1201
|
Zhang W, Pantschenko AG, McCarthy MB, Gronowicz G. Bone-targeted overexpression of Bcl-2 increases osteoblast adhesion and differentiation and inhibits mineralization in vitro. Calcif Tissue Int 2007; 80:111-22. [PMID: 17308993 DOI: 10.1007/s00223-006-0168-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 11/21/2006] [Indexed: 12/11/2022]
Abstract
Apoptosis is a process important for the development and homeostasis of self-renewing tissues, including bone. However, little is known about the function of Bcl-2, a key player of apoptosis, in the regulation of osteoblast activity. Ex vivo cultures of osteoblasts from Col2.3Bcl-2 mice, in which human Bcl-2 was targeted to bone by the 2.3 kb fragment of the type I collagen promoter, were used to study the effect of Bcl-2 in osteoblasts. During 35 days of culture, hBcl-2 expression increased without any effect on endogenous mouse Bcl-2 and Bax expression. Adhesion of transgenic (TG) osteoblasts was twofold more than that of wild-type (WT) cells, with significantly higher expression of integrins alpha(1), alpha(2), and alpha(5) but similar levels of alpha(v) and beta(1) relative to WT cells. Proliferation of osteoblasts was not affected. Overexpression of hBcl-2 promoted the differentiation of osteoblasts, as shown by increased message levels of alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin in the TG compared to WT cells throughout the culture period. The two transcription factors essential for osteoblast differentiation, core binding factor alpha 1 (Cbfa-1) and osterix, had significantly higher expression in TG than WT cells during the early culture period. ss-Catenin, a central player in the canonical Wnt pathway, also had higher expression in TG than WT cultures. Mineralization was significantly decreased in TG cultures, with less osteoblast apoptosis, compared to WT. Thus, Bcl-2 seems to have multiple roles in modulating osteoblast activities.
Collapse
Affiliation(s)
- W Zhang
- Department of Orthopedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
1202
|
Clines GA, Mohammad KS, Bao Y, Stephens OW, Suva LJ, Shaughnessy JD, Fox JW, Chirgwin JM, Guise TA. Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Mol Endocrinol 2007; 21:486-98. [PMID: 17068196 PMCID: PMC2013302 DOI: 10.1210/me.2006-0346] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tumor-produced endothelin-1 (ET-1) stimulates osteoblasts to form new bone and is an important mediator of osteoblastic bone metastasis. The anabolic actions of ET-1 in osteoblasts were investigated by gene microarray analyses of murine neonatal calvarial organ cultures. Targets of ET-1 action were validated by real-time RT-PCR in murine primary osteoblast cultures. IL-6, IL-11, the CCN (CYR61, CTGF, NOV) family members cysteine-rich protein 61 and connective tissue growth factor, inhibin beta-A, serum/glucocorticoid regulated kinase, receptor activator of nuclear factor kappaB ligand, snail homolog 1, tissue inhibitor of metalloproteinase 3, and TG-interacting factor transcripts were increased by ET-1. ET-1 decreased the transcript for the Wnt signaling pathway inhibitor, dickkopf homolog 1 (Dkk1). Calvarial organ cultures treated with ET-1 had lower concentrations of DKK1 protein in conditioned media than control cultures. High DKK1 concentrations in bone marrow suppress bone formation in multiple myeloma. We hypothesized that the converse occurs in osteoblastic bone metastasis, where ET-1 stimulates osteoblast activity by reducing autocrine production of DKK1. Recombinant DKK1 blocked ET-1-mediated osteoblast proliferation and new bone formation in calvarial organ cultures, whereas a DKK1-neutralizing antibody increased osteoblast numbers and new bone formation. ET-1 directed nuclear translocation of beta-catenin in osteoblasts, indicating activation of the Wnt signaling pathway. The data suggest that ET-1 increases osteoblast proliferation and new bone formation by activating the Wnt signaling pathway through suppression of the Wnt pathway inhibitor DKK1.
Collapse
Affiliation(s)
- Gregory A Clines
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Aurbach Laboratory, The University of Virginia, P.O. Box 801419, Charlottesville, Virginia 22908-1419, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1203
|
Mak KK, Chen MH, Day TF, Chuang PT, Yang Y. Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 2007; 133:3695-707. [PMID: 16936073 DOI: 10.1242/dev.02546] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both the Wnt/beta-catenin and Ihh signaling pathways play essential roles in crucial aspects of endochondral ossification: osteoblast differentiation, chondrocyte proliferation and hypertrophy. To understand the genetic interaction between these two signaling pathways, we have inactivated the beta-catenin gene and upregulated Ihh signaling simultaneously in the same cells during endochondral skeletal development using beta-catenin and patched 1 floxed alleles. We uncovered previously unexpected roles of Ihh signaling in synovial joint formation and the essential function of Wnt/beta-catenin signaling in regulating chondrocyte survival. More importantly, we found that Wnt and Ihh signaling interact with each other in distinct ways to control osteoblast differentiation, chondrocyte proliferation, hypertrophy, survival and synovial joint formation in the developing endochondral bone. Beta-catenin is required downstream of Ihh signaling and osterix expression for osteoblast differentiation. But in chondrocyte survival, beta-catenin is required upstream of Ihh signaling to inhibit chondrocyte apoptosis. In addition, Ihh signaling can inhibit chondrocyte hypertrophy and synovial joint formation independently of beta-catenin. However, there is a strong synergistic interaction between Wnt/beta-catenin and Ihh signaling in regulating synovial joint formation.
Collapse
Affiliation(s)
- Kingston Kinglun Mak
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
1204
|
Miura M, Miura Y, Sonoyama W, Yamaza T, Gronthos S, Shi S. Bone marrow-derived mesenchymal stem cells for regenerative medicine in craniofacial region. Oral Dis 2007; 12:514-22. [PMID: 17054762 DOI: 10.1111/j.1601-0825.2006.01300.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The craniofacial region contains many specified tissues including bone, cartilage, muscle, blood vessels and neurons. Defect or dysfunction of the craniofacial tissue after post-cancer ablative surgery, trauma, congenital malformations and progressive deforming skeletal diseases has a huge influence on the patient's life. Therefore, functional reconstruction of damaged tissues is highly expected. Bone marrow-derived mesenchymal stem cells (BMMSCs) are one of the most well characterized postnatal stem cell populations, and considered to be utilized for cell-based clinical therapies. Here, the current understanding and the potential applications in craniofacial tissue regeneration of BMMSCs are reviewed, and the current limitations and drawbacks are also discussed.
Collapse
Affiliation(s)
- M Miura
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
1205
|
Lane NE, Nevitt MC, Lui LY, de Leon P, Corr M. Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. ACTA ACUST UNITED AC 2007; 56:3319-25. [PMID: 17907185 DOI: 10.1002/art.22867] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine whether serum levels of 2 Wnt signaling antagonists, Frizzled-related protein (FRP) and Dkk-1, are associated with the development and progression of radiographic hip osteoarthritis (RHOA). METHODS Pelvic radiographs were obtained a mean of 8.3 years apart in 5,928 Caucasian women >or=65 years of age who were enrolled in the Study of Osteoporotic Fractures. Random sampling of this cohort was performed, with approximately 180 subjects per group assigned to 2 nested case-control studies on RHOA incidence and progression. Baseline serum levels of FRP and Dkk-1 were measured by capture enzyme-linked immunosorbent assay. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using logistic regression analyses with adjustment for potential covariates. RESULTS There were no differences in serum levels of FRP and Dkk-1 between case subjects with incidence or progression of RHOA and their respective control subjects. There was a trend for higher baseline serum levels of FRP to be associated with a reduced risk of incident RHOA (age-adjusted OR 0.59 [95% CI 0.32-1.09], P = 0.09 for women in the highest quartile versus women in the lowest quartile). There was no association of serum levels of FRP with progression of RHOA. Serum levels of Dkk-1 did not correlate with incident RHOA. However, higher serum levels of Dkk-1 were associated with diminished risk of RHOA progression (age-adjusted OR 0.43 [95% CI 0.23-0.79], P = 0.007 for women in the highest quartile compared with women in the lowest quartile). CONCLUSION Elevated circulating levels of Dkk-1 appeared to be associated with reduced progression of RHOA in elderly women, whereas the highest quartile of serum FRP levels tended to be associated with a modest reduction in risk of incident RHOA.
Collapse
Affiliation(s)
- Nancy E Lane
- University of California, Davis, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
1206
|
Chen Y, Whetstone HC, Youn A, Nadesan P, Chow ECY, Lin AC, Alman BA. β-Catenin Signaling Pathway Is Crucial for Bone Morphogenetic Protein 2 to Induce New Bone Formation. J Biol Chem 2007; 282:526-33. [PMID: 17085452 DOI: 10.1074/jbc.m602700200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endochondral ossification is recapitulated during bone morphogenetic protein (BMP)-induced ectopic bone formation. Although BMP and beta-catenin have been investigated in bone development and in mesenchymal cells, how they interact in this process is not clear. We implanted recombinant BMP-2 into the muscle of mice to investigate the effect of beta-catenin signaling on BMP-induced in vivo endochondral bone formation. BMP-2 induced expression of several Wnt ligands and their receptors and also activated beta-catenin-mediated T cell factor-dependent transcriptional activity. An adenovirus expressing Dickkopf-1 (Dkk-1, an inhibitor of canonical Wnt pathway) inhibited beta-catenin signaling and endochondral bone formation. Interestingly, Dkk-1 inhibited both chondrogenesis and osteogenesis. Likewise, mice expressing conditional beta-catenin null alleles also displayed an inhibition of BMP-induced chondrogenesis and osteogenesis. This is in contrast to studies of embryonic skeletogenesis, which demonstrate that beta-catenin is required for osteogenesis but is dispensable for chondrogenesis. These findings suggest that embryonic development pathways are not always recapitulated during post-natal regenerative processes, and the biochemical pathways utilized to regulate cell differentiation may be different. During in vivo ectopic bone formation, BMP-2 induces beta-catenin-mediated signaling through Wnt ligands, and beta-catenin is required for both chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Yan Chen
- Program in Developmental Biology, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
1207
|
Wang Y, Volloch V, Pindrus MA, Blasioli DJ, Chen J, Kaplan DL. Murine osteoblasts regulate mesenchymal stem cells via WNT and cadherin pathways: mechanism depends on cell–cell contact mode. J Tissue Eng Regen Med 2007; 1:39-50. [DOI: 10.1002/term.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
1208
|
Nguyen H, Rendl M, Fuchs E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 2006; 127:171-83. [PMID: 17018284 DOI: 10.1016/j.cell.2006.07.036] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 05/30/2006] [Accepted: 07/31/2006] [Indexed: 01/19/2023]
Abstract
Many stem cells (SCs) respond to Wnt signaling, but whether beta-catenin's DNA binding partners, the Tcfs, play a role in SCs in the absence of Wnts, is unknown. In adult skin, quiescent multipotent progenitors express Tcf3 and commit to a hair cell fate in response to Wnt signaling. We find that embryonic skin progenitors also express Tcf3. Using an inducible system in mice, we show that upon Tcf3 reactivation, committed epidermal cells induce genes associated with an undifferentiated, Wnt-inhibited state and Tcf3 promotes a transcriptional program shared by embryonic and postnatal SCs. Further, Tcf3-repressed genes include transcriptional regulators of the epidermal, sebaceous gland and hair follicle differentiation programs, and correspondingly, all three terminal differentiation pathways are suppressed when Tcf3 is induced postnatally. These data suggest that in the absence of Wnt signals, Tcf3 may function in skin SCs to maintain an undifferentiated state and, through Wnt signaling, directs these cells along the hair lineage.
Collapse
Affiliation(s)
- Hoang Nguyen
- Howard Hughes Medical Institute, Department of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, Box 300, New York, NY 10021, USA
| | | | | |
Collapse
|
1209
|
zur Nieden NI, Price FD, Davis LA, Everitt RE, Rancourt DE. Gene profiling on mixed embryonic stem cell populations reveals a biphasic role for beta-catenin in osteogenic differentiation. Mol Endocrinol 2006; 21:674-85. [PMID: 17170073 DOI: 10.1210/me.2005-0438] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The differentiation of embryonic stem cells (ESCs) into osteoblasts is enhanced to 60% when exposed to vitamin D3 (VD3) but leaves a remainder of one half of the cell population unidentified. To increase differentiation outcome, the known osteoinducers retinoic acid (RA) and bone morphogenetic protein-2 (BMP-2) were evaluated. Initial studies using RA and BMP-2 during early osteogenesis in addition to VD3 increased osteogenic yield in the case of RA, but surprisingly decreased osteogenesis when BMP-2 was administered together with VD3 or RA. This paper describes a comprehensive microarray study examining the gene expression profile of differentiating osteoblasts in these mixed ESC populations. In addition to five other families of signaling molecules (insulin growth factors, prostaglandin, follistatin, TGFbeta2, and Wnt molecules), we identified an endogenous expression pattern for BMPs and RA that differed from our previous exogenous administration of these molecules. By mimicking the change in expression of the RA and BMP-2 families with exogenous supplementation at the correct time, it was then possible to increase the number of ESC-derived osteoblasts to 90%. This effect was mediated through alteration in beta-catenin (CatnB) expression levels and nuclear CatnB activity, both of which are modulated by VD3, RA, and BMP-2. Our results suggest that blockage of CatnB activity by VD3 and RA is opposed by induction of CatnB activity through BMP-2 when administered together. Hence, osteoinduction, in vitro, is an intricate process involving both temporal and quantitative changes in gene expression and CatnB activity.
Collapse
Affiliation(s)
- Nicole I zur Nieden
- University of Calgary, Faculty of Medicine, Institute of Maternal and Child Health, Calgary, Alberta, Canada.
| | | | | | | | | |
Collapse
|
1210
|
Reinhold MI, Naski MC. Direct interactions of Runx2 and canonical Wnt signaling induce FGF18. J Biol Chem 2006; 282:3653-63. [PMID: 17158875 DOI: 10.1074/jbc.m608995200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Canonical Wnt signaling is clearly required for skeletal development and bone formation. However, the targets of Wnt signaling that convert this signal into bone are unclear. Identification of these targets will yield insight into normal bone physiology and suggest new therapeutics for treatment of bone disease. Here we show that an essential regulator of bone development, FGF18, is a direct target of canonical Wnt signaling. A single DNA binding site for the Wnt-dependent transcription factors TCF/Lef accounted for the stimulation of the fgf18 promoter in response to Wnt signaling. Additionally, targeted disruption of betacat blocked fgf18 expression in vivo. Partially overlapping the TCF/Lef binding site is a Runx2 binding site and experiments showed that Runx2 and TCF/Lef work cooperatively to induce fgf18 expression. RNA interference knockdown of Runx2 inhibited and Runx2 forced expression augmented the induction of fgf18 by canonical Wnt signaling. Significantly, Runx2 formed a complex with Lef1 or TCF4 and this complex bound the composite binding site in the fgf18 promoter. These results demonstrate that two transcription pathways that are essential for bone, physically and functionally converge at the fgf18 promoter.
Collapse
Affiliation(s)
- Martina I Reinhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | |
Collapse
|
1211
|
Mount JG, Muzylak M, Allen S, Althnaian T, McGonnell IM, Price JS. Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration. Dev Dyn 2006; 235:1390-9. [PMID: 16552759 DOI: 10.1002/dvdy.20742] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Wnt signalling regulates many developmental processes, including the fate specification, polarity, migration, and proliferation of cranial neural crest. The canonical Wnt pathway has also been shown to play an important role in bone physiology and there is evidence for its recapitulation during organ regeneration in lower vertebrates. This study explores the role of the Wnt signalling pathway in deer antlers, frontal bone appendages that are the only mammalian organs capable of regeneration. Immunocytochemistry was used to map the distribution of the activated form of beta-catenin ((a)betaCAT). A low level of (a)betaCAT staining was detected in chondrocytes and in osteoblasts at sites of endochondral bone formation. However, (a)betaCAT was localised in cellular periosteum and in osteoblasts in intramembranous bone, where it co-localised with osteocalcin. The most intense (a)betaCAT staining was in dividing undifferentiated cells in the mesenchymal growth zone. Antler progenitor cells (APCs) were cultured from this region and when the canonical Wnt pathway was inhibited at the level of Lef/TCF by epigallocatechin gallate (EGCG), the cell number decreased. TUNEL staining revealed that this was as a result of increased apoptosis. Activation of the pathway by lithium chloride (LiCl) had no effect on cell number but inhibited alkaline phosphate activity (ALP), a marker of APC differentiation, whereas EGCG increased ALP activity. This study demonstrates that beta-catenin plays an important role in the regulation of antler progenitor cell survival and cell fate. It also provides evidence that beta-catenin's function in regulating bone formation by osteoblasts may be site-specific.
Collapse
Affiliation(s)
- J G Mount
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
1212
|
Mbalaviele G, Shin CS, Civitelli R. Cell-cell adhesion and signaling through cadherins: connecting bone cells in their microenvironment. J Bone Miner Res 2006; 21:1821-7. [PMID: 17002562 DOI: 10.1359/jbmr.060811] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
1213
|
Pearse RN. Wnt antagonism in multiple myeloma: a potential cause of uncoupled bone remodeling. Clin Cancer Res 2006; 12:6274s-6278s. [PMID: 17062713 DOI: 10.1158/1078-0432.ccr-06-0648] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone disease in patients with multiple myeloma (MM) is characterized by uncoupled bone remodeling, evident as enhanced osteolytic resorption and decreased rather than increased bone formation. MM-triggered osteolysis follows deregulation of the receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin cytokine axis. Inhibition of bone formation may result from the ability of MM to inhibit the function of Wnts, secreted glycoproteins critical to osteoblast development. Recent studies show how these processes may be linked.
Collapse
Affiliation(s)
- Roger N Pearse
- Division of Hematology/Oncology, Cornell University Medical College, New York, New York 10021, USA.
| |
Collapse
|
1214
|
Kim Y, Capel B. Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Dev Dyn 2006; 235:2292-300. [PMID: 16881057 DOI: 10.1002/dvdy.20894] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The embryonic gonads give rise to one of two morphologically and functionally different organs, a testis or an ovary. Sex determination is the embryonic process that determines the developmental fate of the gonad. In mammals, sex determination is regulated by a DNA binding protein encoded on the Y chromosome, Sry, and it's downstream mediator, Sox9, which trigger testis determination in the bipotential gonad. However, evidence suggests that the extracellular signals. Fgf9 and Wnt4, are also required to establish divergent organogenesis of the gonad. In this review, we discuss how these extracellular signals interface with cell-autonomous factors to determine the fate of the mammalian gonad, and we derive a model that could provide a molecular explanation for testis determination in vertebrates where Sry is absent.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
1215
|
Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2006; 109:2106-11. [PMID: 17068150 PMCID: PMC1801040 DOI: 10.1182/blood-2006-09-047712] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dickkopf-1 (DKK1), a soluble inhibitor of Wnt signaling secreted by multiple myeloma (MM) cells contributes to osteolytic bone disease by inhibiting the differentiation of osteoblasts. In this study, we tested the effect of anti-DKK1 therapy on bone metabolism and tumor growth in a SCID-rab system. SCID-rab mice were engrafted with primary MM cells expressing varying levels of DKK1 from 11 patients and treated with control and DKK1-neutralizing antibodies for 4 to 6 weeks. Whereas bone mineral density (BMD) of the implanted myelomatous bone in control mice was reduced during the experimental period, the BMD in mice treated with anti-DKK1 increased from pretreatment levels (P < .001). Histologic examination revealed that myelomatous bones of anti-DKK1-treated mice had increased numbers of osteocalcin-expressing osteoblasts and reduced number of multinucleated TRAP-expressing osteoclasts. The bone anabolic effect of anti-DKK1 was associated with reduced MM burden (P < .04). Anti-DKK1 also significantly increased BMD of the implanted bone and murine femur in nonmyelomatous SCID-rab mice, suggesting that DKK1 is physiologically an important regulator of bone remodeling in adults. We conclude that DKK1 is a key player in MM bone disease and that blocking DKK1 activity in myelomatous bones reduces osteolytic bone resorption, increases bone formation, and helps control MM growth.
Collapse
Affiliation(s)
- Shmuel Yaccoby
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|
1216
|
Liu B, Yu HMI, Hsu W. Craniosynostosis caused by Axin2 deficiency is mediated through distinct functions of beta-catenin in proliferation and differentiation. Dev Biol 2006; 301:298-308. [PMID: 17113065 PMCID: PMC1821096 DOI: 10.1016/j.ydbio.2006.10.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/16/2006] [Accepted: 10/17/2006] [Indexed: 12/19/2022]
Abstract
Targeted disruption of Axin2 in mice induces skeletal defects, a phenotype resembling craniosynostosis in humans. Premature fusion of cranial sutures, caused by deficiency in intramembranous ossification, occurs at early postnatal stages. Axin2 negatively regulates both expansion of osteoprogenitors and maturation of osteoblasts through its modulation on Wnt/beta-catenin signaling. We investigate the dual role of beta-catenin to gain further insights into the skull morphogenetic circuitry. We show that as a transcriptional co-activator, beta-catenin promotes cell division by stimulating its target cyclin D1 in osteoprogenitors. Upon differentiation of osteoprogenitors, BMP signaling is elevated to accelerate the process in a positive feedback mechanism. This Wnt-dependent BMP signal dictates cellular distribution of beta-catenin. As an adhesion molecule, beta-catenin promotes cell-cell interaction mediated by adherens junctions in mature osteoblasts. Finally, haploid deficiency of beta-catenin alleviates the Axin2-null skeletal phenotypes. These findings support a model for disparate roles of beta-catenin in osteoblast proliferation and differentiation.
Collapse
Affiliation(s)
| | | | - Wei Hsu
- * Corresponding author: Fax: +1 585 276 0190. E-mail address: (W. Hsu)
| |
Collapse
|
1217
|
Kawakami Y, Rodriguez-León J, Izpisúa Belmonte JC. The role of TGFbetas and Sox9 during limb chondrogenesis. Curr Opin Cell Biol 2006; 18:723-9. [PMID: 17049221 DOI: 10.1016/j.ceb.2006.10.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 10/03/2006] [Indexed: 12/16/2022]
Abstract
The majority of the skeletal elements, except the flat bones of the skull, are formed by endochondral ossification, in which cartilage is replaced by bone. The formation of cartilage is a multi-step process termed chondrogenesis, during which undifferentiated mesenchymal cells condense and undergo differentiation towards chondrocytes. Notwithstanding recent advances, our knowledge of the detailed mechanisms implicated in cartilage and bone formation is still scarce. Recent genetic, cellular and biochemical studies have highlighted the importance of TGFbeta signaling and the activity of the transcription factor Sox9 during the early stages of vertebrate limb chondrogenesis.
Collapse
Affiliation(s)
- Yasuhiko Kawakami
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
1218
|
Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W, Kostenuik P, Lacey DL, Simonet WS, Bolon B, Qian X, Shalhoub V, Ominsky MS, Zhu Ke H, Li X, Richards WG. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 2006; 39:754-66. [PMID: 16730481 DOI: 10.1016/j.bone.2006.03.017] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 03/08/2006] [Accepted: 03/31/2006] [Indexed: 12/15/2022]
Abstract
Mutations affecting the activity of the Wnt co-receptors LRP5 and LRP6 that cause alterations in skeletal biology confirmed the involvement of Wnt signaling in bone formation. We evaluated the potential role of Dkk1, an inhibitor of LRP5/6 activity, in bone formation by examining the normal expression pattern of Dkk1 in normal young mice and by assessing the consequences of osteoblast overexpression of Dkk1 in transgenic mice. Endogenous Dkk1 expression was detected primarily in osteoblasts and osteocytes. Transgenic over-expression of Dkk1 using two different rat collagen 1A1 promoters resulted in distinct bone phenotypes. More widespread Dkk1 expression (driven by the Col1A1 3.6 kb promoter) yielded osteopenia with forelimb deformities and hairlessness, while expression restricted to osteoblasts (driven by the Col1A1 2.3 kb promoter) induced severe osteopenia without limb defects or alopecia. The decrease in bone mass in vivo resulted from a significant 49% reduction in osteoblast numbers and was reflected in a 45% reduction in serum osteocalcin concentration; an in vitro study revealed that Dkk1 caused a dose-dependent suppression of osteoblast matrix mineralization. These data indicate that Dkk1 may directly influence bone formation and suggest that osteopenia develops in mice over-expressing Dkk1 at least in part due to diminished bone formation resulting from reduced osteoblast numbers.
Collapse
Affiliation(s)
- Ji Li
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1219
|
|
1220
|
Zangari M, Yaccoby S, Cavallo F, Esseltine D, Tricot G. Response to Bortezomib and Activation of Osteoblasts in Multiple Myeloma. ACTA ACUST UNITED AC 2006; 7:109-14. [PMID: 17026821 DOI: 10.3816/clm.2006.n.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histomorphometry and biochemical markers of bone turnover have shown that, although osteoclast activity is increased in multiple myeloma (MM), mostly through the receptor activator of nuclear factor-kappaB ligand/osteoprotegerin axis, the key element in vivo to determine the presence or absence of osteolytic lesions resides on the presence and activity of osteoblasts. The loss of bone observed in MM is the result of an uncoupling of bone formation and bone resorption. Bortezomib is a first-in-class proteasome inhibitor developed as an antineoplastic agent with marked activity in relapsed/refractory MM. Response to bortezomib has been related to a significant increase in alkaline phosphatase (ALP). Increased ALP in patients responding to bortezomib was associated with a parallel increase in bone-specific ALP and parathyroid hormone, suggesting that response to bortezomib in MM is closely associated with osteoblastic activation. Variation in markers of osteoblastic activation (such as ALP) have also predicted response and response duration in patients with myeloma treated with bortezomib (P < 0.0001). This clinical observation has been confirmed in an experimental mouse model for primary human myeloma. The consequences of increased bone anabolism on myeloma growth need to be closely evaluated in prospective trials.
Collapse
Affiliation(s)
- Maurizio Zangari
- University of Arkansas for Medical Sciences, Little Rock , AR 72205, USA.
| | | | | | | | | |
Collapse
|
1221
|
Iyemere VP, Proudfoot D, Weissberg PL, Shanahan CM. Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med 2006; 260:192-210. [PMID: 16918817 DOI: 10.1111/j.1365-2796.2006.01692.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit an extraordinary capacity to undergo phenotypic change during development, in vitro and in association with disease. Unlike other muscle cells they do not terminally differentiate. Development and maintenance of the mature contractile phenotype is regulated by a number of interacting transcription factors. In response to injury contractile VSMCs can be induced to change phenotype, proliferate and migrate to effect repair. On completion of the repair process VSMCs return to a nonproliferating contractile phenotype. In this way, in the context of atherosclerosis, a protective fibrous cap is formed and maintained at sites of injury. However in disease, when modulatory signals are perturbed, this phenotypic transition is dysregulated and VSMCs are induced to undergo inappropriate differentiation into cells with features of other mesenchymal lineages such as osteoblasts, chondrocytes and adipocytes. Moreover, evidence is accumulating that these aberrant phenotypic transitions contribute to the pathogenesis of vascular diseases such as atherosclerosis and Monckeberg's Sclerosis. Indeed, the osteo/chondrocytic conversion of VSMCs and the association of this phenotype with vascular calcification is a paradigm for how inappropriate differentiation can influence disease processes. Understanding of the mechanisms and signalling pathways involved in this particular phenotype change is well advanced offering the possibility for the design of successful therapeutic interventions in the future.
Collapse
Affiliation(s)
- V P Iyemere
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
1222
|
Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R. Bone Density Ligand, Sclerostin, Directly Interacts With LRP5 but Not LRP5G171V to Modulate Wnt Activity. J Bone Miner Res 2006; 21:1738-49. [PMID: 17002572 DOI: 10.1359/jbmr.060810] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
UNLABELLED We compared and contrasted the mechanism of action for the cysteine knot protein subfamily, Wise and Sost (Sclerostin). Our data suggest that functional interactions between Sost or Wise and LRP5/LRP6 have the potential to regulate bone deposition by modulating the Wnt pathway. INTRODUCTION The human disease sclerosteosis exhibits an increase in bone mass thought to be caused by hyperactive osteoblasts. Sclerostin, SOST, the gene affected in this disease, has been postulated to exert its activity by functioning as a BMP antagonist. However, recent evidence indicates that SOST is highly related to Wise, which can also modulate the Wnt pathway by binding to LRP5 and LRP6. MATERIALS AND METHODS For this study, we used cell culture to test the BMP and Wnt activity function of both Wise and Sost. In addition, we used Xenopus in vivo Wnt assays along with Xenopus in vitro Wnt assays to support our cell culture results. Epitope tagged cell supernatants containing either Sost or soluble mutant or wildtype LRP5/LRP6 were used for immunoprecipitation. Sost immunoprecipitation results were confirmed in vivo using cell culture. Finally, to support our in vitro data, we co-localized Sost, Wise, LRP5, and LRP6 in mouse long bone sections. RESULTS In this study, we report in vitro and in vivo evidence to show that Sost physically interacts with Lrp5 and Lrp6 and inhibits the canonical Wnt signaling pathway. Furthermore, using in vitro and in vivo assays, we showed that a variant of LRP5 (LRP5(G171V)) known to cause the human high bone mass (HBM) trait and a homologous change in LRP6 (LRP6(G158V)) abolished protein interactions with Sost. We used variants of Sost amino acids to further identify the contact points between Sost and LRP6. In Xenopus and mammalian cell culture assays, we showed that SOST is able to attenuate Wnt signaling and that this attenuation can be rescued by the addition of alpha-Sost antibodies or by the introduction of single amino acid substitution that alter its binding to LRP6. Sost differs from Wise in that it is unable to stimulate Wnt signaling. Using immunohistochemistry, we found that Sost and Wise are co-localized to osteoblasts, along with LRP5 and LRP6. CONCLUSIONS Our data suggest that functional interactions between Sost or Wise and LRPs have the potential to regulate bone deposition by modulating Wnt signaling.
Collapse
Affiliation(s)
- Debra L Ellies
- Stowers Institute for Medical Research, kansa City, Missouri 64110, USA
| | | | | | | | | | | | | |
Collapse
|
1223
|
Abstract
Prostate cancer (CaP) is unique among all cancers in that when it metastasizes to bone, it typically forms osteoblastic lesions (characterized by increased bone production). CaP cells produce many factors, including Wnts that are implicated in tumor-induced osteoblastic activity. In this prospectus, we describe our research on Wnt and the CaP bone phenotype. Wnts are cysteine-rich glycoproteins that mediate bone development in the embryo and promote bone production in the adult. Wnts have been shown to have autocrine tumor effects, such as enhancing proliferation and protecting against apoptosis. In addition, we have recently identified that CaP-produced Wnts act in a paracrine fashion to induce osteoblastic activity in CaP bone metastases. In addition to Wnts, CaP cells express the soluble Wnt inhibitor dickkopf-1 (DKK-1). It appears that DKK-1 production occurs early in the development of skeletal metastases, which results in masking of osteogenic Wnts, thus favoring osteolysis at the metastatic site. As metastases progress, DKK-1 expression decreases allowing for unmasking of Wnt's osteoblastic activity and ultimately resulting in osteosclerosis at the metastatic site. We believe that DKK-1 is one of the switches that transitions the CaP bone metastasis activity from osteolytic to osteoblastic. Wnt/DKK-1 activity fits a model of CaP-induced bone remodeling occurring in a continuum composed of an osteolytic phase, mediated by receptor activator of NFkB ligand (RANKL), parathyroid hormone-related protein (PTHRP) and DKK-1; a transitional phase, where environmental alterations promote expression of osteoblastic factors (Wnts) and decreases osteolytic factors (i.e., DKK-1); and an osteoblastic phase, in which tumor growth-associated hypoxia results in production of vascular endothelial growth factor and endothelin-1, which have osteoblastic activity. This model suggests that targeting both osteolytic activity and osteoblastic activity will provide efficacy for therapy of CaP bone metastases.
Collapse
Affiliation(s)
- Christopher L Hall
- Department of Urology, The University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
1224
|
Li YL, Xiao ZS. Advances in Runx2 regulation and its isoforms. Med Hypotheses 2006; 68:169-75. [PMID: 16901655 DOI: 10.1016/j.mehy.2006.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
During the last 10 years, we have witnessed major progress in skeleton biology. Runx2 is an accepted transcription factor essential for osteoblast development from mesenchymal stem cells and maturation into osteocytes and organize crucial events during bone formation. Alternations in Runx2 expression levels are associated with skeletal diseases. In vitro and in vivo studies have reported that multiple integrated complex path ways (such as Wnt/LRP5/beta-catenin, BMP/Smads, 1, 25-(OH)2-vitaminD3/VDR/VDRE pathway, etc.) and several regulatory proteins (such as Msx2, Dlx5, Twists, etc.) play critical roles in modulating Runx2 gene expression, activity, and the subsequent bone formation. These findings provide novel insights through controlling osteoblast differentiation to treat osteoporosis or other bone diseases with altered bone mass by stimulating Runx2 expression. Further studies have shown that expression of RUNX2 is initiated from two promoters, the distal P1 promoter and the proximal P2 promoter. The alternative use of promoters gives rise to the genesis of two major protein isoforms with distinct amino termini, named as Runx2-TypeI and Runx2-TypeII. Here, we also review a complex spatio-temporal pattern of two major isoforms expressions and their possible function differences in skeleton development.
Collapse
Affiliation(s)
- Ya-Lin Li
- University of Kansas Med Center, The Kidney Institute/6108 WHE, 3901 Rainbow Blvd, Kansas City, KS 66160, United states
| | | |
Collapse
|
1225
|
Ternovoi VV, Curiel DT, Smith BF, Siegal GP. Adenovirus-mediated p53 tumor suppressor gene therapy of osteosarcoma. J Transl Med 2006; 86:748-66. [PMID: 16751779 DOI: 10.1038/labinvest.3700444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clinical outcome for osteosarcoma (OS) remains discouraging despite efforts to optimize treatment using conventional modalities including surgery, radiotherapy and chemotherapy. Novel therapeutic approaches based on our expanding understanding of the mechanisms of tumor cell killing have the potential to alter this situation. Tumor suppressor gene therapy aims to restore the function of a tumor suppressor gene lost or functionally inactivated in cancer cells. One such molecule, the p53 tumor suppressor gene plays a critical role in safeguarding the integrity of the genome and preventing tumorigenesis. Introduction of wild-type (wt) p53 into transformed cells has been shown to be lethal for most cancer cells in vitro, but clinical trials of p53 gene replacement have had limited success. Analysis of these clinical trials highlighted the insufficient efficacy of current vectors and low proapoptotic activity of wt p53 as a single agent in vivo. In this review, a contemporary summarization of the current status of adenovirus-mediated p53 gene therapy of OS is presented. Advancement in our understanding of p53 tumor suppressor activity, the molecular biology of chemoresistant OS, and recent advances in tumor targeting with adenoviral vectors are also addressed. Based on these parameters, prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Vladimir V Ternovoi
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | |
Collapse
|
1226
|
Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133:3231-44. [PMID: 16854976 DOI: 10.1242/dev.02480] [Citation(s) in RCA: 794] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hedgehog and canonical Wnt/beta-catenin signaling are implicated in development of the osteoblast, the bone matrix-secreting cell of the vertebrate skeleton. We have used genetic approaches to dissect the roles of these pathways in specification of the osteoblast lineage. Previous studies indicate that Ihh signaling in the long bones is essential for initial specification of an osteoblast progenitor to a Runx2+ osteoblast precursor. We show here that this is a transient requirement, as removal of Hh responsiveness in later Runx2+, Osx1+ osteoblast precursors does not disrupt the formation of mature osteoblasts. By contrast, the removal of canonical Wnt signaling by conditional removal of the beta-catenin gene in early osteoblast progenitors or in Runx2+, Osx1+ osteoblast precursors results in a similar phenotype: osteoblasts fail to progress to a terminal osteocalcin+ fate and instead convert to a chondrocyte fate. By contrast, stabilization of beta-catenin signaling in Runx2+, Osx1+ osteoblast precursors leads to the premature differentiation of bone matrix secreting osteoblasts. These data demonstrate that commitment within the osteoblast lineage requires sequential, stage-specific, Ihh and canonical Wnt/beta-catenin signaling to promote osteogenic, and block chondrogenic, programs of cell fate specification.
Collapse
Affiliation(s)
- Stephen J Rodda
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
1227
|
Später D, Hill TP, O'sullivan RJ, Gruber M, Conner DA, Hartmann C. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 2006; 133:3039-49. [PMID: 16818445 DOI: 10.1242/dev.02471] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Joints, which separate skeleton elements, serve as important signaling centers that regulate the growth of adjacent cartilage elements by controlling proliferation and maturation of chondrocytes. Accurate chondrocyte maturation is crucial for endochondral ossification and for the ultimate size of skeletal elements, as premature or delayed maturation results predominantly in shortened elements. Wnt9a has previously been implicated as being a player in joint induction, based on gain-of function experiments in chicken and mouse. We show that loss of Wnt9a does not affect joint induction, but results to synovial chondroid metaplasia in some joints. This phenotype can be enhanced by removal of an additional Wnt gene, Wnt4, suggesting that Wnts are playing a crucial role in directing bi-potential chondro-synovioprogenitors to become synovial connective tissue, by actively suppressing their chondrogenic potential. Furthermore, we show that Wnt9a is a temporal and spatial regulator of Indian hedgehog (Ihh), a central player of skeletogenesis. Loss of Wnt9a activity results in transient downregulation of Ihh and reduced Ihh-signaling activity at E12.5-E13.5. The canonical Wnt/beta-catenin pathway probably mediates regulation of Ihh expression in prehypertrophic chondrocytes by Wnt9a, because embryos double-heterozygous for Wnt9a and beta-catenin show reduced Ihh expression, and in vivo chromatin immunoprecipitation demonstrates a direct interaction between the beta-catenin/Lef1 complex and the Ihh promoter.
Collapse
Affiliation(s)
- Daniela Später
- Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
1228
|
Abstract
Wnts are a large family of growth factors that mediate fundamental biological processes like embryogenesis, organogenesis and tumorigenesis. These proteins bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor (GPCRs) and a low-density lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of intracellular signaling cascades that includes the canonical/beta-catenin pathway, as well as several GPCR-mediated noncanonical pathways. In recent years, canonical Wnt signaling has been shown to play a substantial role in the control of bone formation. Clinical investigations have found that mutations in LRP-5 are associated with bone mineral density and fractures. For example, loss-of-function mutations in LRP-5 cause osteoporosis pseudoglioma syndrome, while gain-of-function mutations lead to high bone mass phenotypes. Studies of knockout and transgenic mouse models for Wnt pathway components like Wnt-10b, LRP-5/6, secreted frizzled-related protein-1, dickkopf-2, Axin-2 and beta-catenin have demonstrated that canonical signaling modulates most aspects of osteoblast physiology including proliferation, differentiation, bone matrix formation/mineralization and apoptosis as well as coupling to osteoclastogenesis and bone resorption. Future studies in this rapidly growing area of research should focus on elucidating Wnt/FZD specificity in the control of bone cell function, the role of noncanonical pathways in skeletal remodeling, and direct effects of Wnts on cells of the osteoclast lineage.
Collapse
Affiliation(s)
- Peter V N Bodine
- Women's Heath and Musculoskeletal Biology, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, USA.
| | | |
Collapse
|
1229
|
Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 2006; 7:1-16. [PMID: 17051438 DOI: 10.1007/s11154-006-9001-5] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present an overview of the concepts of tissue-specific transcriptional control mechanisms essential for development of the bone cell phenotype. BMP2 induced transcription factors constitute a network of activities and molecular switches for bone development and osteoblast differentiation. Among these regulators are Runx2 (Cbfa1/AML3), the principal osteogenic master gene for bone formation, as well as homeodomain proteins and osterix. Runx2 has multiple regulatory activities, including activation or repression of gene expression, and integration of biological signals from developmental cues, such as BMP/TGFbeta, Wnt and Src signaling pathways. Runx2 provides a new paradigm for transcriptional control by functioning as a principal scaffolding protein in nuclear microenvironments to control gene expression in response to physiologic signals (growth factors, cytokines and hormones). The protein serves as a hub for the coordination of activities essential for the expansion and differentiation of osteogenic lineage cells through the formation of co-regulatory protein complexes organized in subnuclear domains. Mechanisms by which Runx2 supports commitment to osteogenesis and determines cell fate involve its retention on mitotic chromosomes. Disruption of a unique protein module, the subnuclear targeting signal of Runx2, has profound effects on osteoblast differentiation and metastasis of cancer cells in the bone microenvironment. Runx2 target genes include regulators of cell growth control, components of the bone extracellular matrix, angiogenesis, and signaling proteins for development of the osteoblast phenotype and bone turnover. The specificity of Runx2 regulatory activities provides a basis for novel therapeutic strategies to correct bone disorders.
Collapse
Affiliation(s)
- Jane B Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1230
|
Abstract
The Wnt signaling pathways play fundamental roles in the differentiation, proliferation, death and function of many cells and as a result are involved in critical developmental, growth and homeostatic processes in animals. There are four currently known pathways of Wnt signaling; the so-called canonical or Wnt/beta-catenin pathway, the Wnt/Ca(+2) pathway involving Protein Kinase A, the planar cell polarity pathway and a pathway involving Protein Kinase C that functions in muscle myogenesis. The best studied of these is the Wnt/beta-catenin pathway. The Wnts are an evolutionarily highly conserved family of genes/proteins. Control of the Wnt pathways is modulated by a number of the proteins that either interact with the Wnt ligands directly, or with the low density lipoprotein-receptor related proteins (LRP) 5 and 6 that along with one of several Frizzled proteins function as co-receptors for the Wnt ligands. Aberrant regulation resulting as a consequence of mutations in any of several components of the Wnt pathway and/or protein modulators of the pathway have been shown to cause a wide spectrum of diseases. This review will briefly touch on various diseases of Wnt signaling including cancer, aortic valve calcification and several bone related phenotypes. Our emerging understanding of Wnt signaling offers great hope that new molecular based screening tests and pharmaceutical agents that selectively target this pathway will be developed to diagnose and treat these diseases in the future.
Collapse
Affiliation(s)
- Mark L. Johnson
- Department of Oral Biology, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, USA
| | - Nalini Rajamannan
- Northwestern University Feinberg, School of Medicine, Chicago, IL, USA
| |
Collapse
|
1231
|
Gori F, Friedman LG, Demay MB. Wdr5, a WD-40 protein, regulates osteoblast differentiation during embryonic bone development. Dev Biol 2006; 295:498-506. [PMID: 16730692 DOI: 10.1016/j.ydbio.2006.02.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 01/27/2006] [Accepted: 02/20/2006] [Indexed: 12/26/2022]
Abstract
Wdr5 accelerates osteoblast and chondrocyte differentiation in vitro, and is developmentally expressed in osteoblasts as well as in proliferating and hypertrophic chondrocytes. To investigate the role of Wdr5 during endochondral bone development, transgenic mice overexpressing Wdr5 under the control of the 2.3-kb fragment of the mouse alpha(1) I collagen promoter were generated. The transgene was specifically expressed in the osteoblasts of transgene positive mice and was absent in the growth plate. Histological analyses at embryonic day 14.5 demonstrated that the humeri of transgene positive embryos were longer than those isolated from wild-type littermates largely due to an expansion of the hypertrophic chondrocyte layer. Acceleration of osteoblast differentiation was observed with greater and more extensive expression of type I collagen and more extensive mineral deposition in the bone collar of transgene positive embryos. Acceleration of vascular invasion was also observed in transgene positive mice. Postnatal analyses of transgenic mice confirmed persistent acceleration of osteoblast differentiation. Targeted expression of Wdr5 to osteoblasts resulted in earlier activation of the canonical Wnt signaling pathway in the bone collar as well as in primary calvarial osteoblast cultures. In addition, overexpression of Wdr5 increased the expression of OPG, a target of the canonical Wnt signaling pathway. Overall, our findings suggest that Wdr5 accelerates osteoblast differentiation in association with activation of the canonical Wnt pathway.
Collapse
Affiliation(s)
- Francesca Gori
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
1232
|
Li TF, Chen D, Wu Q, Chen M, Sheu TJ, Schwarz EM, Drissi H, Zuscik M, O'Keefe RJ. Transforming growth factor-beta stimulates cyclin D1 expression through activation of beta-catenin signaling in chondrocytes. J Biol Chem 2006; 281:21296-21304. [PMID: 16690606 PMCID: PMC2649822 DOI: 10.1074/jbc.m600514200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) plays an essential role in chondrocyte maturation. It stimulates chondrocyte proliferation but inhibits chondrocyte differentiation. In this study, we found that TGF-beta rapidly induced beta-catenin protein levels and signaling in murine neonatal sternal primary chondrocytes. TGF-beta-increased beta-catenin induction was reproduced by overexpression of SMAD3 and was absent in Smad3(-/-) chondrocytes treated with TGF-beta. SMAD3 inhibited beta-transducin repeat-containing protein-mediated degradation of beta-catenin and immunoprecipitated with beta-catenin following TGF-beta treatment. Both SMAD3 and beta-catenin co-localized to the nucleus after TGF-beta treatment. Although both TGF-beta and beta-catenin stimulated cyclin D(1) expression in chondrocytes, the effect of TGF-beta was inhibited with beta-catenin gene deletion or SMAD3 loss of function. These results demonstrate that TGF-beta stimulates cyclin D(1) expression at least in part through activation of beta-catenin signaling.
Collapse
Affiliation(s)
- Tian-Fang Li
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Di Chen
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Qiuqian Wu
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Mo Chen
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Tzong-Jen Sheu
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Edward M Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Hicham Drissi
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Michael Zuscik
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642
| | - Regis J O'Keefe
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642.
| |
Collapse
|
1233
|
Abstract
Wnt proteins are a family of secreted proteins that regulate many aspects of cell growth, differentiation, function, and death. Considerable progress has been made in our understanding of the molecular links between Wnt signaling and bone development and remodeling since initial reports that mutations in the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) are causally linked to alterations in human bone mass. Of the pathways activated by Wnts, it is signaling through the canonical (i.e., Wnt/beta-catenin) pathway that increases bone mass through a number of mechanisms including renewal of stem cells, stimulation of preosteoblast replication, induction of osteoblastogenesis, and inhibition of osteoblast and osteocyte apoptosis. This pathway is an enticing target for developing drugs to battle skeletal diseases as Wnt/beta-catenin signaling is composed of a series of molecular interactions that offer potential places for pharmacological intervention. In considering opportunities for anabolic drug discovery in this area, one must consider multiple factors, including (a) the roles of Wnt signaling for development, remodeling, and pathology of bone; (b) how pharmacological interventions that target this pathway may specifically treat osteoporosis and other aspects of skeletal health; and (c) whether the targets within this pathway are amenable to drug intervention. In this Review we discuss the current understanding of this pathway in terms of bone biology and assess whether targeting this pathway might yield novel therapeutics to treat typical bone disorders.
Collapse
Affiliation(s)
- Venkatesh Krishnan
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Henry U. Bryant
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ormond A. MacDougald
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
1234
|
Kapadia RM, Guntur AR, Reinhold MI, Naski MC. Glycogen synthase kinase 3 controls endochondral bone development: contribution of fibroblast growth factor 18. Dev Biol 2006; 285:496-507. [PMID: 16109394 DOI: 10.1016/j.ydbio.2005.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 06/24/2005] [Accepted: 07/25/2005] [Indexed: 11/18/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) inhibits signaling pathways that are essential for bone development. To study the requirement for GSK activity during endochondral bone development, we inhibited GSK3 in cultured metatarsal bones with pharmacological antagonists. Interestingly, we find that inhibition of GSK3 strongly repressed chondrocyte and perichondrial osteoblast differentiation. Moreover, chondrocyte proliferation was inhibited, whereas perichondrial cell proliferation was stimulated. These results mirror the effects of fibroblast growth factor signaling (FGF), suggesting the FGF expression is induced. Indeed, we showed that (1) FGF18 expression is stimulated following inhibition of GSK3 and (2) GSK3 regulates FGF18 expression through the control of beta-catenin levels. Stimulation of cultured metatarsal with FGF18 had similar effects on the differentiation and proliferation of chondrocytes and perichondrial cells as GSK3 repression. This suggests that the regulation of FGF18 expression is a major function of GSK3 during endochondral bone development. Consistent with this, we showed that the effect of GSK3 inhibition on chondrocyte proliferation is repressed in tissues lacking a receptor for FGF18, FGF receptor 3.
Collapse
Affiliation(s)
- Ravi M Kapadia
- Department of Pathology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
1235
|
Heiser PW, Lau J, Taketo MM, Herrera PL, Hebrok M. Stabilization of beta-catenin impacts pancreas growth. Development 2006; 133:2023-32. [PMID: 16611688 DOI: 10.1242/dev.02366] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A recent study has shown that deletion of beta-catenin within the pancreatic epithelium results in a loss of pancreas mass. Here, we show that ectopic stabilization of beta-catenin within mouse pancreatic epithelium can have divergent effects on both organ formation and growth. Robust stabilization of beta-catenin during early organogenesis drives changes in hedgehog and Fgf10 signaling and induces a loss of Pdx1 expression in early pancreatic progenitor cells. Together, these perturbations in early pancreatic specification culminate in a severe reduction of pancreas mass and postnatal lethality. By contrast, inducing the stabilized form of beta-catenin at a later time point in pancreas development causes enhanced proliferation that results in a dramatic increase in pancreas organ size. Taken together, these data suggest a previously unappreciated temporal/spatial role for beta-catenin signaling in the regulation of pancreas organ growth.
Collapse
Affiliation(s)
- Patrick W Heiser
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
1236
|
Gaur T, Rich L, Lengner CJ, Hussain S, Trevant B, Ayers D, Stein JL, Bodine PVN, Komm BS, Stein GS, Lian JB. Secreted frizzled related protein 1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation. J Cell Physiol 2006; 208:87-96. [PMID: 16575902 DOI: 10.1002/jcp.20637] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Canonical Wnt signaling (beta-catenin/TCF) has emerged as a key regulator of skeletogenesis. In this study, chondrogenesis is examined in a mouse model in which the Wnt antagonist secreted frizzled related protein 1 (sFRP1) is non-functional and results in a high bone mass phenotype and activation through the canonical pathway of the Runx2 transcription factor that is essential for bone formation. We find during the period of rapid post-natal growth, shortened height of the growth plate and increased calcification of the hypertrophic zone (HZ) in the sFRP1-/- mouse, indicating accelerated endochondral ossification. Using mouse embryo fibroblasts (MEFs) induced into the chondrogenic lineage, increased chondrogenesis and accelerating differentiation of hypertrophic chondrocytes in the sFRP1-/- MEFs was observed compared to WT cells. The induced maturation of hypertrophic chondrocytes in sFRP1(-/-) MEFs was inversely correlated to phospho-beta-catenin levels, indicating involvement of activated canonical Wnt signaling characterized by an increased expression of collagen type 2a1 and Sox 9. However, an absence of Indian hedgehog expression which occurs in WT cells was found. SFRP1-/- cells also exhibited an early induction of collagen type 10a1. Thus, these modifications in gene expression are contributing mechanism(s) for increased chondrocyte differentiation in SFRP1-/- cells. These studies have identified sFRP1 as a critical negative regulator of Wnt signaling for the normal progression of chondrocyte differentiation. Microarray gene profiling provided additional novel insights into the regulatory factors for appropriate Wnt signaling necessary for the control of chondrocyte maturation.
Collapse
Affiliation(s)
- Tripti Gaur
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1237
|
Dong YF, Soung DY, Schwarz EM, O'Keefe RJ, Drissi H. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol 2006; 208:77-86. [PMID: 16575901 DOI: 10.1002/jcp.20656] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated the molecular mechanisms underlying canonical Wnt-mediated regulation of chondrocyte hypertrophy using chick upper sternal chondrocytes. Replication competent avian sarcoma (RCAS) viral over-expression of Wnt8c and Wnt9a, upregulated type X collagen (col10a1) and Runx2 mRNA expression thereby inducing chondrocyte hypertrophy. Wnt8c and Wnt9a strongly inhibited mRNA levels of Sox9 and type II collagen (col2a1). Wnt8c further enhanced canonical bone morphogenetic proteins (BMP-2)-induced expression of Runx2 and col10a1 while Wnt8c and Wnt9a inhibited TGF-beta-induced expression of Sox9 and col2a1. Over-expression of beta-catenin mimics the effect of Wnt8c and Wnt9a by upregulating Runx2, col10a1, and alkaline phosphatase (AP) mRNA levels while it inhibits col2a1 transcription. Western blot analysis shows that Wnt8c and beta-catenin also induces Runx2 protein levels in chondrocytes. Thus, our results indicate that activation of the canonical beta-catenin Wnt signaling pathway induces chondrocyte hypertrophy and maturation. We further investigated the effects of beta-catenin-TCF/Lef on Runx2 promoter. Co-transfection of lymphoid enhancer factor (Lef1) and beta-catenin in chicken upper sternal chondrocytes together with deletion constructs of the Runx2 promoter shows that the proximal region spanning the first 128 base pairs of this promoter is responsible for the Wnt-mediated induction of Runx2. Mutation of the TCF/Lef binding site in the -128 fragment of the Runx2 promoter resulted in loss of its responsiveness to beta-catenin. Additionally, gel-shift assay analyses determined the DNA/protein interaction of the TCF/Lef binding sites on the Runx2 promoter. Finally, our site-directed mutagenesis data demonstrated that the Runx2 site on type X collagen promoter is required for canonical Wnt induction of col10a1. Altogether we demonstrate that Wnt/beta-catenin signaling is regulated by TGF-beta and BMP-2 in chick upper sternal chondrocytes, and mediates chondrocyte hypertrophy at least partly through activation of Runx2 which in turn may induce col10a1 expression.
Collapse
Affiliation(s)
- Yu-Feng Dong
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | | | | | | | | |
Collapse
|
1238
|
|
1239
|
Nie X, Luukko K, Fjeld K, Kvinnsland IH, Kettunen P. Developmental expression of Dkk1-3 and Mmp9 and apoptosis in cranial base of mice. J Mol Histol 2006; 36:419-26. [PMID: 16521043 DOI: 10.1007/s10735-005-9014-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 12/22/2005] [Indexed: 11/24/2022]
Abstract
The Dickkopf (Dkk) family and Mmp9 are important for apoptosis and a number of other developmental processes. However, little is known about their roles in the development of cranial base, which is an important structure for coordinated development and growth of the craniofacial skeletons. In order to establish whether and in what way these genes are involved in cranial base development, we examined their expression patterns and cell apoptosis. Dkk1 was first seen in the perichondral mesenchyme in restricted domains from E14, and later in the migrating mesenchymal cells within the cartilage. Thereafter, it was widespread throughout the bones of the cranial base. The expression was downregulated in postnatal stages. Dkk2 was localized in the perichondral mesenchyme outlining the anterior cranial base in embryogenesis. Dkk3 was mainly detected in the occipital-vertebral joint at E13 and E14. Mmp9 transcripts were clustered in the inner layer of perichondral mesenchyme, juxtaposed with the terminally differentiated hypertrophic chondrocytes from E14. Later Mmp9-expressing cells were found at the sites of chondrocyte apoptosis. This was particularly clear at the distal ends of the synchondroses. These data indicate that Mmp9 regulates skeletogenesis in cranial base in a manner that is largely similar to that of the appendicular skeletons. Expression of Dkks suggests other roles that remain to be defined.
Collapse
Affiliation(s)
- Xuguang Nie
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
1240
|
Cho JY, Lee WB, Kim HJ, Mi Woo K, Baek JH, Choi JY, Hur CG, Ryoo HM. Bone-related gene profiles in developing calvaria. Gene 2006; 372:71-81. [PMID: 16510253 DOI: 10.1016/j.gene.2005.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/09/2005] [Accepted: 12/09/2005] [Indexed: 01/26/2023]
Abstract
Generating a comprehensive understanding of osteogenesis-related gene profiles is very important in the development of new treatments for osteopenic conditions. Developing calvaria undergoes a typical intramembranous bone-forming process. To identify genes associated with osteoblast differentiation, we isolated total RNAs from parietal bones, that represent active osteoblasts, and sutural mesenchyme, that represents osteoprogenitor cells, and comprehensively analyzed their gene expression profiles using an oligo-based Affymetrix microarray chip containing 22,690 probes. About 2100 genes with "Present" calls had more than 2-fold higher expression in bone compared to sutures while 73 of these genes had more than 8-fold expression. Some of these genes are already known to be bone-related biomarkers: VitD receptor, bone sialoprotein, osteocalcin, osteopontin, MMP13, etc. Eight genes were selected and subjected to confirmation by quantitative real-time RT-PCR analyses. All the genes tested showed higher expression in bones, ranging from 5- to 140-fold. Several of these genes are ESTs while others are already known but their functions in osteogenesis were not previously known. Most genes of the BMP and FGF families probed in the Genechip analysis were more highly expressed in bone tissues compared to suture. All differentially-expressed Runx and Dlx family genes also showed higher expression in bone. These results imply that our data is valid and can be used as a good standard for the mining of osteogenesis-related genes.
Collapse
Affiliation(s)
- Je-Yoel Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
1241
|
Hill TP, Taketo MM, Birchmeier W, Hartmann C. Multiple roles of mesenchymal beta-catenin during murine limb patterning. Development 2006; 133:1219-29. [PMID: 16495310 DOI: 10.1242/dev.02298] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently canonical Wnt signaling in the ectoderm has been shown to be required for maintenance of the apical ectodermal ridge (AER) and for dorsoventral signaling. Using conditional gain- and loss-of-function beta-catenin alleles, we have studied the role of mesenchymal beta-catenin activity during limb development. Here, we show that loss of beta-catenin results in limb truncations due to a defect in AER maintenance. Stabilization of beta-catenin also results in truncated limbs, caused by a premature regression of the AER. Concomitantly, in these limbs, the expression of Bmp2, Bmp4 and Bmp7, and of the Bmp target genes Msx1, Msx2 and gremlin, is expanded in the mesenchyme. Furthermore, we found that the expression of Lmx1b, a gene exclusively expressed in the dorsal limb mesenchyme and involved in dorsoventral patterning, is reduced upon loss of beta-catenin activity and is expanded ventrally in gain-of-function limbs. However, the known ectodermal regulators Wnt7a and engrailed 1 are expressed normally. This suggests that Lmx1b is also regulated, in part, by a beta-catenin-mediated Wnt signal, independent of the non-canoncial Wnt7a signaling pathway. In addition, loss of beta-catenin results in a severe agenesis of the scapula. Concurrently, the expression of two genes, Pax1 and Emx2, which have been implicated in scapula development, is lost in beta-catenin loss-of-function limbs; however, only Emx2 is upregulated in gain-of-function limbs. Mesenchymal beta-catenin activity is therefore required for AER maintenance, and for normal expression of Lmx1b and Emx2.
Collapse
Affiliation(s)
- Theo P Hill
- Research Institute of Molecular Pathology, IMP, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
1242
|
Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006; 16:151-8. [PMID: 16466918 DOI: 10.1016/j.tcb.2006.01.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/09/2005] [Accepted: 01/19/2006] [Indexed: 12/22/2022]
Abstract
Several transcription factors have been identified that control the differentiation of osteoblasts; however, relatively little is known about the signaling pathways involved in regulating the differentiation process. Recently, the canonical Wnt-beta-catenin pathway has been implicated in osteoblastogenesis. This review focuses on the role of the canonical Wnt-beta-catenin pathway during embryonic development, where it is required for the differentiation of osteoblasts from a precursor that is shared with the chondrocyte lineage and the requirement of this pathway during postnatal life in bone homeostasis. The recent findings covered in this review are major advances in our understanding of skeletal development and promise new therapeutic avenues for tissue engineering and treatment of osteoporosis.
Collapse
Affiliation(s)
- Christine Hartmann
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| |
Collapse
|
1243
|
Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J. Effects of Three-Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells. Stem Cells 2006; 24:284-91. [PMID: 16109760 DOI: 10.1634/stemcells.2005-0024] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Embryonic stem (ES) cells have the ability to self-replicate and differentiate into cells from all three germ layers, holding great promise for tissue regeneration applications. However, controlling the differentiation of ES cells and obtaining homogenous cell populations still remains a challenge. We hypothesize that a supportive three-dimensional (3D) environment provides ES cell-derived cells an environment that more closely mimics chondrogenesis in vivo. In the present study, the chondrogenic differentiation capability of ES cell-derived embryoid bodies (EBs) encapsulated in poly(ethylene glycol)-based (PEG) hydrogels was examined and compared with the chondrogenic potential of EBs in conventional monolayer culture. PEG hydrogel-encapsulated EBs and EBs in monolayer were cultured in vitro for up to 17 days in chondrogenic differentiation medium in the presence of transforming growth factor (TGF)-beta1 or bone morphogenic protein-2. Gene expression and protein analyses indicated that EB-PEG hydrogel culture upregulated cartilage-relevant markers compared with a monolayer environment and induction of chondrocytic phenotype was stimulated with TGF-beta1. Histology of EBs in PEG hydrogel culture with TGF-beta1 demonstrated basophilic extracellular matrix deposition characteristic of neocartilage. These findings suggest that EB-PEG hydrogel culture, with an appropriate growth factor, may provide a suitable environment for chondrogenic differentiation of intact ES cell-derived EBs.
Collapse
Affiliation(s)
- Nathaniel S Hwang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Clark Hall 106, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
1244
|
Henriksen K, Gram J, Høegh-Andersen P, Jemtland R, Ueland T, Dziegiel MH, Schaller S, Bollerslev J, Karsdal MA. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1341-8. [PMID: 16251418 PMCID: PMC1603785 DOI: 10.1016/s0002-9440(10)61221-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autosomal dominant osteopetrosis type I (ADOI) is presumably caused by gain-of-function mutations in the LRP5 gene. Patients with a T253I mutation in LRP5 have a high bone mass phenotype, characterized by increased mineralizing surface index but abnormally low numbers of small osteoclasts. To investigate the effect of the T253I mutation in LRP5 on osteoclasts, we isolated CD14+ monocytes from ADOI patients and assessed their ability to generate osteoclasts when treated with RANKL and M-CSF compared to that of age- and sex-matched control osteoclasts. We found normal osteoclastogenesis, expression of osteoclast markers, morphology, and localization of proteins involved in bone resorption, such as ClC-7 and cathepsin K. The ability to resorb bone was also normal. In vivo, we compared the bone resorption and bone formation response to T3 in ADOI patients and age- and sex-matched controls. We found attenuated resorptive response to T3 stimulation, despite a normal bone formation response, in alignment with the reduced number of osteoclasts in vivo. These data demonstrate that ADOI osteoclasts are normal with respect to all aspects investigated in vitro. We speculate that the mutations causing ADOI alter the osteoblastic phenotype toward a smaller potential for supporting osteoclastogenesis.
Collapse
Affiliation(s)
- Kim Henriksen
- Pharmos Bioscience A/S, Herlev Hovedgade 207, Herlev, DK-2730, Ribe County Hospital, Esbjerg, and the University Hospital of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
1245
|
Lane NE, Lian K, Nevitt MC, Zmuda JM, Lui L, Li J, Wang J, Fontecha M, Umblas N, Rosenbach M, de Leon P, Corr M. Frizzled-related protein variants are risk factors for hip osteoarthritis. ACTA ACUST UNITED AC 2006; 54:1246-54. [PMID: 16572458 DOI: 10.1002/art.21673] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To examine the association of the Arg200Trp and Arg324Gly variants of FRZB with the risk and phenotype of radiographic osteoarthritis (OA) of the hip and serum levels of Frizzled-related protein (FRP) in a prospective cohort of elderly Caucasian women. METHODS Radiographic hip OA status of patients was defined by the presence of severe joint space narrowing (JSN) (feature grade>or=3), a summary grade>or=3, or definite osteophytes (grade>or=2) and JSN (grade>or=2) in the same hip. Genotypes were obtained in 569 patients with radiographic OA of the hip and in 1,317 and 4,136 controls for the Arg200Trp and Arg324Gly variants, respectively. Serum FRP levels were measured by enzyme-linked immunosorbent assay. Multivariate logistic regression was performed. RESULTS The minor allele frequency for the Arg200Trp polymorphism was 0.12 in the control group compared with 0.14 in the group with radiographic OA of the hip (P=0.12), and the minor allele frequency for the Arg324Gly variant was 0.083 in the control group compared with 0.088 in the group with radiographic OA of the hip (P=0.63). The multilocus genotypes available in 1,886 subjects suggested that inheritance of both minor alleles was a risk factor for developing OA characterized by JSN (P<0.01). Patients with radiographic OA of the hip who were homozygous for the Arg200Trp minor allele had higher serum FRP levels than controls who were homozygous for the major allele. CONCLUSION Our data confirm findings of another study, that a rare haplotype with both Arg200Trp and Arg324Gly FRZB variants contributes to the genetic susceptibility to hip OA among Caucasian women, and that these polymorphisms may contribute to increased serum levels of proteins as biomarkers of OA.
Collapse
Affiliation(s)
- N E Lane
- University of California at San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1246
|
Glass DA, Karsenty G. Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 2006; 73:43-84. [PMID: 16782455 DOI: 10.1016/s0070-2153(05)73002-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a common, prevalent, and debilitating condition, particularly in postmenopausal women. Genetics play a major role in determining peak bone mass and fracture risk, but few genes have been demonstrated conclusively to be involved, much less the signaling pathways with which they are affiliated. The identification of mutations in the gene Lrp5, a Wnt coreceptor, as the cause for both osteoporotic and high-bone mass disorders implicated the canonical Wnt signaling pathway in bone mass regulation. Since Lrp5, other Wnt components have been identified as being regulators of bone mass, and Wnt target genes affecting bone homeostasis have begun to be elucidated. This chapter looks at the various components of the canonical Wnt signaling pathway and the data indicating that this pathway plays a major role in the control of both bone formation and bone resorption, the two key aspects of bone remodeling.
Collapse
Affiliation(s)
- Donald A Glass
- Department of Molecular and Human Genetics, Bone Disease Program of Texas, Baylor College of Medicine, Houston, 77030, USA
| | | |
Collapse
|
1247
|
Kahler RA, Galindo M, Lian J, Stein GS, van Wijnen AJ, Westendorf JJ. Lymphocyte enhancer-binding factor 1 (Lef1) inhibits terminal differentiation of osteoblasts. J Cell Biochem 2006; 97:969-83. [PMID: 16267835 DOI: 10.1002/jcb.20702] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lef1 is a transcriptional regulator of the Wnt/beta-catenin signaling cascade. Wnts directly augment bone formation and osteoblast differentiation from mesenchymal stem cells by receptor-mediated pathways involving Lrp5 and Frizzled. We previously reported that Lef1 represses Runx2-dependent activation of the late osteoblast differentiation gene, osteocalcin. Lef1 is expressed in preosteoblasts but is undetectable in fully differentiated osteoblasts. To determine if downregulation of Lef1 is necessary for osteoblast maturation, we constitutively overexpressed Lef1 in MC3T3-E1 preosteoblasts. Lef1-overexpressing cells produced alkaline phosphatase (ALP) and osteocalcin later, and at lower levels than control cells. Moreover, the extracellular matrices of Lef1-overexpressing cell cultures never mineralized. To further examine the role of Lef1 in osteoblasts, we suppressed Lef1 expression in MC3T3-E1 cells by RNA interference. Transient expression of a Lef1 shRNA efficiently reduced murine Lef1 levels and transcriptional activity. Stable suppression of Lef1 in MC3T3 preosteoblasts did not affect proliferation or Runx2 levels; however, ALP production and matrix mineralization were accelerated by 3-4 days. Gene chip analyses identified 14 genes that are differentially regulated in Lef1-suppressed cells. These data outline a role for Lef1 in delaying osteoblast maturation and suggest that Lef1 controls the expression of multiple genes in osteoblasts.
Collapse
Affiliation(s)
- Rachel A Kahler
- Graduate Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
1248
|
Abstract
The identification of a link between bone mass in humans and gain- [high bone mass (HBM) trait] or loss-of-function [osteoporosis pseudoglioma (OPPG) syndrome] mutations in the Wnt coreceptor lipoprotein receptor-related protein (LRP)5 or in the Wnt antagonist sclerostin (sclerosteosis, Van Buchem syndrome) has called the attention of academic and industry scientists and clinicians to the importance of this signaling pathway in skeletal biology and disease. Multiple genetic and pharmacological manipulations of Wnt signaling in mice have since then confirmed the central role of this pathway in both the establishment of peak bone mass and its maintenance throughout life. Wnt signaling appears to be located downstream of bone morphogenetic proteins (BMPs), itself induced by Hedgehog (Hh) signaling, suggesting that it is the successive recruitment of these three intracellular signaling cascades that allow the full expression of the genetic patterns that characterize the osteoblast, the cell responsible for the formation of bone.
Collapse
Affiliation(s)
- Roland Baron
- Yale University School of Medicine New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
1249
|
Matsuo N, Tanaka S, Gordon MK, Koch M, Yoshioka H, Ramirez F. CREB-AP1 protein complexes regulate transcription of the collagen XXIV gene (Col24a1) in osteoblasts. J Biol Chem 2005; 281:5445-52. [PMID: 16373341 DOI: 10.1074/jbc.m509923200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen XXIV is a newly discovered and poorly characterized member of the fibril-forming family of collagen molecules, which displays unique structural features of invertebrate fibrillar collagens and is expressed predominantly in bone tissue. Here we report the characterization of the proximal promoter of the mouse gene (Col24a1) and its regulation in osteoblastic cells. Using well characterized murine models of osteoblast differentiation, we found that the Col24a1 gene is activated sometime before onset of the late differentiation marker osteocalcin. Additional analyses revealed that Col24a1 produces equal amounts of two alternatively spliced products with different 5'-untranslated sequences that originate from distinct transcriptional start sites. Cell transfection experiments in combination with DNA binding assays demonstrated that Col24a1 promoter activity in ROS17/2.8 osteosarcoma cells is under the control of an upstream cis-acting element, which is shared by both transcripts and is recognized by specific combinations of c-Jun, CREB1, ATF1, and ATF2 dimers. Consistent with these results, overexpression of c-Jun, ATF1, ATF2, or CREB1 in transiently transfected osteoblastic cells stimulated transcription from reporter gene constructs driven by the Col24a1 promoter to different degrees. Moreover, chromatin immunoprecipitation experiments showed that these nuclear factors bind the same upstream sequence of the endogenous Col24a1 gene. Collectively these data provide new information about transcriptional control of collagen fibrillogenesis, in addition to implicating for the first time CREB-AP1 protein complexes in the regulation of collagen gene expression in osteoblasts.
Collapse
Affiliation(s)
- Noritaka Matsuo
- Laboratory of Genetics and Organogenesis, Research Division of the Hospital for Special Surgery, and Department of Physiology and Biophysics, Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
1250
|
Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssière B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 2005; 102:17406-11. [PMID: 16293698 PMCID: PMC1297659 DOI: 10.1073/pnas.0505259102] [Citation(s) in RCA: 383] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Indexed: 01/15/2023] Open
Abstract
One of the well characterized cell biologic actions of lithium is the inhibition of glycogen synthase kinase-3beta and the consequent activation of canonical Wnt signaling. Because deficient Wnt signaling has been implicated in disorders of reduced bone mass, we tested whether lithium could improve bone mass in mice. We gavage-fed lithium chloride to 8-week-old mice from three different strains (Lrp5(-/-), SAMP6, and C57BL/6) and assessed the effect on bone metabolism after 4 weeks of therapy. Lrp5(-/-) mice lack the Wnt coreceptor low-density lipoprotein receptor-related protein 5 and have markedly reduced bone mass. Lithium, which is predicted to act downstream of this receptor, restored bone metabolism and bone mass to near wild-type levels in these mice. SAMP6 mice have accelerated osteoporosis due to inadequate osteoblast renewal. Lithium significantly improved bone mass in these mice and in wild-type C57BL/6 mice. We found that lithium activated canonical Wnt signaling in cultured calvarial osteoblasts from Lrp5(-/-) mice ex vivo and that lithium-treated mice had increased expression of Wnt-responsive genes in their bone marrow cells in vivo. These data lead us to conclude that lithium enhances bone formation and improves bone mass in mice and that it may do so via activation of the canonical Wnt pathway. Lithium has been used safely and effectively for over half a century in the treatment of bipolar illness. Prospective studies in patients receiving lithium should determine whether it also improves bone mass in humans.
Collapse
|