1101
|
Murley YM, Carroll PA, Skorupski K, Taylor RK, Calderwood SB. Differential transcription of the tcpPH operon confers biotype-specific control of the Vibrio cholerae ToxR virulence regulon. Infect Immun 1999; 67:5117-23. [PMID: 10496885 PMCID: PMC96860 DOI: 10.1128/iai.67.10.5117-5123.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epidemic strains of Vibrio cholerae O1 are divided into two biotypes, classical and El Tor. In both biotypes, regulation of virulence gene expression depends on a cascade in which ToxR activates expression of ToxT, and ToxT activates expression of cholera toxin and other virulence genes. In the classical biotype, maximal expression of this ToxR regulon in vitro occurs at 30 degrees C at pH 6.5 (ToxR-inducing conditions), whereas in the El Tor biotype, production of these virulence genes only occurs under very limited conditions and not in response to temperature and pH; this difference between biotypes is mediated at the level of toxT transcription. In the classical biotype, two other proteins, TcpP and TcpH, are needed for maximal toxT transcription. Transcription of tcpPH in the classical biotype is regulated by pH and temperature independently of ToxR or ToxT, suggesting that TcpP and TcpH couple environmental signals to transcription of toxT. In this study, we show a near absence of tcpPH message in the El Tor biotype under ToxR-inducing conditions of temperature and pH. However, once expressed, El Tor TcpP and TcpH appear to be as effective as classical TcpP and TcpH in activating toxT transcription. These results suggest that differences in regulation of virulence gene expression between the biotypes of V. cholerae primarily result from differences in expression of tcpPH message in response to environmental signals. We present an updated model for control of the ToxR virulence regulon in V. cholerae.
Collapse
Affiliation(s)
- Y M Murley
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
1102
|
Yamasaki S, Shimizu T, Hoshino K, Ho ST, Shimada T, Nair GB, Takeda Y. The genes responsible for O-antigen synthesis of vibrio cholerae O139 are closely related to those of vibrio cholerae O22. Gene 1999; 237:321-32. [PMID: 10521656 DOI: 10.1016/s0378-1119(99)00344-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies have shown that the emergence of the O139 serogroup of Vibrio cholerae is a result of horizontal gene transfer of a fragment of DNA from a serogroup other than O1 into the region responsible for O-antigen biosynthesis of the seventh pandemic V. cholerae O1 biotype El Tor strain. In this study, we show that the gene cluster responsible for O-antigen biosynthesis of the O139 serogroup of V. cholerae is closely related to those of O22. When DNA fragments derived from O139 O-antigen biosynthesis gene region were used as probes, the entire O139 O-antigen biosynthesis gene region could be divided into five classes, designated as I-V based on the reactivity pattern of the probes against reference strains of V. cholerae representing serogroups O1-O193. Class IV was specific to O139 serogroup, while classes I-III and class V were homologous to varying extents to some of the non-O1, non-O139 serogroups. Interestingly, the regions other than class IV were also conserved in the O22 serogroup. Long and accurate PCR was employed to determine if a simple deletion or substitution was involved to account for the difference in class IV between O139 and O22. A product of approx. 15kb was amplified when O139 DNA was used as the template, while a product of approx. 12.5kb was amplified when O22 DNA was used as the template, indicating that substitution but not deletion could account for the difference in the region between O22 and O139 serogroups. In order to precisely compare between the genes responsible for O-antigen biosynthesis of O139 and O22, the region responsible for O-antigen biosynthesis of O22 serogroup was cloned and analyzed. In concurrence with the results of the hybridization test, all regions were well conserved in O22 and O139 serogroups, although wbfA and the five or six genes comprising class IV in O22 and O139 serogroups, respectively, were exceptions. Again the genes in class IV in O22 were confirmed to be specific to O22 among the 155 'O' serogroups of V. cholerae. These data suggest that the gene clusters responsible for O139 O-antigen biosynthesis are most similar to those of O22 and genes within class IV of O139, and O22 defines the unique O antigen of O139 or O22.
Collapse
Affiliation(s)
- S Yamasaki
- Research Institute, International Medical Center of Japan, Toyama, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
1103
|
Abstract
Nucleotide sequence analysis, and more recently whole genome analysis, shows that bacterial evolution has often proceeded by horizontal gene flow between different species and genera. In bacteria, gene transfer takes place by transformation, transduction, or conjugation and this review examines the roles of these gene transfer processes, between different bacteria, in a wide variety of ecological niches in the natural environment. This knowledge is necessary for our understanding of plasmid evolution and ecology, as well as for risk assessment. The rise and spread of multiple antibiotic resistance plasmids in medically important bacteria are consequences of intergeneric gene transfer coupled to the selective pressures posed by the increasing use and misuse of antibiotics in medicine and animal feedstuffs. Similarly, the evolution of degradative plasmids is a response to the increasing presence of xenobiotic pollutants in soil and water. Finally, our understanding of the role of horizontal gene transfer in the environment is essential for the evaluation of the possible consequences of the deliberate environmental release of natural or recombinant bacteria for agricultural and bioremediation purposes.
Collapse
Affiliation(s)
- J Davison
- Institut National de la Recherche Agronomique, Route de Saint Cyr, Versailles, F-78026, France.
| |
Collapse
|
1104
|
|
1105
|
Mirold S, Rabsch W, Rohde M, Stender S, Tschäpe H, Rüssmann H, Igwe E, Hardt WD. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci U S A 1999; 96:9845-50. [PMID: 10449782 PMCID: PMC22298 DOI: 10.1073/pnas.96.17.9845] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella typhimurium employs the specialized type III secretion system encoded in pathogenicity island 1 (SPI1) to translocate effector proteins into host cells and to modulate host cell signal transduction. The SPI1 type III system and the effector proteins are conserved among all salmonellae and are thought to be acquired by horizontal gene transfer. The genetic mechanisms mediating this horizontal transfer are unknown. Here, we describe that SopE, a SPI1-dependent translocated effector protein, is present in relatively few S. typhimurium isolates. We have isolated a temperate phage that encodes SopE. Phage morphology and DNA hybridization, as well as partial sequence information, suggest that this phage (SopEPhi) is a new member of the P2 family of bacteriophages. By lysogenic conversion this phage can horizontally transfer genes between different S. typhimurium strains. Strikingly, most of the isolates harboring SopEPhi belong to the small group of epidemic strains of S. typhimurium that have been responsible for a large percentage of human and animal salmonellosis and have persisted for a long period of time. Our data suggest that horizontal transfer of type III dependent effector proteins by lysogenic infection with bacteriophages (lysogenic conversion) may provide an efficient mechanism for fine-tuning the interaction of Salmonella spp. with their hosts.
Collapse
Affiliation(s)
- S Mirold
- Max von Pettenkofer-Institut, Ludwig Maximilians Universität, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1106
|
Miao EA, Miller SI. Bacteriophages in the evolution of pathogen-host interactions. Proc Natl Acad Sci U S A 1999; 96:9452-4. [PMID: 10449711 PMCID: PMC33707 DOI: 10.1073/pnas.96.17.9452] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- E A Miao
- Departments of Microbiology and Medicine, University of Washington, HSB K-140, Box 357710, Seattle, WA 98195, USA
| | | |
Collapse
|
1107
|
Kovacikova G, Skorupski K. A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J Bacteriol 1999; 181:4250-6. [PMID: 10400582 PMCID: PMC93926 DOI: 10.1128/jb.181.14.4250-4256.1999] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe here a new member of the LysR family of transcriptional regulators, AphB, which is required for activation of the Vibrio cholerae ToxR virulence cascade. AphB activates the transcription of the tcpPH operon in response to environmental stimuli, and this process requires cooperation with a second protein, AphA. The expression of neither aphA or aphB is strongly regulated by environmental stimuli, raising the possibility that the activities of the proteins themselves may be influenced under various conditions. Strains of the El Tor biotype of V. cholerae typically exhibit lower expression of ToxR-regulated virulence genes in vitro than classical strains and require specialized culture conditions (AKI medium) to induce high-level expression. We show here that expression of aphB from the tac promoter in El Tor biotype strains dramatically increases virulence gene expression to levels similar to those observed in classical strains under all growth conditions examined. These results suggest that AphB plays a role in the differential regulation of virulence genes between the two disease-causing biotypes.
Collapse
Affiliation(s)
- G Kovacikova
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
1108
|
Nakasone N, Ikema M, Higa N, Yamashiro T, Iwanaga M. A filamentous phage of Vibrio parahaemolyticus O3:K6 isolated in Laos. Microbiol Immunol 1999; 43:385-8. [PMID: 10385206 DOI: 10.1111/j.1348-0421.1999.tb02420.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A filamentous phage, 'lvpf5,' of Vibrio parahaemolyticus O3:K6 strain LVP5 was isolated and characterized. The host range was not restricted to serotype O3:K6, but 7 of 99 V. parahaemolyticus strains with a variety of serotypes were susceptible to the phage. The phage was inactivated by heating at 80 C for 10 min and by treating with chloroform. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phage exhibited a 3.8 kDa protein. The amino-terminal amino acid sequence of the coat protein was determined as AEGGAADPFEAIDLLGVATL. The phage genome consisted of a single-stranded DNA molecule. The activity of the phages was inhibited by anti-Na2 pili antibody.
Collapse
Affiliation(s)
- N Nakasone
- Department of Bacteriology, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | | | | | | |
Collapse
|
1109
|
Thungapathra M, Sharma C, Gupta N, Ghosh RK, Mukhopadhyay A, Koley H, Nair GB, Ghosh A. Construction of a recombinant live oral vaccine from a non-toxigenic strain of Vibrio cholerae O1 serotype inaba biotype E1 Tor and assessment of its reactogenicity and immunogenicity in the rabbit model. Immunol Lett 1999; 68:219-27. [PMID: 10424424 DOI: 10.1016/s0165-2478(99)00076-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The disease cholera is an important cause of mortality in many developing countries. Though it can be controlled through improved sanitation, this goal is not easily attainable in many countries. Development of an efficacious vaccine offers the best immediate solution. A new oral candidate vaccine has been constructed from a non-toxigenic strain of Vibrio cholerae E1 Tor, Inaba, which is not only devoid of the cholera toxin (CT) virulence cassette but also is completely non-reactogenic in rabbit ileal loop assay. The strain, however, had toxR and tcpA genes. Through a series of manipulations, the ctxB gene of V. cholerae, responsible for the production of the 'B' subunit of the cholera toxin (CTB) was introduced into the cryptic hemolysin locus of the strain. The resulting strain, named vaccine attempt 1.3 (VA1.3), was found to be able to produce copious amounts of CTB. In the RITARD model this strain was found to be non-reactogenic and provided full protection against the challenge doses of both V. cholerae O1, classical and E1 Tor. In the immunized rabbit it invoked significant levels of anti-bacterial and anti-toxin immunity.
Collapse
Affiliation(s)
- M Thungapathra
- Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|
1110
|
Ramirez M, Severina E, Tomasz A. A high incidence of prophage carriage among natural isolates of Streptococcus pneumoniae. J Bacteriol 1999; 181:3618-25. [PMID: 10368133 PMCID: PMC93836 DOI: 10.1128/jb.181.12.3618-3625.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority (591 of 791, or 76%) of Streptococcus pneumoniae clinical isolates examined showed the presence of two or more chromosomal SmaI fragments that hybridized with the lytA-specific DNA probe. Only one of these fragments, frequently having an approximate molecular size of 90 kb, was shown to carry the genetic determinant of the pneumococcal autolysin (N-acetylmuramic acid-L-alanine amidase). Strains carrying multiple copies of lytA homologues included both antibiotic-susceptible and -resistant isolates as well as a number of different serotypes and strains recovered from geographic sites on three continents. Mitomycin C treatment of strains carrying several lytA-hybridizing fragments caused the appearance of extrachromosomal DNA hybridizing to the lytA gene, followed by lysis of the bacteria. Such lysates contained phage particles detectable by electron microscopy. The findings suggest that the lytA-hybridizing fragments in excess of the host lytA represent components of pneumococcal bacteriophages. The high proportion of clinical isolates carrying multiple copies of lytA indicates the widespread occurrence of lysogeny, which may contribute to genetic variation in natural populations of pneumococci.
Collapse
Affiliation(s)
- M Ramirez
- The Rockefeller University, New York, New York, USA
| | | | | |
Collapse
|
1111
|
Karaolis DK, Somara S, Maneval DR, Johnson JA, Kaper JB. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 1999; 399:375-9. [PMID: 10360577 DOI: 10.1038/20715] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The virulence properties of many pathogenic bacteria are due to proteins encoded by large gene clusters called pathogenicity islands, which are found in a variety of human pathogens including Escherichia coli, Salmonella, Shigella, Yersinia, Helicobacter pylori, Vibrio cholerae, and animal and plant pathogens such as Dichelobacter nodosus and Pseudomonas syringae. Although the presence of pathogenicity islands is a prerequisite for many bacterial diseases, little is known about their origins or mechanism of transfer into the bacterium. The bacterial agent of epidemic cholera, Vibrio cholerae, contains a bacteriophage known as cholera-toxin phage (CTXphi), which encodes the cholera toxin, and a large pathogenicity island called the VPI (for V. cholerae pathogenicity island) which itself encodes a toxin-coregulated pilus that functions as a colonization factor and as a CTXphi receptor. We have now identified the VPI pathogenicity island as the genome of another filamentous bacteriophage, VPIphi. We show that VPIphi is transferred between V. cholerae strains and provide evidence that the TcpA subunit of the toxin-coregulated type IV pilus is in fact a coat protein of VPIphi. Our results are the first description of a phage that encodes a receptor for another phage and of a virus-virus interaction that is necessary for bacterial pathogenicity.
Collapse
Affiliation(s)
- D K Karaolis
- Center for Vaccine Development, Division of Hospital Epidemiology, University of Maryland School of Medicine, Baltimore 21201, USA.
| | | | | | | | | |
Collapse
|
1112
|
Holliger P, Riechmann L, Williams RL. Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. J Mol Biol 1999; 288:649-57. [PMID: 10329170 DOI: 10.1006/jmbi.1999.2720] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection of Escherichia coli by filamentous bacteriophages is mediated by the minor phage coat protein g3p and involves two distinct cellular receptors, the F' pilus and the periplasmic protein TolA. Recently we have shown that the two receptors are contacted in a sequential manner, such that binding of TolA by the N-terminal domain g3p-D1 is conditional on a primary interaction of the second g3p domain D2 with the F' pilus. In order to better understand this process, we have solved the crystal structure of the g3p-D1D2 fragment (residues 2-217) from filamentous phage fd to 1.9 A resolution and compared it to the recently published structure of the same fragment from the related Ff phage M13. While the structure of individual domains D1 and D2 of the two phages are very similar (rms<0.7 A), there is comparatively poor agreement for the overall D1D2 structure (rms>1.2 A). This is due to an apparent movement of domain D2 with respect to D1, which results in a widening of the inter-domain groove compared to the structure of the homologous M13 protein. The movement of D2 can be described as a rigid-body rotation around a hinge located at the end of a short anti-parallel beta-sheet connecting domains D1 and D2. Structural flexibility of at least parts of the D1D2 structure was also suggested by studying the thermal unfolding of g3p: the TolA binding site on D1, while fully blocked by D2 at 37 degrees C, becomes accessible after incubation at temperatures as low as 45 degrees C. Our results support a model for the early steps of phage infection whereby exposure of the coreceptor binding site on D1 is facilitated by a conformational change in the D1D2 structure, which in vivo is induced by binding to the F' pilus on the host cell and which can be mimicked in vitro by thermal unfolding.
Collapse
Affiliation(s)
- P Holliger
- MRC Centre for Protein Engineering, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
1113
|
|
1114
|
Nesper J, Blass J, Fountoulakis M, Reidl J. Characterization of the major control region of Vibrio cholerae bacteriophage K139: immunity, exclusion, and integration. J Bacteriol 1999; 181:2902-13. [PMID: 10217785 PMCID: PMC93736 DOI: 10.1128/jb.181.9.2902-2913.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/1998] [Accepted: 02/22/1999] [Indexed: 11/20/2022] Open
Abstract
The temperate bacteriophage K139 is highly associated with pathogenic O1 Vibrio cholerae strains. The nucleotide sequence of the major control region of K139 was determined. The sequences of four (cox, cII, cI, and int) of the six deduced open reading frames and their gene order indicated that K139 is related to the P2 bacteriophage family. Two genes of the lysogenic transcript from the mapped promoter PL encode homologs to the proteins CI and Int, with deduced functions in prophage formation and maintenance. Between the cI and int genes, two additional genes were identified: orf2, which has no significant similarity to any other gene, and the formerly characterized gene glo. Further analysis revealed that Orf2 is involved in preventing superinfection. In a previous report, we described that mutations in glo cause an attenuation effect in the cholera mouse model (J. Reidl and J. J. Mekalanos, Mol. Microbiol. 18:685-701, 1995). In this report, we present strong evidence that Glo participates in phage exclusion. Glo was characterized to encode a 13.6-kDa periplasmic protein which inhibits phage infection at an early step, hence preventing reinfection of vibriophage K139 into K139 lysogenic cells. Immediately downstream of gene int, the attP site was identified. Upon analysis of the corresponding attB site within the V. cholerae chromosome, it became evident that phage K139 is integrated between the flagellin genes flaA and flaC of O1 El Tor and O139 V. cholerae lysogenic strains.
Collapse
Affiliation(s)
- J Nesper
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | |
Collapse
|
1115
|
Medrano AI, DiRita VJ, Castillo G, Sanchez J. Transient transcriptional activation of the Vibrio cholerae El Tor virulence regulator toxT in response to culture conditions. Infect Immun 1999; 67:2178-83. [PMID: 10225872 PMCID: PMC115955 DOI: 10.1128/iai.67.5.2178-2183.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae El Tor require special in vitro culture conditions, consisting of an initial static growth period followed by shift to shaking (AKI conditions), for expression of cholera toxin (CT) and toxin coregulated pili (TCP). ToxT, a regulator whose initial transcription depends on the ToxR regulator, positively modulates expression of CT and TCP. To help understand control of CT and TCP in El Tor vibrios, we monitored ctxAB and ToxR-dependent toxT transcription by time course primer extension assays. AKI conditions stimulated CT synthesis with an absence of ctxAB transcription during static growth followed by induction upon shaking. ToxR-dependent toxT transcription was induced at the end of the static growth period but was transient, stopping shortly after shaking was initiated but, interestingly, also if the static phase was prolonged. Immunoblot assays showed that ToxR protein levels were not coincidentally transient, implying a protein on/off switch mechanism for ToxR. Despite the transient activation by ToxR, transcription of ctxAB was maintained during shaking. This finding suggested continued toxT expression, possibly through relay transcription from another promoter. The 12.6-kb distant upstream tcpA promoter responsible for expression of the TCP operon has been proposed to provide an alternate toxT message by readthrough transcription. Activation of the tcpA promoter is supported by increased expression of TcpA protein during the shaking phase of the culture. Readthrough transcription of toxT from tcpA would be compatible with reverse transcription-PCR evidence for a toxT mRNA at times when ToxR-dependent transcription was no longer detectable by primer extension.
Collapse
Affiliation(s)
- A I Medrano
- Facultad de Medicina, UAEM, Cuernavaca, Morelos, Mexico 62210, USA
| | | | | | | |
Collapse
|
1116
|
Faruque SM, Siddique AK, Saha MN, Rahman MM, Zaman K, Albert MJ, Sack DA, Sack RB. Molecular characterization of a new ribotype of Vibrio cholerae O139 Bengal associated with an outbreak of cholera in Bangladesh. J Clin Microbiol 1999; 37:1313-8. [PMID: 10203477 PMCID: PMC84761 DOI: 10.1128/jcm.37.5.1313-1318.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae O139 Bengal initially appeared in the southern coastal region of Bangladesh and spread northward, causing explosive epidemics during 1992 and 1993. The resurgence of V. cholerae O139 during 1995 after its transient displacement by a new clone of El Tor vibrios demonstrated rapid changes in the epidemiology of cholera in Bangladesh. A recent outbreak of cholera in two north-central districts of Bangladesh caused by V. cholerae O139 led us to analyze strains collected from the outbreak and compare them with V. cholerae O139 strains isolated from other regions of Bangladesh and neighboring India to investigate their origins. Analysis of restriction fragment length polymorphisms in genes for conserved rRNA (ribotype) revealed that the recently isolated V. cholerae O139 strains belonged to a new ribotype which was distinct from previously described ribotypes of toxigenic V. cholerae O139. All strains carried the genes for toxin-coregulated pili (tcpA and tcpI) and accessory colonization factor (acfB), the regulatory gene toxR, and multiple copies of the lysogenic phage genome encoding cholera toxin (CTXPhi) and belonged to a previously described ctxA genotype. Comparative analysis of the rfb gene cluster by PCR revealed the absence of a large region of the O1-specific rfb operon downstream of the rfaD gene and the presence of an O139-specific genomic region in all O139 strains. Southern hybridization analysis of the O139-specific genomic region also produced identical restriction patterns in strains belonging to the new ribotype and those of previously described ribotypes. These results suggested that the new ribotype of Bengal vibrios possibly originated from an existing strain of V. cholerae O139 by genetic changes in the rRNA operons. In contrast to previously isolated O139 strains which mostly had resistance to trimethoprim, sulfamethoxazole, and streptomycin encoded by a transposon (SXT element), 68.6% of the toxigenic strains analyzed in the present study, including all strains belonging to the new ribotype, were susceptible to these antibiotics. Molecular analysis of the SXT element revealed possible deletion of a 3.6-kb region of the SXT element in strains which were susceptible to the antibiotics. Thus, V. cholerae O139 strains in Bangladesh are also undergoing considerable reassortments in genetic elements encoding antimicrobial resistance.
Collapse
Affiliation(s)
- S M Faruque
- Molecular Genetics Laboratory, Laboratory Sciences Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh.
| | | | | | | | | | | | | | | |
Collapse
|
1117
|
Fasano A. Cellular microbiology: can we learn cell physiology from microorganisms? THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C765-76. [PMID: 10199806 DOI: 10.1152/ajpcell.1999.276.4.c765] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular microbiology is a new discipline that is emerging at the interface between cell biology and microbiology. The application of molecular techniques to the study of bacterial pathogenesis has made possible discoveries that are changing the way scientists view the bacterium-host interaction. Today, research on the molecular basis of the pathogenesis of infective diarrheal diseases of necessity transcends established boundaries between cell biology, bacteriology, intestinal pathophysiology, and immunology. The use of microbial pathogens to address questions in cell physiology is just now yielding promising applications and striking results.
Collapse
Affiliation(s)
- A Fasano
- Department of Pediatrics and Physiology, and Gastrointestinal Pathophysiology Section, Center for Vaccine Development, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
1118
|
Dimijian GG. Pathogens and Parasites: Insights from Evolutionary Biology. Proc (Bayl Univ Med Cent) 1999. [DOI: 10.1080/08998280.1999.11930169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
1119
|
Wolfgang M, van Putten JP, Hayes SF, Koomey M. The comP locus of Neisseria gonorrhoeae encodes a type IV prepilin that is dispensable for pilus biogenesis but essential for natural transformation. Mol Microbiol 1999; 31:1345-57. [PMID: 10200956 DOI: 10.1046/j.1365-2958.1999.01269.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of type IV pili (Tfp) by Neisseria gonorrhoeae has been shown to be essential for natural genetic transformation at the level of sequence-specific uptake of DNA. All previously characterized mutants defective in this step of transformation either lack Tfp or are altered in the expression of Tfp-associated properties, such as twitching motility, autoagglutination and the ability to bind to human epithelial cells. To examine the basis for this relationship, we identified potential genes encoding polypeptides sharing structural similarities to PilE, the Tfp subunit, within the N. gonorrhoeae genome sequence database. We found that disruption of one such gene, designated comP (for competence-associated prepilin), leads to a severe defect in the capacity to take up DNA in a sequence-specific manner, but does not alter Tfp biogenesis or expression of the Tfp-associated properties of auto-agglutination, twitching motility and human epithelial cell adherence. Indirect evidence based on immunodetection suggests that ComP is expressed at very low levels relative to that of PilE. The process of DNA uptake in gonococci, therefore, is now known to require the expression of at least three distinct components: Tfp, the recently identified PilT protein and ComP.
Collapse
Affiliation(s)
- M Wolfgang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | | | |
Collapse
|
1120
|
Affiliation(s)
- P A Manning
- Dept for Microbiology & Immunology, University of Adelaide, Australia.
| | | | | |
Collapse
|
1121
|
Fullner KJ, Mekalanos JJ. Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect Immun 1999; 67:1393-404. [PMID: 10024587 PMCID: PMC96473 DOI: 10.1128/iai.67.3.1393-1404.1999] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vibrio cholerae genome contains a 5.4-kb pil gene cluster that resembles the Aeromonas hydrophila tap gene cluster and other type IV-A pilus assembly operons. The region consists of five complete open reading frames designated pilABCD and yacE, based on the nomenclature of related genes from Pseudomonas aeruginosa and Escherichia coli K-12. This cluster is present in both classical and El Tor biotypes, and the pilA and pilD genes are 100% conserved. The pilA gene encodes a putative type IV pilus subunit. However, deletion of pilA had no effect on either colonization of infant mice or adherence to HEp-2 cells, demonstrating that pilA does not encode the primary subunit of a pilus essential for these processes. The pilD gene product is similar to other type IV prepilin peptidases, proteins that process type IV signal sequences. Mutational analysis of the pilD gene showed that pilD is essential for secretion of cholera toxin and hemagglutinin-protease, mannose-sensitive hemagglutination (MSHA), production of toxin-coregulated pili, and colonization of infant mice. Defects in these functions are likely due to the lack of processing of N termini of four Eps secretion proteins, four proteins of the MSHA cluster, and TcpB, all of which contain type IV-A leader sequences. Some pilD mutants also showed reduced adherence to HEp-2 cells, but this defect could not be complemented in trans, indicating that the defect may not be directly due to a loss of pilD. Taken together, these data demonstrate the effectiveness of the V. cholerae genome project for rapid identification and characterization of potential virulence factors.
Collapse
Affiliation(s)
- K J Fullner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
1122
|
Marinaro M, Di Tommaso A, Uzzau S, Fasano A, De Magistris MT. Zonula occludens toxin is a powerful mucosal adjuvant for intranasally delivered antigens. Infect Immun 1999; 67:1287-91. [PMID: 10024572 PMCID: PMC96458 DOI: 10.1128/iai.67.3.1287-1291.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zonula occludens toxin (Zot) is produced by toxigenic strains of Vibrio cholerae and has the ability to reversibly alter intestinal epithelial tight junctions, allowing the passage of macromolecules through the mucosal barrier. In the present study, we investigated whether Zot could be exploited to deliver soluble antigens through the nasal mucosa for the induction of antigen-specific systemic and mucosal immune responses. Intranasal immunization of mice with ovalbumin (Ova) and recombinant Zot, either fused to the maltose-binding protein (MBP-Zot) or with a hexahistidine tag (His-Zot), induced anti-Ova serum immunoglobulin G (IgG) titers that were approximately 40-fold higher than those induced by immunization with antigen alone. Interestingly, Zot also stimulated high anti-Ova IgA titers in serum, as well as in vaginal and intestinal secretions. A comparison with Escherichia coli heat-labile enterotoxin (LT) revealed that the adjuvant activity of Zot was only sevenfold lower than that of LT. Moreover, Zot and LT induced similar patterns of Ova-specific IgG subclasses. The subtypes IgG1, IgG2a, and IgG2b were all stimulated, with a predominance of IgG1 and IgG2b. In conclusion, our results highlight Zot as a novel potent mucosal adjuvant of microbial origin.
Collapse
Affiliation(s)
- M Marinaro
- Laboratory of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
1123
|
Byun R, Elbourne LD, Lan R, Reeves PR. Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun 1999; 67:1116-24. [PMID: 10024551 PMCID: PMC96437 DOI: 10.1128/iai.67.3.1116-1124.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of the Vibrio cholerae population, using molecular typing techniques, have shown the existence of several pathogenic clones, mainly sixth-pandemic, seventh-pandemic, and U.S. Gulf Coast clones. However, the relationship of the pathogenic clones to environmental V. cholerae isolates remains unclear. A previous study to determine the phylogeny of V. cholerae by sequencing the asd (aspartate semialdehyde dehydrogenase) gene of V. cholerae showed that the sixth-pandemic, seventh-pandemic, and U.S. Gulf Coast clones had very different asd sequences which fell into separate lineages in the V. cholerae population. As gene trees drawn from a single gene may not reflect the true topology of the population, we sequenced the mdh (malate dehydrogenase) and hlyA (hemolysin A) genes from representatives of environmental and clinical isolates of V. cholerae and found that the mdh and hlyA sequences from the three pathogenic clones were identical, except for the previously reported 11-bp deletion in hlyA in the sixth-pandemic clone. Identical sequences were obtained, despite average nucleotide differences in the mdh and hlyA genes of 1.52 and 3.25%, respectively, among all the isolates, suggesting that the three pathogenic clones are closely related. To extend these observations, segments of the recA and dnaE genes were sequenced from a selection of the pathogenic isolates, where the sequences were either identical or substantially different between the clones. The results show that the three pathogenic clones are very closely related and that there has been a high level of recombination in their evolution.
Collapse
Affiliation(s)
- R Byun
- Department of Microbiology, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
1124
|
Beltrán P, Delgado G, Navarro A, Trujillo F, Selander RK, Cravioto A. Genetic diversity and population structure of Vibrio cholerae. J Clin Microbiol 1999; 37:581-90. [PMID: 9986816 PMCID: PMC84478 DOI: 10.1128/jcm.37.3.581-590.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multilocus enzyme electrophoresis (MLEE) of 397 Vibrio cholerae isolates, including 143 serogroup reference strains and 244 strains from Mexico and Guatemala, identified 279 electrophoretic types (ETs) distributed in two major divisions (I and II). Linkage disequilibrium was demonstrated in both divisions and in subdivision Ic of division I but not in subdivision Ia, which includes 76% of the ETs. Despite this evidence of relatively frequent recombination, clonal lineages may persist for periods of time measured in at least decades. In addition to the pandemic clones of serogroups O1 and O139, which form a tight cluster of four ETs in subdivision Ia, MLEE analysis identified numerous apparent clonal lineages of non-O1 strains with intercontinental distributions. A clone of serogroup O37 that demonstrated epidemic potential in the 1960s is closely related to the pandemic O1/O139 clones, but the nontoxigenic O1 Inaba El Tor reference strain is not. A strain of serogroup O22, which has been identified as the most likely donor of exogenous rfb region DNA to the O1 progenitor of the O139 clone, is distantly related to the O1/O139 clones. The close evolutionary relationships of the O1, O139, and O37 epidemic clones indicates that new cholera clones are likely to arise by the modification of a lineage that is already epidemic or is closely related to such a clone.
Collapse
Affiliation(s)
- P Beltrán
- Departamento de Salud Pública de la Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
| | | | | | | | | | | |
Collapse
|
1125
|
Plunkett G, Rose DJ, Durfee TJ, Blattner FR. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol 1999; 181:1767-78. [PMID: 10074068 PMCID: PMC93574 DOI: 10.1128/jb.181.6.1767-1778.1999] [Citation(s) in RCA: 283] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/1998] [Accepted: 01/06/1999] [Indexed: 11/20/2022] Open
Abstract
Lysogenic bacteriophages are major vehicles for the transfer of genetic information between bacteria, including pathogenicity and/or virulence determinants. In the enteric pathogen Escherichia coli O157:H7, which causes hemorrhagic colitis and hemolytic-uremic syndrome, Shiga toxins 1 and 2 (Stx1 and Stx2) are phage encoded. The sequence and analysis of the Stx2 phage 933W is presented here. We find evidence that the toxin genes are part of a late-phage transcript, suggesting that toxin production may be coupled with, if not dependent upon, phage release during lytic growth. Another phage gene, stk, encodes a product resembling eukaryotic serine/threonine protein kinases. Based on its position in the sequence, Stk may be produced by the prophage in the lysogenic state, and, like the YpkA protein of Yersinia species, it may interfere with the signal transduction pathway of the mammalian host. Three novel tRNA genes present in the phage genome may serve to increase the availability of rare tRNA species associated with efficient expression of pathogenicity determinants: both the Shiga toxin and serine/threonine kinase genes contain rare isoleucine and arginine codons. 933W also has homology to lom, encoding a member of a family of outer membrane proteins associated with virulence by conferring the ability to survive in macrophages, and bor, implicated in serum resistance.
Collapse
MESH Headings
- Attachment Sites, Microbiological/genetics
- Bacterial Toxins/genetics
- Base Sequence
- Coliphages/genetics
- Coliphages/ultrastructure
- DNA, Viral/genetics
- Escherichia coli O157/genetics
- Escherichia coli O157/pathogenicity
- Escherichia coli O157/virology
- Genes, Bacterial
- Genes, Viral
- Humans
- Microscopy, Electron
- Molecular Sequence Data
- Nucleic Acid Conformation
- Open Reading Frames
- Operator Regions, Genetic
- Promoter Regions, Genetic
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Shiga Toxins
- Terminator Regions, Genetic
- Virulence/genetics
Collapse
Affiliation(s)
- G Plunkett
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
1126
|
Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ. Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 1999; 96:1071-6. [PMID: 9927695 PMCID: PMC15352 DOI: 10.1073/pnas.96.3.1071] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/1998] [Indexed: 11/18/2022] Open
Abstract
We identify and characterize a gene cluster in El Tor Vibrio cholerae that encodes a cytotoxic activity for HEp-2 cells in vitro. This gene cluster contains four genes and is physically linked to the cholera toxin (CTX) element in the V. cholerae genome. We demonstrate by using insertional mutagenesis that this gene cluster is required for the cytotoxic activity. The toxin, RtxA, resembles members of the RTX (repeats in toxin) toxin family in that it contains a GD-rich repeated motif. Like other RTX toxins, its activity depends on an activator, RtxC, and an associated ABC transporter system, RtxB and RtxD. In V. cholerae strains of the classical biotype, a deletion within the gene cluster removes rtxC and eliminates cytotoxic activity. Other strains, including those of the current cholera pandemic, contain a functional gene cluster and display cytotoxic activity. Thus, the RTX gene cluster in El Tor O1 and O139 strains might have contributed significantly to their emergence. Furthermore, the RTX toxin of V. cholerae may be associated with residual adverse properties displayed by certain live, attenuated cholera vaccines.
Collapse
Affiliation(s)
- W Lin
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1127
|
Marsh JW, Taylor RK. Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus. J Bacteriol 1999; 181:1110-7. [PMID: 9973335 PMCID: PMC93486 DOI: 10.1128/jb.181.4.1110-1117.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1998] [Accepted: 11/24/1998] [Indexed: 11/20/2022] Open
Abstract
The mannose-sensitive hemagglutinin (MSHA) of the Vibrio cholerae O1 El Tor biotype is a member of the family of type 4 pili. Type 4 pili are found on the surface of a variety of gram-negative bacteria and have demonstrated importance as host colonization factors, bacteriophage receptors, and mediators of DNA transfer. The gene locus required for the assembly and secretion of the MSHA pilus has been localized to a 16.7-kb region of the V. cholerae chromosome. Sixteen genes required for hemagglutination, including five that encode prepilin or prepilin-like proteins, have been identified. Examination of MSHA-specific cDNAs has localized two promoters that drive expression of these genes. This evidence indicates that the MSHA gene locus is transcriptionally organized into two operons, one encoding the secretory components and the other encoding the structural subunits, an arrangement unique among previously characterized type 4 pilus loci. The genes flanking the MSHA locus encode proteins that show homology to YhdA and MreB of Escherichia coli. In E. coli, the yhdA and mreB genes are adjacent to each other on the chromosome. The finding that the MSHA locus lies between these two E. coli homologs and that it is flanked by a 7-bp direct repeat suggests that the MSHA locus may have been acquired as a mobile genetic element.
Collapse
Affiliation(s)
- J W Marsh
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
1128
|
Chiang SL, Mekalanos JJ. rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 1999; 67:976-80. [PMID: 9916119 PMCID: PMC96415 DOI: 10.1128/iai.67.2.976-980.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae is essential for colonization. It was recently reported that rfb mutations in V. cholerae 569B cause the translocation arrest of the structural subunit of TCP, raising the possibility that the colonization defects of lipopolysaccharide mutants are due to effects on TCP biogenesis. However, an rfbB gene disruption in either V. cholerae O395 or 569B has no apparent effect on surface TCP production as assessed by immunoelectron microscopy and CTX phage transduction, and an rfbD::Tn5lac mutant of O395 also shows no defect in TCP expression. We conclude that the colonization defect associated with rfb mutations is unrelated to defects in TCP assembly.
Collapse
Affiliation(s)
- S L Chiang
- Department of Microbiology and Molecular Genetics and Shipley Institute of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
1129
|
Heithoff DM, Conner CP, Hentschel U, Govantes F, Hanna PC, Mahan MJ. Coordinate intracellular expression of Salmonella genes induced during infection. J Bacteriol 1999; 181:799-807. [PMID: 9922242 PMCID: PMC93445 DOI: 10.1128/jb.181.3.799-807.1999] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella typhimurium in vivo-induced (ivi) genes were grouped by their coordinate behavior in response to a wide variety of environmental and genetic signals, including pH, Mg2+, Fe2+, and PhoPQ. All of the seven ivi fusions that are induced by both low pH and low Mg2+ (e.g., iviVI-A) are activated by the PhoPQ regulatory system. Iron-responsive ivi fusions include those induced under iron limitation (e.g., entF) as well as one induced by iron excess but only in the absence of PhoP (pdu). Intracellular expression studies showed that each of the pH- and Mg2+-responsive fusions is induced upon entry into and growth within three distinct mammalian cell lines: RAW 264.7 murine macrophages and two cultured human epithelial cell lines: HEp-2 and Henle-407. Each ivi fusion has a characteristic level of induction consistent within all three cell types, suggesting that this class of coordinately expressed ivi genes responds to general intracellular signals that are present both in initial and in progressive stages of infection and may reflect their responses to similar vacuolar microenvironments in these cell types. Investigation of ivi expression patterns reveals not only the inherent versatility of pathogens to express a given gene(s) at various host sites but also the ability to modify their expression within the context of different animal hosts, tissues, cell types, or subcellular compartments.
Collapse
Affiliation(s)
- D M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | |
Collapse
|
1130
|
Novais RC, Coelho A, Salles CA, Vicente AC. Toxin-co-regulated pilus cluster in non-O1, non-toxigenic Vibrio cholerae: evidence of a third allele of pilin gene. FEMS Microbiol Lett 1999; 171:49-55. [PMID: 9987841 DOI: 10.1111/j.1574-6968.1999.tb13411.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polymerase chain reaction has been used to detect the presence of the virulence associated gene, tcpA and part of the promoter distal region of the toxin-co-regulated pilus cluster in non-O1, non-toxigenic, Vibrio cholerae. The amplified regions were characterised by restriction fragment length polymorphism and heteroduplex motility assay. We describe the nucleotide sequence of the tcpA gene fragment from non-toxigenic vibrios from clinical and environmental sources. The present study shows that there are at least three types of the tcpA gene among V. cholerae and the primers specific for the classical tcpA gene, amplify all biotypes. A sequence similarity in other regions of the toxin-co-regulated pilus cluster is suggested. The evidences for the presence of this cluster among non-toxigenic vibrios is, to our knowledge, reported for the first time. The use of restriction fragment length polymorphism for typing the tcpA and studying the alleles distribution is proposed.
Collapse
Affiliation(s)
- R C Novais
- Department of Genetics, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
1131
|
Benítez JA, García L, Silva A, García H, Fando R, Cedré B, Pérez A, Campos J, Rodríguez BL, Pérez JL, Valmaseda T, Pérez O, Pérez A, Ramírez M, Ledón T, Jidy MD, Lastre M, Bravo L, Sierra G. Preliminary assessment of the safety and immunogenicity of a new CTXPhi-negative, hemagglutinin/protease-defective El Tor strain as a cholera vaccine candidate. Infect Immun 1999; 67:539-45. [PMID: 9916056 PMCID: PMC96352 DOI: 10.1128/iai.67.2.539-545.1999] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae 638 (El Tor, Ogawa), a new CTXPhi-negative hemagglutinin/protease-defective strain that is a cholera vaccine candidate, was examined for safety and immunogenicity in healthy adult volunteers. In a double-blind placebo-controlled study, no significant adverse reactions were observed in volunteers ingesting strain 638. Four volunteers of 42 who ingested strain 638 and 1 of 14 who received placebo experienced loose stools. The strain strongly colonized the human small bowel, as evidenced by its isolation from the stools of 37 of 42 volunteers. V. cholerae 638, at doses ranging from 4 x 10(7) to 2 x 10(9) vibrios, elicited significant serum vibriocidal antibody and anti-Ogawa immunoglobulin A antibody secreting cell responses.
Collapse
Affiliation(s)
- J A Benítez
- Grupo de Genética, Centro Nacional de Investigaciones Científicas, " Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1132
|
Skorupski K, Taylor RK. A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol Microbiol 1999; 31:763-71. [PMID: 10048021 DOI: 10.1046/j.1365-2958.1999.01215.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the ToxR virulence regulon is dependent upon the regulatory proteins ToxR/ToxS, TcpP/TcpH and ToxT. We describe here a previously unidentified gene in Vibrio cholerae, aphA (activator of tcpP and tcpH expression), which is required for the transcription of the tcpPH operon. Under conditions normally optimal for virulence gene expression, an in frame aphA deletion decreased the expression of a cholera toxin promoter fusion (ctx-lacZ) and prevented the production of the toxin co-regulated pilus (TCP). Plasmids producing ToxT or TcpP/H, but not ToxR, restored ctx-lacZ expression and TCP production in the delta aphA strain, suggesting that the mutation interferes with toxT expression by influencing the transcription of tcpPH. Indeed, the expression of a chromosomal tcpP-lacZ fusion was reduced in the delta aphA mutant and increased in both V. cholerae and Escherichia coli by introducing aphA expressed from an inducible promoter. These results support a model in which AphA functions at a previously unknown step in the ToxR virulence cascade to activate the transcription of tcpPH. TcpP/TcpH, together with ToxR/ToxS, then activate the expression of toxT, resulting ultimately in the production of virulence factors such as cholera toxin and TCP.
Collapse
Affiliation(s)
- K Skorupski
- Dartmouth Medical School, Department of Microbiology, Hanover, NH 03755, USA.
| | | |
Collapse
|
1133
|
Killeen K, Spriggs D, Mekalanos J. Bacterial mucosal vaccines: Vibrio cholerae as a live attenuated vaccine/vector paradigm. Curr Top Microbiol Immunol 1999; 236:237-54. [PMID: 9893363 DOI: 10.1007/978-3-642-59951-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- K Killeen
- Virus Research Institute, Cambridge, USA
| | | | | |
Collapse
|
1134
|
Smith MCM, Rees CED. 3 Exploitation of Bacteriophages and their Components. METHODS IN MICROBIOLOGY 1999. [DOI: 10.1016/s0580-9517(08)70114-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
1135
|
Koomey M. Competence for natural transformation in Neisseria gonorrhoeae: a model system for studies of horizontal gene transfer. APMIS. SUPPLEMENTUM 1998; 84:56-61. [PMID: 9850683 DOI: 10.1111/j.1600-0463.1998.tb05649.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combined effort integrating studies of gonococcal Tfp biogenesis, the data made available from the gonococcal genome sequence project and applied molecular genetics have been used to identify the fibrillar filaments themselves, the PilT protein and the ComP protein as essential components for the DNA uptake phase of competence for natural transformation. Our ongoing studies are focused on identifying and understanding the complex interactions which exist between these essential constituents. These studies may be relevant not only to the early steps of genetic transformation but also to the two other venues for horizontal gene transfer based on recent findings. First, the thin pili of IncI1 conjugal plasmids required for liquid mating belong to the type IV family of pili (Yoshida et al., 1998). Secondly, type IV pili are required for lysogenic conversion of Vibrio cholerae by a filamentous phage encoding cholera toxin (Waldor and Mekalanos, 1996). How these highly conserved surface organelles contribute to such diverse forms of DNA translocation across membranes remains to be seen.
Collapse
Affiliation(s)
- M Koomey
- Biotechnology Center of Oslo, Norway
| |
Collapse
|
1136
|
Faruque SM, Saha MN, Alim AR, Albert MJ, Islam KM, Mekalanos JJ. Analysis of clinical and environmental strains of nontoxigenic Vibrio cholerae for susceptibility to CTXPhi: molecular basis for origination of new strains with epidemic potential. Infect Immun 1998; 66:5819-25. [PMID: 9826360 PMCID: PMC108736 DOI: 10.1128/iai.66.12.5819-5825.1998] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxigenic Vibrio cholerae strains are lysogens of CTXPhi, a filamentous phage which encodes cholera toxin. The receptor for CTXPhi for invading V. cholerae cells is the toxin-coregulated pilus (TCP), the genes for which reside in a larger genetic element, the TCP pathogenicity island. We analyzed 146 CTX-negative strains of V. cholerae O1 or non-O1 isolated from patients or surface waters in five different countries for the presence of the TCP pathogenicity island, the regulatory gene toxR, and the CTXPhi attachment sequence attRS, as well as for susceptibility of the strains to CTXPhi, to investigate the molecular basis for the emergence of new clones of toxigenic V. cholerae. DNA probe or PCR assays for tcpA, tcpI, acfB, toxR, and attRS revealed that 6.85% of the strains, all of which belonged to the O1 serogroup, carried the TCP pathogenicity island, toxR, and multiple copies of attRS, whereas the remaining 93.15% of the strains were negative for TCP but positive for either one or both or neither of toxR and attRS. An analysis of the strains for susceptibility to CTXPhi, using a genetically marked derivative of the phage CTX-KmPhi, showed that all TCP-positive CTX-negative strains and 1 of 136 TCP-negative strains were infected by the phage either in vitro or in the intestines of infant mice. The phage genome integrated into the chromosome of infected V. cholerae O1 cells forming stable lysogens. Comparative analysis of rRNA gene restriction patterns revealed that the lysogens derived from nontoxigenic progenitors were either closely related to or distinctly different from previously described clones of toxigenic V. cholerae. To our knowledge, this is the first demonstration of lysogenic conversion of naturally occurring nontoxigenic V. cholerae strains by CTXPhi. The results of this study further indicated that strains belonging to the O1 serogroup of V. cholerae are more likely to possess the TCP pathogenicity island and hence to be infected by CTXPhi, leading to the origination of potential new epidemic clones.
Collapse
Affiliation(s)
- S M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1000, Bangladesh.
| | | | | | | | | | | |
Collapse
|
1137
|
Wong SM, Carroll PA, Rahme LG, Ausubel FM, Calderwood SB. Modulation of expression of the ToxR regulon in Vibrio cholerae by a member of the two-component family of response regulators. Infect Immun 1998; 66:5854-61. [PMID: 9826365 PMCID: PMC108741 DOI: 10.1128/iai.66.12.5854-5861.1998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/1998] [Accepted: 09/28/1998] [Indexed: 11/20/2022] Open
Abstract
The ToxRS system in Vibrio cholerae plays a central role in the modulation of virulence gene expression in response to environmental stimuli. An integration of multiple signalling inputs mediated by ToxR, -S, and -T controls virulence gene expression leading to cholera toxin (CT) production. Recently, we identified a new virulence locus, varA (virulence associated regulator), in classical V. cholerae O1 that positively controls transcription of tcpA, the major subunit of the toxin-coregulated pilus (TCP) and the production of CT, two key factors in cholera pathogenesis. The varA locus is a homolog of gacA (originally described for the soil organism Pseudomonas fluorescens), which encodes a conserved global regulator belonging to the family of two-component signal transducing molecules. GacA homologs in a number of diverse gram-negative pathogenic bacterial species have been implicated in controlling the production of diverse virulence factors. varA mutants showed reduced levels of tcpA message and TcpA protein, lacked visible signs of autoagglutination (a phenotype associated with functional TCP), produced decreased levels of CT, and were attenuated in colonizing infant mice. Transcription of varA appears to be independent of ToxR, and overexpression of the regulators tcpPH and toxT from plasmids in the varA mutant restored wild-type levels of CT production and the ability to autoagglutinate. varA represents an additional modulating factor in the coordinate expression of virulence factors in V. cholerae.
Collapse
Affiliation(s)
- S M Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
1138
|
Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 1998; 62:1301-14. [PMID: 9841673 PMCID: PMC98947 DOI: 10.1128/mmbr.62.4.1301-1314.1998] [Citation(s) in RCA: 641] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cholera caused by toxigenic Vibrio cholerae is a major public health problem confronting developing countries, where outbreaks occur in a regular seasonal pattern and are particularly associated with poverty and poor sanitation. The disease is characterized by a devastating watery diarrhea which leads to rapid dehydration, and death occurs in 50 to 70% of untreated patients. Cholera is a waterborne disease, and the importance of water ecology is suggested by the close association of V. cholerae with surface water and the population interacting with the water. Cholera toxin (CT), which is responsible for the profuse diarrhea, is encoded by a lysogenic bacteriophage designated CTXPhi. Although the mechanism by which CT causes diarrhea is known, it is not clear why V. cholerae should infect and elaborate the lethal toxin in the host. Molecular epidemiological surveillance has revealed clonal diversity among toxigenic V. cholerae strains and a continual emergence of new epidemic clones. In view of lysogenic conversion by CTXPhi as a possible mechanism of origination of new toxigenic clones of V. cholerae, it appears that the continual emergence of new toxigenic strains and their selective enrichment during cholera outbreaks constitute an essential component of the natural ecosystem for the evolution of epidemic V. cholerae strains and genetic elements that mediate the transfer of virulence genes. The ecosystem comprising V. cholerae, CTXPhi, the aquatic environment, and the mammalian host offers an understanding of the complex relationship between pathogenesis and the natural selection of a pathogen.
Collapse
Affiliation(s)
- S M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1000, Bangladesh.
| | | | | |
Collapse
|
1139
|
Trucksis M, Michalski J, Deng YK, Kaper JB. The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci U S A 1998; 95:14464-9. [PMID: 9826723 PMCID: PMC24396 DOI: 10.1073/pnas.95.24.14464] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae, the etiologic agent of the diarrheal disease cholera, is a Gram-negative bacterium that belongs to the gamma subdivision of the family Proteobacteriaceae. The physical map of the genome has been reported, and the genome has been described as a single 3.2-Mb chromosome [Majumder, R., et al. (1996) J. Bacteriol. 178, 1105-1112]. By using pulsed-field gel electrophoresis of genomic DNA immobilized in agarose plugs and digested with the restriction enzymes I-CeuI, SfiI, and NotI, we have also constructed the physical map of V. cholerae. Our analysis estimates the size of the genome at 4.0 Mb, 25% larger than the physical map reported by others. Our most notable finding is, however, that the V. cholerae chromosome appears to be not the single chromosome reported but two unique and separate circular megareplicons.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Bacterial/genetics
- Chromosomes, Bacterial/ultrastructure
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/isolation & purification
- Deoxyribonucleases, Type II Site-Specific
- Electrophoresis, Gel, Pulsed-Field
- Genome, Bacterial
- Replicon
- Restriction Mapping
- Vibrio cholerae/genetics
Collapse
Affiliation(s)
- M Trucksis
- Center for Vaccine Development, Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
1140
|
Akopyants NS, Fradkov A, Diatchenko L, Hill JE, Siebert PD, Lukyanov SA, Sverdlov ED, Berg DE. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc Natl Acad Sci U S A 1998; 95:13108-13. [PMID: 9789049 PMCID: PMC23726 DOI: 10.1073/pnas.95.22.13108] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genes that are characteristic of only certain strains of a bacterial species can be of great biologic interest. Here we describe a PCR-based subtractive hybridization method for efficiently detecting such DNAs and apply it to the gastric pathogen Helicobacter pylori. Eighteen DNAs specific to a monkey-colonizing strain (J166) were obtained by subtractive hybridization against an unrelated strain whose genome has been fully sequenced (26695). Seven J166-specific clones had no DNA sequence match to the 26695 genome, and 11 other clones were mixed, with adjacent patches that did and did not match any sequences in 26695. At the protein level, seven clones had homology to putative DNA restriction-modification enzymes, and two had homology to putative metabolic enzymes. Nine others had no database match with proteins of assigned function. PCR tests of 13 unrelated H. pylori strains by using primers specific for 12 subtracted clones and complementary Southern blot hybridizations indicated that these DNAs are highly polymorphic in the H. pylori population, with each strain yielding a different pattern of gene-specific PCR amplification. The search for polymorphic DNAs, as described here, should help identify previously unknown virulence genes in pathogens and provide new insights into microbial genetic diversity and evolution.
Collapse
Affiliation(s)
- N S Akopyants
- Departments of Molecular Microbiology and Genetics, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
1141
|
Chang B, Taniguchi H, Miyamoto H, Yoshida SI. Filamentous bacteriophages of Vibrio parahaemolyticus as a possible clue to genetic transmission. J Bacteriol 1998; 180:5094-101. [PMID: 9748441 PMCID: PMC107544 DOI: 10.1128/jb.180.19.5094-5101.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported the isolation and characterization of two filamentous bacteriophages of Vibrio parahaemolyticus, designated Vf12 and Vf33. In this study, to understand the potential of these phages as tools for genetic transmission, we investigated the gene structures of replicative-form (RF) DNAs of their genomes and the distribution of these DNAs on chromosomal and extrachromosomal DNAs. The 7,965-bp nucleotide sequences of Vf12 and Vf33 were determined. An analysis of the overall gene structures revealed that Vf12 and Vf33 had conserved regions and distinctive regions. The gene organization of their conserved regions was similar to that of CTX phage of Vibrio cholerae and coliphage Ff of Escherichia coli, while their distinctive regions were characteristic of Vf12 and Vf33 phage genomes. Southern blot hybridization testing revealed that the filamentous phage genomes integrated into chromosomal DNA of V. parahaemolyticus at the distinctive region of the phage genome and were also distributed on some plasmids of V. parahaemolyticus and total cellular DNAs of one Vibrio damsela and one nonagglutinable Vibrio strain tested. These results strongly suggest the possibilities of genetic interaction among the bacteriophage Vf12 and Vf33 genomes and chromosomal and plasmid-borne DNAs of V. parahaemolyticus strains and of genetic transmission among strains through these filamentous phages.
Collapse
Affiliation(s)
- B Chang
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishiku, Kitakyushu 807-8555, Japan
| | | | | | | |
Collapse
|
1142
|
Kimsey HH, Waldor MK. Vibrio cholerae hemagglutinin/protease inactivates CTXphi. Infect Immun 1998; 66:4025-9. [PMID: 9712742 PMCID: PMC108480 DOI: 10.1128/iai.66.9.4025-4029.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1998] [Accepted: 06/02/1998] [Indexed: 11/20/2022] Open
Abstract
Pathogenic strains of Vibrio cholerae are lysogens of the filamentous phage CTXphi, which carries the genes for cholera toxin (ctxAB). We found that the titers of infective CTXphi in culture supernatants of El Tor CTXphi lysogens increased rapidly during exponential growth but dropped to undetectable levels late in stationary-phase growth. When CTXphi transducing particles were mixed with stationary-phase culture supernatants of El Tor strains, CTXphi infectivity was destroyed. Our data indicate that this growth phase-regulated factor, designated CDF (CTXphi-destroying factor), is the secreted hemagglutinin/protease (HA/P) of V. cholerae. A strain containing a disrupted hap gene, which encodes HA/P of V. cholerae, did not produce CDF activity in culture supernatants. Introduction of the HA/P-expressing plasmid pCH2 restored CDF activity. Also, CDF activity in culture supernatants of a variety of pathogenic V. cholerae isolates varied widely but correlated with the levels of secreted HA/P, as measured by immunoblotting with anti-HA/P antibody. CDF was purified from V. cholerae culture supernatants and shown to contain a 45-kDa polypeptide which bound anti-HA/P antibodies and which comigrated with HA/P in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The production of high levels of secreted HA/P by certain V. cholerae strains may be a factor in preventing CTXphi reinfection in natural environments and in the human host.
Collapse
Affiliation(s)
- H H Kimsey
- Division of Geographic Medicine, Tupper Research Institute, New England Medical Center, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
1143
|
|
1144
|
Affiliation(s)
- M K Waldor
- Divn of Geographic Medicine and Infectious Diseases, Tupper Research Institute, Tufts-New England Medical Center, Boston, MA, USA.
| |
Collapse
|
1145
|
Faruque SM, Alim AR, Albert MJ, Islam KM, Mekalanos JJ. Induction of the lysogenic phage encoding cholera toxin in naturally occurring strains of toxigenic Vibrio cholerae O1 and O139. Infect Immun 1998; 66:3752-7. [PMID: 9673258 PMCID: PMC108411 DOI: 10.1128/iai.66.8.3752-3757.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In toxigenic Vibrio cholerae, the CTX genetic element which carries the genes for cholera toxin (CT) is the genome of a lysogenic bacteriophage (CTXPhi). Clinical and environmental strains of V. cholerae O1 or O139 and stools that were culture positive for cholera were analyzed to study the induction and transmission of CTXPhi. To our knowledge, this is the first report of the examination of CTXPhi in clinical materials and in naturally occurring strains. DNA probe analysis revealed that 4.25% (6 of 141) of the isolated V. cholerae strains spontaneously produced a detectable level of extracellular CTXPhi particles in the culture supernatants whereas another 34.04% (48 of 141) produced CTXPhi particles when induced with mitomycin C. CTXPhi isolated from 10 clinical or environmental strains infected a CT-negative recipient strain, CVD103, both inside the intestines of infant mice and under laboratory conditions. All culture-positive stools analyzed were negative for the presence of CTXPhi both in the DNA probe assay and by in vivo assay for the infection of the recipient strain in infant mice. These results suggested that naturally occurring strains of toxigenic V. cholerae are inducible lysogens of CTXPhi but that cholera pathogenesis in humans is not associated with the excretion of CTXPhi particles in stools, indicating that induction of the phage may not occur efficiently inside the human intestine. However, in view of the efficient transmission of the phage under conditions conducive to the expression of toxin-coregulated pili, it appears that propagation of CTXPhi in the natural habitat may involve both environmental and host factors.
Collapse
Affiliation(s)
- S M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1000, Bangladesh.
| | | | | | | | | |
Collapse
|
1146
|
Zhang JR, Norris SJ. Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun 1998; 66:3689-97. [PMID: 9673250 PMCID: PMC108403 DOI: 10.1128/iai.66.8.3689-3697.1998] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Accepted: 05/18/1998] [Indexed: 02/08/2023] Open
Abstract
The Lyme disease agent, Borrelia burgdorferi, is able to persistently infect humans and animals for months or years in the presence of an active immune response. It is not known how the organisms survive immune attack in the mammalian host. vlsE, a gene localized near one end of linear plasmid lp28-1 and encoding a surface-exposed lipoprotein in B. burgdorferi B31, was shown recently to undergo extensive genetic and antigenic variation within 28 days of initial infection in C3H/HeN mice. In this study, we examined the kinetics of vlsE sequence variation in C3H/HeN mice at 4, 7, 14, 21, and 28 days and at 7 and 12 months postinfection. Sequence changes were detected by PCR amplification and sequence analysis as early as 4 days postinfection and accumulated progressively in both C3H/HeN and CB-17 severe combined immunodeficient (SCID) mice throughout the course of infection. The sequence changes were consistent with sequential recombination of segments from multiple silent vls cassette sites into the vlsE expression site. No vlsE sequence changes were detected in organisms cultured in vitro for up to 84 days. These results indicate that vlsE recombination is induced by a factor(s) present in the mammalian host, independent of adaptive immune responses. The possible inducing conditions appear to be present in various tissue sites because isolates from multiple tissues showed similar degrees of sequence variation. The rate of accumulation of predicted amino acid changes was higher in the immunologically intact C3H/HeN mice than in SCID mice, a finding consistent with immune selection of VlsE variants.
Collapse
Affiliation(s)
- J R Zhang
- Department of Pathology and Laboratory Medicine and Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | |
Collapse
|
1147
|
Edwards RA, Puente JL. Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends Microbiol 1998; 6:282-7. [PMID: 9717217 DOI: 10.1016/s0966-842x(98)01288-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of species of enteric bacteria to recognize and colonize unique niches along the intestine is mainly based on receptor distribution and interpretation of a combination of environmental signals leading to the expression of specific adherence factors. Such elaborate orchestration of events is critical during the initial steps of pathogenesis.
Collapse
Affiliation(s)
- R A Edwards
- Dept of Microbiology, University of Illinois Urbana-Champaign 61801, USA.
| | | |
Collapse
|
1148
|
Campos J, Fando R, Silva A, Rodriguez BL, Benitez JA. Replicating function of the RS1 element associated with Vibrio cholerae CTX phi prophage. FEMS Microbiol Lett 1998; 164:141-7. [PMID: 9675860 DOI: 10.1111/j.1574-6968.1998.tb13079.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The RS1 element associated with Vibrio cholerae CTX phi prophage was cloned from an E1 Tor biotype Vibrio cholerae strain. We used the recA- vaccine strain Peru-15, that lacks the target for RS-mediated site-specific integration, to show that RS1 promotes autonomous replication of a suicide vector. A linker insertion in the rstR open reading frame abolished autonomous replication in Peru-15 but not in a strain containing an RS1 in the chromosome. An AT-rich region containing cis-acting elements involved in autonomous replication was identified by deletion. This region was sufficient to support autonomous replication in a strain containing an RS1 in the chromosome. DNA sequence analysis of a region present in RS1 and not RS2 revealed the presence of putative binding sites for host proteins involved in plasmid replication. These results indicate that RS1 contains a replicon distinct from RS2 which could be involved in replicative recombination events associated with tandem amplification of the CTX element.
Collapse
Affiliation(s)
- J Campos
- Centro Nacional de Investigaciones, Cientificas, La Habana, Cuba
| | | | | | | | | |
Collapse
|
1149
|
Crawford JA, Kaper JB, DiRita VJ. Analysis of ToxR-dependent transcription activation of ompU, the gene encoding a major envelope protein in Vibrio cholerae. Mol Microbiol 1998; 29:235-46. [PMID: 9701817 DOI: 10.1046/j.1365-2958.1998.00925.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane proteins ToxR and ToxS regulate a variety of genes associated with the virulence of Vibrio cholerae, the agent of human cholera. One of the ToxRS-regulated genes is the ompU gene, which encodes a porin that may also act as an adhesin. To begin to understand the mechanism of ompU transcription activation by ToxRS, we performed genetic and biochemical studies on the ompU promoter. Deletions with a 5' end-point at or downstream of -128, relative to the start site for transcription, did not direct expression of a lacZ reporter gene in wild-type V. cholerae, although the -128 promoter fragment did direct ToxRS-dependent reporter gene activity under conditions of ToxR overexpression in E. coli. Consistent with the activation data is that membranes containing ToxR and ToxS caused a gel electrophoretic mobility shift when mixed at low concentrations with deletion fragments whose end-point is at -211, but not with -128 or -68 fragments. ToxRS membranes did shift the -128 fragment when added at higher concentrations. DNase I footprinting analysis of ompU promoter DNA complexed with ToxRS membranes demonstrated protection of three sites: an upstream site ranging from -238 to -139, and two downstream sites ranging from -116 to -58 and -53 to -24. Within the DNA protected from DNase I digestion by ToxRS membranes, there are no elements bearing similarity to those identified previously within the promoters of two other ToxR-dependent genes, ctxA and toxT. We suggest a model for transcription activation that involves sequential ToxR-binding events to distinct regions in the ompU promoter.
Collapse
Affiliation(s)
- J A Crawford
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | |
Collapse
|
1150
|
Muniesa M, Jofre J. Abundance in sewage of bacteriophages that infect Escherichia coli O157:H7 and that carry the Shiga toxin 2 gene. Appl Environ Microbiol 1998; 64:2443-8. [PMID: 9647813 PMCID: PMC106409 DOI: 10.1128/aem.64.7.2443-2448.1998] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Accepted: 04/28/1998] [Indexed: 02/08/2023] Open
Abstract
Shiga toxin-converting bacteriophages are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7, but data on the occurrence and distribution of such phages as free particles in nature were not available. An experimental approach has been developed to detect the presence of the Shiga toxin 2 (Stx 2)-encoding bacteriophages in sewage. The Stx 2 gene was amplified by PCR from phages concentrated from 10-ml samples of sewage. Moreover, the phages carrying the Stx 2 gene were detected in supernatants from bacteriophage enrichment cultures by using an Stx 2-negative E. coli O157:H7 strain infected with phages purified from volumes of sewage as small as 0.02 ml. Additionally, the A subunit of Stx 2 was detected in the supernatants of the bacteriophage enrichment cultures, which also showed cytotoxic activity for Vero cells. By enrichment of phages concentrated from different volumes of sewage and applying the most-probable-number technique, it was estimated that the number of phages infectious for E. coli O157:H7 and carrying the Stx 2 gene was in the range of 1 to 10 per ml of sewage from two different origins. These values were approximately 1% of all phages infecting E. coli O157:H7.
Collapse
Affiliation(s)
- M Muniesa
- Department of Microbiology, University of Barcelona, Spain
| | | |
Collapse
|