1051
|
Oku N, Nagai K, Shindoh N, Terada Y, van Soest RWM, Matsunaga S, Fusetani N. Three new cyclostellettamines, which inhibit histone deacetylase, from a marine sponge of the genus Xestospongia. Bioorg Med Chem Lett 2004; 14:2617-20. [PMID: 15109664 DOI: 10.1016/j.bmcl.2004.02.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 02/17/2004] [Accepted: 02/17/2004] [Indexed: 11/17/2022]
Abstract
Three new cyclostellettamines, cyclostellettamine G (1), dehydrocyclostellettamines D (2), and E (3), were isolated together with the known cyclostellettamine A (4) from a marine sponge of the genus Xestospongia as histone deacetylase inhibitors. Their structures were determined by spectral and chemical methods. They inhibit histone deacetylase derived from K562 human leukemia cells with IC(50) values ranging from 17 to 80 microM.
Collapse
Affiliation(s)
- Naoya Oku
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
1052
|
Marson CM, Serradji N, Rioja AS, Gastaud SP, Alao JP, Coombes RC, Vigushin DM. Stereodefined and polyunsaturated inhibitors of histone deacetylase based on (2E,4E)-5-arylpenta-2,4-dienoic acid hydroxyamides. Bioorg Med Chem Lett 2004; 14:2477-81. [PMID: 15109636 DOI: 10.1016/j.bmcl.2004.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/18/2004] [Accepted: 03/02/2004] [Indexed: 11/23/2022]
Abstract
Syntheses of (2E,4E)-5-arylpenta-2,4-dienoic acid hydroxyamides are described, some of which are potent inhibitors of histone deacetylase, a double bond conferring more than a 10-fold increase in potency compared with the triple bond analogue oxamflatin. Variation of substituents on the aromatic ring has a marked effect on potency, in vitro IC(50) values down to 50 nM being obtained.
Collapse
Affiliation(s)
- Charles M Marson
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, UK.
| | | | | | | | | | | | | |
Collapse
|
1053
|
Qian DZ, Wang X, Kachhap SK, Kato Y, Wei Y, Zhang L, Atadja P, Pili R. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 2004; 64:6626-34. [PMID: 15374977 DOI: 10.1158/0008-5472.can-04-0540] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromatin remodeling agents such as histone deacetylase inhibitors have been shown to modulate gene expression in tumor cells and inhibit tumor growth and angiogenesis. Vascular endothelial growth factor (VEGF) and VEGF receptors represent critical molecular targets for antiangiogenesis therapy. In this study, we investigated the biological effect of the histone deacetylase inhibitor NVP-LAQ824 in combination with the VEGF receptor tyrosine kinase inhibitor PTK787/ZK222584 on tumor growth and angiogenesis. We report that treatment with NVP-LAQ824 affected tumor and endothelial cells and was associated with increased histone acetylation, p21 up-regulation, and growth inhibition. In addition, NVP-LAQ824 treatment inhibited the expression of angiogenesis-related genes such as angiopoietin-2, Tie-2, and survivin in endothelial cells and down-regulated hypoxia-inducible factor 1-alpha and VEGF expression in tumor cells. Combination treatment with NVP-LAQ824 and PTK787/ZK222584 was more effective than single agents in inhibiting in vitro and in vivo VEGF-induced angiogenesis. Endothelial cell proliferation, tube formation, and invasion into the Matrigel plugs were reduced. In mouse models with established subcutaneous prostate (PC3) and orthotopic breast tumors (MDA-MB321), this combination treatment induced 80 to 85% inhibition of tumor growth without overt toxicity. These results suggest that the combination of histone deacetylase inhibitors and VEGF receptor inhibitors may target multiple pathways in tumor progression and angiogenesis and represents a novel therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- David Z Qian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
1054
|
Balch C, Huang THM, Brown R, Nephew KP. The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 2004; 191:1552-72. [PMID: 15547525 DOI: 10.1016/j.ajog.2004.05.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian cancer is the most lethal of all gynecologic neoplasms. Early-stage malignancy is frequently asymptomatic and difficult to detect and thus, by the time of diagnosis, most women have advanced disease. Most of these patients, although initially responsive, eventually develop and succumb to drug-resistant metastases. The success of typical postsurgical regimens, usually a platinum/taxane combination, is limited by primary tumors being intrinsically refractory to treatment and initially responsive tumors becoming refractory to treatment, due to the emergence of drug-resistant tumor cells. This review highlights a prominent role for epigenetics, particularly aberrant DNA methylation and histone acetylation, in both intrinsic and acquired drug-resistance genetic pathways in ovarian cancer. Administration of therapies that reverse epigenetic "silencing" of tumor suppressors and other genes involved in drug response cascades could prove useful in the management of drug-resistant ovarian cancer patients. In this review, we summarize recent advances in the use of methyltransferase and histone deacetylase inhibitors and possible synergistic combinations of these to achieve maximal tumor suppressor gene re-expression. Moreover, when used in combination with conventional chemotherapeutic agents, epigenetic-based therapies may provide a means to resensitize ovarian tumors to the proven cytotoxic activities of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Curtis Balch
- Medical Sciences, Indiana University, Bloomington, Ind, USA
| | | | | | | |
Collapse
|
1055
|
Roychowdhury S, Baiocchi RA, Vourganti S, Bhatt D, Blaser BW, Freud AG, Chou J, Chen CS, Xiao JJ, Parthun M, Chan KK, Eisenbeis CF, Ferketich AK, Grever MR, Chen CS, Caligiuri MA. Selective efficacy of depsipeptide in a xenograft model of Epstein-Barr virus-positive lymphoproliferative disorder. J Natl Cancer Inst 2004; 96:1447-57. [PMID: 15467034 DOI: 10.1093/jnci/djh271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Immune-compromised individuals are at increased risk for developing aggressive Epstein-Barr virus (EBV)-associated lymphoproliferative disorders after primary EBV infection or for reactivation of a preexisting latent EBV infection. We evaluated the effect of depsipeptide, a histone deacetylase inhibitor, on EBV-positive lymphoblastoid cell lines (LCLs) and Burkitt lymphoma cell lines in a mouse model and explored its mechanism of action in vitro. METHODS We studied EBV-transformed LCLs, which express a latent III (Lat-III) viral gene profile, as do some EBV-positive lymphoproliferative malignancies, and Burkitt lymphoma cell lines, which express a Lat-I viral gene profile. Cell lines were used to characterize depsipeptide-induced apoptosis, which was evaluated by flow cytometry. Flow cytometry, western blot analyses, and histone deacetylase inhibitors were used to investigate components of prodeath and survival pathways in vitro. We studied depsipeptide's effects on survival with a mouse xenograft model of EBV-positive human B-cell tumors (groups of 10 mice). All statistical tests were two-sided. RESULTS Depsipeptide (5 mg/m2 of body surface area) treatment was associated with statistically significantly improved survival of mice carrying Lat-III EBV-positive LCL tumors, compared with that of control-treated mice (day 30: for depsipeptide-treated mice, 90% survival, 95% confidence interval [CI] = 73.2% to 100%; for control-treated mice, 20% survival, 95% CI = 5.79% to 69.1%; P<.001), but it was not associated with survival of mice carrying Lat-I EBV-positive Burkitt lymphoma tumors. Depsipeptide induced apoptosis in 64% of LCLs and in 14% of EBV-positive Burkitt lymphoma cells in vitro. Depsipeptide-treated LCL cultures had two distinct cell populations--one sensitive and one resistant to depsipeptide. Depsipeptide-mediated apoptosis was associated with a 12-fold increased level of active caspase 3, but some apoptosis persisted despite z-VAD-fmk treatment to inhibit caspase activity. Depsipeptide-resistant LCLs expressed higher levels of latent membrane protein 1 (LMP1; P = .017), BCL2 (P = .032), and nuclear factor kappaB (NF-kappaB) (P<.001) than depsipeptide-sensitive LCLs; this resistance was circumvented by treatment with PS-1145, an inhibitor of NF-kappaB activation (P<.001). CONCLUSIONS Apoptosis is induced by depsipeptide via caspase-dependent and -independent pathways in Lat-III EBV-positive LCLs and is enhanced by inhibiting NF-kappaB activity. Depsipeptide as a treatment for Lat-III EBV-associated lymphoproliferative disorders should be explored further in clinical trials.
Collapse
Affiliation(s)
- Sameek Roychowdhury
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1056
|
Moore PS, Barbi S, Donadelli M, Costanzo C, Bassi C, Palmieri M, Scarpa A. Gene expression profiling after treatment with the histone deacetylase inhibitor trichostatin A reveals altered expression of both pro- and anti-apoptotic genes in pancreatic adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:167-76. [PMID: 15363630 DOI: 10.1016/j.bbamcr.2004.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/24/2004] [Accepted: 07/12/2004] [Indexed: 12/17/2022]
Abstract
The histone deacetylase inhibitor trichostatin A (TSA) has been previously shown to block cellular growth in G2 and induce apoptosis in human pancreatic cancer cell lines. In order to better understand this phenomenon, we have analyzed the gene expression profiles in PaCa44 cells after treatment with TSA using microarrays containing 22,283 probesets. TSA was found to cause both the induction and repression of a large number of genes, although the number whose expression was up-regulated was greater than the number of genes that were down-regulated. When a threshold value of 3 was used as a cutoff level, a total of 306 (3.4%) of the detectable genes had altered expression. When categorized according to cellular function, the differentially expressed genes were found to be involved in a wide variety of cellular processes, including cell proliferation, signaling, regulation of transcription, and apoptosis. Moreover, Sp1/Sp3 transcription factor binding sites were significantly more abundant among TSA-induced genes. One prominent feature was the increased ratio between the levels of expression of pro-apoptotic (BIM) and anti-apoptotic (Bcl-XL and Bcl-W) genes. This result was confirmed in eight additional pancreatic cancer cell lines after treatment with TSA, suggesting that this event may be a strong determinant for the induction of apoptosis by TSA.
Collapse
Affiliation(s)
- Patrick S Moore
- Dipartimento di Patologia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
1057
|
Alcendor RR, Kirshenbaum LA, Imai SI, Vatner SF, Sadoshima J. Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004; 95:971-80. [PMID: 15486319 DOI: 10.1161/01.res.0000147557.75257.ff] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Yeast silent information regulator 2 (Sir2), a nicotinamide adenine dinucleotide-dependent histone deacetylase (HDAC) and founding member of the HDAC class III family, functions in a wide array of cellular processes, including gene silencing, longevity, and DNA damage repair. We examined whether or not the mammalian ortholog Sir2 affects growth and death of cardiac myocytes. Cardiac myocytes express Sir2alpha predominantly in the nucleus. Neonatal rat cardiac myocytes were treated with 20 mmol/L nicotinamide (NAM), a Sir2 inhibitor, or 50 nmol/L Trichostatin A (TSA), a class I and II HDAC inhibitor. NAM induced a significant increase in nuclear fragmentation (2.2-fold) and cleaved caspase-3, as did sirtinol, a specific Sir2 inhibitor, and expression of dominant-negative Sir2alpha. TSA also modestly increased cell death (1.5-fold) but without accompanying caspase-3 activation. Although TSA induced a 1.5-fold increase in cardiac myocyte size and protein content, NAM reduced both. In addition, NAM caused acetylation and increases in the transcriptional activity of p53, whereas TSA did not. NAM-induced cardiac myocyte apoptosis was inhibited in the presence of dominant-negative p53, suggesting that Sir2alpha inhibition causes apoptosis through p53. Overexpression of Sir2alpha protected cardiac myocytes from apoptosis in response to serum starvation and significantly increased the size of cardiac myocytes. Furthermore, Sir2 expression was increased significantly in hearts from dogs with heart failure induced by rapid pacing superimposed on stable, severe hypertrophy. These results suggest that endogenous Sir2alpha plays an essential role in mediating cell survival, whereas Sir2alpha overexpression protects myocytes from apoptosis and causes modest hypertrophy. In contrast, inhibition of endogenous class I and II HDACs primarily causes cardiac myocyte hypertrophy and also induces modest cell death. An increase in Sir2 expression during heart failure suggests that Sir2 may play a cardioprotective role in pathologic hearts in vivo.
Collapse
MESH Headings
- Acetylation/drug effects
- Alkaloids
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/physiology
- Atrial Natriuretic Factor/biosynthesis
- Atrial Natriuretic Factor/genetics
- Benzamides/pharmacology
- Benzophenanthridines
- Cell Nucleus/enzymology
- Cell Size/drug effects
- Cell Survival
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Culture Media, Serum-Free
- Cysteine Proteinase Inhibitors/pharmacology
- Dogs
- Gene Silencing/physiology
- Genes, Dominant
- Genes, p53
- Heart Failure/enzymology
- Heart Failure/pathology
- Heart Ventricles/cytology
- Hydroxamic Acids/pharmacology
- Hypertrophy
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Longevity/genetics
- Mice
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Naphthols/pharmacology
- Niacinamide/pharmacology
- Phenanthridines/pharmacology
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/genetics
- Rats
- Rats, Wistar
- Recombinant Fusion Proteins/physiology
- Sirtuin 1
- Sirtuins/antagonists & inhibitors
- Sirtuins/genetics
- Sirtuins/physiology
- Transcription, Genetic/drug effects
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Ralph R Alcendor
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA
| | | | | | | | | |
Collapse
|
1058
|
Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkühler C, Di Marco S. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 2004; 101:15064-9. [PMID: 15477595 PMCID: PMC524051 DOI: 10.1073/pnas.0404603101] [Citation(s) in RCA: 514] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylases (HDACs) are a family of enzymes involved in the regulation of gene expression, DNA repair, and stress response. These processes often are altered in tumors, and HDAC inhibitors have had pronounced antitumor activity with promising results in clinical trials. Here, we report the crystal structure of human HDAC8 in complex with a hydroxamic acid inhibitor. Such a structure of a eukaryotic zinc-dependent HDAC has not be described previously. Similar to bacterial HDAC-like protein, HDAC8 folds in a single alpha/beta domain. The inhibitor and the zinc-binding sites are similar in both proteins. However, significant differences are observed in the length and structure of the loops surrounding the active site, including the presence of two potassium ions in HDAC8 structure, one of which interacts with key catalytic residues. CD data suggest a direct role of potassium in the fold stabilization of HDAC8. Knockdown of HDAC8 by RNA interference inhibits growth of human lung, colon, and cervical cancer cell lines, highlighting the importance of this HDAC subtype for tumor cell proliferation. Our findings open the way for the design and development of selective inhibitors of HDAC8 as possible antitumor agents.
Collapse
Affiliation(s)
- Alessandro Vannini
- Department of Biochemistry, Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1059
|
Villar-Garea A, Esteller M. Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 2004; 112:171-8. [PMID: 15352027 DOI: 10.1002/ijc.20372] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer is as much an epigenetic disease as it is a genetic and cytogenetic disease. The discovery that drastic changes in DNA methylation and histone modifications are commonly found in human tumors has inspired various laboratories and pharmaceutical companies to develop and study epigenetic drugs. One of the most promising groups of agents is the inhibitors of histone deacetylases (HDACs), which have different biochemical and biologic properties but have a single common activity: induction of acetylation in histones, the key proteins in nucleosome and chromatin structure. One of the main mechanisms of action of HDAC inhibitors is the transcriptional reactivation of dormant tumor-suppressor genes, such as p21WAF1. However, their pleiotropic nature leaves open the possibility that their well-known differentiation, cell-cycle arrest and apoptotic properties are also involved in other functions associated with HDAC inhibition. Many phase I clinical trials indicate that HDAC inhibitors appear to be well-tolerated drugs. Thus, the field is ready for rigorous biologic and clinical scrutiny to validate the therapeutic potential of these drugs. Our current data indicate that the use of HDAC inhibitors, probably in association with classical chemotherapy drugs or in combination with DNA-demethylating agents, could be promising for cancer patients.
Collapse
Affiliation(s)
- Ana Villar-Garea
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre, Madrid, Spain
| | | |
Collapse
|
1060
|
Heltweg B, Dequiedt F, Marshall BL, Brauch C, Yoshida M, Nishino N, Verdin E, Jung M. Subtype Selective Substrates for Histone Deacetylases. J Med Chem 2004; 47:5235-43. [PMID: 15456267 DOI: 10.1021/jm0497592] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To probe the steric requirements for deacylation, we synthesized lysine-derived small molecule substrates and examined structure-reactivity relationships with various histone deacetylases. Rat liver, human HeLa, and human recombinant class I and II histone deacetylases (HDACs) as well as human recombinant NAD(+)-dependent SIRT1 (class III enzyme) were used in these studies. A benzyloxycarbonyl substituent on the alpha-amino group yielded the highest conversion rates. Replacing the epsilon-acetyl group with larger lipophilic acyl substituents led to a pronounced decrease in conversion by class I and II enzymes; the class III enzyme displayed a greater tolerance. Incubations with recombinant FLAG-tagged human HDACs 1, 3, and 6 showed a distinct subtype selectivity among small molecule substrates. The subtype selectivity of HDAC inhibitors could be predicted with these substrates and an easily obtainable mixture of HDAC subtypes.
Collapse
Affiliation(s)
- Birgit Heltweg
- Department of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, Hittorfstrasse 58-62, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1061
|
McLaughlin F, La Thangue NB. Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 2004; 68:1139-44. [PMID: 15313411 DOI: 10.1016/j.bcp.2004.05.034] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 05/26/2004] [Indexed: 11/29/2022]
Abstract
Cancer drug development has moved from conventional cytotoxic chemotherapeutics to a more mechanism-based targeted approach towards the common goal of tumour growth arrest. The rapid progress in chromatin research has supplied a plethora of potential targets for intervention in cancer. Here, we focus on the histone deacetylase (HDAC) inhibitors, together with their current status of clinical development and potential utility in cancer therapy. HDACs have been widely implicated in growth and transcriptional control, and inhibition of HDAC activity using small molecules causes apoptosis in tumour cells. We discuss the rationale for the development of HDAC inhibitors as novel anti-cancer agents, the potential clinical application and explore ideas on how we may move towards patient stratification with the possibility of increasing efficacy in the clinic.
Collapse
Affiliation(s)
- Fiona McLaughlin
- Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, G12 8QQ, UK
| | | |
Collapse
|
1062
|
Camphausen K, Scott T, Sproull M, Tofilon PJ. Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin Cancer Res 2004; 10:6066-71. [PMID: 15447991 DOI: 10.1158/1078-0432.ccr-04-0537] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Histone deacetylase (HDAC) inhibitors are undergoing clinical evaluation in cancer therapy. Because HDAC modulation has been shown to enhance the radiosensitivity of tumor cells in vitro, we investigated the effects of the HDAC inhibitor MS-275 on the radioresponse of DU145 prostate carcinoma xenografts. EXPERIMENTAL DESIGN As an indicator of HDAC inhibition in vivo, the histone acetylation status in tumor lysates was determined after two, four, and six injections of MS-275 delivered at 12-hour intervals, as well as 24 and 48 hours after the last injection. Tumor growth delay studies were then performed using this DU-145 xenograft model with radiation administered to leg tumors after the fourth dose of MS-275, which corresponded to the time of maximum histone hyperacetylation. RESULTS An increase in histone hyperacetylation was detected in each tumor after two injections of MS-275 with a maximum hyperacetylation occurring after four to six injections. In tumor growth delay studies, the combination of MS-275 and radiation resulted in a greater than additive inhibition of tumor growth as compared with the individual modalities. As alternative sources for an indicator of drug radiosensitizing activity, histone hyperacetylation was determined in a series of normal tissues, including lymphocytes. Each of the normal tissues also had a maximal histone hyperacetylation after four to six injections of MS-275. CONCLUSIONS These studies show that MS-275 enhances the radiosensitivity of DU145 xenografts and suggest that histone hyperacetylation status can serve as a useful marker for drug radiosensitizing activity.
Collapse
Affiliation(s)
- Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
1063
|
Asnaghi L, Calastretti A, Bevilacqua A, D'Agnano I, Gatti G, Canti G, Delia D, Capaccioli S, Nicolin A. Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt. Oncogene 2004; 23:5781-91. [PMID: 15208671 DOI: 10.1038/sj.onc.1207698] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The serine/threonine kinase mTOR, the major sensor of cell growth along the PI3K/Akt pathway, can be activated by agents acting on microtubules. Damaged microtubules induce phosphorylation of the Bcl-2 protein and lower the threshold of programmed cell death, both of which are inhibited by rapamycin. In HEK293 cells expressing Akt mutants, the level of Bcl-2 phosphorylation and the threshold of apoptosis induced by taxol or by nocodazole are significantly modified. In cells expressing dominant-negative Akt (DN-Akt), Bcl-2 phosphorylation and p70S6KThr421/Ser424 phosphorylation induced by taxol or nocodazole were significantly enhanced as compared to cells expressing constitutively active Akt (CA-Akt) and inhibited by rapamycin. Moreover, DN-Akt cells were more sensitive to antitubule agents than CA-Akt cells. In nocodazole-treated HEK293 cells sorted according to cell cycle, the p70S6KThr421/Ser424 phosphorylation was associated to the G2/M fraction. More relevant, nocodazole inhibited, in a dose-response manner, mTOR phosphorylation at Ser2448. This activity, potentiated in DN-Akt cells, was not detectable in CA-Akt cells. Our results suggest that death signals originating from damaged microtubules in G2/M can compete with G1 survival pathways at the level of mTOR. These findings have implications for cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Laura Asnaghi
- Department of Pharmacology, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
1064
|
Tóth KF, Knoch TA, Wachsmuth M, Frank-Stöhr M, Stöhr M, Bacher CP, Müller G, Rippe K. Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin. J Cell Sci 2004; 117:4277-87. [PMID: 15292402 DOI: 10.1242/jcs.01293] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The effect of trichostatin A (TSA)-induced histone acetylation on the interphase chromatin structure was visualized in vivo with a HeLa cell line stably expressing histone H2A, which was fused to enhanced yellow fluorescent protein. The globally increased histone acetylation caused a reversible decondensation of dense chromatin regions and led to a more homogeneous distribution. These structural changes were quantified by image correlation spectroscopy and by spatially resolved scaling analysis. The image analysis revealed that a chromatin reorganization on a length scale from 200 nm to >1 microm was induced consistent with the opening of condensed chromatin domains containing several Mb of DNA. The observed conformation changes could be assigned to the folding of chromatin during G1 phase by characterizing the effect of TSA on cell cycle progression and developing a protocol that allowed the identification of G1 phase cells on microscope coverslips. An analysis by flow cytometry showed that the addition of TSA led to a significant arrest of cells in S phase and induced apoptosis. The concentration dependence of both processes was studied.
Collapse
Affiliation(s)
- Katalin Fejes Tóth
- Kirchhoff-Institut für Physik, AG Molekulare Biophysik, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1065
|
Park JH, Jung Y, Kim TY, Kim SG, Jong HS, Lee JW, Kim DK, Lee JS, Kim NK, Kim TY, Bang YJ. Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin Cancer Res 2004; 10:5271-5281. [PMID: 15297431 DOI: 10.1158/1078-0432.ccr-03-0709] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have developed previously a class of synthetic hybrid histone deacetylase (HDAC) inhibitors, which were built from hydroxamic acid of trichostatin A and pyridyl ring of MS-275. In this study we evaluated the antitumor effects of these novel hybrid synthetic HDAC inhibitors, SK-7041 and SK-7068, on human cancer cells. Both SK-7041 and SK-7068 effectively inhibited cellular HDAC activity at nanomolar concentrations and induced the time-dependent hyperacetylation of histones H3 and H4. These HDAC inhibitors preferentially inhibited the enzymatic activities of HDAC1 and HDAC2, as compared with the other HDAC isotypes, indicating that class I HDAC is the major target of SK-7041 and SK-7068. We found that these compounds exhibited potent antiproliferative activity against various human cancer cells in vitro. Growth inhibition effect of SK-7041 and SK-7068 was related with the induction of aberrant mitosis and apoptosis in human gastric cancer cells. Both compounds induced the accumulation of cells at mitosis after 6 h of treatment, which was demonstrated by accumulation of tetraploid cells, lack of G(2) cyclin/cyclin-dependent kinase inactivation, and higher mitotic index. After 12 h of treatment, apoptotic cells were increased through mitochondrial and caspase-mediated pathway. Finally, in vivo experiment showed that SK-7041 or SK-7068 was found to reduce the growth of implanted human tumors in nude mice. Therefore, based on isotype specificity and antitumor activity, SK-7041 and SK-7068 HDAC inhibitors are expected to be promising anticancer therapeutic agents and need additional clinical development.
Collapse
Affiliation(s)
- Jung-Hyun Park
- National Research Laboratory for Cancer Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1066
|
Rundall BK, Denlinger CE, Jones DR. Combined histone deacetylase and NF-κB inhibition sensitizes non-small cell lung cancer to cell death. Surgery 2004; 136:416-25. [PMID: 15300209 DOI: 10.1016/j.surg.2004.05.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains resistant to traditional and novel chemotherapeutic agents, relating, in part, to the activation of the antiapoptotic transcription factor NF-kappaB. We hypothesize that inhibition of NF-kappaB using BAY-11-7085 will sensitize NSCLC cells to death, induced by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). METHODS Five tumorigenic NSCLC cell lines (A549, H157, H358, H460, H1299) were treated with nothing, SAHA, BAY-11-7085, or both compounds. Cell death was determined by crystal violet staining. p65 nuclear translocation was determined by Western blot analysis. NF-kappaB activity was determined by reporter-gene assays and by reverse transcriptase-polymerase chain reaction of the endogenous NF-kappaB-dependent gene interleukin 8. Apoptosis was determined by DNA fragmentation. Clonogenic cell survival assays were also performed. Data was analyzed with the Student t test when appropriate. RESULTS SAHA alone resulted in no meaningful NSCLC cell death. SAHA induced nuclear translocation of p65, which was inhibited by BAY-11-7085. SAHA significantly induced NF-kappaB-dependent transcription which was ameliorated after treatment with BAY-11-7085 (P = .01). Combined SAHA and BAY-11-7085 induced significantly more apoptosis and cell death than either drug alone (P = .002). CONCLUSIONS Combined HDI and NF-kappaB inhibition using BAY-11-7085 sensitizes NSCLC cells to cell death and appears promising as a novel treatment strategy for this disease.
Collapse
Affiliation(s)
- Brian K Rundall
- Department of Surgery, University of Virginia School of Medicine Charlottesville, VA 22908-0679, USA
| | | | | |
Collapse
|
1067
|
Maeda T, Nagaoka Y, Kuwajima H, Seno C, Maruyama S, Kurotaki M, Uesato S. Potent histone deacetylase inhibitors: N-hydroxybenzamides with antitumor activities. Bioorg Med Chem 2004; 12:4351-60. [PMID: 15265487 DOI: 10.1016/j.bmc.2004.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 06/11/2004] [Accepted: 06/11/2004] [Indexed: 11/15/2022]
Abstract
The screening tests of N-hydroxybenzamides for their HDAC-inhibitory activities led to the discovery of the promising compounds with a 2-naphthylcarbonyl group and with a 1,4-biphenylcarbonyl group. These compounds were further modified to optimize their physico-chemical profile. As a result, the inhibitor with a 6-amino-2-naphthylcarbonyl was obtained, which showed not only promising growth inhibitions against a panel of tumor cells, but also an improved water solubility. It exhibited the maximal 185% of survival rate (%T/C) in a in vivo experiment with P388 cell-inoculated mice.
Collapse
Affiliation(s)
- Taishi Maeda
- Department of Biotechnology, Faculty of Engineering, Kansai University, Suita, Osaka 564-8680, Japan
| | | | | | | | | | | | | |
Collapse
|
1068
|
Eyal S, Yagen B, Sobol E, Altschuler Y, Shmuel M, Bialer M. The Activity of Antiepileptic Drugs as Histone Deacetylase Inhibitors. Epilepsia 2004; 45:737-44. [PMID: 15230695 DOI: 10.1111/j.0013-9580.2004.00104.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE Valproic acid (VPA), one of the widely used antiepileptic drugs (AEDs), was recently found to inhibit histone deacetylases (HDACs). HDAC inhibitors of a wide range of structures, such as hydroxamic acids, carboxylic acids, and cyclic tetrapeptides, have various effects on transformed and nontransformed cells, including neuromodulation and neuroprotection. The aim of this study was to assess comparatively the activity of traditional and newer AEDs as HDAC inhibitors. METHODS After incubation of HeLa cells with the tested AEDs, histone hyperacetylation was assessed by immunoblotting with an antibody specific to acetylated histone H4. Direct HDAC inhibition by AEDs was estimated by using HeLa nuclear extract as an HDACs source and an acetylated lysine substrate. RESULTS We found that in addition to VPA, topiramate (TPM) inhibited HDACs with apparent Ki values of 2.22 +/- 0.67 mM. Although levetiracetam (LEV) had no direct effect on HDACs, its major carboxylic acid metabolite in humans, 2-pyrrolidinone-n-butyric acid (PBA), inhibited HDACs with Ki values of 2.25 +/- 0.78 mM. The AEDs LEV, phenobarbital, phenytoin, carbamazepine, ethosuximide, gabapentin, and vigabatrin did not inhibit HDACs. The compounds that directly inhibited HDACs also induced the accumulation of acetylated histone H4 in HeLa cells. The effects of TPM and PBA on histone acetylation were significant at 0.25 mM and 1 mM, respectively. CONCLUSIONS We found that in addition to VPA, the newer AED TPM and the major metabolite of LEV, PBA, are able to induce histone hyperacetylation in human cells, although with lower potencies than VPA.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, Ein Karem, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
1069
|
Klampfer L, Huang J, Swaby LA, Augenlicht L. Requirement of Histone Deacetylase Activity for Signaling by STAT1. J Biol Chem 2004; 279:30358-68. [PMID: 15123634 DOI: 10.1074/jbc.m401359200] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
STAT1 is a transcription factor that plays a crucial role in signaling by interferons (IFNs). In this study we demonstrated that inhibitors of histone deacetylase (HDAC) activity, butyrate, trichostatin A, and suberoylanilide hydroxamic acid, prevented IFNgamma-induced JAK1 activation, STAT1 phosphorylation, its nuclear translocation, and STAT1-dependent gene activation. Furthermore, we showed that silencing of HDAC1, HDAC2, and HDAC3 through RNA interference markedly decreased IFNgamma-driven gene activation and that overexpression of HDAC1, HDAC2, and HDAC3 enhanced STAT1-dependent transcriptional activity. Our data therefore established the essential role of deacetylase activity in STAT1 signaling. Induction of IRF-1 by IFNgamma requires functional STAT1 signaling and was abrogated by butyrate, trichostatin A, suberoylanilide hydroxamic acid, and STAT1 small interfering RNA. In contrast, silencing of STAT1 did not interfere with IFNgamma-induced expression of STAT2 and caspase-7, and HDAC inhibitors did not preclude IFNgamma-induced expression of STAT1, STAT2, and caspase-7, suggesting that HDAC inhibitors impede the expression of IFNgamma target genes whose expression depends on STAT1 but do not interfere with STAT1-independent signaling by IFNgamma. Finally, we showed that inhibitors of deacetylase activity sensitized colon cancer cells to IFNgamma-induced apoptosis through cooperative negative regulation of Bcl-x expression, demonstrating that interruption of the balance between STAT1-dependent and STAT1-independent signaling significantly alters the biological activity of IFNgamma.
Collapse
Affiliation(s)
- Lidija Klampfer
- Albert Einstein Cancer Center, Montefiore Medical Center, Department of Oncology, Bronx, New York 10467, USA.
| | | | | | | |
Collapse
|
1070
|
Shimogawa H, Kwon Y, Mao Q, Kawazoe Y, Choi Y, Asada S, Kigoshi H, Uesugi M. A wrench-shaped synthetic molecule that modulates a transcription factor-coactivator interaction. J Am Chem Soc 2004; 126:3461-71. [PMID: 15025473 DOI: 10.1021/ja038855+] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of synthetic molecules that provide external control over the transcription of a given gene represents a challenge in medicinal and bioorganic chemistry. Here we report design and analysis of wrenchnolol, a wrench-shaped synthetic molecule that impairs the transcription of the Her2 oncogene by disrupting association of transcription factor ESX with its coactivator Sur-2. The "jaw" part of the compound mimics the alpha-helical interface of the activation domain of ESX, and the "handle" region accepts chemical modifications for a range of analysis. A water-soluble handle permitted NMR study in aqueous solution; a biotinylated handle verified the selectivity of the interaction, and a fluorescent handle confirmed the cell permeability of the compound. The case study of wrenchnolol foreshadows the promise and the challenge of targeting protein-protein interactions in the nucleus and may lead to the development of unique synthetic modulators of gene transcription.
Collapse
Affiliation(s)
- Hiroki Shimogawa
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
1071
|
Zhang X, Wharton W, Yuan Z, Tsai SC, Olashaw N, Seto E. Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol Cell Biol 2004; 24:5106-18. [PMID: 15169878 PMCID: PMC419886 DOI: 10.1128/mcb.24.12.5106-5118.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/14/2004] [Accepted: 02/23/2004] [Indexed: 01/19/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors inhibit the proliferation of transformed cells in vitro, restrain tumor growth in animals, and are currently being actively exploited as potential anticancer agents. To identify gene targets of the HDAC inhibitor trichostatin A (TSA), we compared the gene expression profiles of BALB/c-3T3 cells treated with or without TSA. Our results show that TSA up-regulates the expression of the gene encoding growth-differentiation factor 11 (Gdf11), a transforming growth factor beta family member that inhibits cell proliferation. Detailed analyses indicated that TSA activates the gdf11 promoter through a conserved CCAAT box element. A comprehensive survey of human HDACs revealed that HDAC3 is necessary and sufficient for the repression of gdf11 promoter activity. Chromatin immunoprecipitation assays showed that treatment of cells with TSA or silencing of HDAC3 expression by small interfering RNA causes the hyperacetylation of Lys-9 in histone H3 on the gdf11 promoter. Together, our results provide a new model in which HDAC inhibitors reverse abnormal cell growth by inactivation of HDAC3, which in turn leads to the derepression of gdf11 expression.
Collapse
Affiliation(s)
- Xiaohong Zhang
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
1072
|
Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 2004; 10:3839-3852. [PMID: 15173093 DOI: 10.1158/1078-0432.ccr-03-0561] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE The purpose of this study was to examine interactions between the proteasome inhibitor bortezomib (Velcade) and the histone deacetylase (HDAC) inhibitors sodium butyrate and suberoylanilide hydroxamic acid in human multiple myeloma (MM) cells that are sensitive and resistant to conventional agents. EXPERIMENTAL DESIGN MM cells were exposed to bortezomib for 6 h before the addition of HDAC inhibitors (total, 26 h), after which reactive oxygen species (ROS), mitochondrial dysfunction, signaling and cell cycle pathways, and apoptosis were monitored. The functional role of ROS generation was assessed using the free radical scavenger N-acetyl-l-cysteine. RESULTS Preincubation with a subtoxic concentration of bortezomib markedly sensitized U266 and MM.1S cells to sodium butyrate- and suberoylanilide hydroxamic acid-induced mitochondrial dysfunction; caspase 9, 8, and 3 activation; and poly(ADP-ribose) polymerase degradation; resulting in synergistic apoptosis induction. These events were associated with nuclear factor kappaB inactivation, c-Jun NH(2)-terminal kinase activation, p53 induction, and caspase-dependent cleavage of p21(CIP1), p27(KIP1), and Bcl-2, as well as Mcl-1, X-linked inhibitor of apoptosis, and cyclin D1 down-regulation. The bortezomib/HDAC inhibitor regimen markedly induced ROS generation; moreover, apoptosis and c-Jun NH(2)-terminal kinase activation were attenuated by N-acetyl-l-cysteine. Dexamethasone- or doxorubicin-resistant MM cells failed to exhibit cross-resistance to the bortezomib/HDAC inhibitor regimen, nor did exogenous interleukin 6 or insulin-like growth factor I block apoptosis induced by this drug combination. Finally, bortezomib/HDAC inhibitors induced pronounced lethality in primary CD138(+) bone marrow cells from MM patients, but not in the CD138(-) cell population. CONCLUSIONS Sequential exposure to bortezomib in conjunction with clinically relevant HDAC inhibitors potently induces mitochondrial dysfunction and apoptosis in human MM cells through a ROS-dependent mechanism, suggesting that a strategy combining these agents warrants further investigation in MM.
Collapse
Affiliation(s)
- Xin-Yan Pei
- Department of Medicine,Virginia Commonwealth University, Medical College of Virginia, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|
1073
|
Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004; 338:17-31. [PMID: 15050820 DOI: 10.1016/j.jmb.2004.02.006] [Citation(s) in RCA: 1082] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 12/17/2022]
Abstract
Histone deacetylases (HDACs) modify core histones and participate in large regulatory complexes that both suppress and enhance transcription. Recent studies indicate that some HDACs can act on non-histone proteins as well. Interest in these enzymes is growing because HDAC inhibitors appear to be promising therapeutic agents against cancer and a variety of other diseases. Thus far, 11 members of the HDAC family have been identified in humans, but few have been characterized in detail. To better define the biological function of these proteins, make maximal use of studies performed in other systems, and assist in drug development efforts, we have performed a phylogenetic analysis of all HDAC-related proteins in all fully sequenced free-living organisms. Previous analyses have divided non-sirtuin HDACs into two groups, classes 1 and 2. We find that HDACs can be divided into three equally distinct groups: class 1, class 2, and a third class consisting of proteins related to the recently identified human HDAC11 gene. We term this novel group "class 4" to distinguish it from the unrelated "class 3" sirtuin deacetylases. Analysis of gene duplication events indicates that the common ancestor of metazoan organisms contained two class 1, two class 2, and a single class 4 HDAC. Examination of HDAC characteristics in light of these evolutionary relationships leads to functional predictions, among them that self-association is common among HDAC proteins. All three HDAC classes (including class 4) exist in eubacteria. Phylogenetic analysis of bacterial HDAC relatives suggests that all three HDAC classes precede the evolution of histone proteins and raises the possibility that the primary activity of some "histone deacetylase" enzymes is directed against non-histone substrates.
Collapse
Affiliation(s)
- Ivan V Gregoretti
- Walther Cancer Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46628, USA
| | | | | |
Collapse
|
1074
|
Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Göttlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004; 5:455-63. [PMID: 15144953 DOI: 10.1016/s1535-6108(04)00114-x] [Citation(s) in RCA: 376] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/26/2004] [Accepted: 03/25/2004] [Indexed: 11/22/2022]
Abstract
Inappropriate transcriptional repression involving histone deacetylases (HDACs) is a prominent cause for the development of leukemia. We now identify faulty expression of a specific mediator of transcriptional repression in a solid tumor. Loss of the adenomatosis polyposis coli (APC) tumor suppressor induces HDAC2 expression depending on the Wnt pathway and c-Myc. Increased HDAC2 expression is found in the majority of human colon cancer explants, as well as in intestinal mucosa and polyps of APC-deficient mice. HDAC2 is required for, and sufficient on its own to prevent, apoptosis of colonic cancer cells. Interference with HDAC2 by valproic acid largely diminishes adenoma formation in APC(min) mice. These findings point toward HDAC2 as a particularly relevant potential target in cancer therapy.
Collapse
Affiliation(s)
- Ping Zhu
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe Branch, H.-v.-H.-Platz 1, D-76344 Eggenstein, Germany
| | | | | | | | | | | |
Collapse
|
1075
|
Lucas DM, Davis ME, Parthun MR, Mone AP, Kitada S, Cunningham KD, Flax EL, Wickham J, Reed JC, Byrd JC, Grever MR. The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 2004; 18:1207-14. [PMID: 15116122 DOI: 10.1038/sj.leu.2403388] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MS-275 is a histone deacetylase (HDAC) inhibitor that has been reported to mediate its cytotoxic effect through generation of reactive oxygen species (ROS) in proliferating hematopoietic cell lines. We examined efficacy of MS-275 in nonproliferating chronic lymphocytic leukemia (CLL) cells from patients. In these cells, MS-275 demonstrated an in vitro LC(50) that was one log lower than for normal mononuclear cells. Following MS-275 treatment, histones H3 and H4 showed increased acetylation and HDAC enzymatic activity was reduced. Caspase-8, -9, and -3 were activated, and caspase substrates PARP and BID were cleaved. Additionally, FLICE-inhibitory protein (FLIP) was downmodulated following MS-275 incubation. MS-275 treatment caused detectable ROS generation after 15 h of incubation, which was blocked by the caspase inhibitor Z-VAD-fmk. Overexpression of Bcl-2 protein protected against MS-275-induced apoptosis. These data demonstrate that MS-275 is a promising therapy for the treatment of CLL, but that in contrast to previous reports, ROS generation does not precede commitment to apoptosis. Similar to many other therapeutic targets, MS-275-mediated apoptosis is reduced by overexpression of Bcl-2, justifying strategies to combine HDAC inhibitors with Bcl-2 antagonists.
Collapse
Affiliation(s)
- D M Lucas
- Department of Internal Medicine, The Ohio State University, Columbus OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1076
|
Tang R, Faussat AM, Majdak P, Perrot JY, Chaoui D, Legrand O, Marie JP. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia 2004; 18:1246-51. [PMID: 15116123 DOI: 10.1038/sj.leu.2403390] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The multidrug resistance (MDR) phenotype, induced by the overexpression of several ABC transporters or by antiapoptotic mechanisms, has been identified as the major cause of drug resistance in the treatment of patients with acute myeloid leukemia (AML). In this study, we have shown that valproic acid (VPA) (a histone deacetylase inhibitor) can inhibit the proliferation of both P-glycoprotein (P-gp)- and MDR-associated protein 1 (MRP1)-positive and -negative cells. VPA also induced apoptosis of P-gp-positive cells. VPA induced apoptosis in K562 cells led to decrease in Flip (FLICE/caspase-8 inhibitory protein) expression with Flip cleavage, which could not be observed in HL60 cells. In HL60/MRP cell line, which proved to be resistant to apoptosis by VPA, we observed an abnormal expression of apoptotic regulatory proteins, overexpression of Bcl-2 and absence of Bax. Also, the Bcl-2 antagonist HA14-1 rapidly restored apoptosis in this cell line. Cotreatment with cytosine arabinoside induced very strong apoptosis in both K562/DOX and HL60/DNR cell lines. VPA also induced apoptosis in AML patient cells expressing P-gp and/or MRP1. Our findings show VPA as an interesting drug that should be tested in clinical trials for overcoming the MDR phenotype in AML patients.
Collapse
Affiliation(s)
- R Tang
- Laboratotoire INSERM E0355, Hôtel Dieu, Paris, France
| | | | | | | | | | | | | |
Collapse
|
1077
|
Neuzil J, Swettenham E, Gellert N. Sensitization of mesothelioma to TRAIL apoptosis by inhibition of histone deacetylase: role of Bcl-xL down-regulation. Biochem Biophys Res Commun 2004; 314:186-91. [PMID: 14715264 DOI: 10.1016/j.bbrc.2003.12.074] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) is an immunological inducer of apoptosis selectively killing many, but not all, cancer cells. Malignant mesothelioma (MM) is fatal neoplasia with no current treatment, most likely due to high resistance of MM cells towards inducers of apoptosis, including TRAIL. We studied whether inhibition of histone deacetylase (HDAC), recently shown to sensitize malignant cells to a variety of apoptogenic substances, renders MM cells susceptible to TRAIL. Indeed, sub-apoptotic doses of the HDAC inhibitor suberohydroxamic acid (SBHA) sensitized MM cells to TRAIL apoptosis. Of the apoptotic mediators tested, the anti-apoptotic protein Bcl-x(L) was strongly down-regulated by combined treatment of the cells with SBHA and TRAIL but not by the HDAC inhibitor alone, while little or no change in the expression of other Bcl-2 family members highly expressed in MM cells, including Mcl-1 and Bax, was observed. Our data suggest a cross-talk between HDAC inhibition and TRAIL that results in modulation of expression of specific apoptotic mediators, and point to the potential of their combinatorial use in treatment of TRAIL-resistant neoplastic disease.
Collapse
Affiliation(s)
- Jiri Neuzil
- School of Health Sciences, Griffith University, Southport, Qld, Australia.
| | | | | |
Collapse
|
1078
|
Affiliation(s)
- David S Goodsell
- The Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA.
| |
Collapse
|
1079
|
Zgouras D, Becker U, Loitsch S, Stein J. Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem Biophys Res Commun 2004; 316:693-697. [PMID: 15033455 DOI: 10.1016/j.bbrc.2004.02.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Indexed: 01/08/2023]
Abstract
Recent studies have attested to the antiangiogenic effects of HDAC inhibitors on solid human tumors. The HDAC inhibitor butyrate has been reported to impair tumor-cell-induced angiogenesis. However, due to its poor bioavailability in vivo, the therapeutic use of butyrate is limited. On the other hand, valproic acid has inhibitory effects on carcinoma cells, is known to be well tolerated, and has an excellent bioavailability. We therefore set out to investigate whether the HDAC inhibitor valproic acid also impairs angiogenesis. Our findings indicate that valproic acid represses the relevant angiogenic factors VEGF and FGF in Caco-2 cells. Both, protein expression as well as mRNA levels of VEGF, were reduced to a similar degree. Suppression of ubiquitin-proteasome activity could be a possible reason for valproic acid effects on regulatory angiogenesis proteins. These results suggest that the HDAC inhibitor valproic acid could become a valuable new addition in the attempt to develop alternative therapeutic approaches in the treatment of colon carcinomas.
Collapse
Affiliation(s)
- Dimitrios Zgouras
- Second Department of Medicine, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | |
Collapse
|
1080
|
Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB, Lee MJ, Tofilon PJ. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004; 64:316-21. [PMID: 14729640 DOI: 10.1158/0008-5472.can-03-2630] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are undergoing clinical evaluation for cancer therapy. Because HDAC modulates chromatin structure and gene expression, parameters considered to influence radioresponse, we have investigated the effects of the HDAC inhibitor MS-275 on the radiosensitivity of two human tumor cell lines (DU145 prostate carcinoma and U251 glioma). Acetylation status of histones H3 and H4 was determined as a function of time after MS-275 addition to and removal from culture medium. Histone acetylation increased by 6 h after MS-275 addition, reaching a maximum between 24 and 48 h of exposure; providing fresh drug-free medium then resulted in a decrease in histone acetylation that began by 6 h and approached untreated levels by 16 h. Treatment of cells with MS-275 for 48 h followed by irradiation had little or no effect on radiation-induced cell death. However, exposure to MS-275 before and after irradiation resulted in an increase in radiosensitivity with dose enhancement factors of 1.9 and 1.3 for DU145 and U251 cells, respectively. This MS-275 treatment protocol did not result in a redistribution of the cells into a more radiosensitive phase of the cell cycle or in an increase in apoptosis. However, MS-275 did modify the time course of gammaH2AX expression in irradiated cells. Whereas there was no significant difference in radiation-induced gammaH2AX foci at 6 h, the number of cells expressing gammaH2AX foci was significantly greater in the MS-275-treated cells at 24 h after irradiation. These results indicate that MS-275 can enhance radiosensitivity and suggest that this effect may involve an inhibition of DNA repair.
Collapse
Affiliation(s)
- Kevin Camphausen
- Radiation Oncology Branch and Molecular Radiation Therapeutics Branch, Radiation Oncology Sciences Program, Medicine Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
1081
|
Onyia JE, Galvin RJS, Ma YL, Halladay DL, Miles RR, Yang X, Fuson T, Cain RL, Zeng QQ, Chandrasekhar S, Emkey R, Xu Y, Thirunavukkarasu K, Bryant HU, Martin TJ. Novel and selective small molecule stimulators of osteoprotegerin expression inhibit bone resorption. J Pharmacol Exp Ther 2004; 309:369-79. [PMID: 14718597 DOI: 10.1124/jpet.103.057893] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Osteoprotegerin (OPG), a secreted member of the tumor necrosis factor receptor superfamily, is a potent inhibitor of osteoclast formation and bone resorption. Because OPG functions physiologically as a locally generated (paracrine) factor, we used high-throughput screening to identify small molecules that enhance the activity of the promoter of the human OPG gene. We found three structurally unrelated compounds that selectively increased OPG gene transcription, OPG mRNA levels, and OPG protein production and release by osteoblastic cells. Structural analysis of one compound, a benzamide derivative, led to the identification of four related molecules, which are also OPG inducers. The most potent of these compounds, Cmpd 5 inhibited osteoclast formation and parathyroid hormone-induced calvarial bone resorption. In vivo, Cmpd 5 completely blocked resorptive activity (serum calcium, osteoclast number) in parathyroid hormone-treated rats. Furthermore, Cmpd 5 reduced the ability of a rat breast cancer to metastasize to bone. Finally, the compound also prevented bone loss in a rat adjuvant arthritis model. These results provide proof of the concept that low molecular weight compounds can enhance OPG production in ways that can result in effective therapies.
Collapse
Affiliation(s)
- Jude E Onyia
- Gene Regulation, Bone and Enabling Biology, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1082
|
Roh MS, Hong SH, Jeong JS, Kwon HC, Kim MC, Cho SH, Yoon JH, Hwang TH. Gene expression profiling of breast cancers with emphasis of beta-catenin regulation. J Korean Med Sci 2004; 19:275-82. [PMID: 15082903 PMCID: PMC2822311 DOI: 10.3346/jkms.2004.19.2.275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain molecular understanding of carcinogenesis of breast cancer, gene expression profiles were analyzed using cDNA microarray representing 4,600 cDNAs in 10 breast cancer samples and the adjacent noncancerous breast tissues from the same patients. The alterations in gene expression levels were confirmed by reversetranscription PCR in four randomly selected genes. Genes that were differently expressed in cancer and noncancerous tissues were identified. 106 (of which 55 were known) and 49 (of which 28 were known) genes were up- or down-regulated, respectively, in greater than 60% of the breast cancer samples. In cancer tissues, genes related to cell cycle, transcription, metabolism, cell structure/motility and signal transduction were mostly up-regulated. Furthermore, three cancer tissues showing immunohistochemically aberrant accumulation of beta-catenin in the nucleus and/or cytoplasm revealed down-regulation of Siah and Axin genes and up-regulation of Wnt and c-myc genes. These findings were highly consistent with Wnt signaling pathway associated with beta-catenin regulation previously suggested by others. Our studies, therefore, provide not only a molecular basis to understand biological processes of breast cancer but also useful resources to define the mechanism of beta-catenin expression in tumorigenesis of breast cancer.
Collapse
Affiliation(s)
- Mee Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
1083
|
Li J, Staver MJ, Curtin ML, Holms JH, Frey RR, Edalji R, Smith R, Michaelides MR, Davidsen SK, Glaser KB. Expression and functional characterization of recombinant human HDAC1 and HDAC3. Life Sci 2004; 74:2693-705. [PMID: 15043985 DOI: 10.1016/j.lfs.2003.09.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 09/30/2003] [Indexed: 11/28/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes involved in transcription regulation. HDACs are known to play key roles in the regulation of cell proliferation; consequently, inhibition of HDACs has become an interesting approach for anti-cancer therapy. However, expression of mammalian HDACs has proven to be difficult. All attempts to express these HDACs in E.coli, Pichia and baculovirus systems were unsuccessful. Here we present the stable expression of human recombinant His-tagged HDAC1 and HDAC3 in mammalian cells. Full-length human genes for HDAC1 and HDAC3 were cloned into the pcDNA 3.1 vector containing a N-terminal His-tag with an enterokinase cleavage site. Recombinant HDAC enzyme activity was only detected after nickel affinity purification due to high activity of endogenous HDACs; and removal of the His-tag increased activity 2-4 fold. Western blots demonstrated the nickel affinity purified rhHDAC1 preparation also contained endogenous HDAC2 and HDAC3; likewise, rhHDAC3 preparation contained endogenous HDAC1 and HDAC2. Therefore, the active HDAC preparation is actually a multi-protein and a multi-HDAC containing complex. This provides one explanation for the similar IC50 values exhibited by SAHA and MS-275 against nuclear HDACs and rhHDAC1 and 3 preparations. These results demonstrate that recombinant forms of the HDACs can be over-expressed in mammalian cells, isolated as active multi-protein complexes that contain multiple HDAC enzymes, and caution must be used when determining HDAC inhibitor in vitro selectivity.
Collapse
Affiliation(s)
- Junling Li
- Global Pharmaceutical Research and Development, Cancer Research, R47J-AP9, Abbott Laboratories, Abbott Park, IL 60064-6121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1084
|
Maggio SC, Rosato RR, Kramer LB, Dai Y, Rahmani M, Paik DS, Czarnik AC, Payne SG, Spiegel S, Grant S. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res 2004; 64:2590-2600. [PMID: 15059916 DOI: 10.1158/0008-5472.can-03-2631] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interactions between the novel benzamide histone deacetylase (HDAC) inhibitor MS-275 and fludarabine were examined in lymphoid and myeloid human leukemia cells in relation to mitochondrial injury, signal transduction events, and apoptosis. Prior exposure of Jurkat lymphoblastic leukemia cells to a marginally toxic concentration of MS-275 (e.g., 500 nM) for 24 h sharply increased mitochondrial injury, caspase activation, and apoptosis in response to a minimally toxic concentration of fludarabine (500 nM), resulting in highly synergistic antileukemic interactions and loss of clonogenic survival. Simultaneous exposure to MS-275 and fludarabine also led to synergistic effects, but these were not as pronounced as observed with sequential treatment. Similar interactions were noted in the case of (a) other human leukemia cell lines (e.g., U937, CCRF-CEM); (b) other HDAC inhibitors (e.g., sodium butyrate); and (c) other nucleoside analogues (e.g., 1-beta-D-arabinofuranosylcytosine, gemcitabine). Potentiation of fludarabine lethality by MS-275 was associated with acetylation of histones H3 and H4, down-regulation of the antiapoptotic proteins XIAP and Mcl-1, enhanced cytosolic release of proapoptotic mitochondrial proteins (e.g., cytochrome c, Smac/DIABLO, and apoptosis-inducing factor), and caspase activation. It was also accompanied by the caspase-dependent down-regulation of p27(KIP1), cyclins A, E, and D(1), and cleavage and diminished phosphorylation of retinoblastoma protein. However, increased lethality of the combination was not associated with enhanced fludarabine triphosphate formation or DNA incorporation and occurred despite a slight reduction in the S-phase fraction. Prior exposure to MS-275 attenuated fludarabine-mediated activation of MEK1/2, extracellular signal-regulated kinase, and Akt, and enhanced c-Jun NH(2)-terminal kinase phosphorylation; furthermore, inducible expression of constitutively active MEK1/2 or Akt significantly diminished MS-275/fludarabine-induced lethality. Combined exposure of cells to MS-275 and fludarabine was associated with a significant increase in generation of reactive oxygen species; moreover, both the increase in reactive oxygen species and apoptosis were largely attenuated by coadministration of the free radical scavenger L-N-acetylcysteine. Finally, prior administration of MS-275 markedly potentiated fludarabine-mediated generation of the proapoptotic lipid second messenger ceramide. Taken together, these findings indicate that the HDAC inhibitor MS-275 induces multiple perturbations in signal transduction, survival, and cell cycle regulatory pathways that lower the threshold for fludarabine-mediated mitochondrial injury and apoptosis in human leukemia cells. They also provide insights into possible mechanisms by which novel, clinically relevant HDAC inhibitors might be used to enhance the antileukemic activity of established nucleoside analogues such as fludarabine.
Collapse
Affiliation(s)
- Sonia C Maggio
- Department of Medicine, Virginia Commonwealth University/Medical College of Virginia, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1085
|
Berg SL, Stone J, Xiao JJ, Chan KK, Nuchtern J, Dauser R, McGuffey L, Thompson P, Blaney SM. Plasma and cerebrospinal fluid pharmacokinetics of depsipeptide (FR901228) in nonhuman primates. Cancer Chemother Pharmacol 2004; 54:85-8. [PMID: 15042312 DOI: 10.1007/s00280-004-0766-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 01/05/2004] [Indexed: 11/28/2022]
Abstract
PURPOSE Acetylation of histones by histone acetyl transferases (HATs) leads to transcriptional activation, while histone deacetylase (HDAC) activity leads to transcriptional repression. Abnormalities of histone acetylation are associated with the malignant phenotype. Depsipeptide (FR901228) inhibits HDAC and has shown anticancer activity in preclinical models. We studied the plasma and cerebrospinal fluid (CSF) pharmacokinetics of depsipeptide in a nonhuman primate model that is highly predictive of human CSF penetration. DESIGN Depsipeptide was administered intravenously at a dose of 10 mg/m(2) over 4 h to three different animals. Serial blood samples were obtained from all animals and serial CSF samples were obtained from two animals. Plasma and CSF concentrations of depsipeptide were measured using liquid chromatography/tandem mass spectrometry. Concentration-versus-time data were modeled using model-independent and model-dependent methods. RESULTS The peak plasma concentration (median+/-SD) was 245+/-50 n M and occurred within the first 2 h of the infusion. The terminal half-life was 205+/-315 min, the AUC extrapolated to infinity was 50+/-15 micro M.min, and the total body clearance was 350+/-65 ml/min/m(2). In the two animals that had CSF sampling performed, the CSF peak concentration was 3.6 n M in one animal and 2.3 n M in the other, and the CSF half-lives were 250 and 325 min. The CSF penetration of depsipeptide (AUC(CSF):AUC(plasma)) was 2% in each animal. Observed changes included anorexia, fatigue, elevation of creatine phosphokinase (CPK) enzyme levels (muscle fraction), and transient early leukopenia. All animals recovered without sequelae. CONCLUSIONS Although the CSF exposure to depsipeptide after intravenous administration was only 2%, CSF concentrations approached the IC(50) of depsipeptide in vitro for some tumors. Systemic administration of this agent may be useful for the treatment of leptomeningeal tumors.
Collapse
Affiliation(s)
- Stacey L Berg
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1086
|
Kobayashi H, Tan EM, Fleming SE. Acetylation of histones associated with the p21WAF1/CIP1 gene by butyrate is not sufficient for p21WAF1/CIP1 gene transcription in human colorectal adenocarcinoma cells. Int J Cancer 2004; 109:207-13. [PMID: 14750171 DOI: 10.1002/ijc.11697] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Butyric acid is well recognized as a histone deacetylase (HDAC) inhibitor, and changes in histone acetylation are thought to alter gene expression. The mechanism by which sodium butyrate (NaB) induces p21WAF1/CIP1, a critical gene involved in the antiproliferative effect of NaB, was studied at the chromatin level. Using chromatin immunoprecipitation (ChIP) assay, acetylation of histone H3 was observed at the proximal region of the promoter within 30 min of NaB exposure and this extended to the distal region within 2 hr. By contrast, histone H4 was acetylated both at the proximal and the distal regions of the promoter within 30 min. NaB did not influence other histone modifications. NaB stimulated recruitment of the transcription factors ZBP89 and Sp1 as well as GCN5, but did not influence recruitment of Sp3, HDAC1, p300, or CBP. As recruitment of HDAC1 to the promoter appeared not to account for NaB-induced changes in histone acetylation, we aimed to influence HDAC activity by altering its phosphorylation status. The kinase inhibitor, H7, suppressed p21WAF1/CIP1 mRNA in both the absence and the presence of NaB without influencing the butyrate-induced hyperacetylation of H3 and H4 associated with the p21WAF1/CIP1 promoter. These results suggest that acetylation of histones at the p21WAF1/CIP1 promoter is not sufficient for NaB to exert antiproliferative effects via transcription of the p21WAF1/CIP1 gene. Induction of p21WAF1/CIP1 transcription by the phosphatase inhibitor, okadaic acid, in the absence of changes in association of acetylated histones with the p21WAF1/CIP1 promoter provides further evidence of the importance of phosphorylation to p21WAF1/CIP1 transcription.
Collapse
Affiliation(s)
- Hanako Kobayashi
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
1087
|
Lee H, Rezai-Zadeh N, Seto E. Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol Cell Biol 2004; 24:765-73. [PMID: 14701748 PMCID: PMC343812 DOI: 10.1128/mcb.24.2.765-773.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. Recent studies suggest that they are key regulators of many cellular events, including cell proliferation and cancer development. Human class I HDACs possess homology to the yeast RPD3 protein and include HDAC1, HDAC2, HDAC3, and HDAC8. While HDAC1, HDAC2, and HDAC3 have been characterized extensively, almost nothing is known about HDAC8. Here we report that HDAC8 is phosphorylated by cyclic AMP-dependent protein kinase A (PKA) in vitro and in vivo. The PKA phosphoacceptor site of HDAC8 is Ser(39), a nonconserved residue among class I HDACs. Mutation of Ser(39) to Ala enhances the deacetylase activity of HDAC8. In contrast, mutation of Ser(39) to Glu or induction of HDAC8 phosphorylation by forskolin, a potent activator of adenyl cyclase, decreases HDAC8's enzymatic activity. Remarkably, inhibition of HDAC8 activity by hyperphosphorylation leads to hyperacetylation of histones H3 and H4, suggesting that PKA-mediated phosphorylation of HDAC8 plays a central role in the overall acetylation status of histones.
Collapse
Affiliation(s)
- Heehyoung Lee
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | |
Collapse
|
1088
|
Ragno R, Mai A, Massa S, Cerbara I, Valente S, Bottoni P, Scatena R, Jesacher F, Loidl P, Brosch G. 3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a New Class of Synthetic Histone Deacetylase Inhibitors. 3. Discovery of Novel Lead Compounds through Structure-Based Drug Design and Docking Studies,. J Med Chem 2004; 47:1351-9. [PMID: 14998325 DOI: 10.1021/jm031036f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Aroyl-pyrrole-hydroxy-amides (APHAs) are a new class of synthetic HDAC inhibitors recently described by us. Through three different docking procedures we designed, synthesized, and tested two new isomers of APHA lead compound 3-(4-benzoyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamide (1), compounds 3 and 4, characterized by different insertions of benzoyl and propenoylhydroxamate groups onto the pyrrole ring. Biological activities of 3 and 4 were predicted by computational tools up to 617-fold more potent than that of 1 against HDAC1; thus, 3 and 4 were synthesized and tested against both mouse HDAC1 and maize HD2 enzymes. Predictions of biological affinities (K(i) values) of 3 and 4, performed by a VALIDATE model (applied on either SAD or automatic DOCK or Autodock results) and by the Autodock internal scoring function, were in good agreement with experimental activities. Ligand/receptor positive interactions made by 3 and 4 into the catalytic pocket, in addition to those showed by 1, could at least in part account for their higher HDAC1 inhibitory activities. In particular, in mouse HDAC1 inhibitory assay 3 and 4 were 19- and 6-times more potent than 1, respectively, and 3 and 4 antimaize HD2 activities were 16- and 76-times higher than that of 1, 4 being as potent as SAHA in this assay. Compound 4, tested as antiproliferative and cytodifferentiating agent on MEL cells, showed dose-dependent growth inhibition and hemoglobin accumulation effects.
Collapse
Affiliation(s)
- Rino Ragno
- Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università degli Studi di Roma "La Sapienza", P. le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1089
|
Wang DF, Wiest O, Helquist P, Lan-Hargest HY, Wiech NL. QSAR Studies of PC-3 cell line inhibition activity of TSA and SAHA-like hydroxamic acids. Bioorg Med Chem Lett 2004; 14:707-11. [PMID: 14741273 DOI: 10.1016/j.bmcl.2003.11.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitative structure-activity relationships (QSAR) for a series of new trichostatin A (TSA)-like hydroxamic acids for the inhibition of cell proliferation of the PC-3 cell line have been developed using molecular descriptors from Qikprop and electronic structure calculations. The best regression model shows that the PM3 atomic charge on the carbonyl carbon in the CONHOH moiety(Qco), globularity (Glob), and the hydrophilic component of the solvent-accessible surface area (FISA) describe the IC(50) of 19 inhibitors of the PC-3 cell line with activities ranging over five orders of magnitude with an R(2)=0.92 and F=59.2. This information will be helpful in the further design of novel anticancer drugs for treatment of prostate cancer and other diseases affected by HDAC inhibition.
Collapse
Affiliation(s)
- Di-Fei Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
1090
|
Mai A, Massa S, Cerbara I, Valente S, Ragno R, Bottoni P, Scatena R, Loidl P, Brosch G. 3-(4-Aroyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamides as a New Class of Synthetic Histone Deacetylase Inhibitors. 2. Effect of Pyrrole-C2and/or -C4Substitutions on Biological Activity†. J Med Chem 2004; 47:1098-109. [PMID: 14971890 DOI: 10.1021/jm030990+] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous SAR studies (Part 1: Mai, A.; et al. J. Med. Chem. 2003, 46, 512-524) performed on some portions (pyrrole-C4, pyrrole-N1, and hydroxamate group) of 3-(4-benzoyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamide (1a) highlighted its 4-phenylacetyl (1b) and 4-cynnamoyl (1c) analogues as more potent compounds in inhibiting maize HD2 activity in vitro. In the present paper, we investigated the effect on anti-HD2 activity of chemical substitutions performed on the pyrrole-C2 ethene chains of 1a-c, which were replaced with methylene, ethylene, substituted ethene, and 1,3-butadiene chains (compounds 2). Biological results clearly indicated the unsubstituted ethene chain as the best structural motif to get the highest HDAC inhibitory activity, the sole exception to this rule being the introduction of the 1,3-butadienyl moiety into the 1a chemical structure (IC50(2f) = 0.77 microM; IC50(1a) = 3.8 microM). IC50 values of compounds 3, prepared as 1b homologues, revealed that between benzene and carbonyl groups at the pyrrole-C(4) position a hydrocarbon spacer length ranging from two to five methylenes is well accepted by the APHA template, being that 3a (two methylenes) and 3d (five methylenes) are more potent (2.3- and 1.4-fold, respectively) than 1b, while the introduction of a higher number of methylene units (see 3e,f) decreased the inhibitory activities of the derivatives. Particularly, 3a (IC50 = 0.043 microM) showed the same potency as SAHA in inhibiting HD2 in vitro, and it was 3000- and 2.6-fold more potent than sodium valproate and HC-toxin and was 4.3- and 6-fold less potent than trapoxin and TSA, respectively. Finally, conformationally constrained forms of 1b,c (compounds 4), prepared with the aim to obtain some information potentially useful for a future 3D-QSAR study, showed the same (4a,b) or higher (4c,d) HD2 inhibiting activities in comparison with those of the reference drugs. Molecular modeling and docking calculations on the designed compounds performed in parallel with the chemistry work fully supported the synthetic effort and gave insights into the binding mode of the more flexible APHA derivatives (i.e., 3a). Despite the difference of potency between 1b and 3a in the enzyme assay, the two APHA derivatives showed similar antiproliferative and cytodifferentiating activities in vivo on Friends MEL cells, being that 3a is more potent than 1b in the differentiation assay only at the highest tested dose (48 microM).
Collapse
Affiliation(s)
- Antonello Mai
- Dipartimento di Studi Farmaceutici, Università degli Studi di Roma La Sapienza, P. le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
1091
|
Abstract
Although it has been exciting for lung cancer doctors to observe objective remissions with gefitinib and erlotinib in heavily pretreated NSCLC patients, all of the reported phase III trials testing noncytotoxic, targeted therapies in NSCLC have been negative. Two basic strategies have been employed in developing and conducting these randomized studies. In the case of gefitinib and the matrix metalloproteinase inhibitors, phase III trials were launched based on preclinical data. The second strategy was based on survival results from phase II trials involving regimens consisting of the targeted agent and chemotherapy. Unfortunately, negative results have been observed with the first phase III study (chemotherapy +/- ISIS 3521), which was based on the results of a phase II trial. The initial negative results with targeted agents suggest that a paradigm shift in cancer drug development is needed. Typically, the development of a cytotoxic agent involves determination of the maximum tolerated dose, followed by an assessment of activity as defined by the objective response rate in specific tumor types. "Active" drugs are then moved into phase III testing to determine the effect on survival. Other than targeting the specific tumor type and defining the usual eligibility parameters, no attempt is made to select patients for treatment with new agents. It seems unlikely that there will be significant progress with the targeted therapies unless there is a paradigm shift from this classic model of cancer drug development to a model in which much greater effort is directed toward identifying the target or targets in preclinical models. Intensive effort should be devoted to the development of reliable, clinically applicable assays for the targets that could identify patients who are most likely to benefit from a specific treatment. Rothenberg et al recently made similar recommendations with respect to improving the drug discovery process for cancer. These investigators have emphasized testing new agents in the most appropriate setting, increasing efforts to understand the role of the target, and collection of tissue in an effort to select appropriate patients. Although results from initial randomized trials of targeted therapies in NSCLC have been relatively disappointing, this is not a time to be discouraged. Rather, it is a time to increase the collaborative efforts between basic scientists and clinical investigators.
Collapse
Affiliation(s)
- William T Leslie
- Division of Hematology and Oncology, Rush University Medical Center, 1725 West Harrison Street, Suite 821, Chicago, IL 60612-3828, USA.
| | | |
Collapse
|
1092
|
Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 2004; 141:874-80. [PMID: 14744800 PMCID: PMC1574260 DOI: 10.1038/sj.bjp.0705682] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Recent studies have shown that sodium butyrate and other short-chain fatty acids (SCFAs) can prevent inflammation in colon diseases. Our aim was to elucidate whether sodium butyrate and SCFAs regulate the inflammatory responses in different neural inflammation models in cell cultures. 2. Inflammatory responses to LPS-induced microglial activation were recorded by the secretion of nitric oxide (NO) and cytokines IL-6 and TNF-alpha and related to the changes in the DNA-binding activities of NF-kappaB complex. 3. We observed that sodium butyrate is strongly anti-inflammatory against LPS-induced responses in rat primary microglia as well as in hippocampal slice cultures and in neural cocultures of microglial cells, astrocytes and cerebellar granule neurons. 4. In murine N9 microglial cell line, instead, sodium butyrate and other SCFAs (propionate, valerate and caproate) enhanced the LPS-induced inflammatory response. 5. The pretreatment with butyrate before LPS exposure induced an equal or more enhanced response than simultaneous exposure with butyrate and LPS. This indicates that butyrate induces an adaptative response against microglial activation. 6. We also observed that butyrate treatment both in transformed N9 cells and in hippocampal slice cultures downregulates the NF-kappaB-binding capacity induced by LPS stimulation. 7. Our results show that butyrate is anti-inflammatory in primary, brain-derived microglial cells, as observed recently in colon diseases, but proinflammatory in transformed, proliferating N9 microglial cells, which may be related to the anticancer properties of butyrate observed in tumor cells.
Collapse
Affiliation(s)
- Jari Huuskonen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tiina Suuronen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tapio Nuutinen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Sergiy Kyrylenko
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Antero Salminen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
- Department of Neurology, University Hospital of Kuopio, PO Box 1777, FIN-70211 Kuopio, Finland
- Author for correspondence:
| |
Collapse
|
1093
|
Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 2004; 101:1241-6. [PMID: 14734806 PMCID: PMC337037 DOI: 10.1073/pnas.0307708100] [Citation(s) in RCA: 447] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors (HDACi) cause cancer cell growth arrest and/or apoptosis in vivo and in vitro. The HDACi suberoylanilide hydroxamic acid (SAHA) is in phase I/II clinical trials showing significant anticancer activity. Despite wide distribution of HDACs in chromatin, SAHA alters the expression of few genes in transformed cells. p21(WAF1) is one of the most commonly induced. SAHA does not alter the expression of p27(KIPI), an actively transcribed gene, or globin, a silent gene, in ARP-1 cells. Here we studied SAHA-induced changes in the p21(WAF1) promoter of ARP-1 cells to better understand the mechanism of HDACi gene activation. Within 1 h, SAHA caused modifications in acetylation and methylation of core histones and increased DNase I sensitivity and restriction enzyme accessibility in the p21(WAF1) promoter. These changes did not occur in the p27(KIPI) or epsilon-globin gene-related histones. The HDACi caused a marked decrease in HDAC1 and Myc and an increase in RNA polymerase II in proteins bound to the p21(WAF1) promoter. Thus, this study identifies effects of SAHA on p21(WAF1)-associated proteins that explain, at least in part, the selective effect of HDACi in altering gene expression.
Collapse
Affiliation(s)
- C-Y Gui
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
1094
|
Affiliation(s)
- Thomas A Miller
- Aton Pharma, Inc, 777 Old Sawmill River Road, Tarrytown, New York 10591, USA.
| | | | | |
Collapse
|
1095
|
Park H, Lee S. Homology modeling, force field design, and free energy simulation studies to optimize the activities of histone deacetylase inhibitors. J Comput Aided Mol Des 2004; 18:375-88. [PMID: 15662999 DOI: 10.1007/s10822-004-2283-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As an effort to develop therapeutics for cancer treatments, a number of effective histone deacetylase inhibitors with structural diversity have been discovered. To gain insight into optimizing the activity of an identified lead compound, a computational protocol sequentially involving homology modeling, docking experiments, molecular dynamics simulation, and free energy perturbation calculations was applied for rationalizing the relative activities of known histone deacetylase inhibitors. With the newly developed force field parameters for the coordination environment of the catalytic zinc ion in hand, the computational strategy proved to be successful in predicting the rank orders for 12 derivatives of three hydroxamate-based inhibitor scaffolds with indole amide, pyrrole, and sulfonamide moieties. The results showed that the free energy of an inhibitor in aqueous solution should be an important factor in determining the binding free energy. Hence, in order to enhance the inhibitory activity by adding or substituting a chemical group, the increased stabilization in solution due to the structural changes must be overcome by a stronger enzyme-inhibitor interaction. It was also found that to optimize inhibitor potency, the hydrophobic head of an inhibitor should be elongated or enlarged so that it can interact with Pro29 and His28 that are components of the flexible loop at the top of the active site.
Collapse
Affiliation(s)
- Hwangseo Park
- School of Chemistry and Molecular Engineering, and Center for Molecular Catalysis, Seoul National University, Seoul 151-747, Korea.
| | | |
Collapse
|
1096
|
Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, Eckert KA, Verderame MF, Welch DR. Breast Cancer Metastasis Suppressor 1 (BRMS1) Forms Complexes with Retinoblastoma-binding Protein 1 (RBP1) and the mSin3 Histone Deacetylase Complex and Represses Transcription. J Biol Chem 2004; 279:1562-9. [PMID: 14581478 DOI: 10.1074/jbc.m307969200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis of multiple human and murine cancer cells without inhibiting tumorigenicity. By yeast two-hybrid and co-immunoprecipitation, BRMS1 interacts with retinoblastoma binding protein 1 and at least seven members of the mSin3 histone deacetylase (HDAC) complex in human breast and melanoma cell lines. BRMS1 co-immunoprecipitates enzymatically active HDAC proteins and represses transcription when recruited to a Gal4 promoter in vivo. BRMS1 exists in large mSin3 complex(es) of approximately 1.4-1.9 MDa, but also forms smaller complexes with HDAC1. Deletion analyses show that the carboxyl-terminal 42 amino acids of BRMS1 are not critical for interaction with much of the mSin3 complex and that BRMS1 appears to have more than one binding point to the complex. These results further show that BRMS1 may participate in transcriptional regulation via interaction with the mSin3.HDAC complex and suggest a novel mechanism by which BRMS1 might suppress cancer metastasis.
Collapse
Affiliation(s)
- William J Meehan
- Department of Pathology, Jake Gittlen Cancer Research Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1097
|
Zhang L, Freitas MA, Wickham J, Parthun MR, Klisovic MI, Marcucci G, Byrd JC. Differential expression of histone post-translational modifications in acute myeloid and chronic lymphocytic leukemia determined by high-pressure liquid chromatography and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:77-86. [PMID: 14698558 DOI: 10.1016/j.jasms.2003.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The post-translational modification of the core histones is critical to the regulation of chromatin structure. Traditional methods for the determination of histone modification utilize immunoassay techniques to determine the extent and site of post-translational modification. These methods, though sensitive, require site-specific antibodies. This manuscript describes the application of reverse-phase high-pressure liquid chromatography and mass spectrometry (LC-MS) to analyze global modification levels of core histones. The method is fast, sensitive, and easily automated. Furthermore, the technique gives the global patterns of modification for all four core histones in a single experiment. The LC-MS method was optimized using histones extracted from bovine thymus. These methods were then applied to the characterization of changes in histone modification in acute myeloid leukemia (AML) cell lines treated with histone deacetylase (HDAC) inhibitors. Dose-dependent changes in the distribution of modified core histones were observed. These results were validated in primary leukemia cells from patients with refractory or relapsed AML or chronic lymphocytic leukemia (CLL) treated on a Phase I clinical trial of the HDAC inhibitor depsipeptide. An increase in the relative abundance of specific acetylated forms of histone H4 was readily observable in these patients at intervals of 4 and 24 h after treatment.
Collapse
MESH Headings
- Animals
- Cattle
- Cell Line, Tumor
- Chromatography, High Pressure Liquid
- Histones/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Protein Processing, Post-Translational
- Spectrometry, Mass, Electrospray Ionization/methods
Collapse
Affiliation(s)
- Liwen Zhang
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
1098
|
Abstract
Prostate specific antigen (PSA) is a serine protease that is synthesized by both normal and malignant epithelial cells of the human prostate. PSA expressed by malignant cells, however, are released into the serum at an increased level, which can be detected to diagnose and monitor prostate cancer. Moreover, increases in serum PSA following local and systemic treatments are highly correlated with tumor recurrence and progression, and this association has further established PSA as a clinically important biomarker. The expression of PSA is mainly induced by androgens and regulated by the androgen receptor (AR) at the transcriptional level. Extensive research on the regulation of PSA gene expression has provided significant information about the function of AR, which is a crucial transcription factor involved in all phases of prostate cancer. Still, the molecular mechanism(s) by which the transcription of the PSA gene escapes regulation in advanced prostate cancer has yet to be clearly defined. Accumulating evidence suggests that a number of processes including androgen-independent activation of AR are involved. Lacking an effective treatment, advanced prostate cancer is almost invariably fatal, which highlights the importance of elucidating mechanisms of tumor progression. Insights into AR activity at the PSA gene could be extended to transcriptional regulation of other AR target genes, which may be crucial in discerning prostate cancer progression. Ultimately, our improved understanding of AR-regulated PSA expression could aid in developing viable therapies in treating and/or preventing advanced prostate cancer.
Collapse
Affiliation(s)
- Joshua Kim
- Department of Molecular Microbiology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
1099
|
Abstract
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from lysine residues in both histone and non-histone proteins. They play a key role in the regulation of gene transcription and many other biological processes involving chromatin. Significantly, recent studies suggest that HDACs are critically involved in cell-cycle regulation, cell proliferation, differentiation, and in the development of human cancer. HDAC inhibitors currently are being exploited as potential anti-cancer agents. As expected for vital regulators of many cellular processes, the activities of HDACs are tightly controlled and precisely regulated by multiple mechanisms. The activities of most if not all HDACs are regulated by protein-protein interactions. In addition, many HDACs are regulated by post-translational modifications as well as by subcellular localization. Less studied, but perhaps equally important, is the regulation of some HDACs by control of expression, availability of cofactors, and by proteolytic processing. A complete understanding of how HDACs are regulated will contribute not only to our overall knowledge of chromatin structure and gene control, but will offer tremendous insight into approaches for developing therapeutic HDAC inhibitors with improved specificity.
Collapse
Affiliation(s)
- Nilanjan Sengupta
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | |
Collapse
|
1100
|
Lu Q, Yang YT, Chen CS, Davis M, Byrd JC, Etherton MR, Umar A, Chen CS. Zn2+-Chelating Motif-Tethered Short-Chain Fatty Acids as a Novel Class of Histone Deacetylase Inhibitors. J Med Chem 2003; 47:467-74. [PMID: 14711316 DOI: 10.1021/jm0303655] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among various classes of histone deacetylase (HDAC) inhibitors, short-chain fatty acids exhibit the least potency, with IC(50) in the millimolar range. We rationalized that this weak potency was, in part, attributable to their inability to access the zinc cation in the HDAC active-site pocket, which is pivotal to the deacetylation catalysis. We thus explored the structural optimization of valproate, butyrate, phenylacetate, and phenylbutyrate by coupling them with Zn(2+)-chelating motifs (hydroxamic acid and o-phenylenediamine) through aromatic omega-amino acid linkers. This strategy has led to a novel class of Zn(2+)-chelating, motif-tethered, short-chain fatty acids that exhibited varying degrees of HDAC inhibitory potency. One hydroxamate-tethered phenylbutyrate compound, N-hydroxy-4-(4-phenylbutyrylamino)benzamide (HTPB), displayed nanomolar potency in inhibiting HDAC activity. Exposure of several cancer cell lines to HTPB at the submicromolar level showed reduced cell proliferation accompanied by histone hyperacetylation and elevated p21(WAF/CIP1) expression, which are hallmark features associated with intracellular HDAC inhibition.
Collapse
Affiliation(s)
- Qiang Lu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|