by lung endothelial cell (LEC) death, alveolar epithelial cell (AEC) death, LEC-LEC junction weakening, and leukocyte infiltration, which together disrupt nutrient and oxygen transport. Subsequently, lung vascular repair is characterized by LEC and AEC regeneration and LEC-LEC junction re-annealing, which restores nutrient and oxygen delivery to the injured tissue. Pulmonary hypoxia is a characteristic feature of several inflammatory lung conditions, including acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and severe coronavirus disease 2019 (COVID-19). The vascular response to hypoxia is controlled primarily by the hypoxia-inducible transcription factors (HIFs) 1 and 2. These transcription factors control the expression of a wide variety of target genes, which in turn mediate key pathophysiological processes including cell survival, differentiation, migration, and proliferation. HIF signaling in pulmonary cell types such as LECs and AECs, as well as infiltrating leukocytes, tightly regulates inflammatory lung injury and repair, in a manner that is dependent upon HIF isoform, cell type, and injury stimulus. The aim of this review is to describe the HIF-dependent regulation of inflammatory lung injury and vascular repair. The review will also discuss potential areas for future study and highlight putative targets for inflammatory lung conditions such as ALI/ARDS and severe COVID-19. In the development of HIF-targeted therapies to reduce inflammatory lung injury and/or enhance pulmonary vascular repair, it will be vital to consider HIF isoform- and cell-specificity, off-target side-effects, and the timing and delivery strategy of the therapeutic intervention.
Collapse
|
99992
|
Wen J, Li X, Zhao QX, Yang XF, Wu ML, Yan Q, Chang J, Wang H, Jin X, Su X, Deng K, Chen L, Wang JH. Pharmacological suppression of glycogen synthase kinase-3 reactivates HIV-1 from latency via activating Wnt/β-catenin/TCF1 axis in CD4 + T cells. Emerg Microbes Infect 2022; 11:391-405. [PMID: 34985411 PMCID: PMC8812804 DOI: 10.1080/22221751.2022.2026198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACTHIV-1 latency posts a major obstacle for HIV-1 eradication. Currently, no desirable latency reversing agents (LRAs) have been implicated in the "Shock and Kill" strategy to mobilize the latently infected cells to be susceptible for clearance by immune responses. Identification of key cellular pathways that modulate HIV-1 latency helps to develop efficient LRAs. In this study, we demonstrate that the Wnt downstream β-catenin/TCF1 pathway is a crucial modulator for HIV-1 latency. The pharmacological activation of the β-catenin/TCF1 pathway with glycogen synthase kinase-3 (GSK3) inhibitors promoted transcription of HIV-1 proviral DNA and reactivated latency in CD4+ T cells; the GSK3 kinase inhibitor 6-bromoindirubin-3'-oxime (6-BIO)-induced HIV-1 reactivation was subsequently confirmed in resting CD4+ T cells from cART-suppressed patients and SIV-infected rhesus macaques. These findings advance our understanding of the mechanisms responsible for viral latency, and provide the potent LRA that can be further used in conjunction of immunotherapies to eradicate viral reservoirs.
Collapse
Affiliation(s)
- Jing Wen
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Qing-Xia Zhao
- Department of Infection, Zhengzhou Sixth People's Hospital, Zhengzhou, People's Republic of China
| | - Xiao-Fan Yang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meng-Li Wu
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Qihong Yan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Junbiao Chang
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Haikun Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xia Jin
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Xiao Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Jian-Hua Wang
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
99993
|
Furnish M, Boulton DP, Genther V, Grofova D, Ellinwood ML, Romero L, Lucia MS, Cramer SD, Caino MC. MIRO2 regulates prostate cancer cell growth via GCN1-dependent stress signaling. Mol Cancer Res 2022; 20:607-621. [PMID: 34992146 DOI: 10.1158/1541-7786.mcr-21-0374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
There is a continued need to identify novel therapeutic targets to prevent the mortality associated with prostate cancer. In this context, Mitochondrial Rho GTPase 2 (MIRO2) mRNA was upregulated in metastatic prostate cancer compared to localized tumors, and higher MIRO2 levels were correlated with poor patient survival. Using human cell lines that represent androgen-independent or -sensitive prostate cancer, we showed that MIRO2 depletion impaired cell growth, colony formation and tumor growth in mice. Network analysis of MIRO2's binding partners identified metabolism and cellular responses to extracellular stimuli as top over-represented pathways. The top hit on our screen, General Control Non-derepressible 1 (GCN1), was overexpressed in prostate cancer, and interacted with MIRO2 in prostate cancer cell lines and in primary prostate cancer cells. Functional analysis of MIRO2 mutations present in prostate cancer patients led to the identification of MIRO2 159L, which increased GCN1 binding. Importantly, MIRO2 was necessary for efficient GCN1-mediated GCN2 kinase signaling and induction of the transcription factor ATF4 levels. Further, MIRO2's effect on regulating prostate cancer cell growth was mediated by ATF4. Finally, levels of activated GCN2 and ATF4 were correlated with MIRO2 expression in prostate cancer xenografts. Both MIRO2 and activated GCN2 levels were higher in hypoxic areas of prostate cancer xenografts. Overall, we propose that targeting the MIRO2-GCN1 axis may be a valuable strategy to halt prostate cancer growth. Implications: MIRO2/GCN1/GCN2 constitute a novel mitochondrial signaling pathway that controls androgen-independent and androgen-sensitive prostate cancer cell growth.
Collapse
Affiliation(s)
- Madison Furnish
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
- Pharmacology Graduate Program, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Dillon P Boulton
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
- Pharmacology Graduate Program, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Victoria Genther
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Denisa Grofova
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Mitchell Lee Ellinwood
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Lina Romero
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - M Scott Lucia
- Department of Pathology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - Scott D Cramer
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| | - M Cecilia Caino
- Department of Pharmacology, School of Medicine, University of Colorado Anshutz Medical Campus, Aurora, Colorado
| |
Collapse
|
99994
|
Deng L, Gao B, Zhao L, Zhang Y, Zhang Q, Guo M, Yang Y, Wang S, Xie L, Lou H, Ma M, Zhang W, Cao Z, Zhang Q, McClung CR, Li G, Li X. Diurnal RNAPII-tethered chromatin interactions are associated with rhythmic gene expression in rice. Genome Biol 2022; 23:7. [PMID: 34991658 PMCID: PMC8734370 DOI: 10.1186/s13059-021-02594-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The daily cycling of plant physiological processes is speculated to arise from the coordinated rhythms of gene expression. However, the dynamics of diurnal 3D genome architecture and their potential functions underlying the rhythmic gene expression remain unclear. RESULTS Here, we reveal the genome-wide rhythmic occupancy of RNA polymerase II (RNAPII), which precedes mRNA accumulation by approximately 2 h. Rhythmic RNAPII binding dynamically correlates with RNAPII-mediated chromatin architecture remodeling at the genomic level of chromatin interactions, spatial clusters, and chromatin connectivity maps, which are associated with the circadian rhythm of gene expression. Rhythmically expressed genes within the same peak phases of expression are preferentially tethered by RNAPII for coordinated transcription. RNAPII-associated chromatin spatial clusters (CSCs) show high plasticity during the circadian cycle, and rhythmically expressed genes in the morning phase and non-rhythmically expressed genes in the evening phase tend to be enriched in RNAPII-associated CSCs to orchestrate expression. Core circadian clock genes are associated with RNAPII-mediated highly connected chromatin connectivity networks in the morning in contrast to the scattered, sporadic spatial chromatin connectivity in the evening; this indicates that they are transcribed within physical proximity to each other during the AM circadian window and are located in discrete "transcriptional factory" foci in the evening, linking chromatin architecture to coordinated transcription outputs. CONCLUSION Our findings uncover fundamental diurnal genome folding principles in plants and reveal a distinct higher-order chromosome organization that is crucial for coordinating diurnal dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Baibai Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yongqing Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Shuangqi Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Liang Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Hao Lou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Meng Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Department of Resources and Environment, Henan University of Engineering, 1 Xianghe Road, Longhu Town, Zhengzhou, 451191, Henan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
99995
|
Brucella abortus Encodes an Active Rhomboid Protease: Proteome Response after Rhomboid Gene Deletion. Microorganisms 2022; 10:microorganisms10010114. [PMID: 35056563 PMCID: PMC8778405 DOI: 10.3390/microorganisms10010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions.
Collapse
|
99996
|
Ochs ME, McWhirter RM, Unckless RL, Miller DM, Lundquist EA. Caenorhabditis elegans ETR-1/CELF has broad effects on the muscle cell transcriptome, including genes that regulate translation and neuroblast migration. BMC Genomics 2022; 23:13. [PMID: 34986795 PMCID: PMC8734324 DOI: 10.1186/s12864-021-08217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Migration of neuroblasts and neurons from their birthplace is central to the formation of neural circuits and networks. ETR-1 is the Caenorhabditis elegans homolog of the CELF1 (CUGBP, ELAV-like family 1) RNA-processing factor involved in neuromuscular disorders. etr-1 regulates body wall muscle differentiation. Our previous work showed that etr-1 in muscle has a non-autonomous role in neuronal migration, suggesting that ETR-1 is involved in the production of a signal emanating from body wall muscle that controls neuroblast migration and that interacts with Wnt signaling. etr-1 is extensively alternatively-spliced, and we identified the viable etr-1(lq61) mutant, caused by a stop codon in alternatively-spliced exon 8 and only affecting etr-1 isoforms containing exon 8. We took advantage of viable etr-1(lq61) to identify potential RNA targets of ETR-1 in body wall muscle using a combination of fluorescence activated cell sorting (FACS) of body wall muscles from wild-type and etr-1(lq61) and subsequent RNA-seq. This analysis revealed genes whose splicing and transcript levels were controlled by ETR-1 exon 8 isoforms, and represented a broad spectrum of genes involved in muscle differentiation, myofilament lattice structure, and physiology. Genes with transcripts underrepresented in etr-1(lq61) included those involved in ribosome function and translation, similar to potential CELF1 targets identified in chick cardiomyocytes. This suggests that at least some targets of ETR-1 might be conserved in vertebrates, and that ETR-1 might generally stimulate translation in muscles. As proof-of-principle, a functional analysis of a subset of ETR-1 targets revealed genes involved in AQR and PQR neuronal migration. One such gene, lev-11/tropomyosin, requires ETR-1 for alternative splicing, and another, unc-52/perlecan, requires ETR-1 for the production of long isoforms containing 3' exons. In sum, these studies identified gene targets of ETR-1/CELF1 in muscles, which included genes involved in muscle development and physiology, and genes with novel roles in neuronal migration.
Collapse
Affiliation(s)
- Matthew E Ochs
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Rebecca M McWhirter
- Department of Cell and Developmental Biology and Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37203, USA
| | - Robert L Unckless
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - David M Miller
- Department of Cell and Developmental Biology and Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37203, USA
| | - Erik A Lundquist
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
99997
|
Hypermethylation at the CXCR5 gene locus limits trafficking potential of CD8+ T cells into B-cell follicles during HIV-1 infection. Blood Adv 2022; 6:1904-1916. [PMID: 34991160 PMCID: PMC8941472 DOI: 10.1182/bloodadvances.2021006001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
CD8+ T-cells play an important role in HIV control. However, in human lymph nodes (LNs), only a small subset of CD8+ T-cells expresses CXCR5, the chemokine receptor required for cell migration into B cell follicles, which are major sanctuaries for HIV persistence in individuals on therapy. Here, we investigate the impact of HIV infection on follicular CD8+ T-cells (fCD8s) frequencies, trafficking pattern and CXCR5 regulation. We show that, although HIV infection results in a marginal increase of fCD8s in LN, the majority of HIV-specific CD8+ T-cells are CXCR5 negative (non-fCD8s) (p<0.003). Mechanistic investigations using ATAC-seq showed that non-fCD8s have closed chromatin at the CXCR5 transcriptional start site (TSS). DNA bisulfite sequencing identified DNA hypermethylation at the CXCR5 TSS as the most probable cause of closed chromatin. Transcriptional factor footprints analysis revealed enrichment of transforming growth factors (TGFs) at the TSS of fCD8s. In-vitro stimulation of non-fCD8s with recombinant TGF-β resulted in significant increase in CXCR5 expression (fCD8s). Thus, this study identifies TGF-β signaling as a viable strategy for increasing fCD8s frequencies in follicular areas of the LN where they are needed to eliminate HIV infected cells, with implications for HIV cure strategies.
Collapse
|
99998
|
Liu X, Blomme J, Bogaert KA, D’hondt S, Wichard T, Deforce D, Van Nieuwerburgh F, De Clerck O. Transcriptional dynamics of gametogenesis in the green seaweed Ulva mutabilis identifies an RWP-RK transcription factor linked to reproduction. BMC PLANT BIOLOGY 2022; 22:19. [PMID: 34991492 PMCID: PMC8734247 DOI: 10.1186/s12870-021-03361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND The molecular mechanism underlying sexual reproduction in land plants is well understood in model plants and is a target for crop improvement. However, unlike land plants, the genetic basis involved in triggering reproduction and gamete formation remains elusive in most seaweeds, which are increasingly viewed as an alternative source of functional food and feedstock for energy applications. RESULTS Gametogenesis of Ulva mutabilis, a model organism for green seaweeds, was studied. We analyzed transcriptome dynamics at different time points during gametogenesis following induction of reproduction by fragmentation and removal of sporulation inhibitors. Analyses demonstrated that 45% of the genes in the genome were differentially expressed during gametogenesis. We identified several transcription factors that potentially play a key role in the early gametogenesis of Ulva given the function of their homologs in higher plants and microalgae. In particular, the detailed expression pattern of an evolutionarily conserved transcription factor containing an RWP-RK domain suggested a key role during Ulva gametogenesis. CONCLUSIONS Transcriptomic analyses of gametogenesis in the green seaweed Ulva highlight the importance of a conserved RWP-RK transcription factor in the induction of sexual reproduction. The identification of putative master regulators of gametogenesis provides a starting point for further functional characterization.
Collapse
Affiliation(s)
- Xiaojie Liu
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Jonas Blomme
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kenny A. Bogaert
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| |
Collapse
|
99999
|
When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer 2022; 8:174-189. [PMID: 35000881 DOI: 10.1016/j.trecan.2021.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Genomic instability and inflammation are intricately connected hallmark features of cancer. DNA repair defects due to BRCA1/2 mutation instigate immune signaling through the cGAS/STING pathway. The subsequent inflammatory signaling provides both tumor-suppressive as well as tumor-promoting traits. To prevent clearance by the immune system, genomically instable cancer cells need to adapt to escape immune surveillance. Currently, it is unclear how genomically unstable cancers, including BRCA1/2-mutant tumors, are rewired to escape immune clearance. Here, we summarize the mechanisms by which genomic instability triggers inflammatory signaling and describe adaptive mechanisms by which cancer cells can 'fly under the radar' of the immune system. Additionally, we discuss how therapeutic activation of the immune system may improve treatment of genomically instable cancers.
Collapse
|
100000
|
Ouyang S, Zhang O, Xiang H, Yao YH, Fang ZY. Curcumin improves atherosclerosis by inhibiting the epigenetic repression of lncRNA MIAT to miR-124. Vascular 2022; 30:1213-1223. [PMID: 34989253 DOI: 10.1177/17085381211040974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives: Atherosclerosis is a dominant cardiovascular disease. Curcumin has protective effect on atherosclerosis. However, the mechanisms remain to be explored. Methods: Atherosclerosis was induced by feeding mice with high-fat diet (HFD) and ox-low-density lipoprotein (LDL)-induced human umbilical vein endothelial cells (HUVECs) were structured. Oil Red O staining was used to evaluate the plaques in the artery. Quantitative real-time PCR (qRT-PCR) was conducted to detect the level of myocardial infarction associated transcript (MIAT), miR-124, and enhancer of zeste homolog 2 (EZH2). We performed western blotting and enzyme linked immunosorbent assay to examine the expression of EZH2 and cytokines including IL-1β, TNFα, IL-6, and IL-8, respectively. RNA immunoprecipitation and chromatin immunoprecipitation (ChIP) were used to validate the interaction between myocardial infarction associated transcript and EZH2. Flow cytometry and CCK-8 assay were used to examine cell apoptosis and proliferation, respectively. Results: Curcumin suppressed inflammation in atherosclerosis mouse model and ox-LDL-induced cell model. MIAT overexpression and miR-124 inhibition relieved the anti-inflammation effect of curcumin in ox-LDL-induced cell. MIAT regulated miR-124 by interacting with EZH2. Curcumin relieved ox-LDL-induced cell inflammation via regulating MIAT/miR-124 pathway. Conclusion: MIAT/miR-124 axis mediated the effect of curcumin on atherosclerosis and altered cell apoptosis and proliferation, both in vivo and in vitro. These data further support the application of curcumin in control of atherosclerosis advancement.
Collapse
Affiliation(s)
- Shang Ouyang
- Department of Interventional Vascular Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Ou Zhang
- Department of Spinal Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, China
| | - Hua Xiang
- Department of Interventional Vascular Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Yuan-Hui Yao
- Department of Interventional Vascular Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Zhi-Yong Fang
- Department of Interventional Vascular Surgery, People's Hospital of Hunan Province, Changsha, China
| |
Collapse
|