1051
|
Chalbi N, Martínez-Ballesta MC, Youssef NB, Carvajal M. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:148-56. [PMID: 25544590 DOI: 10.1016/j.jplph.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/02/2014] [Indexed: 05/20/2023]
Abstract
Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology.
Collapse
Affiliation(s)
- Najla Chalbi
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (LEP-CBBC), PO Box 901, 2050, Hammam-Lif, Tunisia
| | - Ma Carmen Martínez-Ballesta
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Nabil Ben Youssef
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria (LEP-CBBC), PO Box 901, 2050, Hammam-Lif, Tunisia
| | - Micaela Carvajal
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain.
| |
Collapse
|
1052
|
Gao Y, Jiang W, Dai Y, Xiao N, Zhang C, Li H, Lu Y, Wu M, Tao X, Deng D, Chen J. A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice. PLANT MOLECULAR BIOLOGY 2015; 87:413-28. [PMID: 25636202 DOI: 10.1007/s11103-015-0288-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/23/2015] [Indexed: 05/21/2023]
Abstract
Phytochrome-interacting factor 3 (PIF3) activates light-responsive transcriptional network genes in coordination with the circadian clock and plant hormones to modulate plant growth and development. However, little is known of the roles PIF3 plays in the responses to abiotic stresses. In this study, the cloning and functional characterization of the ZmPIF3 gene encoding a maize PIF3 protein is reported. Subcellular localization revealed the presence of ZmPIF3 in the cell nucleus. Expression patterns revealed that ZmPIF3 is expressed strongly in leaves. This expression responds to polyethylene glycol, NaCl stress, and abscisic acid application, but not to cold stress. ZmPIF3 under the control of the ubiquitin promoter was introduced into rice. No difference in growth and development between ZmPIF3 transgenic and wild-type plants was observed under normal growth conditions. However, ZmPIF3 transgenic plants were more tolerant to dehydration and salt stresses. ZmPIF3 transgenic plants had increased relative water content, chlorophyll content, and chlorophyll fluorescence, as well as significantly enhanced cell membrane stability under stress conditions. The over-expression of ZmPIF3 increased the expression of stress-responsive genes, such as Rab16D, DREB2A, OSE2, PP2C, Rab21, BZ8 and P5CS, as detected by real-time PCR analysis. Taken together, these results improve our understanding of the role ZmPIF3 plays in abiotic stresses signaling pathways; our findings also indicate that ZmPIF3 regulates the plant response to drought and salt stresses.
Collapse
Affiliation(s)
- Yong Gao
- College of Bioscience and Biotechnology, Yangzhou University, 88 South University Ave, Yangzhou, 225009, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1053
|
Diouf F, Diouf D, Klonowska A, Le Queré A, Bakhoum N, Fall D, Neyra M, Parrinello H, Diouf M, Ndoye I, Moulin L. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern. PLoS One 2015; 10:e0117667. [PMID: 25658650 PMCID: PMC4319832 DOI: 10.1371/journal.pone.0117667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/29/2014] [Indexed: 11/29/2022] Open
Abstract
Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60%) clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T), one in MSP1 (STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.
Collapse
Affiliation(s)
- Fatou Diouf
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- IRD-Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet, Montpellier, France
| | - Diegane Diouf
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Agnieszka Klonowska
- IRD-Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet, Montpellier, France
| | - Antoine Le Queré
- Laboratoire Mixte International Biotechnologie Microbienne et Végétale (LBMV), Rabat, Morocco
| | - Niokhor Bakhoum
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Dioumacor Fall
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
| | - Marc Neyra
- Irstea, UR MALY, centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Mayecor Diouf
- Institut Sénégalais de Recherches Agricoles (ISRA), Dakar, Senegal
| | - Ibrahima Ndoye
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Centre de Recherche de Bel Air, Dakar, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
| | - Lionel Moulin
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Dakar, Senegal
- IRD-Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), Campus de Baillarguet, Montpellier, France
| |
Collapse
|
1054
|
Razzaghi F, Jacobsen SE, Jensen CR, Andersen MN. Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought - mechanisms of tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:136-148. [PMID: 32480660 DOI: 10.1071/fp14132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/30/2014] [Indexed: 06/11/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) grown under field conditions was exposed to five irrigation water salinities (0, 10, 20, 30 and 40dSm-1; 4:1 NaCl:CaCl2 molar ratio) from flowering, and divided between full irrigation and progressive drought (PD) during seed filling. Quinoa demonstrated homeostatic mechanisms which contributed to quinoa's extraordinary tolerance. Salinity increased K+ and Na+ uptake by 60 and 100kgha-1, respectively, resulting in maintenance of cell turgor by osmotic adjustment, and a 50% increase of the leaf's fresh weight (FW):dry weight (DW) ratio and non-significant increase in elasticity enhanced crop water-capacitance. Day respiration (Rd) increased 2.7 times at high salinity but decreased 0.6 times during drought compared with control. Mesophyll conductance (gm) tended to be negatively affected by salinity as the increased succulence (FW:DW) possibly decreased intercellular space and increased cell-wall thickness. However, the increased K+ uptake seemed to alleviate biochemical limitations, as maximum Rubisco carboxylation rate (Vcmax) and photosynthetic electron transport (J) tended to increase under salinity. Overall, salinity and PD restricted stomatal conductance (gs) and photosynthesis (An) moderately, leading to decreased leaf internal to ambient [CO2], increase of intrinsic-water-use-efficiency (An/gs). The saturated electrical conductivity (ECe) resulting in 50% yield was estimated to be 25dSm-1, reaching no yield at 51.5dSm-1.
Collapse
Affiliation(s)
- Fatemeh Razzaghi
- Water Engineering Department, College of Agriculture, Shiraz University, Iran
| | - Sven-Erik Jacobsen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Højbakkeggaard Allé 13, 2630 Taastrup, Denmark
| | - Christian Richardt Jensen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Højbakkeggaard Allé 13, 2630 Taastrup, Denmark
| | - Mathias Neumann Andersen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
1055
|
Dinneny JR. Traversing organizational scales in plant salt-stress responses. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:70-5. [PMID: 25449729 DOI: 10.1016/j.pbi.2014.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 05/07/2023]
Abstract
Modern society has developed in large part due to our ability to reliably grow plants for food and renewable resources. Predicted increases in environmental variability will impact agricultural productivity and may have extensive secondary effects on the stability of our society. Thus, a concerted effort to understand plant response strategies to stress is needed. High salinity is an agriculturally important environmental stress and generates complex effects on the physiology of the plant. The abiotic-stress-associated hormone, abscisic acid (ABA), mediates a major component of this response. I highlight recent work studying salt-stress responses at different spatial and organizational scales from the action of ABA in specific cell types to global networks of proteins that predict critical regulatory events during acclimation.
Collapse
|
1056
|
Albacete A, Cantero-Navarro E, Großkinsky DK, Arias CL, Balibrea ME, Bru R, Fragner L, Ghanem ME, González MDLC, Hernández JA, Martínez-Andújar C, van der Graaff E, Weckwerth W, Zellnig G, Pérez-Alfocea F, Roitsch T. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:863-78. [PMID: 25392479 PMCID: PMC4321548 DOI: 10.1093/jxb/eru448] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.
Collapse
Affiliation(s)
- Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria
| | | | - Dominik K Großkinsky
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark
| | - Cintia L Arias
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | - Roque Bru
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | - Lena Fragner
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Michel E Ghanem
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | - Jose A Hernández
- Department of Fruit Breeding, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | - Eric van der Graaff
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Günther Zellnig
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria
| | | | - Thomas Roitsch
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| |
Collapse
|
1057
|
Liu L, Si L, Meng X, Luo L. Comparative transcriptomic analysis reveals novel genes and regulatory mechanisms of Tetragenococcus halophilus in response to salt stress. J Ind Microbiol Biotechnol 2015; 42:601-16. [PMID: 25563971 DOI: 10.1007/s10295-014-1579-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/25/2014] [Indexed: 11/29/2022]
Abstract
Tetragenococcus halophilus, a moderately halophilic Gram-positive bacterium, was isolated from Chinese style soy sauce. This species is a valuable resource for investigating salt tolerance mechanisms and improving salinity resistance in microorganisms. RNA-seq was used to sequence T. halophilus samples treated with 0 M (T1), 1 M (T2), and 3.5 M NaCl (T3). Comparative transcriptomic analyses of the different treatments were performed using gene ontology and Kyoto encyclopedia of genes and genome. The comparison of T1 and T2 by RNA-seq revealed that genes involved in transcription, translation, membrane system, and division were highly up-regulated under optimum salt condition. The comparison of T2 and T3 showed that genes related to heat shock proteins or the ATP-binding cassette transport systems were significantly up-regulated under maximum-salt condition. In addition, a considerable proportion of the significantly differently expressed genes identified in this study are novel. These data provide a crucial resource that may determine specific responses to salt stress in T. halophilus.
Collapse
Affiliation(s)
- Licui Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | | | | | | |
Collapse
|
1058
|
Talei D, Valdiani A, Maziah M, Sagineedu SR, Abiri R. Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees. Biosci Biotechnol Biochem 2015; 79:51-8. [DOI: 10.1080/09168451.2014.963499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Andrographis paniculata is a multifunctional medicinal plant and a potent source of bioactive compounds. Impact of environmental stresses such as salinity on protein diversification, as well as the consequent changes in the photosynthetic parameters and andrographolide content (AG) of the herb, has not yet been thoroughly investigated. The present study showed that the salinity affects the protein pattern, and subsequently, it decreased the photosynthetic parameters, protein content, total dry weight, and total crude extract. Exceptionally, the AG content was increased (p ≤ 0.01). Moreover, it was noticed that the salinity at 12 dS m−1 led to the maximum increase in AG content in all accessions. Interestingly, the leaf protein analysis revealed that the two polymorphic protein bands as low- and medium-sized of 17 and 45 kDa acted as the activator agents for the photosynthetic parameters and AG content. Protein sequencing and proteomic analysis can be conducted based on the present findings in the future.
Collapse
Affiliation(s)
- Daryush Talei
- Medicinal Plants Research Center, Shahed University, Tehran, Iran
- Faculty of Biotechnology and Biomolecular Sciences, Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Alireza Valdiani
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mahmood Maziah
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sreenivasa Rao Sagineedu
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Rambod Abiri
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
1059
|
Hariadi YC, Nurhayati AY, Soeparjono S, Arif I. Screening Six Varieties of Rice (Oryzasativa) for Salinity Tolerance. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
1060
|
Sabaghnia N, Janmohammadi M. Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes / Wpływ nanocząstek krzemionki na tolerancję zasolenia we wczesnym rozwoju niektórych genotypów soczewicy. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/umcsbio-2015-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractTwenty-five lentil ( Lens culinaris Medik.) genotypes were studied to evaluate the effects of the SiO
Collapse
|
1061
|
Duan L, Sebastian J, Dinneny JR. Salt-stress regulation of root system growth and architecture in Arabidopsis seedlings. Methods Mol Biol 2015; 1242:105-22. [PMID: 25408448 DOI: 10.1007/978-1-4939-1902-4_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In order to acclimate to the soil environment, plants need to constantly optimize their root system architecture for efficient resource uptake. Roots are highly sensitive to changes in their surrounding environment and root system responses to a stress such as salinity and drought can be very dynamic and complex in nature. These responses can be manifested differentially at the cellular, tissue, or organ level and between the types of roots in a root system. Therefore, various approaches must be taken to quantify and characterize these responses. In this chapter, we review methods to study basic root growth traits, such as root length, cell cycle activity and meristem size, cell shape and size that form the basis for the emergent properties of the root system. Methods for the detailed analysis of lateral root initiation and postemergence growth are described. Finally, several live-imaging systems, which allow for dynamic imaging of the root, will be explored. Together these tools provide insight into the regulatory steps that sculpt the root system upon environmental change and can be used as the basis for the evaluation of genetic variation affecting these pathways.
Collapse
Affiliation(s)
- Lina Duan
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St., Stanford, CA, 94305, USA,
| | | | | |
Collapse
|
1062
|
Li W, Zhao F, Fang W, Xie D, Hou J, Yang X, Zhao Y, Tang Z, Nie L, Lv S. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. FRONTIERS IN PLANT SCIENCE 2015; 6:732. [PMID: 26442045 PMCID: PMC4566050 DOI: 10.3389/fpls.2015.00732] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/28/2015] [Indexed: 05/17/2023]
Abstract
Soil salinity is a major abiotic stress that limits plant growth and agricultural productivity. Upland cotton (Gossypium hirsutum L.) is highly tolerant to salinity; however, large-scale proteomic data of cotton in response to salt stress are still scant. Here, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic technique was employed to identify the early differentially expressed proteins (DEPs) from salt-treated cotton roots. One hundred and twenty-eight DEPs were identified, 76 of which displayed increased abundance and 52 decreased under salt stress conditions. The majority of the proteins have functions related to carbohydrate and energy metabolism, transcription, protein metabolism, cell wall and cytoskeleton metabolism, membrane and transport, signal transduction, in addition to stress and defense. It is worth emphasizing that some novel salt-responsive proteins were identified, which are involved in cell cytoskeleton metabolism (actin-related protein2, ARP2, and fasciclin-like arabinogalactan proteins, FLAs), membrane transport (tonoplast intrinsic proteins, TIPs, and plasma membrane intrinsic proteins, PIPs), signal transduction (leucine-rich repeat receptor-like kinase encoding genes, LRR-RLKs) and stress responses (thaumatin-like protein, TLP, universal stress protein, USP, dirigent-like protein, DIR, desiccation-related protein PCC13-62). High positive correlation between the abundance of some altered proteins (superoxide dismutase, SOD, peroxidase, POD, glutathione S-transferase, GST, monodehydroascorbate reductase, MDAR, and malate dehydrogenase, MDH) and their enzyme activity was evaluated. The results demonstrate that the iTRAQ-based proteomic technique is reliable for identifying and quantifying a large number of cotton root proteins. qRT-PCR was used to study the gene expression levels of the five above-mentioned proteins; four patterns are consistent with those of induced protein. These results showed that the proteome of cotton roots under NaCl stress is complex. The comparative protein profiles of roots under salinity vs control improves the understanding of the molecular mechanisms involved in the tolerance of plants to salt stress. This work provides a good basis for further functional elucidation of these DEPs using genetic and/or other approaches, and, consequently, candidate genes for genetic engineering to improve crop salt tolerance.
Collapse
Affiliation(s)
- Wu Li
- College of Life Sciences, Henan UniversityKaifeng, China
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Fu'an Zhao
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Weiping Fang
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- *Correspondence: Weiping Fang, Economic Crop Research Institute, Henan Academy of Agricultural Sciences, NO. 115, Huayuan Road, Zhengzhou 450002, China
| | - Deyi Xie
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Jianan Hou
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Yuanming Zhao
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Zhongjie Tang
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Lihong Nie
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Shuping Lv
- Economic Crop Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
| |
Collapse
|
1063
|
Kigel J, Rosental L, Fait A. Seed Physiology and Germination of Grain Legumes. GRAIN LEGUMES 2015. [DOI: 10.1007/978-1-4939-2797-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
1064
|
Nazar R, Umar S, Khan NA. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. PLANT SIGNALING & BEHAVIOR 2015; 10:e1003751. [PMID: 25730495 PMCID: PMC4622964 DOI: 10.1080/15592324.2014.1003751] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 05/18/2023]
Abstract
Ascorbate (AsA)-glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants.
Collapse
Key Words
- APX, Ascorbate peroxidase
- ATP-sulfurylase
- ATPS, ATP-sulfurylase
- AsA-GSH, Ascorbate-glutathione
- CAT, Catalase
- Cys, Cysteine
- DAS, Days after sowing
- DHA, Dehydroascorbate
- DHAR, Dehydroascorbate reductase
- Fv/Fm, maximal PS II photochemical efficiency
- GR, Glutathione reductase
- GSH, Reduced glutathione
- GSSG, Oxidized glutathione
- ROS, Reactive oxygen species
- RuBP, ribulose 1, 5-bisphosphate
- S, sulfur
- SAT, Serine acetyl transferase
- TBARS, Thiobarbituric acid reactive substances
- WUE, water use efficiency.
- ascorbate
- glutathione
- gs, stomatal conductance
- oxidative stress
- photosynthesis
- salicylic acid
- salt stress
Collapse
Affiliation(s)
- Rahat Nazar
- Department of Botany; Jamia Hamdard University; New Delhi, India
| | - Shahid Umar
- Department of Botany; Jamia Hamdard University; New Delhi, India
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Section; Department of Botany; Aligarh Muslim University; Aligarh, India
| |
Collapse
|
1065
|
Chen J, Wan S, Liu H, Fan S, Zhang Y, Wang W, Xia M, Yuan R, Deng F, Shen F. Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field. FRONTIERS IN PLANT SCIENCE 2015; 6:1227. [PMID: 26779246 PMCID: PMC4705273 DOI: 10.3389/fpls.2015.01227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/18/2015] [Indexed: 05/04/2023]
Abstract
Soil salinity is a major environmental stress limiting plant growth and productivity. We have reported previously the isolation of an Apocynum venetum DEAD-box helicase 1 (AvDH1) that is expressed in response to salt exposure. Here, we report that the overexpression of AvDH1 driven by a constitutive cauliflower mosaic virus-35S promoter in cotton plants confers salinity tolerance. Southern and Northern blotting analyses showed that the AvDH1 gene was integrated into the cotton genome and expressed. In this study, the growth of transgenic cotton expressing AvDH1 was evaluated under saline conditions in a growth chamber and in a saline field trial. Transgenic cotton overexpressing AvDH1 was much more resistant to salt than the wild-type plants when grown in a growth chamber. The lower membrane ion leakage, along with increased activity of superoxide dismutase, in AvDH1 transgenic lines suggested that these characteristics may prevent membrane damage, which increases plant survival rates. In a saline field, the transgenic cotton lines expressing AvDH1 showed increased boll numbers, boll weights and seed cotton yields compared with wild-type plants, especially at high soil salinity levels. This study indicates that transgenic cotton expressing AvDH1 is a promising option for increasing crop productivity in saline fields.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Sibao Wan
- College of Life Science, Shanghai UniversityShanghai, China
| | - Huaihua Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Shuli Fan
- Cotton Research Institute – Chinese Academy of Agricultural SciencesAnyang, China
| | - Yujuan Zhang
- Cotton Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Minxuan Xia
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Rui Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTaian, China
- *Correspondence: Fafu Shen,
| |
Collapse
|
1066
|
Penella C, Nebauer SG, Quiñones A, San Bautista A, López-Galarza S, Calatayud A. Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 230:12-22. [PMID: 25480004 DOI: 10.1016/j.plantsci.2014.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 05/07/2023]
Abstract
Grafting has been proposed as an interesting strategy that improves the responses of crops under salinity. In pepper, we reported increased fruit yield of the commercial 'Adige' cultivar under salinity when grafted onto accessions Capsicum chinense Jacq. 'ECU-973' (12) and Capsicum baccatum L. var. pendulum 'BOL-58' (14), whereas no effect was observed when grafted onto accession Capsicum annuum L var. 'Serrano' (5). We also analysed the physiological and biochemical mechanisms related to the tolerance conferred by these rootstocks. Responses to salinity (40 mM NaCl) were studied in the different plant combinations for 30 days by determining water relations, mineral content, proline accumulation, photosynthetic parameters, nitrate reductase activity and antioxidant capacity. Higher salt tolerance was achieved when the 'Adige' cultivar was grafted onto the 12 genotype, which allowed not only lower Na(+) and Cl(-) accumulation in the scion, but also ion selectivity maintenance, particularly Na(+)/K(+) discrimination. These traits led to a minor negative impact on photosynthesis, nitrate reductase activity and lipid peroxidation in grafted scion leaves. This work suggests that using tolerant pepper rootstocks that maintain the scion's ion homeostasis is a promising strategy to provide salinity tolerance and can consequently improve crop yield.
Collapse
Affiliation(s)
- Consuelo Penella
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Citricultura y Producción Vegetal, Ctra., Moncada-Naquera km. 4.5, Moncada, 46113 Valencia, Spain
| | - Sergio G Nebauer
- Universitat Politècnica de València, Departamento de Producción Vegetal, Camino de Vera 14, 46020 Valencia, Spain
| | - Ana Quiñones
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Citricultura y Producción Vegetal, Ctra., Moncada-Naquera km. 4.5, Moncada, 46113 Valencia, Spain
| | - Alberto San Bautista
- Universitat Politècnica de València, Departamento de Producción Vegetal, Camino de Vera 14, 46020 Valencia, Spain
| | - Salvador López-Galarza
- Universitat Politècnica de València, Departamento de Producción Vegetal, Camino de Vera 14, 46020 Valencia, Spain
| | - Angeles Calatayud
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Citricultura y Producción Vegetal, Ctra., Moncada-Naquera km. 4.5, Moncada, 46113 Valencia, Spain.
| |
Collapse
|
1067
|
Irrigation Volume and the Number of Emitters per Pot Affect Root Growth and Saline Ion Contents in Weeping Fig. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.aaspro.2015.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1068
|
Shen J, Xu G, Zheng HQ. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses. PROTOPLASMA 2015; 252:173-80. [PMID: 24965373 DOI: 10.1007/s00709-014-0669-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 06/16/2014] [Indexed: 05/21/2023]
Abstract
The development of apoplastic barriers was studied in Zea mays seedling roots grown in hydroculture solution supplemented with 0-200 mM NaCl or 20% polyethylene glycol (PEG). Casparian bands in the endodermis of both NaCl- and PEG-treated roots were observed closer to the root tip in comparison with those of control roots, but the cell wall modifications in the endodermis and exodermis induced by salt and osmotic stresses differed. High salinity induced the formation of a multiseriate exodermis, which ranged from several cell layers to the entire cortex tissue but did not noticeably influence cell wall suberization in the endodermis. In contrast, osmotic stress accelerated suberization in both the endodermis and exodermis, but the exodermis induced by osmotic stress was limited to several cell layers in the outer cortex adjacent to the epidermis. The hydrostatic hydraulic conductivity (Lp) had decreased significantly after 1 day of PEG treatment, whereas in NaCl-treated roots, Lp decreased to a similar level after 5 days of treatment. Peroxidase activity in the roots increased significantly in response to NaCl and PEG treatments. These data indicate that salt stress and osmotic stress have different effects on the development of apoplastic barriers and water transport in Z. mays seedling roots.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | | | | |
Collapse
|
1069
|
Yang Z, Chang Z, Sun L, Yu J, Huang B. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass. PLoS One 2014; 9:e116283. [PMID: 25551443 PMCID: PMC4281153 DOI: 10.1371/journal.pone.0116283] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/05/2014] [Indexed: 11/19/2022] Open
Abstract
The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense.
Collapse
Affiliation(s)
- Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
- * E-mail: (ZY); (BH)
| | - Zuoliang Chang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lihong Sun
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jingjin Yu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, 08901, United States of America
- * E-mail: (ZY); (BH)
| |
Collapse
|
1070
|
Naz N, Batool R, Fatima S, Hameed M, Ashraf M, Ahmad F, Ahmad MSA. Adaptive components of tolerance to salinity in a saline desert grass Lasiurus scindicus Henrard. Ecol Res 2014. [DOI: 10.1007/s11284-014-1236-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
1071
|
Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s12892-014-0077-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
1072
|
Duarte B, Sleimi N, Caçador I. Biophysical and biochemical constraints imposed by salt stress: learning from halophytes. FRONTIERS IN PLANT SCIENCE 2014; 5:746. [PMID: 25566311 PMCID: PMC4273624 DOI: 10.3389/fpls.2014.00746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/06/2014] [Indexed: 05/10/2023]
Abstract
Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world's 5.2 billion ha of agricultural dry land, have already suffered erosion, degradation, and salinization. Halophytes are typically considered as plants able to complete their life cycle in environments where the salt concentration is above 200 mM NaCl. Salinity adjustment is a complex phenomenon but essential mechanism to overcome salt stress, with both biophysical and biochemical implications. At this level, halophytes evolved in several directions, adopting different strategies. Otherwise, the lack of adaptation to a salt environment would negatively affect their electron transduction pathways and the entire energetic metabolism, the foundation of every plant photosynthesis and biomass production. The maintenance of ionic homeostasis is in the basis of all cellular counteractive measures, in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation with biochemical counteractive mechanisms, integrating data from photosynthetic light harvesting complexes, electron transport chains to the quinone pools, carbon fixation, and energy dissipation metabolism.
Collapse
Affiliation(s)
- Bernardo Duarte
- Centre of Oceanography, Faculty of Sciences, University of LisbonLisbon, Portugal
- Marine and Environmental Sciences Centre, Faculty of Sciences, University of LisbonLisbon, Portugal
| | - Noomene Sleimi
- UR: MaNE, Faculté des Sciences de Bizerte, Université de CarthageBizerte, Tunisie
| | - Isabel Caçador
- Centre of Oceanography, Faculty of Sciences, University of LisbonLisbon, Portugal
- Marine and Environmental Sciences Centre, Faculty of Sciences, University of LisbonLisbon, Portugal
| |
Collapse
|
1073
|
Cross-generic studies with rice indicate that ion homeostasis and antioxidant defense is associated with superior salinity tolerance in Cynodon dactylon (L.) Pers. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40502-014-0129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
1074
|
Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 2014; 22:123-31. [PMID: 25737642 PMCID: PMC4336437 DOI: 10.1016/j.sjbs.2014.12.001] [Citation(s) in RCA: 775] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 11/16/2022] Open
Abstract
Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.
Collapse
Affiliation(s)
- Pooja Shrivastava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Rajesh Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India
| |
Collapse
|
1075
|
Marchesini VA, Yin C, Colmer TD, Veneklaas EJ. Drought tolerances of three stem-succulent halophyte species of an inland semiarid salt lake system. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:1230-1238. [PMID: 32481072 DOI: 10.1071/fp14108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/25/2014] [Indexed: 06/11/2023]
Abstract
Succulent halophytes of the genus Tecticornia are dominant in salt marshes of inland lakes of Australia. We assessed the drought responses of a C4 species, Tecticornia indica subsp. bidens (Nees) K.A.Sheph. & Paul G.Wilson, and two C3 species, Tecticornia auriculata Paul G.Wilson (K.A.Sheph. & Paul G.Wilson) and Tecticornia medusa (K.A.Sheph. & S.J.van Leeuwen) that occur in the Fortescue Marsh, north-west Australia. In a glasshouse experiment, the three species were grown individually and in different combinations, with varying number of plants per pot to achieve comparable dry-down rates among pots. Prior to the imposition of drought (by withholding water) the three species showed differences in dry mass and physiological variables. As the soil dried out, the three species showed similar reductions of transpiration, osmotic potential and photochemical efficiency. Shoot growth was depressed more than root growth. Tissue water loss from portions of the succulent shoots accounted for ~30% of transpiration during severe drought stress. There was no osmotic adjustment. Shoot tissue concentrations of Na+ and Cl- tended to increase during drought, and those of K+ decreased; however, these changes were not always statistically significant. Chlorophyll concentration decreased but betacyanin concentration increased. Despite occupying distinct positions in a water and salinity gradient, the three Tecticornia species had remarkably similar responses to soil water deficit.
Collapse
Affiliation(s)
- Victoria A Marchesini
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Chuanhua Yin
- Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Timothy D Colmer
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Erik J Veneklaas
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
1076
|
Rodríguez-Hernández MDC, Moreno DA, Carvajal M, Martínez-Ballesta MDC. Genotype influences sulfur metabolism in broccoli (Brassica oleracea L.) under elevated CO2 and NaCl stress. PLANT & CELL PHYSIOLOGY 2014; 55:2047-2059. [PMID: 25246493 DOI: 10.1093/pcp/pcu130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Climatic change predicts elevated salinity in soils as well as increased carbon dioxide dioxide [CO2] in the atmosphere. The present study aims to determine the effect of combined salinity and elevated [CO2] on sulfur (S) metabolism and S-derived phytochemicals in green and purple broccoli (cv. Naxos and cv. Viola, respectively). Elevated [CO2] involved the amelioration of salt stress, especially in cv. Viola, where a lower biomass reduction by salinity was accompanied by higher sodium (Na(+)) and chloride (Cl(-)) compartmentation in the vacuole. Moreover, salinity and elevated [CO2] affected the mineral and glucosinolate contents and the activity of biosynthetic enzymes of S-derived compounds and the degradative enzyme of glucosinolate metabolism, myrosinase, as well as the related amino acids and the antioxidant glutathione (GSH). In cv. Naxos, elevated [CO2] may trigger the antioxidant response to saline stress by means of increased GSH concentration. Also, in cv. Naxos, indolic glucosinolates were more influenced by the NaCl×CO2 interaction whereas in cv. Viola the aliphatic glucosinolates were significantly increased by these conditions. Salinity and elevated [CO2] enhanced the S cellular partitioning and metabolism affecting the myrosinase-glucosinolate system.
Collapse
Affiliation(s)
- María del Carmen Rodríguez-Hernández
- Department of Plant Nutrition, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| | - Diego A Moreno
- Department of Food Science and Technology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| | - Micaela Carvajal
- Department of Plant Nutrition, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| | - María del Carmen Martínez-Ballesta
- Department of Plant Nutrition, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| |
Collapse
|
1077
|
Acosta-Motos JR, Alvarez S, Barba-Espín G, Hernández JA, Sánchez-Blanco MJ. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 85:41-50. [PMID: 25394799 DOI: 10.1016/j.plaphy.2014.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.
Collapse
|
1078
|
Lei B, Huang Y, Sun J, Xie J, Niu M, Liu Z, Fan M, Bie Z. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress. PHYSIOLOGIA PLANTARUM 2014; 152:738-48. [PMID: 24813633 DOI: 10.1111/ppl.12223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 05/20/2023]
Abstract
Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots.
Collapse
Affiliation(s)
- Bo Lei
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
1079
|
Sbei H, Sato K, Shehzad T, Harrabi M, Okuno K. Detection of QTLs for salt tolerance in Asian barley (Hordeum vulgare L.) by association analysis with SNP markers. BREEDING SCIENCE 2014; 64:378-88. [PMID: 25914593 PMCID: PMC4267313 DOI: 10.1270/jsbbs.64.378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/08/2014] [Indexed: 05/30/2023]
Abstract
Two hundred ninety-six Asian barley (Hordeum vulgare L.) accessions were assessed to detect QTLs underlying salt tolerance by association analysis using a 384 single nucleotide polymorphism (SNP) marker system. The experiment was laid out at the seedling stage in a hydroponic solution under control and 250 mM NaCl solution with three replications of four plants each. Salt tolerance was assessed by leaf injury score (LIS) and salt tolerance indices (STIs) of the number of leaves (NL), shoot length (SL), root length (RL), shoot dry weight (SDW) and root dry weight (RDW). LIS was scored from 1 to 5 according to the severity of necrosis and chlorosis observed on leaves. There was a wide variation in salt tolerance among Asian barley accessions. LIS and STI (SDW) were the most suitable traits for screening salt tolerance. Association was estimated between markers and traits to detect QTLs for LIS and STI (SDW). Seven significant QTLs were located on chromosomes 1H (2 QTLs), 2H (2 QTLs), 3H (1 QTL), 4H (1 QTL) and 5H (1 QTL). Five QTLs were associated with LIS and 2 QTLs with STI (SDW). Two QTLs associated with LIS were newly identified on chromosomes 3H and 4H.
Collapse
Affiliation(s)
- Hanen Sbei
- Graduate School of Life and Environmental Sciences, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572,
Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University,
Chuo 2-20-1, Kurashiki, Okayama 710-0046,
Japan
| | - Tariq Shehzad
- Graduate School of Life and Environmental Sciences, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572,
Japan
- The Alliance for Research on North Africa, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572,
Japan
| | - Moncef Harrabi
- National Institute of Agriculture at Tunis,
43 Avenue Charles Nicolle, Mahrajene City, 1082Tunisia
| | - Kazutoshi Okuno
- The Alliance for Research on North Africa, University of Tsukuba,
Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572,
Japan
| |
Collapse
|
1080
|
Yin YX, Wang SB, Xiao HJ, Zhang HX, Zhang Z, Jing H, Zhang YL, Chen RG, Gong ZH. Overexpression of the CaTIP1-1 pepper gene in tobacco enhances resistance to osmotic stresses. Int J Mol Sci 2014; 15:20101-16. [PMID: 25375192 PMCID: PMC4264158 DOI: 10.3390/ijms151120101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/17/2022] Open
Abstract
Both the gene expression and activity of water channel protein can control transmembrane water movement. We have reported the overexpression of CaTIP1-1, which caused a decrease in chilling tolerance in transgenic plants by increasing the size of the stomatal pore. CaTIP1-1 expression was strongly induced by salt and mannitol stresses in pepper (Capsicum annuum). However, its biochemical and physiological functions are still unknown in transgenic tobacco. In this study, transient expression of CaTIP1-1-GFP in tobacco suspension cells revealed that the protein was localized in the tonoplast. CaTIP1-1 overexpressed in radicle exhibited vigorous growth under high salt and mannitol treatments more than wild-type plants. The overexpression of CaTIP1-1 pepper gene in tobacco enhanced the antioxidant enzyme activities and increased transcription levels of reactive oxygen species-related gene expression under osmotic stresses. Moreover, the viability of transgenic tobacco cells was higher than the wild-type after exposure to stress. The pepper plants with silenced CaTIP1-1 in P70 decreased tolerance to salt and osmotic stresses using the detached leaf method. We concluded that the CaTIP1-1 gene plays an important role in response to osmotic stresses in tobacco.
Collapse
Affiliation(s)
- Yan-Xu Yin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shu-Bin Wang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Huai-Juan Xiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhen Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hua Jing
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ying-Li Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ru-Gang Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
1081
|
Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. MYCORRHIZA 2014; 24:611-25. [PMID: 24770494 DOI: 10.1007/s00572-014-0582-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/11/2014] [Indexed: 05/03/2023]
Abstract
Salt stress limits crop yield and sustainable agriculture in most arid and semiarid regions of the world. Arbuscular mycorrhizal fungi (AMF) are considered bio-ameliorators of soil salinity tolerance in plants. In evaluating AMF as significant predictors of mycorrhizal ecology, precise quantifiable changes in plant biomass and nutrient uptake under salt stress are crucial factors. Therefore, the objective of the present study was to analyze the magnitude of the effects of AMF inoculation on growth and nutrient uptake of plants under salt stress through meta-analyses. For this, data were compared in the context of mycorrhizal host plant species, plant family and functional group, herbaceous vs. woody plants, annual vs. perennial plants, and the level of salinity across 43 studies. Results indicate that, under saline conditions, AMF inoculation significantly increased total, shoot, and root biomass as well as phosphorous (P), nitrogen (N), and potassium (K) uptake. Activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase also increased significantly in mycorrhizal compared to nonmycorrhizal plants growing under salt stress. In addition, sodium (Na) uptake decreased significantly in mycorrhizal plants, while changes in proline accumulation were not significant. Across most subsets of the data analysis, identities of AMF (Glomus fasciculatum) and host plants (Acacia nilotica, herbs, woody and perennial) were found to be essential in understanding plant responses to salinity stress. For the analyzed dataset, it is concluded that under salt stress, mycorrhizal plants have extensive root traits and mycorrhizal morphological traits which help the uptake of more P and K, together with the enhanced production of antioxidant enzymes resulting in salt stress alleviation and increased plant biomass.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
1082
|
Albacete A, Cantero-Navarro E, Balibrea ME, Großkinsky DK, de la Cruz González M, Martínez-Andújar C, Smigocki AC, Roitsch T, Pérez-Alfocea F. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6081-95. [PMID: 25170099 PMCID: PMC4203140 DOI: 10.1093/jxb/eru347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of metabolic and hormonal inter-regulation of local sink processes in controlling tomato fruit sink activity, growth, and yield under salinity.
Collapse
Affiliation(s)
- Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria
| | | | - María E Balibrea
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - Dominik K Großkinsky
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark
| | | | | | - Ann C Smigocki
- Molecular Plant Pathology Laboratory, USDA, ARS, Beltsville, MD 20705, USA
| | - Thomas Roitsch
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| | | |
Collapse
|
1083
|
Paz RC, Reinoso H, Espasandin FD, González Antivilo FA, Sansberro PA, Rocco RA, Ruiz OA, Menéndez AB. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:1042-9. [PMID: 24597843 DOI: 10.1111/plb.12156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/19/2013] [Indexed: 05/09/2023]
Abstract
Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological status of stressed plants. We performed pot experiments with four treatments: control without salt (pH = 5.8; EC = 1.2 dS·m(-1)) and three stress conditions, saline (100 mM NaCl, pH = 5.8; EC = 11.0 dS·m(-1)), alkaline (10 mM NaHCO3, pH = 8.0, EC = 1.9 dS·m(-1)) and mixed salt-alkaline (10 mM NaHCO3 + 100 mM NaCl, pH = 8.0, EC = 11.0 dS·m(-1)). Neutral and alkaline salts produced a similar level of growth inhibition on L. tenuis shoots, whereas their mixture exacerbated their detrimental effects. Our results showed that none of the analysed morpho-anatomical parameters categorically differentiated one stress from the other. However, NaCl- and NaHCO3 -derived stress could be discriminated to different extents and/or directions of changes in some of the anatomical traits. For example, alkalinity led to increased stomatal opening, unlike NaCl-treated plants, where a reduction in stomatal aperture was observed. Similarly, plants from the mixed saline-alkaline treatment characteristically lacked palisade mesophyll in their leaves. The stem cross-section and vessel areas, as well as the number of vascular bundles in the sectioned stem were reduced in all treatments. A rise in the number of vessel elements in the xylem was recorded in NaCl-treated plants, but not in those treated exclusively with NaHCO3.
Collapse
Affiliation(s)
- R C Paz
- Unidad de Biotecnología 1, IIB-IINTECH/UNSAM-CONICET, Chascomús, Buenos Aires, Argentina; Facultad de Ciencias Agrarias (FCA), Instituto de Biotecnología Agrícola de Mendoza (IBAM), Mendoza, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
1084
|
Ngara R, Ndimba BK. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics 2014; 14:611-21. [PMID: 24339029 DOI: 10.1002/pmic.201300351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 11/11/2022]
Abstract
Worldwide, crop productivity is drastically reduced by drought and salinity stresses. In order to develop food crops with increased productivity in marginal areas, it is important to first understand the nature of plant stress response mechanisms. In the past decade, proteomics tools have been extensively used in the study of plants' proteome responses under experimental conditions mimicking drought and salinity stresses. A lot of proteomic data have been generated using different experimental designs. However, the precise roles of these proteins in stress tolerance are yet to be elucidated. This review summarises the applications of proteomics in understanding the complex nature of drought and salinity stress effects on plants, particularly cereals and also highlights the usefulness of sorghum as the next logical model crop for use in understanding drought and salinity tolerance in cereals. With the vast amount of proteomic data that have been generated to date, a call for integrated efforts across the agricultural, biotechnology, and molecular biology sectors is also highlighted in an effort to translate proteomics data into increased food productivity for the world's growing population.
Collapse
Affiliation(s)
- Rudo Ngara
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, Phuthaditjhaba, South Africa
| | | |
Collapse
|
1085
|
Convergence of goals: phylogenetical, morphological, and physiological characterization of tolerance to drought stress in tall fescue (Festuca arundinacea Schreb.). Mol Biotechnol 2014; 56:248-57. [PMID: 24078217 DOI: 10.1007/s12033-013-9703-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study is to find Iranian tall fescue accessions that tolerate drought stress and investigation on phylogenetical, morphological, and physiological characterization of them. For this propose, inter-simple sequence repeats (ISSR) markers were used to examine the genetic variability of accessions from different provinces of Iran. Of 21 primers, 20 primers generated highly reproducible fragments. Using these primers, 390 discernible DNA fragments were produced with 367 (93.95 %) being polymorphic. The polymorphic information content (PIC) values ranged from 0.948 to 0.976, with a mean PIC value of 0.969. Probability identity (PI) and discriminating power (D = 1-PI) among the primers ranged from 0.001 to 0.004 and 0.998 to 0.995, respectively. A binary qualitative data matrix was constructed. Data analyses were performed using the NTSYS software and the similarity values were used to generate a dendrogram via UPGMA. To study the drought stress, plants were irrigated at 25 % FC condition for three times. Fresh leaves were collected to measure physiological characters including: superoxide dismutase, catalase, and peroxidase activities and proline and total chlorophyll content at two times, before and after stress application. Relative water content, fresh and dry weight ratio, survival percentage, and visual quality were evaluated after stress. Morphological and physiological characters were assessed in order to classify accessions as either tolerant or sensitive using Ward's method of Hierarchical cluster analysis in SPSS software. The results of present study demonstrated that the ISSR markers are useful for studying tall fescue genetic diversity. Convergence of morphological and physiological characterizations during drought stress and phylogenetic relationship results showed that accessions can be grouped into four clusters; drought-tolerant accessions that collected from west of Iran, drought-tolerant accessions collected from northwest of Iran, drought semi-tolerant accessions collected from center of Iran, and drought-sensitive accessions collected from north of Iran. Data presented could be used to classify the tall fescue accessions based on suitability of cultivation in the regions studied or the regions with the similar environmental condition.
Collapse
|
1086
|
Long JD, Porturas LD. Herbivore impacts on marsh production depend upon a compensatory continuum mediated by salinity stress. PLoS One 2014; 9:e110419. [PMID: 25310475 PMCID: PMC4195738 DOI: 10.1371/journal.pone.0110419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/14/2014] [Indexed: 11/18/2022] Open
Abstract
Plant communities are disturbed by several stressors and they are expected to be further impacted by increasing anthropogenic stress. The consequences of these stressors will depend, in part, upon the ability of plants to compensate for herbivory. Previous studies found that herbivore impacts on plants can vary from negative to positive because of environmental control of plant compensatory responses, a.k.a. the Compensatory Continuum Hypothesis. While these influential studies enhanced our appreciation of the dynamic nature of plant-herbivore interactions, they largely focused on the impact of resource limitation. This bias limits our ability to predict how other environmental factors will shape the impact of herbivory. We examined the role of salinity stress on herbivory of salt marsh cordgrass, Spartina foliosa, by an herbivore previously hypothesized to influence the success of restoration projects (the scale insect, Haliaspis spartinae). Using a combination of field and mesocosm manipulations of scales and salinity, we measured how these factors affected Spartina growth and timing of senescence. In mesocosm studies, Spartina overcompensated for herbivory by growing taller shoots at low salinities but the impact of scales on plants switched from positive to neutral with increasing salinity stress. In field studies of intermediate salinities, scales reduced Spartina growth and increased the rate of senescence. Experimental salinity additions at this field site returned the impact of scales to neutral. Because salinity decreased scale densities, the switch in impact of scales on Spartina with increasing salinity was not simply a linear function of scale abundance. Thus, the impact of scales on primary production depended strongly upon environmental context because intermediate salinity stress prevented plant compensatory responses to herbivory. Understanding this context-dependency will be required if we are going to successfully predict the success of restoration efforts and the ecological consequences of anthropogenic disturbances.
Collapse
Affiliation(s)
- Jeremy D. Long
- Biology Department and Coastal & Marine Institute Laboratory, San Diego State University, San Diego, California, United States of America
- * E-mail:
| | - Laura D. Porturas
- Biology Department and Coastal & Marine Institute Laboratory, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
1087
|
Nakaminami K, Matsui A, Nakagami H, Minami A, Nomura Y, Tanaka M, Morosawa T, Ishida J, Takahashi S, Uemura M, Shirasu K, Seki M. Analysis of differential expression patterns of mRNA and protein during cold-acclimation and de-acclimation in Arabidopsis. Mol Cell Proteomics 2014; 13:3602-11. [PMID: 25277243 DOI: 10.1074/mcp.m114.039081] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overwintering plants are capable of exhibiting high levels of cold tolerance, which is acquired through the process of cold acclimation (CA). In contrast to CA, the acquired freezing tolerance is rapidly reduced during cold de-acclimation (DA) and plants resume growth after sensing warm temperatures. In order to better understand plant growth and development, and to aid in the breeding of cold-tolerant plants, it is important to decipher the functional mechanisms of the DA process. In this study, we performed comparative transcriptomic and proteomic analyses during CA and DA. As revealed by shotgun proteomics, we identified 3987 peptides originating from 1569 unique proteins and the corresponding mRNAs were analyzed. Among the 1569 genes, 658 genes were specifically induced at the transcriptional level during the process of cold acclimation. In order to investigate the relationship between mRNA and the corresponding protein expression pattern, a Pearson correlation was analyzed. Interestingly, 199 genes showed a positive correlation of mRNA and protein expression pattern, indicating that both their transcription and translation occurred during CA. However, 226 genes showed a negative correlation of mRNA and protein expression pattern, indicating that their mRNAs were transcribed during CA and were stored for the subsequent DA step. Under this scenario, those proteins were specifically increased during DA without additional transcription of mRNA. In order to confirm the negative correlation of mRNA and protein expression patterns, qRT-PCR and western blot analyses were performed. Mitochondrial malate dehydrogenase 1 (mMDH1) exhibited a negative correlation of mRNA and protein levels, which was characterized by CA-specific mRNA induction and protein accumulation specifically during DA. These data indicate that the expression of specific mRNAs and subsequent accumulation of corresponding proteins are not always in accordance under low temperature stress conditions in plants.
Collapse
Affiliation(s)
- Kentaro Nakaminami
- From the ‡Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Akihiro Matsui
- From the ‡Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Hirofumi Nakagami
- §Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045, Japan
| | - Anzu Minami
- ¶Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Yuko Nomura
- §Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- From the ‡Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Taeko Morosawa
- From the ‡Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Junko Ishida
- From the ‡Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Satoshi Takahashi
- From the ‡Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | - Matsuo Uemura
- ¶Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Ken Shirasu
- ‖Plant Immunity Research Group, RIKEN CSRS, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- From the ‡Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan; ‡‡CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan **Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan;
| |
Collapse
|
1088
|
Gerosa G, Marzuoli R, Finco A, Monga R, Fusaro I, Faoro F. Contrasting effects of water salinity and ozone concentration on two cultivars of durum wheat (Triticum durum Desf.) in Mediterranean conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:13-21. [PMID: 24988093 DOI: 10.1016/j.envpol.2014.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 05/24/2023]
Abstract
This paper reports the results of an Open-Top Chambers experiment on the responses of two durum wheat cultivars (Neodur and Virgilio) exposed to two different levels of ozone (charcoal-filtered air and ozone-enriched air) and irrigation water salinity (tap water as control and a 75 mM NaCl solution once a week). The stomatal conductance of the flag leaves was measured on four dates during May. Flag leaf samples were collected to detect ozone visible leaf injuries. At the end of the growing season, the yield/biomass and grain quality parameters were assessed. Saline irrigation caused significant reductions in gs, yield and grain quality in Neodur, while Virgilio was more tolerant. The yield response to ozone was almost negligible, with Virgilio, despite the higher susceptibility to visible leaf injuries, being more productive than Neodur. The responses to the combined stress were not consistent, with the main tendencies undoubtedly driven by the saline irrigation factor.
Collapse
Affiliation(s)
- Giacomo Gerosa
- Università Cattolica di Brescia, Dipartimento di Matematica e Fisica, Via dei Musei 41, Brescia, Italy
| | - Riccardo Marzuoli
- Università Cattolica di Brescia, Dipartimento di Matematica e Fisica, Via dei Musei 41, Brescia, Italy.
| | - Angelo Finco
- Università Cattolica di Brescia, Dipartimento di Matematica e Fisica, Via dei Musei 41, Brescia, Italy
| | - Robert Monga
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali, Via Celoria 2, Milano, Italy
| | - Isa Fusaro
- Università degli Studi di Teramo, Dipartimento di Scienze Alimentari, Viale Crispi 212, Teramo, Italy
| | - Franco Faoro
- Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali, Via Celoria 2, Milano, Italy
| |
Collapse
|
1089
|
Cavalcanti JHF, Esteves-Ferreira AA, Quinhones CGS, Pereira-Lima IA, Nunes-Nesi A, Fernie AR, Araújo WL. Evolution and functional implications of the tricarboxylic acid cycle as revealed by phylogenetic analysis. Genome Biol Evol 2014; 6:2830-48. [PMID: 25274566 PMCID: PMC4224347 DOI: 10.1093/gbe/evu221] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The tricarboxylic acid (TCA) cycle, a crucial component of respiratory metabolism, is composed of a set of eight enzymes present in the mitochondrial matrix. However, most of the TCA cycle enzymes are encoded in the nucleus in higher eukaryotes. In addition, evidence has accumulated demonstrating that nuclear genes were acquired from the mitochondrial genome during the course of evolution. For this reason, we here analyzed the evolutionary history of all TCA cycle enzymes in attempt to better understand the origin of these nuclear-encoded proteins. Our results indicate that prior to endosymbiotic events the TCA cycle seemed to operate only as isolated steps in both the host (eubacterial cell) and mitochondria (alphaproteobacteria). The origin of isoforms present in different cell compartments might be associated either with gene-transfer events which did not result in proper targeting of the protein to mitochondrion or with duplication events. Further in silico analyses allow us to suggest new insights into the possible roles of TCA cycle enzymes in different tissues. Finally, we performed coexpression analysis using mitochondrial TCA cycle genes revealing close connections among these genes most likely related to the higher efficiency of oxidative phosphorylation in this specialized organelle. Moreover, these analyses allowed us to identify further candidate genes which might be used for metabolic engineering purposes given the importance of the TCA cycle during development and/or stress situations.
Collapse
Affiliation(s)
- João Henrique Frota Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Alberto A Esteves-Ferreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Carla G S Quinhones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Italo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil Max-Planck-Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, MG, Brazil
| |
Collapse
|
1090
|
Li M, Yu C, Wang Y, Li W, Wang Y, Yang Y, Liu H, Li Y, Tan F, Zhang J. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances. Curr Genomics 2014; 15:341-8. [PMID: 25435797 PMCID: PMC4245694 DOI: 10.2174/138920291505141106102544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/18/2014] [Accepted: 08/08/2014] [Indexed: 12/02/2022] Open
Abstract
Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na(+) and K(+), as well as the Na(+)/K(+) ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources.
Collapse
Affiliation(s)
- Min Li
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
| | - Chunmei Yu
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Yaoyi Wang
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Wentao Li
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Ying Wang
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
| | - Yun Yang
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Huihui Liu
- College of Life Science, Nantong University, Nantong, Jiangsu Province 226019, China
| | - Yujuan Li
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
| | - Feng Tan
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
| | - Jian Zhang
- Institute of Agricultural Science in the Regions along Yangtze River of Jiangsu, Rugao, Jiangsu Province 226541, China
- Center for Computational Biology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
1091
|
Hu YX, Yang X, Li XL, Yu XD, Li QL. The SlASR gene cloned from the extreme halophyte Suaeda liaotungensis K. enhances abiotic stress tolerance in transgenic Arabidopsis thaliana. Gene 2014; 549:243-51. [DOI: 10.1016/j.gene.2014.07.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/16/2014] [Accepted: 07/30/2014] [Indexed: 10/25/2022]
|
1092
|
Puniran-Hartley N, Hartley J, Shabala L, Shabala S. Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:32-9. [PMID: 25068241 DOI: 10.1016/j.plaphy.2014.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/03/2014] [Indexed: 05/26/2023]
Abstract
Salinity tolerance in plants is dependent on their abilities to adjust osmotically to reduced soil water potential and to keep intracellular ROS levels under control. Both these processes are believed to rely on de novo synthesis of organic osmolytes (traditionally defined as compatible solutes). However direct in planta evidence for anti-oxidant roles of compatible solutes are scarce. In this work, we induced changes in the level of endogenous organic osmolytes by exposing plants to various levels of NaCl (salinity stress; 50-300 mM range) and then studying sensitivity of leaves to oxidative (UV-B) stress. Increase in the external NaCl concentrations was accompanied by the progressive accumulation in leaf Na(+). This accumulation was much higher in old leaves compared with young ones. In old leaves, three major inorganic ions (Na(+), Cl(-) and K(+)) have made 67.7% and 70.4% of leaf osmotic potential (in wheat and barley, respectively) when exposed to 200 mM NaCl treatment, while in young leaves their contribution was only 43.9% and 46.8%, respectively. Here, organic osmolytes played a substantial role in leaf osmotic adjustment. Increased accumulation of organic osmolytes correlated strongly with activity of PSII in leaves exposed to oxidation inducing UV-B treatment in both species (R(2) = 0.50 for wheat and 0.71 for barley). We conclude that salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance and provides the evidence for a mechanism of cross-tolerance between these two stresses.
Collapse
Affiliation(s)
- Norhawa Puniran-Hartley
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Joseph Hartley
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
1093
|
Krishnamurthy L, Upadhyaya HD, Purushothaman R, Gowda CLL, Kashiwagi J, Dwivedi SL, Singh S, Vadez V. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 227:51-9. [PMID: 25219306 DOI: 10.1016/j.plantsci.2014.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 05/17/2023]
Abstract
Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption.
Collapse
Affiliation(s)
- Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
| | - Hari Deo Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | - Ramamoorthy Purushothaman
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India; Jawaharlal Nehru Technological University, Hyderabad, Andhra Pradesh, India
| | | | - Junichi Kashiwagi
- Crop Science Lab, Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-Ku, Sapporo 060-8589, Japan
| | - Sangam Lal Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India
| |
Collapse
|
1094
|
Physiological adaptative characteristics of Imperata cylindrica for salinity tolerance. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0417-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1095
|
Li Y, Takano T, Liu S. Discovery and characterization of two novel salt-tolerance genes in Puccinellia tenuiflora. Int J Mol Sci 2014; 15:16469-83. [PMID: 25238412 PMCID: PMC4200785 DOI: 10.3390/ijms150916469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/25/2014] [Accepted: 09/05/2014] [Indexed: 01/25/2023] Open
Abstract
Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9-10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR) and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| |
Collapse
|
1096
|
Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics 2014; 15:760. [PMID: 25189468 PMCID: PMC4169805 DOI: 10.1186/1471-2164-15-760] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/04/2014] [Indexed: 12/26/2022] Open
Abstract
Background Cotton (Gossypium spp.) is one of the major fibre crops of the world. Although it is classified as salt tolerant crop, cotton growth and productivity are adversely affected by high salinity, especially at germination and seedling stages. Identification of genes and miRNAs responsible for salt tolerance in upland cotton (Gossypium hirsutum L.) would help reveal the molecular mechanisms of salt tolerance. We performed physiological experiments and transcriptome sequencing (mRNA-seq and small RNA-seq) of cotton leaves under salt stress using Illumina sequencing technology. Results We investigated two distinct salt stress phases—dehydration (4 h) and ionic stress (osmotic restoration; 24 h)—that were identified by physiological changes of 14-day-old seedlings of two cotton genotypes, one salt tolerant and the other salt sensitive, during a 72-h NaCl exposure. A comparative transcriptomics was used to monitor gene and miRNA differential expression at two time points (4 and 24 h) in leaves of the two cotton genotypes under salinity conditions. The expression patterns of differentially co-expressed unigenes were divided into six groups using short time-servies expression miner software. During a 24-h salt exposure, 819 transcription factor unigenes were differentially expressed in both genotypes, with 129 unigenes specifically expressed in the salt-tolerant genotype. Under salt stress, 108 conserved miRNAs from known families were differentially expressed at two time points in the salt-tolerant genotype. We further analyzed the predicted target genes of these miRNAs along with the transcriptome for each time point. Important expressed genes encoding membrane receptors, transporters, and pathways involved in biosynthesis and signal transduction of calcium-dependent protein kinase, mitogen-activated protein kinase, and hormones (abscisic acid and ethylene) were up-regulated. We also analyzed the salt stress response of some key miRNAs and their target genes and found that the expressions of five of nine target genes exhibited significant inverse correlations with their corresponding miRNAs. On the basis of these results, we constructed molecular regulatory pathways and a potential regulatory network for these salt-responsive miRNAs. Conclusions Our comprehensive transcriptome analysis has provided new insights into salt-stress response of upland cotton. The results should contribute to the development of genetically modified cotton with salt tolerance. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-760) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanli Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000 Anyang, Henan, China.
| | | |
Collapse
|
1097
|
Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y. Genome duplication improves rice root resistance to salt stress. RICE (NEW YORK, N.Y.) 2014; 7:15. [PMID: 25184027 PMCID: PMC4151024 DOI: 10.1186/s12284-014-0015-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. RESULTS Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na(+) content, H(+) (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na(+) in tetraploid rice roots significantly decreased while root tip H(+) efflux in tetraploid rice significantly increased. CONCLUSIONS Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na(+) entrance into the roots.
Collapse
Affiliation(s)
- Yi Tu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Aiming Jiang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- Faculty of Biochemistry and Environmental Engineering, Yunyang Teachers’ College, Shiyan 442000, P.R. China
| | - Lu Gan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- Faculty of Biochemistry and Environmental Engineering, Yunyang Teachers’ College, Shiyan 442000, P.R. China
| | - Mokter Hossain
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinming Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Bo Peng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Yuguo Xiong
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Zhaojian Song
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Detian Cai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
| | - Weifeng Xu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuchi He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, P.R. China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
1098
|
Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AOB PLANTS 2014; 6:plu047. [PMID: 25139769 PMCID: PMC4165890 DOI: 10.1093/aobpla/plu047] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/16/2014] [Indexed: 05/10/2023]
Abstract
Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development.
Collapse
Affiliation(s)
- M R Panuccio
- Department of Agriculture, Mediterranea University, località Feo di Vito, 89126 Reggio Calabria, Italy
| | - S E Jacobsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - S S Akhtar
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark Sino-Danish Center for Education and Research (SDC), Beijing, China
| | - A Muscolo
- Department of Agriculture, Mediterranea University, località Feo di Vito, 89126 Reggio Calabria, Italy
| |
Collapse
|
1099
|
Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Kamal Uddin M, Alam MZ, Latif MA. Genetic improvement of purslane (Portulaca oleracea L.) and its future prospects. Mol Biol Rep 2014; 41:7395-411. [PMID: 25085039 DOI: 10.1007/s11033-014-3628-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/21/2014] [Indexed: 11/24/2022]
Abstract
Common purslane (Portulaca oleracea), also known as pigweed, fatweed, pusle, and little hogweed, is an annual succulent herb in the family Portulacaceae that is found in most corners of the globe. From the ancient ages purslane has been treated as a major weed of vegetables as well as other crops. However, worldwide researchers and nutritionists have studied this plant as a potential vegetable crop for humans as well as animals. Purslane is a nutritious vegetable with high antioxidant properties and recently has been recognized as the richest source of α-linolenic acid, essential omega-3 and 6 fatty acids, ascorbic acid, glutathione, α-tocopherol and β-carotene. The lack of vegetable sources of ω-3 fatty acids has resulted in a growing level of attention to introduce purslane as a new cultivated vegetable. In the rapid-revolutionizing worldwide atmosphere, the ability to produce improved planting material appropriate to diverse and varying rising conditions is a supreme precedence. Though various published reports on morphological, physiological, nutritional and medicinal aspects of purslane are available, research on the genetic improvement of this promising vegetable crop are scant. Now it is necessary to conduct research for the genetic improvement of this plant. Genetic improvement of purslane is also a real scientific challenge. Scientific modernization of conventional breeding with the advent of advance biotechnological and molecular approaches such as tissue culture, protoplast fusion, genetic transformation, somatic hybridization, marker-assisted selection, qualitative trait locus mapping, genomics, informatics and various statistical representation have opened up new opportunities of revising the relationship between genetic diversity, agronomic performance and response to breeding for varietal improvement. This review is an attempt to amalgamate the assorted scientific information on purslane propagation, cultivation, varietal improvement, nutrient analyses, medicinal uses and to describe prospective research especially for genetic improvement of this crop.
Collapse
Affiliation(s)
- Md Amirul Alam
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia,
| | | | | | | | | | | | | |
Collapse
|
1100
|
Higher soil salinity causes more physiological stress in female of Populus cathayana cuttings. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.chnaes.2014.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|