1001
|
Asai M, Iwata N, Yoshikawa A, Aizaki Y, Ishiura S, Saido TC, Maruyama K. Berberine alters the processing of Alzheimer's amyloid precursor protein to decrease Abeta secretion. Biochem Biophys Res Commun 2006; 352:498-502. [PMID: 17125739 DOI: 10.1016/j.bbrc.2006.11.043] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 11/10/2006] [Indexed: 01/08/2023]
Abstract
Berberine is an isoquinoline alkaloid isolated from Coptidis rhizoma, a major herb widely used in Chinese herbal medicine. Berberine's biological activity includes antidiarrheal, antimicrobial, and anti-inflammatory effects. Recent findings show that berberine prevents neuronal damage due to ischemia or oxidative stress and that it might act as a novel cholesterol-lowering compound. The accumulation of amyloid-beta peptide (Abeta) derived from amyloid precursor protein (APP) is a triggering event leading to the pathological cascade of Alzheimer's disease (AD); therefore the inhibition of Abeta production should be a rational therapeutic strategy in the prevention and treatment of AD. Here, we report that berberine reduces Abeta levels by modulating APP processing in human neuroglioma H4 cells stably expressing Swedish-type of APP at the range of berberine concentration without cellular toxicity. Our results indicate that berberine would be a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Masashi Asai
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Iruma-gun, Saitama 350-0495, Japan.
| | | | | | | | | | | | | |
Collapse
|
1002
|
Tan RX. Editorial: natural products chemistry in China. Nat Prod Rep 2006; 23:667-8. [PMID: 17003903 DOI: 10.1039/b611850j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
China is a country rich in plants and microbe species that cultivate a remarkable diversity of secondary metabolites. Such products include 'qinghaosu' (artemisinin) and huperzine A, which are used in the treatment of malaria and Alzheimer's disease, respectively.
Collapse
|
1003
|
Huang C, Zhang Y, Gong Z, Sheng X, Li Z, Zhang W, Qin Y. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARγ pathway. Biochem Biophys Res Commun 2006; 348:571-8. [PMID: 16890192 DOI: 10.1016/j.bbrc.2006.07.095] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 07/18/2006] [Indexed: 02/05/2023]
Abstract
Berberine (BBR), a compound purified from Cortidis rhizoma, reduces serum cholesterol, triglycerides, and LDL-cholesterol of hypercholesterolemic patients and high fat diet fed animals, and increases hepatic LDLR mRNA and protein levels through a post-transcriptional mechanism. BBR also enhances the hypoglycemic action of insulin in diabetic animal models. Here, we show that BBR inhibits the differentiation of 3T3-L1 preadipocytes induced by DM and suppresses the mitotic clonal expansion of 3T3-L1 preadipocytes in a time- and dose-dependent manner. Gene expression analysis and Western blot analysis reveal that the BBR inhibits the mRNA and protein levels of adipogenesis related transcription factors PPARgamma and C/EBPalpha and their upstream regulator, C/EBPbeta. Reporter gene assays demonstrate that the full-length PPARgamma and alpha transcription activities are inhibited by BBR. Using real-time PCR, we have also found that the PPAR target genes that are involved in adipocyte differentiation, such as aP2, CD36, ACO, LPL, and other adipocyte markers, are suppressed by BBR. These studies suggest that BBR works on multiple molecular targets as an inhibitor of PPARgamma and alpha, and is a potential weight reducing, hypolipidemic, and hypoglycemic drug.
Collapse
Affiliation(s)
- Cheng Huang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of CAS, Chinese Academy of Sciences, 294 Tai Yuan Road, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
1004
|
Yuan L, Tu D, Ye X, Wu J. Hypoglycemic and hypocholesterolemic effects of Coptis chinensis franch inflorescence. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2006; 61:139-44. [PMID: 17031605 DOI: 10.1007/s11130-006-0023-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hypocholesterolemic and hypoglycemic activities of Coptis chinensis franch inflorescence (Coptis inflorescence) were studied using animal models. Serum total and LDL cholesterol of rats fed a diet containing 1% cholesterol and 0.5% cholic acid increased, as compared with those of rats fed a normal diet. The level of total and LDL cholesterol were reduced markedly in a dose dependent manner, in rats given Coptis inflorescence extract orally at doses of 0.25, 0.5 g/kg.day for 4 weeks. In diabetic rats induced by alloxan, Coptis inflorescence extract showed a significant (p < 0.05) blood sugar lowering activity at all experimented doses (0.125, 0.25 and 0.5 g/kg.day). The highest reduction of blood sugar was about 58% when the rats were given Coptis inflorescence extract orally at a dose of 0.5 g/kg.day for 3 weeks. The 100 g dried water extract of Coptis inflorescence contained 8.11 g total alkaloid, 3.34 g berberin, 1.08 g palmatine and 0.66 g jatrorrhizine, which had long been identified as active compounds in Coptis chinensis franch root (Coptis root). Thus, the results suggest that Coptis inflorescence would be effective in the prevention and management of coronary artery disease by lowering serum cholesterol and blood sugar.
Collapse
Affiliation(s)
- Lujiang Yuan
- Chemistry institute of Pharmaceutical Resource, Southwest University, Chongqing, 400716, People Republic of China.
| | | | | | | |
Collapse
|
1005
|
Yoo JH, Yang EM, Cho JH, Lee JH, Jeong SM, Nah SY, Kim HC, Kim KW, Kim SH, Lee SY, Jang CG. Inhibitory effects of berberine against morphine-induced locomotor sensitization and analgesic tolerance in mice. Neuroscience 2006; 142:953-61. [PMID: 16934942 DOI: 10.1016/j.neuroscience.2006.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 07/03/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
We previously reported that a methanolic extract of Coptis japonica, which is a well-known traditional oriental medicine, inhibits morphine-induced conditioned place preference (CPP) in mice. Berberine is a major component of Coptis japonica extract, and it has been established that the adverse effects of morphine on the brain involve dopamine (DA) receptors. However, to our knowledge, no study has investigated the inhibitory effects of berberine on morphine-induced locomotor sensitization and analgesic tolerance in mice. Here, we investigated the effects of berberine on morphine-induced locomotor sensitization and on the development of analgesic tolerance. Furthermore, we examined the effects of berberine treatment on N-methyl-D-aspartate (NMDA) receptor channel activity expressed in Xenopus laevis oocytes. Berberine was found to completely block both morphine-induced locomotor sensitization and analgesic tolerance, and reduce D(1) and NMDA receptor bindings in the cortex. Moreover, berberine markedly inhibited NMDA current in Xenopus laevis oocytes expressing NMDA receptor subunits. Our results suggest that the inhibitory effects of berberine on morphine-induced locomotor sensitization and analgesic tolerance are closely related to the modulation of D1 and NMDA receptors, and that berberine should be viewed as a potential novel means of attenuating morphine-induced sensitization and analgesic tolerance.
Collapse
Affiliation(s)
- J-H Yoo
- Department of Pharmacology, College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1006
|
Wang QF, Prabhakar S, Wang Q, Moses AM, Chanan S, Brown M, Eisen MB, Cheng JF, Rubin EM, Boffelli D. Primate-specific evolution of an LDLR enhancer. Genome Biol 2006; 7:R68. [PMID: 16884525 PMCID: PMC1779597 DOI: 10.1186/gb-2006-7-8-r68] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/28/2006] [Accepted: 08/02/2006] [Indexed: 01/13/2023] Open
Abstract
Analysis of primate-specific evolution of the LDL receptor enhancer demonstrates a molecular mechanism by which ancestral mammalian regulatory elements can evolve to perform new functions. Background Sequence changes in regulatory regions have often been invoked to explain phenotypic divergence among species, but molecular examples of this have been difficult to obtain. Results In this study we identified an anthropoid primate-specific sequence element that contributed to the regulatory evolution of the low-density lipoprotein receptor. Using a combination of close and distant species genomic sequence comparisons coupled with in vivo and in vitro studies, we found that a functional cholesterol-sensing sequence motif arose and was fixed within a pre-existing enhancer in the common ancestor of anthropoid primates. Conclusion Our study demonstrates one molecular mechanism by which ancestral mammalian regulatory elements can evolve to perform new functions in the primate lineage leading to human.
Collapse
Affiliation(s)
- Qian-fei Wang
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Shyam Prabhakar
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Qianben Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alan M Moses
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sumita Chanan
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Myles Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael B Eisen
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jan-Fang Cheng
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Edward M Rubin
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Dario Boffelli
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| |
Collapse
|
1007
|
Abidi P, Chen W, Kraemer FB, Li H, Liu J. The medicinal plant goldenseal is a natural LDL-lowering agent with multiple bioactive components and new action mechanisms. J Lipid Res 2006; 47:2134-47. [PMID: 16885565 DOI: 10.1194/jlr.m600195-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies have identified berberine (BBR), an alkaloid isolated from the Chinese herb huanglian, as a unique cholesterol-lowering drug that upregulates hepatic low density lipoprotein receptor (LDLR) expression through a mechanism of mRNA stabilization. Here, we demonstrate that the root extract of goldenseal, a BBR-containing medicinal plant, is highly effective in upregulation of liver LDLR expression in HepG2 cells and in reducing plasma cholesterol and low density lipoprotein cholesterol (LDL-c) in hyperlipidemic hamsters, with greater activities than the pure compound BBR. By conducting bioassay-driven semipurifications, we demonstrate that the higher potency of goldenseal is achieved through concerted actions of multiple bioactive compounds in addition to BBR. We identify canadine (CND) and two other constituents of goldenseal as new upregulators of LDLR expression. We further show that the activity of BBR on LDLR expression is attenuated by multiple drug resistance-1 (MDR1)-mediated efflux from liver cells, whereas CND is resistant to MDR1. This finding defines a molecular mechanism for the higher activity of CND than BBR. We also provide substantial evidence to show that goldenseal contains natural MDR1 antagonist(s) that accentuate the upregulatory effect of BBR on LDLR mRNA expression. These new findings identify goldenseal as a natural LDL-c-lowering agent, and our studies provide a molecular basis for the mechanisms of action.
Collapse
Affiliation(s)
- Parveen Abidi
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
1008
|
Issandou M. Pharmacological regulation of low density lipoprotein receptor expression: Current status and future developments. Pharmacol Ther 2006; 111:424-33. [PMID: 16423404 DOI: 10.1016/j.pharmthera.2005.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 01/22/2023]
Abstract
Plasma levels of low-density lipoprotein (LDL) cholesterol are considered to be a major risk factor for the development of cardiovascular diseases. The LDL receptor is the key component in the maintenance of cholesterol homeostasis in the body, playing a pivotal role by regulating the hepatic catabolism of LDL cholesterol. Many clinical studies using statins, which up-regulate the LDL receptor expression via a feedback mechanism, have demonstrated that the reduction of LDL cholesterol levels lowers the incidence of cardiovascular events in both primary and secondary prevention. In this context, new strategies designed to increase hepatic LDL receptor activity can be considered as attractive opportunities for future therapy. Several potential new drugs have been described in the last decade to up-regulate LDL receptor expression in vitro and in vivo, thus allowing the identification of new transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Marc Issandou
- GlaxoSmithKline, 25 Avenue du Quebec, 91951 Les Ulis Cedex, France.
| |
Collapse
|
1009
|
Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006; 55:2256-64. [PMID: 16873688 DOI: 10.2337/db06-0006] [Citation(s) in RCA: 788] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Berberine has been shown to have antidiabetic properties, although its mode of action is not known. Here, we have investigated the metabolic effects of berberine in two animal models of insulin resistance and in insulin-responsive cell lines. Berberine reduced body weight and caused a significant improvement in glucose tolerance without altering food intake in db/db mice. Similarly, berberine reduced body weight and plasma triglycerides and improved insulin action in high-fat-fed Wistar rats. Berberine downregulated the expression of genes involved in lipogenesis and upregulated those involved in energy expenditure in adipose tissue and muscle. Berberine treatment resulted in increased AMP-activated protein kinase (AMPK) activity in 3T3-L1 adipocytes and L6 myotubes, increased GLUT4 translocation in L6 cells in a phosphatidylinositol 3' kinase-independent manner, and reduced lipid accumulation in 3T3-L1 adipocytes. These findings suggest that berberine displays beneficial effects in the treatment of diabetes and obesity at least in part via stimulation of AMPK activity.
Collapse
Affiliation(s)
- Yun S Lee
- Department of Biological Sciences, Seoul National University, San 56-1, Sillim-Dong, Kwanak-Gu, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1010
|
Ioriya K, Kino K, Horisawa S, Nishimura T, Muraoka M, Noguchi T, Ohashi N. Pharmacological profile of SMP-797, a novel acyl-coenzyme a: cholesterol acyltransferase inhibitor with inducible effect on the expression of low-density lipoprotein receptor. J Cardiovasc Pharmacol 2006; 47:322-9. [PMID: 16495773 DOI: 10.1097/01.fjc.0000205498.67895.7e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the pharmacological profile of SMP-797, a novel hypocholesterolemic agent. SMP-797 showed inhibitory effects on acyl-coenzyme A: cholesterol acyltransferase (ACAT) activities in various microsomes and in human cell lines, and hypocholesterolemic effects in rabbits fed a cholesterol-rich diet and hamsters fed a normal diet. In hamsters, the reduction of total cholesterol level by SMP-797 was mainly due to the decrease of low-density lipoprotein (LDL) cholesterol level rather than that of very low-density lipoprotein (VLDL) cholesterol level. Interestingly, SMP-797 increased the hepatic low-density lipoprotein receptor expression in vivo when it decreased the low-density lipoprotein cholesterol level. SMP-797 also increased low-density lipoprotein receptor expression in HepG2 cells like atorvastatin, an HMG-CoA reductase inhibitor, although other acyl-coenzyme A: cholesterol acyltransferase inhibitor had no effect. In addition, SMP-797 had no effect on cholesterol synthesis in HepG2 cells. These results suggested that the increase of low-density lipoprotein receptor expression by SMP-797 was independent of its acyl-coenzyme A: cholesterol acyltransferase inhibitory action and did not result from the inhibition of hepatic cholesterol synthesis. In conclusion, these results suggest that SMP-797 is a novel hypocholesterolemic agent showing a cholesterol-lowering effect in which the increase of hepatic low-density lipoprotein receptor expression as well as the inhibition of acyl-coenzyme A: cholesterol acyltransferase is involved.
Collapse
Affiliation(s)
- Katsuhisa Ioriya
- Research Division, Sumitomo Pharmaceuticals Co., Ltd., Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
1011
|
Zhou Y, Zhang F, Abidi P, Lin M, Thiel G, Liu J. Blockage of oncostatin M-induced LDL receptor gene transcription by a dominant-negative mutant of C/EBPbeta. Biochem J 2006; 397:101-8. [PMID: 16563127 PMCID: PMC1479763 DOI: 10.1042/bj20060044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OM (oncostatin M) activates the human LDLR [LDL (low-density lipoprotein) receptor] gene transcription in HepG2 cells through the SIRE (sterol-independent regulatory element) of LDLR promoter. The SIRE sequence consists of a C/EBP (CCAAT/enhancer-binding protein)-binding site and a CRE (cAMP-response element). Our previous studies [Zhang, Ahlborn, Li, Kraemer and Liu (2002) J. Lipid Res. 43, 1477-1485; Zhang, Lin, Abidi, Thiel and Liu (2003) J. Biol. Chem. 278, 44246-44254] have demonstrated that OM transiently induces EGR-1 (early growth response gene product 1) expression and EGR-1 activates LDLR transcription primarily through a protein-protein interaction with C/EBPbeta, which serves as a co-activator of EGR-1. In the present study, we examined the direct role of C/EBPbeta as a transactivator in OM-regulated LDLR gene transcription independent of EGR-1. We show that OM induces C/EBPbeta expression with kinetics slower than EGR-1 induction. A significant increase in C/EBPbeta protein level is detected by 2 h of OM treatment and remains elevated for 24 h. Chromatin immunoprecipitation assays demonstrate that the amount of C/EBPbeta bound to the LDLR SIRE sequence is increased 2.8-fold of control by 2 h of OM treatment, reached the highest level of 8-fold by 4 h, and slowly declined thereafter. To further examine the requirement of C/EBPbeta in OM-stimulated LDLR expression, we developed a His-tagged dominant-negative mutant of C/EBPbeta (His-C/EBPbeta-P4; where P4 is plasmid 4 in our mutation series), consisting of the DNA-binding and leucine zipper domains of C/EBPbeta (amino acids 246-345). Expression of His-C/EBPbeta-P4 in HepG2 cells significantly diminishes the OM-induced increase in LDLR promoter activity and the elevation of endogenous LDLR mRNA expression. Taken together, these new findings identify C/EBPbeta as an OM-induced transactivator in LDLR gene transcription and provide a better understanding of the molecular mechanism underlying the sterol-independent regulation of LDLR expression.
Collapse
Affiliation(s)
- Yue Zhou
- *Department of Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, U.S.A
| | - Fang Zhang
- *Department of Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, U.S.A
| | - Parveen Abidi
- *Department of Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, U.S.A
| | - Meihong Lin
- *Department of Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, U.S.A
| | - Gerald Thiel
- †University of Saarland Medical Center, Homburg, Germany
| | - Jingwen Liu
- *Department of Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
1012
|
Liu B, Li W, Chang Y, Dong W, Ni L. Extraction of berberine from rhizome of Coptis chinensis Franch using supercritical fluid extraction. J Pharm Biomed Anal 2006; 41:1056-60. [PMID: 16500064 DOI: 10.1016/j.jpba.2006.01.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/09/2006] [Accepted: 01/19/2006] [Indexed: 01/28/2023]
Abstract
Supercritical fluid was used to extract berberine from rhizome of Coptis chinensis Franch. The recovery of berberine was compared with various modifiers, i.e. methanol and 95% ethanol with and without surfactant Tween 80, and 1,2-propanediol. The results show that the yield obtained after 3 h extraction with 1,2-propanediol-modified supercritical carbon dioxide was the highest (from 6.91%, w/w at 200 bar to 7.53%, w/w at 500 bar), while that obtained with 95% ethanol modified-supercritical carbon dioxide was the lowest (from 0.15%, w/w at 300 bar to 0.19%, w/w at 600 bar). The recovery of berberine was not improved by adding 5% Tween 80 in supercritical fluid.
Collapse
Affiliation(s)
- Ben Liu
- Department of Bioengineering and Pharmaceutics, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | | | | | | | | |
Collapse
|
1013
|
Megyesi M, Biczók L. Considerable fluorescence enhancement upon supramolecular complex formation between berberine and p-sulfonated calixarenes. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
1014
|
Cui HS, Hayasaka S, Zhang XY, Hayasaka Y, Chi ZL, Zheng LS. Effect of Berberine on Interleukin 8 and Monocyte Chemotactic Protein 1 Expression in a Human Retinal Pigment Epithelial Cell Line. Ophthalmic Res 2006; 38:149-57. [PMID: 16391493 DOI: 10.1159/000090672] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 11/21/2005] [Indexed: 11/19/2022]
Abstract
PURPOSE The aims of this study were to examine the effects of berberine, an alkaloid isolated from some medicinal herbs, on interleukin 8 (IL-8) and monocyte chemotactic protein 1 (MCP-1) expression in a human retinal pigment epithelial cell line (ARPE-19) stimulated with interleukin 1beta (IL-1beta) or tumor necrosis factor alpha (TNF-alpha). METHODS ARPE-19 cells were cultured to confluence. Berberine and IL-1beta or TNF-alpha were added to the medium. IL-8 mRNA and MCP-1 mRNA were measured by semiquantitative reverse-transcription polymerase chain reaction and real-time polymerase chain reaction. IL-8 and MCP-1 protein concentrations in the media were measured using enzyme-linked immunosorbent assay. RESULTS Berberine dose-dependently inhibited IL-8 mRNA and MCP-1 mRNA expression of the cells and protein levels in the media stimulated with IL-1beta or TNF-alpha. CONCLUSION These findings indicate that berberine dose-dependently inhibited the expression of IL-8 and MCP-1 induced by IL-1beta or TNF-alpha.
Collapse
Affiliation(s)
- Hu-Shan Cui
- Department of Ophthalmology, Toyama Medical and Pharmaceutical University, Toyama, Japan.
| | | | | | | | | | | |
Collapse
|
1015
|
Cui HS, Hayasaka S, Zhang XY, Hayasaka Y, Chi ZL, Zheng LS. Effect of berberrubine on interleukin-8 and monocyte chemotactic protein-1 expression in human retinal pigment epithelial cell line. Life Sci 2006; 79:949-56. [PMID: 16797033 DOI: 10.1016/j.lfs.2006.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 04/25/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
We examined the effects of berberrubine, a protoberberine alkaloid, on interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) expression in a human retinal pigment epithelial cell line (ARPE-19) stimulated with interleukin-1beta (IL-1beta) or tumor necrosis factor alpha (TNF-alpha). ARPE-19 cells were cultured to confluence. Berberrubine and IL-1beta or TNF-alpha were added to the medium. IL-8 and MCP-1 protein concentrations were measured using enzyme-linked immunosorbent assay. IL-8 and MCP-1 mRNA were measured by real time polymerase chain reaction. Nuclear factor kappaB (NF-kappaB) translocation was examined by immunofluorescent staining/microscopy. Berberrubine dose-dependently inhibited IL-8 and MCP-1 protein levels in the media and mRNA expression of the cells stimulated with IL-1beta or TNF-alpha. Immunofluorescent staining/microscopy of NF-kappaB in the nucleus of unstimulated cells was faint (51+/-14 arbitrary units). Fluorescein was dense (215+/-42 or 170+/-24 arbitrary units, respectively) 30 min after stimulation with IL-1beta or TNF-alpha and was decreased to 62+/-18 or 47+/-16 arbitrary units, respectively, by berberrubine. Berberrubine dose-dependently inhibited IL-8 and MCP-1 expression and protein secretion induced by IL-1beta or TNF-alpha. Possibly, the effect on chemotactic factors may be via suppression of NF-kappaB translocation.
Collapse
Affiliation(s)
- Hu-Shan Cui
- Department of Ophthalmology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
1016
|
Giri P, Hossain M, Kumar GS. Molecular aspects on the specific interaction of cytotoxic plant alkaloid palmatine to poly(A). Int J Biol Macromol 2006; 39:210-21. [PMID: 16678250 DOI: 10.1016/j.ijbiomac.2006.03.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 03/27/2006] [Accepted: 03/27/2006] [Indexed: 11/26/2022]
Abstract
The interaction of the protoberberine alkaloid palmatine with single and double stranded structures of poly(A) was studied by various biophysical techniques. Comparative binding studies were also performed with double stranded DNA, t-RNA, poly(C).poly(G), poly(U) and poly(C). The results of competition dialysis, fluorescence, and absorption spectral studies converge to reveal the molecular aspects of the strong and specific binding of palmatine to single stranded poly(A). The binding affinity of palmatine to natural DNA, t-RNA and double stranded poly(A) was weaker while no binding was apparent with single stranded poly(U), poly(C) and double stranded poly(C).poly(G). The strong affinity of the alkaloid to single stranded poly(A) in comparison to the double stranded structure was also revealed from circular dichroic and viscometric studies. The effect of [Na+] ion concentration on the binding process revealed the significant role of electrostatic forces in the complexation. The presence of bound alkaloid also remarkably affected denaturation-renaturation of stacked helical poly(A). The energetics of the strong binding to poly(A) was studied from thermodynamic estimation from van Hoff' analysis of the temperature dependent binding constants and ultra sensitive isothermal titration calorimertry, both suggesting the binding to be exothermic and enthalpy driven. This study provides detailed insight into the binding specificity of the natural alkaloid to single stranded poly(A) over several other single and double stranded nucleic acid structures suggesting its potential as a lead compound for RNA based drug targeting.
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
1017
|
Bustanji Y, Taha MO, Yousef AM, Al-Bakri AG. Berberine potently inhibits protein tyrosine phosphatase 1B: investigation by docking simulation and experimental validation. J Enzyme Inhib Med Chem 2006; 21:163-171. [PMID: 16789430 DOI: 10.1080/14756360500533026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Berberine was investigated as an inhibitor of human protein tyrosine phosphatase 1B (h-PTP 1B) in an attempt to explain its anti-hyperglycemic activitiy. The investigation included simulated docking experiments to fit berberine within the binding pocket of h-PTP 1B. Berberine was found to readily fit within the binding pocket of h-PTP 1B in a low energy orientation characterized with optimal electrostatic attractive interactions bridging the isoquinolinium positively charged nitrogen atom of berberine and the negatively charged acidic residue of ASP 48 of h-PTP 1B. Experimentally, berberine was found to potently competitively inhibit recombinant h-PTP 1B in vitro (Ki value = 91.3 nM). Our findings strongly suggest that h-PTP 1B inhibition is at least one of the reasons for the reported anti-hyperglycemic activities of berberine.
Collapse
Affiliation(s)
- Yasser Bustanji
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| | | | | | | |
Collapse
|
1018
|
Brusq JM, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res 2006; 47:1281-8. [PMID: 16508037 DOI: 10.1194/jlr.m600020-jlr200] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alkaloid drug berberine (BBR) was recently described to decrease plasma cholesterol and triglycerides (TGs) in hypercholesterolemic patients by increasing expression of the hepatic low density lipoprotein receptor (LDLR). Using HepG2 human hepatoma cells, we found that BBR inhibits cholesterol and TG synthesis in a similar manner to the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Significant increases in AMPK phosphorylation and AMPK activity were observed when the cells were incubated with BBR. Activation of AMPK was also demonstrated by measuring the phosphorylation of acetyl-CoA carboxylase, a substrate of AMPK, correlated with a subsequent increase in fatty acid oxidation. All of these effects were abolished by the mitogen-activated protein kinase kinase inhibitor PD98059. Treatment of hyperlipidemic hamsters with BBR decreased plasma LDL cholesterol and strongly reduced fat storage in the liver. These findings indicate that BBR, in addition to upregulating the LDLR, inhibits lipid synthesis in human hepatocytes through the activation of AMPK. These effects could account for the strong reduction of plasma TGs observed with this drug in clinical trials.
Collapse
|
1019
|
Liang KW, Ting CT, Yin SC, Chen YT, Lin SJ, Liao JK, Hsu SL. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem Pharmacol 2006; 71:806-17. [PMID: 16448624 PMCID: PMC2639653 DOI: 10.1016/j.bcp.2005.12.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/12/2005] [Accepted: 12/19/2005] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cell (SMC) proliferation plays an important role in the pathogenesis of atherosclerosis and post-angioplasty restenosis. Berberine is a well-known component of the Chinese herb medicine Huanglian (Coptis chinensis), and is capable of inhibiting SMC contraction and proliferation, yet the exact mechanism is unknown. We therefore investigated the effect of berberine on SMC growth after mechanic injury in vitro. DNA synthesis and cell proliferation assay were performed to show that berberine inhibited serum-stimulated rat aortic SMC growth in a concentration-dependent manner. Mechanical injury with sterile pipette tip stimulated the regrowth of SMCs. Treatment with berberine prevented the regrowth and migration of SMCs into the denuded trauma zone. Western blot analysis showed that activation of the MEK1/2 (mitogen-activated protein kinase kinase 1/2), extracellular signal-regulated kinase (ERK), and up-regulation of early growth response gene (Egr-1), c-Fos and Cyclin D1 were observed sequentially after mechanic injury in vitro. Semi-quantitative reverse-transcription PCR assay further confirmed the increase of Egr-1, c-Fos, platelet-derived growth factor (PDGF) and Cyclin D1 expression in a transcriptional level. However, berberine significantly attenuated MEK/ERK activation and downstream target (Egr-1, c-Fos, Cyclin D1 and PDGF-A) expression after mechanic injury in vitro. Our study showed that berberine blocked injury-induced SMC regrowth by inactivation of ERK/Egr-1 signaling pathway thereby preventing early signaling induced by injury in vitro. The anti-proliferative properties of berberine may be useful in treating disorders due to inappropriate SMC growth.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic
- Berberine/pharmacology
- Cell Proliferation/drug effects
- DNA/biosynthesis
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression/drug effects
- Mitogen-Activated Protein Kinase 1/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Kae-Woei Liang
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Tai Ting
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sui-Chu Yin
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Tsung Chen
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - James K. Liao
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shih-Lan Hsu
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
- Corresponding author at: Department of Education & Research, Taichung Veterans General Hospital, 160, Sec. 3, Chung-Gang Road, Taichung 407, Taiwan, Republic of China. Tel.: +886 4 23592525x4037; fax: +886 4 23592705. E-mail address: (S.-L. Hsu)
| |
Collapse
|
1020
|
Jahnke GD, Price CJ, Marr MC, Myers CB, George JD. Developmental toxicity evaluation of berberine in rats and mice. ACTA ACUST UNITED AC 2006; 77:195-206. [PMID: 16634078 DOI: 10.1002/bdrb.20075] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Berberine, a plant alkaloid, is found in some herbal teas and health-related products. It is a component of goldenseal, an herbal supplement. Berberine chloride dihydrate (BCD) was evaluated for developmental toxicity in rats and mice. METHODS Berberine chloride dihydrate was administered in the feed to timed-mated Sprague-Dawley (CD) rats (0, 3,625, 7,250, or 14,500 ppm; on gestational days [GD] 6-20), and Swiss Albino (CD-1) mice (0, 3,500, 5,250, or 7,000 ppm; on GD 6-17). Ingested doses were 0, 282, 531, and 1,313 mg/kg/day (rats) and 0, 569, 841, and 1,155 mg/kg/day (mice). RESULTS There were no maternal deaths. The rat maternal lowest observed adverse effect level (LOAEL), based on reduced maternal weight gain, was 7,250 ppm. The rat developmental toxicity LOAEL, based on reduced fetal body weight per litter, was 14,500 ppm. In the mouse study, equivocal maternal and developmental toxicity LOAELs were 5,250 ppm. Due to scattering of feed in the high dose groups, a gavage study at 1,000 mg/kg/day was conducted in both species. CONCLUSIONS In rats, maternal, but not fetal adverse effects were noted. The maternal toxicity LOAEL remained at 7,250 ppm (531 mg/kg/day) based on the feed study and the developmental toxicity NOAEL was raised to 1,000 mg/kg/day BCD based on the gavage study. In the mouse, 33% of the treated females died. Surviving animals had increased relative water intake, and average fetal body weight per litter decreased 5-6% with no change in live litter size. The maternal toxicity LOAEL remained at 5,250 ppm (841 mg/kg/day) BCD, based on increased water consumption. The developmental toxicity LOAEL was raised to 1,000 mg/kg/day BCD based on decreased fetal body weight.
Collapse
Affiliation(s)
- Gloria D Jahnke
- Sciences International Inc., Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
1021
|
Ko BS, Choi SB, Park SK, Jang JS, Kim YE, Park S. Insulin sensitizing and insulinotropic action of berberine from Cortidis rhizoma. Biol Pharm Bull 2005; 28:1431-7. [PMID: 16079488 DOI: 10.1248/bpb.28.1431] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our preliminary study demonstrated that 70% ethanol Cortidis Rhizoma extracts (CR) had a hypoglycemic action in diabetic animal models. We determined whether CR fractions acted as anti-diabetic agent, and a subsequent investigation of the action mechanism of the major compound, berberine ([C(20)H(18)NO(4)](+)), was carried out in vitro. The 20, 40 and 60% methanol fractions from the XAD-4 column contained the most insulin sensitizing activities in 3T3-L1 adipocytes. The common major peak in these fractions was berberine. Treatment with 50 microM berberine plus differentiation inducers significantly reduced triglyceride accumulation by decreased differentiation of 3T3-L1 fibroblasts to adipocytes and triglyceride synthesis. Significant insulin sensitizing activity was observed in 3T3-L1 adipocytes which were given 50 microM berberine plus 0.2 nM insulin to reach a glucose uptake level increased by 10 nM of insulin alone. This was associated with increased glucose transporter-4 translocation into the plasma membrane via enhancing insulin signaling pathways and the insulin receptor substrate-1-phosphoinositide 3 Kinase-Akt. Berberine also increased glucose-stimulated insulin secretion and proliferation in Min6 cells via an enhanced insulin/insulin-like growth factor-1 signaling cascade. Data suggested that berberine can act as an effective insulin sensitizing and insulinotropic agent. Therefore, berberine can be used as anti-diabetic agent for obese diabetic patients.
Collapse
Affiliation(s)
- Byoung-Seob Ko
- Department of Quality Inspection and Examination, Korea Institute of Oriental Medicine, Daejun 305-390, Korea
| | | | | | | | | | | |
Collapse
|
1022
|
Kong WJ, Liu J, Jiang JD. Human low-density lipoprotein receptor gene and its regulation. J Mol Med (Berl) 2005; 84:29-36. [PMID: 16292665 DOI: 10.1007/s00109-005-0717-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 08/05/2005] [Indexed: 01/23/2023]
Abstract
The low-density lipoprotein (LDL) receptor is a transmembrane glycoprotein that mediates the binding and endocytosis of lipoproteins containing apolipoprotein B and E, especially the cholesterol-rich LDL. Mutations in the LDL receptor gene can produce dysfunctional LDL receptors and cause familial hypercholesterolemia. The expression of the LDL receptor gene is under an intriguing regulation by sterol and nonsterol mediators either at the transcriptional level or at the posttranscriptional level, both of which are linked to cell signaling pathways. Upregulation of liver LDL receptor expression is effective in treating hypercholesterolemia. In this review, we focus on the latest progress on the mechanisms and regulation of the LDL receptor gene expression.
Collapse
Affiliation(s)
- Wei-Jia Kong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | | | | |
Collapse
|
1023
|
Wu X, Li Q, Xin H, Yu A, Zhong M. Effects of berberine on the blood concentration of cyclosporin A in renal transplanted recipients: clinical and pharmacokinetic study. Eur J Clin Pharmacol 2005; 61:567-72. [PMID: 16133554 DOI: 10.1007/s00228-005-0952-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 04/25/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the effects of berberine (BBR) on the blood concentration and pharmacokinetics of cyclosporin A (CsA) in renal-transplant recipients. METHODS In a randomized and controlled clinical trial, 52 renal-transplant recipients were treated with CsA and 0.2 g BBR three times daily for 3 months, while another 52 subjects received CsA without BBR co-administration. Blood trough concentration of CsA and biochemistry indexes for hepatic and renal functions were determined. For the pharmacokinetic study, six renal-transplant recipients were included with a 3-mg/kg dosage of CsA twice daily before and after oral co-administration of 0.2 g BBR three times daily for 12 days. RESULTS The trough blood concentrations and the ratios of concentration/dose of CsA in the BBR-treated group increased by 88.9% and 98.4%, respectively, compared with those at baseline (P < 0.05). As for the BBR-free group, they rose by 64.5% and 69.4%, respectively, relative to those at baseline (P < 0.01). Nevertheless, the final blood concentrations and the ratios of concentration/dose of CsA in BBR-treated patients were still 29.3% and 27.8%, respectively, higher than those in BBR-free patients (P < 0.05). No significant effects on liver or renal functions were observed under coadministration of BBR. After co-administration of BBR in six patients for 12 days, the mean AUC of CsA was increased by 34.5% (P < 0.05). The mean time taken to reach the peak blood concentration (t(max)) and the mean half-life (t(1/2)) of CsA were increased by 1.7 h and 2.7 h, respectively (P < 0.05). The average percentage increases in the steady-state drug concentration (Css) and minimum blood concentration (Cmin) were 34.5% and 88.3%, respectively (P < 0.05). In addition, the average percentage decrease in CL/F was 40.4% (P < 0.05) and the peak-to-through fluctuation index was significantly reduced (P < 0.01). CONCLUSION The BBR can markedly elevate the blood concentration of CsA in renal-transplant recipients in both clinical and pharmacokinetic studies. This combination may allow a reduction of the CsA dosage. The mechanism for this interaction is most likely explained by inhibition of CYP3A4 by BBR in the liver and/or small intestine.
Collapse
Affiliation(s)
- Xiaochun Wu
- Department of Clinical Pharmacology, Wuhan General Hospital, Wuhan, 430070, China.
| | | | | | | | | |
Collapse
|
1024
|
Abidi P, Zhou Y, Jiang JD, Liu J. Extracellular signal-regulated kinase-dependent stabilization of hepatic low-density lipoprotein receptor mRNA by herbal medicine berberine. Arterioscler Thromb Vasc Biol 2005; 25:2170-6. [PMID: 16100034 DOI: 10.1161/01.atv.0000181761.16341.2b] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our recent studies identified berberine (BBR) as a novel cholesterol-lowering drug that upregulates low-density lipoprotein (LDL) receptor expression through mRNA stabilization. Here, we investigated mechanisms underlying regulatory effects of BBR on LDL receptor (LDLR) messenger. METHODS AND RESULTS We show that the extracellular signal-regulated kinase (ERK) signaling pathway is used primarily by BBR to attenuate the decay of LDLR mRNA in HepG2 cells. Using different reporter constructs, we demonstrate that BBR affects LDLR mRNA stability entirely through 3' untranslated region (UTR) in an ERK-dependent manner, and this stabilizing effect is more prominent in liver-derived cells than nonhepatic cell lines. In contrast to BBR, the mRNA stabilizing effect of bile acid chenodeoxycholic acid is mediated through the LDLR coding sequence, whereas the 5'UTR, 3'UTR, and the coding sequence of LDLR mRNA are all implicated in the action of phorbol 12-myristate 13-acetate. By performing UV cross-linking and SDS-PAGE, we identify 2 cytoplasmic proteins of 52 and 42 kDa that specifically bind to the LDLR 3'UTR in BBR-inducible and ERK-dependent manners. CONCLUSIONS These new findings demonstrate that the BBR-induced stabilization of LDLR mRNA is mediated by the ERK signaling pathway through interactions of cis-regulatory sequences of 3'UTR and mRNA binding proteins that are downstream effectors of this signaling cascade.
Collapse
Affiliation(s)
- Parveen Abidi
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
1025
|
Lee S, Lim HJ, Park HY, Lee KS, Park JH, Jang Y. Berberine inhibits rat vascular smooth muscle cell proliferation and migration in vitro and improves neointima formation after balloon injury in vivo. Berberine improves neointima formation in a rat model. Atherosclerosis 2005; 186:29-37. [PMID: 16098530 DOI: 10.1016/j.atherosclerosis.2005.06.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 06/12/2005] [Accepted: 06/29/2005] [Indexed: 02/03/2023]
Abstract
Berberine, an alkaloid isolated from Chinese medicinal herbs, long been known for its anti-microbial activity and used to treat various infectious disorders in traditional Chinese medicine. In the present study, we have tested the hypothesis that berberine could inhibit vascular smooth muscle cell (VSMC) proliferation as it did in endothelial cells or cancer cells. Our results show that berberine significantly inhibits growth factor, mainly angiotensin II (AngII) and heparin binding epidermal growth factor (HB-EGF), induced VSMC proliferation and migration in vitro, and this effect is achieved by delaying or partially suppressing activation of Akt pathway rather than ERK pathway. Furthermore, we have examined its effect in vivo using a rat carotid artery injury model. A 28 days of chronic berberine treatment using an osmotic pump (100 microg kg(-1)d(-1), 2 weeks before and 2 weeks after the injury) improved neointima formation. The Neointima/Media ratio for control group and berberine treated group were 1.14+/-0.11 and 0.85+/-0.06 (p<0.05), respectively, and the reduction was approximately 25%. The result of the present study suggests a possibility of berberine being a potent agent to control restenosis after balloon angioplasty and warrants further study to gain a more complete understanding of its underlying mechanisms at a cellular level.
Collapse
MESH Headings
- Angioplasty, Balloon/adverse effects
- Angiotensin II/antagonists & inhibitors
- Angiotensin II/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/injuries
- Aorta, Thoracic/pathology
- Berberine/pharmacology
- Blotting, Western
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/prevention & control
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Epidermal Growth Factor/antagonists & inhibitors
- Epidermal Growth Factor/metabolism
- Heparin-binding EGF-like Growth Factor
- In Vitro Techniques
- Intercellular Signaling Peptides and Proteins
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Rats, Sprague-Dawley
- Tunica Intima/drug effects
- Tunica Intima/injuries
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Seahyoung Lee
- BK21 project of Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
1026
|
Bhadra K, Kumar GS, Das S, Islam MM, Maiti M. Protonated structures of naturally occurring deoxyribonucleic acids and their interaction with berberine. Bioorg Med Chem 2005; 13:4851-63. [PMID: 15946849 DOI: 10.1016/j.bmc.2005.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/06/2005] [Accepted: 05/06/2005] [Indexed: 01/29/2023]
Abstract
Protonation-induced conformational changes in natural DNAs of diverse base composition under the influence of low pH, low temperature, and low ionic strength have been studied using various spectroscopic techniques. At pH3.40, 10mM [Na+], and at 5 degrees C, all natural DNAs irrespective of base composition adopted an unusual and stable conformation remarkably different from the canonical B-form conformation. This protonated conformation has been characterized to have unique absorption and circular dichroic spectral characteristics and exhibited cooperative thermal melting profiles with decreased thermal melting temperatures compared to their respective B-form counterparts. The nature of this protonated structure was further investigated by monitoring the interaction of the plant alkaloid, berberine that was previously shown from our laboratory to differentially bind to B-form and H(L)-form of poly[d(G-C)] [Bioorg. Med. Chem.2003, 11, 4861]. Binding of berberine to protonated conformation of natural DNAs resulted in intrinsic circular dichroic changes as well as generation of induced circular dichroic bands for the bound berberine molecule with opposite signs and magnitude compared with B-form structures. Nevertheless, the binding of the alkaloid to both the B and protonated forms was non-linear and non-cooperative as revealed from Scatchard plots derived from spectrophotometric titration data. Steady state fluorescence studies on the other hand showed remarkable increase of the rather weak intrinsic fluorescence of berberine on binding to the protonated structure compared to the B-form structure. Taken together, these results suggest that berberine can detect the formation of significant population of H(L)-form structures under the influence of protonation irrespective of heterogeneous base compositions in natural DNAs.
Collapse
Affiliation(s)
- Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | | | | | |
Collapse
|
1027
|
Measurement of unbound pravastatin in rat blood and bile on the perspective of hepatobiliary excretion and its interaction with cyclosporin A and berberine. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2005.05.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
1028
|
Unger M, Laug S, Holzgrabe U. Capillary zone electrophoresis as a tool for the quality control of goldenseal extracts. Electrophoresis 2005; 26:2430-6. [PMID: 15912542 DOI: 10.1002/elps.200410322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The root extracts of goldenseal (Hydrastis canadensis L.) are popular phytomedicines for the treatment of gastrointestinal disorders and upper respiratory tract infections. Here we describe a simple and fast capillary zone electrophoresis (CZE) method with ultraviolet detection at 225 nm for the quantification of the major goldenseal constituents, berberine and hydrastine, in herbal remedies containing goldenseal root extracts. Tritoqualine, an antihistaminic drug with a hydrastine-like phthalidisoquinoline structure, was applied as an internal standard. The running buffer was a 1:5 mixture of 500 mM ammonium acetate (adjusted to pH 3.4 with acetic acid) and methanol. Our newly developed CZE method was validated regarding limit of detection (LOD), limit of quantification, linearity, accuracy and precision. For both berberine and hydrastine, the LOD was 1.0 microg/mL and the linearity was obtained between 2.5 and 500 microg/mL. Using our newly developed method, both the alkaloids could be analysed in herbal remedies containing goldenseal root extracts within 8 min.
Collapse
Affiliation(s)
- Matthias Unger
- Institute of Pharmacy and Food Chemistry, Julius Maximilians-University, Würzburg, Germany.
| | | | | |
Collapse
|
1029
|
Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci U S A 2005; 102:2069-74. [PMID: 15677715 PMCID: PMC546019 DOI: 10.1073/pnas.0409736102] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) is a member of the subtilisin serine protease family with an important role in cholesterol metabolism. PCSK9 expression is regulated by dietary cholesterol in mice and cellular sterol levels in cell culture via the sterol regulatory element binding protein transcription factors, and mutations in PCSK9 are associated with a form of autosomal dominant hypercholesterolemia. Overexpression of PCSK9 in mice leads to increased total and low-density lipoprotein (LDL) cholesterol levels because of a decrease in hepatic LDL receptor (LDLR) protein with normal mRNA levels. To study the mechanism, PCSK9 was overexpressed in human hepatoma cells, HepG2, by adenovirus. Overexpression of PCSK9 in HepG2 cells caused a decrease in whole-cell and cell-surface LDLR levels. PCSK9 overexpression had no effect on LDLR synthesis but caused a dramatic increase in the degradation of the mature LDLR and a lesser increase in the degradation of the precursor LDLR. In contrast, overexpression of a catalytically inactive mutant PCSK9 prevented the degradation of the mature LDLR; whereas increased degradation of the precursor LDLR still occurred. The PCSK9-induced degradation of the LDLR was not affected by inhibitors of the proteasome, lysosomal cysteine proteases, aspartic acid proteases, or metalloproteases. The PCSK9-induced degradation of the LDLR was shown to require transport out of the endoplasmic reticulum. These results indicate that overexpression of PCSK9 induces the degradation of the LDLR by a nonproteasomal mechanism in a post-endoplasmic reticulum compartment.
Collapse
Affiliation(s)
- Kara N Maxwell
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
1030
|
Ellis C. In keeping with tradition. Nat Rev Drug Discov 2005. [DOI: 10.1038/nrd1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|