1251
|
A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 2013; 14:7405-32. [PMID: 23549272 PMCID: PMC3645693 DOI: 10.3390/ijms14047405] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Collapse
|
1252
|
Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:584-96. [PMID: 23430410 DOI: 10.1007/s10646-013-1050-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in mitigating oxidative stress in wheat seedlings exposed to arsenic (As). Seedlings were treated with NO donor (0.25 mM sodium nitroprusside, SNP) and As (0.25 and 0.5 mM Na2HAsO4·7H2O) separately and/or in combination and grown for 72 h. Relative water content (RWC) and chlorophyll (chl) content were decreased by As treatment but proline (Pro) content was increased. The ascorbate (AsA) content was decreased significantly with increased As concentration. The imposition of As caused marked increase in the MDA and H2O2 content. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) significantly increased with an increase in the level of As (both 0.25 and 0.5 mM), while the GSH/GSSG ratio decreased at higher concentration (0.5 mM). The ascorbate peroxidase and glutathione S-transferase activities consistently increased with an increase in the As concentration, while glutathione reductase (GR) activities increased only at 0.25 mM. The monodehydroascorbate reductase (MDHAR) and catalase (CAT) activities were not changed upon exposure to As. The activities of dehydroascorbate reductase (DHAR) and glyoxalase I (Gly I) decreased at any levels of As, while glutathione peroxidase (GPX) and glyoxalase II (Gly II) activities decreased only upon 0.5 mM As. Exogenous NO alone had little influence on the non-enzymatic and enzymatic components compared to the control seedlings. These inhibitory effects of As were markedly recovered by supplementation with SNP; that is, the treatment with SNP increased the RWC, chl and Pro contents; AsA and GSH contents and the GSH/GSSG ratio as well as the activities of MDHAR, DHAR, GR, GPX, CAT, Gly I and Gly II in the seedlings subjected to As stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to As-induced oxidative damage by enhancing their antioxidant defense and glyoxalase system.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Kagawa, Japan.
| | | |
Collapse
|
1253
|
Gest N, Garchery C, Gautier H, Jiménez A, Stevens R. Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:344-54. [PMID: 23130940 DOI: 10.1111/pbi.12020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 05/18/2023]
Abstract
Ascorbate is a powerful antioxidant in plants, and its levels are an important quality criteria in commercial species. Factors influencing these levels include environmental variations, particularly light, and the genetic control of its biosynthesis, recycling and degradation. One of the genes involved in the recycling pathway encodes a monodehydroascorbate reductase (MDHAR), an enzyme catalysing reduction of the oxidized radical of ascorbate, monodehydroascorbate, to ascorbate. In plants, MDHAR belongs to a multigene family. Here, we report the presence of an MDHAR isoform in both the cytosol and peroxisomes and show that this enzyme negatively regulates ascorbate levels in Solanum lycopersicum (tomato). Transgenic lines overexpressing MDHAR show a decrease in ascorbate levels in leaves, whereas lines where MDHAR is silenced show an increase in these levels in both fruits and leaves. Furthermore, the intensity of these differences is light dependent. The unexpected effect of this MDHAR on ascorbate levels cannot be explained by changes in the expression of Smirnoff-Wheeler pathway genes, or the activity of enzymes involved in degradation (ascorbate peroxidase) or recycling of ascorbate (dehydroascorbate reductase and glutathione reductase), suggesting a previously unidentified mechanism regulating ascorbate levels.
Collapse
Affiliation(s)
- Noé Gest
- INRA, UR1052, Génétique et amélioration des fruits et légumes, Domaine St Maurice, Allée des Chênes, Montfavet, France
| | | | | | | | | |
Collapse
|
1254
|
Proteomic analysis of strawberry achenes reveals active synthesis and recycling of L-ascorbic acid. J Proteomics 2013; 83:160-79. [PMID: 23545168 DOI: 10.1016/j.jprot.2013.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 12/23/2022]
Abstract
UNLABELLED Although the commonly named strawberry fruit (Fragaria×ananassa) is the sum of achenes and receptacles, the true fruit in the botanical sense is the achene. Here we report the protein changes occurring in the achene when developing from immature to mature stage. We have used 2-DE followed by image analysis, and protein identification by PMF combined with MS/MS, to investigate the protein variations associated to this transition. From a total of 331 spots analyzed, the corresponding 315 proteins have been identified. Differentially accumulated proteins between immature and mature achenes mostly reflect the physiological events associated to seed development and maturation, with only a few changes related to the development of the dry pericarp. We have focused our attention on vitamin C biosynthesis. Interestingly, GDP-mannose 3',5'-epimerase, a key enzyme in the l-ascorbate biosynthesis pathway, and ascorbate peroxidase, involved in l-ascorbic acid oxidation, accumulate in immature achenes. The higher amount of these enzymes found in the green achene is coincident with a higher content of l-ascorbate, and higher expression levels of these and other gene encoding enzymes of the l-ascorbic acid biosynthesis pathway. Altogether our results suggest an important role of l-ascorbic acid at the early developmental stage of the achene. BIOLOGICAL SIGNIFICANCE In this manuscript we report the identification of the most abundant proteins in strawberry (F.×ananassa) achenes at early and late stages of development, thus providing a proteomic view of the events that occur during the development of this organ. Despite the importance of strawberry as a commercial fruit, the molecular changes governing its growth and ripening processes are largely unknown. The lack of information is even greater in the case of the achenes, which are the true fruit and play a critical role in the developmental process of the receptacle. Our original proteomic study reported here, restricted to the achenes, completes the previous transcriptomic (very limited) and metabolomic maps of this organ, adding clarity to the role of the achene in the global ripening process. The results obtained not only complement the previous "omics" studies significantly, but also open new key questions that deserve further research (role of hormones). We finally focus on the biosynthesis of l-ascorbic acid, which appears to be tightly regulated by some specific pathways, and whose content is important in the achene. The information provided here will be of interest not only for the groups studying strawberry, but also for many other groups interested in the fruit ripening process, as well as for groups studying the regulation of l-ascorbic acid content in different plant tissues.
Collapse
|
1255
|
Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochem J 2013; 450:63-72. [PMID: 23170977 DOI: 10.1042/bj20121332] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glutathione biosynthesis catalysed by GCL (glutamate-cysteine ligase) and GS (glutathione synthetase) is essential for maintaining redox homoeostasis and protection against oxidative damage in diverse eukaroytes and bacteria. This biosynthetic pathway probably evolved in cyanobacteria with the advent of oxygenic photosynthesis, but the biochemical characteristics of progenitor GCLs and GSs in these organisms are largely unexplored. In the present study we examined SynGCL and SynGS from Synechocystis sp. PCC 6803 using steady-state kinetics. Although SynGCL shares ~15% sequence identity with the enzyme from plants and α-proteobacteria, sequence comparison suggests that these enzymes share similar active site residues. Biochemically, SynGCL lacks the redox regulation associated with the plant enzymes and functions as a monomeric protein, indicating that evolution of redox regulation occurred later in the green lineage. Site-directed mutagenesis of SynGCL establishes this enzyme as part of the plant-like GCL family and identifies a catalytically essential arginine residue, which is structurally conserved across all forms of GCLs, including those from non-plant eukaryotes and γ-proteobacteria. A reaction mechanism for the synthesis of γ-glutamylcysteine by GCLs is proposed. Biochemical and kinetic analysis of SynGS reveals that this enzyme shares properties with other prokaryotic GSs. Initial velocity and product inhibition studies used to examine the kinetic mechanism of SynGS suggest that it and other prokaryotic GSs uses a random ter-reactant mechanism for the synthesis of glutathione. The present study provides new insight on the molecular mechanisms and evolution of glutathione biosynthesis; a key process required for enhancing bioenergy production in photosynthetic organisms.
Collapse
|
1256
|
Licofelone modulates neuroinflammation and attenuates mechanical hypersensitivity in the chronic phase of spinal cord injury. J Neurosci 2013; 33:652-64. [PMID: 23303944 DOI: 10.1523/jneurosci.6128-11.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation is a major factor shaping outcome during the early, acute phase of traumatic spinal cord injury (SCI). It is known that pro-inflammatory signaling within the injured spinal cord drives pathological alterations in neurosensory processing and shapes functional outcome early after injury. However, it is unclear whether inflammation persists into the chronic phase of injury or shapes sensory processing long after injury. To investigate these possibilities, we have performed biochemical and behavioral assessments 9 months after moderate thoracic spinal contusion injury in the rat. We have found that levels of the pro-inflammatory lipid mediators leukotriene B4 and prostaglandin E2 are elevated in the chronic spinal cord lesion site. Additionally, using metabolomic profiling, we have detected elevated levels of pro-oxidative and inflammatory metabolites, along with alterations in multiple biological pathways within the chronic lesion site. We found that 28 d treatment of chronically injured rats with the dual COX/5-LOX inhibitor licofelone elevated levels of endogenous anti-oxidant and anti-inflammatory metabolites within the lesion site. Furthermore, licofelone treatment reduced hypersensitivity of hindpaws to mechanical, but not thermal, stimulation, indicating that mechanical sensitivity is modulated by pro-inflammatory signaling in the chronic phase of injury. Together, these findings provide novel evidence of inflammation and oxidative stress within spinal cord tissue far into the chronic phase of SCI, and demonstrate a role for inflammatory modulation of mechanical sensitivity in the chronic phase of injury.
Collapse
|
1257
|
Voothuluru P, Sharp RE. Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1223-33. [PMID: 23071257 DOI: 10.1093/jxb/ers277] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous work on the adaptation of maize (Zea mays L.) primary root growth to water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. Cell wall proteomic analysis suggested that levels of apoplastic reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2), may be modified in a region-specific manner within the growth zone of water-stressed roots. Apoplastic ROS may have wall loosening or tightening effects and may also have other growth regulatory functions. To gain an understanding of how apoplastic ROS levels change under water stress, cerium chloride staining was used in conjunction with transmission electron microscopy to examine the spatial distribution of apoplastic H2O2. The results revealed that apoplastic H2O2 levels increased specifically in the apical region of the growth zone under water stress, correlating spatially with the maintenance of cell elongation. The basal regions of the growth zone of water-stressed roots and the entire growth zone of well-watered roots exhibited relatively low levels of apoplastic H2O2. The increase in apoplastic H2O2 in the apical region under water stress probably resulted, at least in part, from a pronounced increase in oxalate oxidase activity in this region. By contrast, well-watered roots showed negligible oxalate oxidase activity throughout the growth zone. The results show that changes in apoplastic ROS levels in the root growth zone under water-deficit conditions are regulated in a spatially-specific manner, suggesting that this response may play an important role in maize root adaptation to water stress.
Collapse
Affiliation(s)
- Priyamvada Voothuluru
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
1258
|
Yu GB, Zhang Y, Ahammed GJ, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ. Glutathione biosynthesis and regeneration play an important role in the metabolism of chlorothalonil in tomato. CHEMOSPHERE 2013; 90:2563-70. [PMID: 23219050 DOI: 10.1016/j.chemosphere.2012.10.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 10/26/2012] [Accepted: 10/28/2012] [Indexed: 05/05/2023]
Abstract
Glutathione is one of the major endogenous antioxidants produced by cells. In plants, glutathione is crucial for both abiotic and biotic stress resistance, and also involved in the detoxification of xenobiotics in many organisms. However, as in vivo evidences of glutathione function are still lacking so far, its roles in plants are still poorly understood. In this study, we investigated the changes of thiols, glutathione homeostasis and transcripts of genes potentially involved in chlorothalonil (CHT) metabolism in tomato (Solanum lycopersicum L.). Two genes (GSH1, GSH2) encoding γ-glutamylcysteine synthetase and glutathione synthetase, respectively, and a gene for glutathione reductase (GR1) involved in glutathione regeneration were silenced by virus induced gene silencing (VIGS) approach. Silencing of GSH1, GSH2 and GR1 decreased glutathione contents and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), but increased CHT residues in plant tissues. The GSH1 and GR1 silenced plants showed the lowest GSH level and ratio of GSH/GSSG, respectively. Transcripts of P450, GST and ABC transporter genes as well as glutathione S-transferase (GST) activity were induced after CHT treatment. However, the increases of these transcripts were compromised in GSH1, GSH2 and GR1 silenced plants. This study indicates that glutathione not only serves as a substrate for CHT conjugation, but is also involved in regulation of transcripts of gene in pesticide metabolism via controlling redox homeostasis.
Collapse
Affiliation(s)
- Gao-Bo Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China; Agronomy College, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, PR China
| | - Yang Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Wei-Hua Mao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, PR China.
| |
Collapse
|
1259
|
Tran D, Kadono T, Molas ML, Errakhi R, Briand J, Biligui B, Kawano T, Bouteau F. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells. PLANT, CELL & ENVIRONMENT 2013; 36:569-78. [PMID: 22897345 DOI: 10.1111/j.1365-3040.2012.02596.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ozone (O(3) ) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O(3) results in ascorbate-derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca(2+) concentration, generation of reactive oxygen species and cell death. We confirmed that O(3) reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O(3) -induced signalling pathways that trigger programmed cell death.
Collapse
Affiliation(s)
- Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
1260
|
Wang Y, Lin A, Loake GJ, Chu C. H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:202-8. [PMID: 23331502 DOI: 10.1111/jipb.12032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In plants, the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress. Catalase (CAT), which decomposes hydrogen peroxide (H2 O2 ), is one of the controlling enzymes that maintains leaf redox homeostasis. The catalase mutants with reduced leaf catalase activity from different plant species exhibit an H2 O2 -induced leaf cell death phenotype. This phenotype was differently affected by light intensity or photoperiod, which may be caused by plant species, leaf redox status or growth conditions. In the rice CAT mutant nitric oxide excess 1 (noe1), higher H2 O2 levels induced the generation of nitric oxide (NO) and higher S-nitrosothiol (SNO) levels, suggesting that NO acts as an important endogenous mediator in H2 O2 -induced leaf cell death. As a free radical, NO could also react with other intracellular and extracellular targets and form a series of related molecules, collectively called reactive nitrogen species (RNS). Recent studies have revealed that both RNS and ROS are important partners in plant leaf cell death. Here, we summarize the recent progress on H2 O2 -induced leaf cell death and the crosstalk of RNS and ROS signals in the plant hypersensitive response (HR), leaf senescence, and other forms of leaf cell death triggered by diverse environmental conditions. [Formula: see text] [ Chengcai Chu (Corresponding author)].
Collapse
Affiliation(s)
- Yiqin Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
1261
|
Zheng Q, Song J, Campbell-Palmer L, Thompson K, Li L, Walker B, Cui Y, Li X. A proteomic investigation of apple fruit during ripening and in response to ethylene treatment. J Proteomics 2013; 93:276-94. [PMID: 23435059 DOI: 10.1016/j.jprot.2013.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 01/23/2023]
Abstract
UNLABELLED A proteomic approach employing a two dimensional electrophoresis (2-DE) technique with SYPRO Ruby, a fluorescent stain with improved sensitivity and quantitative accuracy, was performed to separate the total proteins from apple fruit at different stages of ripening and senescence. After imaging and statistical analyses were performed on 2340 spots, a total of 316 spots, or approximately 13.5% of the total protein population, was found to be significantly changed in this study. Of the 316 proteins, 219 spots were only present at a specific ripening stage, while 97 spots were significantly different (p<0.05) throughout fruit ripening and in response to ethylene treatment. From 316 candidate spots, 221 proteins were further identified by liquid chromatography and mass spectrometry analysis with protein sequence and express sequence tag (EST) data searching. Analysis and identification of proteins revealed that apple fruit ripening is associated with increase of abundance of many proteins with functions such as ethylene production, antioxidation and redox, carbohydrate metabolism, oxidative stress, energy, and defense response. Ethylene treatment increased a group of unique proteins that were not present during normal fruit ripening and have not been previously reported. It also reduced some proteins involved in primary metabolism, including those of the last few steps of the glycolytic pathway. This study demonstrated the complexity and dynamic changes of protein profiles of apple fruit during ripening and in response to exogenous ethylene treatment. Identifying and tracking protein changes may allow us to better understand the mechanism of ripening in climacteric fruit. BIOLOGICAL SIGNIFICANCE Postharvest physiology and biochemistry has been conducted on apple fruit for many years. Ethylene plays an important role in ripening and senescence in many climacteric fruit. However, little information is available at the proteome level to investigate fruit ripening and effect of ethylene treatment. The significance of this paper is that it is the first study employing 2-DE and fluorescent dye in the investigation of the apple fruit ripening and influence of ethylene treatment. It reveals some significant biological changes in association with these events and demonstrates significant changed proteins under these conditions. Therefore, our study links the biological events with proteomic information and provides detailed peptide information on all identified proteins. Through the function analysis, those significantly changed proteins are also analyzed. These findings from this paper provide not only proteome information on fruit ripening, but also pave the ground for further quantitative studies using SMR to investigate certain proteins and pathways under the hypothesis involved in fruit ripening. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Qifa Zheng
- Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main St., Kentville, NS., Canada B4N 1J5
| | | | | | | | | | | | | | | |
Collapse
|
1262
|
Bykova NV, Rampitsch C. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Proteomics 2013. [PMID: 23197359 DOI: 10.1002/pmic.201200270] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been clearly demonstrated that plants redox control can be exerted over virtually every cellular metabolic pathway affecting metabolic homeostasis and energy balance. Therefore, a tight link exists between cellular/compartmental steady-state redox level and cellular metabolism. Proteomics offers a powerful new way to characterize the response and regulation of protein oxidation in different cell types and in relation to cellular metabolism. Compelling evidence revealed in proteomics studies suggests the integration of the redox network with other cellular signaling pathways such as Ca(2+) and/or protein phosphorylation, jasmonic, salicylic, abscisic acids, ethylene, and other phytohormones. Here we review progress in using the various proteomics techniques and approaches to answer biological questions arising from redox signaling and from changes in redox status of the cell. The focus is on reversible redox protein modifications and on three main processes, namely oxidative and nitrosative stress, defense against pathogens, cellular redox response and regulation, drawing on examples from plant redox proteomics studies.
Collapse
Affiliation(s)
- Natalia V Bykova
- Cereal Research Centre, Agriculture and AgriFood Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
1263
|
Pétriacq P, de Bont L, Tcherkez G, Gakière B. NAD: not just a pawn on the board of plant-pathogen interactions. PLANT SIGNALING & BEHAVIOR 2013; 8:e22477. [PMID: 23104110 PMCID: PMC3745554 DOI: 10.4161/psb.22477] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 05/18/2023]
Abstract
Many metabolic processes that occur in living cells involve oxido-reduction (redox) chemistry underpinned by redox compounds such as glutathione, ascorbate and/or pyridine nucleotides. Among these redox carriers, nicotinamide adenine dinucleotide (NAD) is the cornerstone of cellular oxidations along catabolism and is therefore essential for plant growth and development. In addition to its redox role, there is now compelling evidence that NAD is a signal molecule controlling crucial functions like primary and secondary carbon metabolism. Recent studies using integrative -omics approaches combined with molecular pathology have shown that manipulating NAD biosynthesis and recycling lead to an alteration of metabolites pools and developmental processes, and changes in the resistance to various pathogens. NAD levels should now be viewed as a potential target to improve tolerance to biotic stress and crop improvement. In this paper, we review the current knowledge on the key role of NAD (and its metabolism) in plant responses to pathogen infections.
Collapse
Affiliation(s)
- Pierre Pétriacq
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| | - Linda de Bont
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| | - Guillaume Tcherkez
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
- Institut Universitaire de France; Paris, France
| | - Bertrand Gakière
- Institut de Biologie des Plantes; CNRS UMR 8618; Université Paris-Sud; Orsay, France
| |
Collapse
|
1264
|
Abstract
Peroxisomes are very dynamic and metabolically active organelles and are a very important source of reactive oxygen species (ROS), H2O2, O2 (.-) and · OH, which are mainly produced in different metabolic pathways, including fatty acid β-oxidation, photorespiration, nucleic acid and polyamine catabolism, ureide metabolism, etc. ROS were originally associated to oxygen toxicity; however, these reactive species also play a central role in the signaling network regulating essential processes in the cell. Peroxisomes have the capacity to rapidly produce and scavenge H2O2 and O2 (.-) which allows to regulate dynamic changes in ROS levels. This fact and the plasticity of these organelles, which allows adjusting their metabolism depending on different developmental and environmental cues, makes these organelles play a central role in cellular signal transduction. The use of catalase and glycolate oxidase loss-of-function mutants has allowed to study the consequences of changes in the levels of endogenous H2O2 in peroxisomes and has improved our knowledge of the transcriptomic profile of genes regulated by peroxisomal ROS. It is now known that peroxisomal ROS participate in more complex signaling networks involving calcium, hormones, and redox homeostasis which finally determine the response of plants to their environment.
Collapse
|
1265
|
Contran N, Günthardt-Goerg MS, Kuster TM, Cerana R, Crosti P, Paoletti E. Physiological and biochemical responses of Quercus pubescens to air warming and drought on acidic and calcareous soils. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:157-168. [PMID: 22672383 DOI: 10.1111/j.1438-8677.2012.00627.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The drought- and thermo-tolerant Quercus pubescens, a tree species growing on both acidic and calcareous soils in the sub-Mediterranean region, was exposed to soil drought (-60% to -80% soil water content) and air warming (+1.2 °C daytime temperature), singly and in combination. The experiment was conducted on two natural forest soils with similar texture but different pH (acidic and calcareous soils). The physiological (photosynthesis) and biochemical (antioxidant system) responses of Q. pubescens were investigated. On acidic soil, Q. pubescens had a higher reactive oxygen species (ROS) content than on calcareous soil, confirming that this species is better adapted to the latter soil type. A down-regulation of ascorbate-glutathione cycle enzymes suggests that ROS were used as signalling molecules. Air warming stimulated stomatal opening, while soil drought induced stomatal closure in the late afternoon and reduced Rubisco carboxylation efficiency. Photosynthetic performance in the combined treatment was higher than under single drought stress and similar to control and air warming. Q. pubescens biochemical responses depended on soil pH. On acidic soil, Q. pubescens trees exposed to air warming used ROS as signalling molecules. On calcareous soil, these trees were able to balance both soil drought and air warming stress, avoiding ROS toxic effects by increasing antioxidant enzyme activitiy and maintaining a high enzymatic antioxidant defence. When combined, drought and air warming induced either more severe (higher oxidative pressure and impairment of the light-harvesting complex) or different responses (decline of the thermal energy dissipation capacity) relative to the single stressors. Overall, however, Q. pubescens preserved the functionality of the photosynthetic apparatus and controlled the antioxidant system response, thus confirming its drought and thermo-tolerance and therefore its potential to adapt to the ongoing climate change.
Collapse
Affiliation(s)
- N Contran
- Desertification Research Centre (NRD), University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
1266
|
Gest N, Gautier H, Stevens R. Ascorbate as seen through plant evolution: the rise of a successful molecule? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:33-53. [PMID: 23109712 DOI: 10.1093/jxb/ers297] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ascorbate is a widespread and efficient antioxidant that has multiple functions in plants, traditionally associated with the reactions of photosynthesis. This review aims to look at ascorbate from an evolutionary perspective. Cyanobacteria, algae, and bryophytes contain lower concentrations of ascorbate than higher plants, where the molecule accumulates in high concentrations in both photosynthetic and non-photosynthetic organs and tissues. This increase in ascorbate concentration is paralleled by an increase in the number of isoforms of ascorbate peroxidase and the ascorbate regenerating enzymes mono- and dehydroascorbate reductase. One way of understanding the rise in ascorbate concentrations is to consider ascorbate as a molecule among others that has been subject to selection pressures during evolution, due to its cost or benefit for the cell and the organism. Ascorbate has a low cost in terms of synthesis and toxicity, and its benefits include protection of the glutathione pool and proper functioning of a range of enzymes. The hypothesis presented here is that these features would have favoured increasing roles for the molecule in the development and growth of multicellular organisms. This review then focuses on this diversity of roles for ascorbate in both photosynthetic and non-photosynthetic tissues of higher plants, including fruits and seeds, as well as further functions the molecule may possess by looking at other species. The review also highlights one of the trade-offs of domestication, which has often reduced or diluted ascorbate content in the quest for increased fruit growth and yield, with unknown consequences for the corresponding functional diversity, particularly in terms of stress resistance and adaptive responses to the environment.
Collapse
Affiliation(s)
- Noé Gest
- INRA, UR1052, Génétique et amélioration des fruits et légumes, Domaine St Maurice, 84143 Montfavet, France
| | | | | |
Collapse
|
1267
|
Dickman MB, Fluhr R. Centrality of host cell death in plant-microbe interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:543-70. [PMID: 23915134 DOI: 10.1146/annurev-phyto-081211-173027] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.
Collapse
Affiliation(s)
- Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Center for Cell Death and Differentiation, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
1268
|
Locato V, Cimini S, Gara LD. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. FRONTIERS IN PLANT SCIENCE 2013; 4:152. [PMID: 23734160 PMCID: PMC3660703 DOI: 10.3389/fpls.2013.00152] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/03/2013] [Indexed: 05/03/2023]
Abstract
Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia, and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by "classical" breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defense responses.
Collapse
Affiliation(s)
| | | | - Laura De Gara
- *Correspondence: Laura De Gara, Laboratory of Plant Biochemistry and Food Sciences, Università Campus Bio-Medico, Via Alvaro del Portillo, 21, 00128 Rome, Italy. e-mail:
| |
Collapse
|
1269
|
Mellidou I, Keulemans J, Kanellis AK, Davey MW. Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC PLANT BIOLOGY 2012; 12:239. [PMID: 23245200 PMCID: PMC3548725 DOI: 10.1186/1471-2229-12-239] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/12/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND To gain insight into the regulation of fruit ascorbic acid (AsA) pool in tomatoes, a combination of metabolite analyses, non-labelled and radiolabelled substrate feeding experiments, enzyme activity measurements and gene expression studies were carried out in fruits of the 'low-' and 'high-AsA' tomato cultivars 'Ailsa Craig' and 'Santorini' respectively. RESULTS The two cultivars exhibited different profiles of total AsA (totAsA, AsA + dehydroascorbate) and AsA accumulation during ripening, but both displayed a characteristic peak in concentrations at the breaker stage. Substrate feeding experiments demonstrated that the L-galactose pathway is the main AsA biosynthetic route in tomato fruits, but that substrates from alternative pathways can increase the AsA pool at specific developmental stages. In addition, we show that young fruits display a higher AsA biosynthetic capacity than mature ones, but this does not lead to higher AsA concentrations due to either enhanced rates of AsA breakdown ('Ailsa Craig') or decreased rates of AsA recycling ('Santorini'), depending on the cultivar. In the later stages of ripening, differences in fruit totAsA-AsA concentrations of the two cultivars can be explained by differences in the rate of AsA recycling activities. Analysis of the expression of AsA metabolic genes showed that only the expression of one orthologue of GDP-L-galactose phosphorylase (SlGGP1), and of two monodehydroascorbate reductases (SlMDHAR1 and SlMDHAR3) correlated with the changes in fruit totAsA-AsA concentrations during fruit ripening in 'Ailsa Craig', and that only the expression of SlGGP1 was linked to the high AsA concentrations found in red ripe 'Santorini' fruits. CONCLUSIONS Results indicate that 'Ailsa Craig' and 'Santorini' use complementary mechanisms to maintain the fruit AsA pool. In the low-AsA cultivar ('Ailsa Craig'), alternative routes of AsA biosynthesis may supplement biosynthesis via L-galactose, while in the high-AsA cultivar ('Santorini'), enhanced AsA recycling activities appear to be responsible for AsA accumulation in the later stages of ripening. Gene expression studies indicate that expression of SlGGP1 and two orthologues of SlMDHAR are closely correlated with totAsA-AsA concentrations during ripening and are potentially good candidates for marker development for breeding and selection.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001, Heverlee, Belgium
| | - Johan Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001, Heverlee, Belgium
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants. Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Mark W Davey
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, B-3001, Heverlee, Belgium
| |
Collapse
|
1270
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
1271
|
Koffler BE, Bloem E, Zellnig G, Zechmann B. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis. Micron 2012; 45:119-28. [PMID: 23265941 PMCID: PMC3553553 DOI: 10.1016/j.micron.2012.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/23/2012] [Accepted: 11/24/2012] [Indexed: 01/06/2023]
Abstract
Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments.
Collapse
Affiliation(s)
- Barbara E Koffler
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
1272
|
Botanga CJ, Bethke G, Chen Z, Gallie DR, Fiehn O, Glazebrook J. Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1628-38. [PMID: 23134520 DOI: 10.1094/mpmi-07-12-0179-r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The interaction between the pathogenic ascomycete Alternaria brassicicola and Arabidopsis was investigated by metabolite profiling. The effect of A. brassicicola challenge on metabolite levels was substantial, with nearly 50% of detected compounds undergoing significant changes. Mutations blocking ethylene, jasmonic acid, or ethylene signaling had little effect on metabolite levels. The effects of altering levels of some metabolites were tested by exogenous application during A. brassicicola inoculation. Gamma amino-butyric acid (GABA) or xylitol promoted, while trehalose and ascorbate inhibited, disease severity. GABA promoted, and ascorbate strongly inhibited, fungal growth in culture. Arabidopsis vtc1 and vtc2 mutants, that have low levels of ascorbate, were more susceptible to A. brassicicola. Ascorbate levels declined following A. brassicicola inoculation while levels of dehydroascorbate increased, resulting in a shift of the redox balance between these compounds in the direction of oxidation. These results demonstrate that ascorbate is an important component of resistance to this pathogen.
Collapse
|
1273
|
Ferreira MSL, Samson MF, Bonicel J, Morel MH. Relationship between endosperm cells redox homeostasis and glutenin polymers assembly in developing durum wheat grain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:36-45. [PMID: 23031846 DOI: 10.1016/j.plaphy.2012.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/23/2012] [Indexed: 06/01/2023]
Abstract
Assembly of glutenin polymers was examined for two contrasted durum wheat cultivars in connection with changes in the redox status of the endosperm cells that accompanied grain development. The evolutions of the redox state of ascorbate and glutathione, as well as the activities of antioxidant enzymes were measured. Changes in the size distribution profile and redox state of storage proteins were evaluated, with particular emphasis on protein-bound glutathione (PSSG). At the beginning of grain filling phase, the size distribution profile of proteins included an extra peak shoulder at about 40,000 g mol(-1). The shoulder was assimilated to free glutenin subunits as it disappeared concomitantly with the upturn in glutenin polymers accumulation. Irrespective of cultivars, small SDS-soluble polymers accumulated first, followed by larger and insoluble ones, attesting for a progressive polymerization. During the grain filling phase, catalase (EC 1.11.1.6) activity dropped, reaching a very low level at physiological maturity. During the same period, superoxide dismutase (EC 1.15.1.1) and glutathione reductase (EC 1.6.4.2) activities increased steadily while the equilibrium constant between GSSG and PSSG shifted from 10(-2) to unity. These results demonstrated that grain filling was accompanied by a continuous decrease in cellular redox potential. In this context, formation of protein-bound glutathione would represent a protective mechanism against irreversible thiol oxidation. Storage protein S-glutathionylation instead of limiting glutenin polymer assembly as it has been proposed might be a required intermediate step for glutenin subunits pairing.
Collapse
Affiliation(s)
- Mariana S L Ferreira
- INRA, UMR1208 Agropolymers Engineering and Emerging Technologies, 2 place Pierre Viala, F-34 060 Montpellier, France.
| | | | | | | |
Collapse
|
1274
|
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal Modulation of Plant Immunity. Annu Rev Cell Dev Biol 2012; 28:489-521. [DOI: 10.1146/annurev-cellbio-092910-154055] [Citation(s) in RCA: 1753] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Corné M.J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Dieuwertje Van der Does
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| | - Christos Zamioudis
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Universidad San Francisco de Quito, Quito, Ecuador;
| | - Saskia C.M. Van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| |
Collapse
|
1275
|
Buchanan BB, Holmgren A, Jacquot JP, Scheibe R. Fifty years in the thioredoxin field and a bountiful harvest. Biochim Biophys Acta Gen Subj 2012; 1820:1822-9. [DOI: 10.1016/j.bbagen.2012.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
1276
|
Asano T, Kimura M, Nishiuchi T. The defense response in Arabidopsis thaliana against Fusarium sporotrichioides. Proteome Sci 2012; 10:61. [PMID: 23110430 PMCID: PMC3507649 DOI: 10.1186/1477-5956-10-61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/05/2012] [Indexed: 11/22/2022] Open
Abstract
Background Certain graminaceous plants such as Zea mays and Triticum aestivum serve as hosts for Fusarium sporotrichioides; however, molecular interactions between the host plants and F. sporotrichioides remain unknown. It is also not known whether any interaction between Arabidopsis thaliana and F. sporotrichioides can occur. To understand these interactions, we performed proteomic analysis. Results Arabidopsis leaves and flowers were inoculated with F. sporotrichioides. Accumulation of PLANT DEFENSIN1.2 (PDF1.2) and PATHOGENESIS RELATED1 (PR1) mRNA in Arabidopsis were increased by inoculation of F. sporotrichioides. Furthermore, mitogen-activated protein kinase 3 (MPK3) and mitogen-activated protein kinase 6 (MPK6), which represent MAP kinases in Arabidopsis, were activated by inoculation of F. sporotrichioides. Proteomic analysis revealed that some defense-related proteins were upregulated, while the expression of photosynthesis- and metabolism-related proteins was down regulated, by inoculation with F. sporotrichioides. We carried out the proteomic analysis about upregulated proteins by inoculation with Fusarium graminearum. The glutathione S-transferases (GSTs), such as GSTF4 and GSTF7 were upregulated, by inoculation with F. graminearum-infected Arabidopsis leaves. On the other hand, GSTF3 and GSTF9 were uniquely upregulated, by inoculation with F. sporotrichioides. Conclusions These results indicate that Arabidopsis is a host plant for F. sporotrichioides. We revealed that defense response of Arabidopsis is initiated by infection with F. sporotrichioides.
Collapse
Affiliation(s)
- Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa, 920-0934, Japan.
| | | | | |
Collapse
|
1277
|
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 2012; 17:1124-60. [PMID: 22531002 DOI: 10.1089/ars.2011.4327] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thioredoxins (Trx) and glutaredoxins (Grx) constitute families of thiol oxidoreductases. Our knowledge of Trx and Grx in plants has dramatically increased during the last decade. The release of the Arabidopsis genome sequence revealed an unexpectedly high number of Trx and Grx genes. The availability of several genomes of vascular and nonvascular plants allowed the establishment of a clear classification of the genes and the chronology of their appearance during plant evolution. Proteomic approaches have been developed that identified the putative Trx and Grx target proteins which are implicated in all aspects of plant growth, including basal metabolism, iron/sulfur cluster formation, development, adaptation to the environment, and stress responses. Analyses of the biochemical characteristics of specific Trx and Grx point to a strong specificity toward some target enzymes, particularly within plastidial Trx and Grx. In apparent contradiction with this specificity, genetic approaches show an absence of phenotype for most available Trx and Grx mutants, suggesting that redundancies also exist between Trx and Grx members. Despite this, the isolation of mutants inactivated in multiple genes and several genetic screens allowed the demonstration of the involvement of Trx and Grx in pathogen response, phytohormone pathways, and at several control points of plant development. Cytosolic Trxs are reduced by NADPH-thioredoxin reductase (NTR), while the reduction of Grx depends on reduced glutathione (GSH). Interestingly, recent development integrating biochemical analysis, proteomic data, and genetics have revealed an extensive crosstalk between the cytosolic NTR/Trx and GSH/Grx systems. This crosstalk, which occurs at multiple levels, reveals the high plasticity of the redox systems in plants.
Collapse
Affiliation(s)
- Yves Meyer
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France
| | | | | | | | | |
Collapse
|
1278
|
Minibayeva F, Dmitrieva S, Ponomareva A, Ryabovol V. Oxidative stress-induced autophagy in plants: the role of mitochondria. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:11-9. [PMID: 22386760 DOI: 10.1016/j.plaphy.2012.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/09/2012] [Indexed: 05/08/2023]
Abstract
The strictly regulated removal of oxidized structures is a universal stress response of eukaryotic cells that targets damaged or toxic components for vacuolar or lysosomal degradation. Autophagy stands at the crossroad between cell survival and death. It promotes survival by degrading proteins and organelles damaged during oxidative stress, but it is also activated as a part of death programs, when the damage cannot be overcome. Evidence is accumulating that the cellular sites of ROS production and signaling may be primary targets of autophagy. Therefore, autophagosomal targeting of mitochondria (mitophagy) is of particular importance. Mitophagy is a selective process that can specifically target dysfunctional mitochondria, but also mitophagy may play a role in controlling the number and quality of mitochondria during stress. Here we review the mechanisms of both non-specific autophagy and mitochondrial targeting in plants, drawing analogies and emphasizing differences with yeast and mammalian systems.
Collapse
Affiliation(s)
- Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, PO Box 30, Kazan 420111, Russian Federation.
| | | | | | | |
Collapse
|
1279
|
Garcia-Saura MF, Saijo F, Bryan NS, Bauer S, Rodriguez J, Feelisch M. Nitroso-redox status and vascular function in marginal and severe ascorbate deficiency. Antioxid Redox Signal 2012; 17:937-50. [PMID: 22304648 PMCID: PMC3411334 DOI: 10.1089/ars.2011.4201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Marginal vitamin C (ascorbic acid) deficiency is a prevalent yet underappreciated risk factor for cardiovascular disease. Along with glutathione, ascorbate plays important roles in antioxidant defense and redox signaling. Production of nitric oxide (NO) and reactive oxygen species and their interaction, giving rise to nitroso and nitrosyl product formation, are key components of the redox regulation/signaling network. Numerous in vitro studies have demonstrated that these systems are interconnected via multiple chemical transformation reactions, but little is known about their dynamics and significance in vivo. AIMS We sought to investigate the time-course of changes in NO/redox status and vascular function during ascorbate depletion in rats unable to synthesize vitamin C. RESULTS We here show that both redox and protein nitros(yl)ation status in blood and vital organs vary dynamically during development of ascorbate deficiency. Prolonged marginal ascorbate deficiency is associated with cell/tissue-specific perturbations in ascorbate and glutathione redox and NO status. Scurvy develops earlier in marginally deficient compared to adequately supplemented animals, with blunted compensatory NO production and a dissociation of biochemistry from clinical symptomology in the former. Paradoxically, aortic endothelial reactivity is enhanced rather than impaired, irrespective of ascorbate status. Innovation/Conclusion: Enhanced NO production and protein nitros(yl)ation are integral responses to the redox stress of acute ascorbate deprivation. The elevated cardiovascular risk in marginal ascorbate deficiency is likely to be associated with perturbations of NO/redox-sensitive signaling nodes unrelated to the regulation of vascular tone. This new model may have merit for the future study of redox-sensitive events in marginal ascorbate deficiency.
Collapse
|
1280
|
Mehterov N, Balazadeh S, Hille J, Toneva V, Mueller-Roeber B, Gechev T. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:20-9. [PMID: 22710144 DOI: 10.1016/j.plaphy.2012.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/27/2012] [Indexed: 05/05/2023]
Abstract
The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ, which stimulate the intracellular formation of H₂O₂ or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ, serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv 4000, Bulgaria
| | | | | | | | | | | |
Collapse
|
1281
|
Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M, Merchant SS. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. THE PLANT CELL 2012; 24:3921-48. [PMID: 23043051 PMCID: PMC3517228 DOI: 10.1105/tpc.112.102491] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 05/03/2023]
Abstract
We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, Vitamin C 2 (VTC2), monodehydroascorbate reductase 1 (MDAR1), and conserved in the green lineage and diatoms 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron.
Collapse
Affiliation(s)
- Eugen I. Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Hiroaki Yamasaki
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Scott I. Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Lital N. Adler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Steven J. Karpowicz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|
1282
|
Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. Biochem J 2012; 445:337-47. [PMID: 22607208 DOI: 10.1042/bj20120505] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plants contain both cytosolic and chloroplastic GAPDHs (glyceraldehyde-3-phosphate dehydrogenases). In Arabidopsis thaliana, cytosolic GAPDH is involved in the glycolytic pathway and is represented by two differentially expressed isoforms (GapC1 and GapC2) that are 98% identical in amino acid sequence. In the present study we show that GapC1 is a phosphorylating NAD-specific GAPDH with enzymatic activity strictly dependent on Cys(149). Catalytic Cys(149) is the only solvent-exposed cysteine of the protein and its thiol is relatively acidic (pK(a)=5.7). This property makes GapC1 sensitive to oxidation by H(2)O(2), which appears to inhibit enzyme activity by converting the thiolate of Cys(149) (-S-) into irreversible oxidized forms (-SO(2)(-) and -SO(3)(-)) via a labile sulfenate intermediate (-SO(-)). GSH (reduced glutathione) prevents this irreversible process by reacting with Cys(149) sulfenates to give rise to a mixed disulfide (Cys(149)-SSG), as demonstrated by both MS and biotinylated GSH. Glutathionylated GapC1 can be fully reactivated either by cytosolic glutaredoxin, via a GSH-dependent monothiol mechanism, or, less efficiently, by cytosolic thioredoxins physiologically reduced by NADPH:thioredoxin reductase. The potential relevance of these findings is discussed in the light of the multiple functions of GAPDH in eukaryotic cells (e.g. glycolysis, control of gene expression and apoptosis) that appear to be influenced by the redox state of the catalytic Cys(149).
Collapse
|
1283
|
Hernandez M, Fernandez-Garcia N, Garcia-Garma J, Rubio-Asensio JS, Rubio F, Olmos E. Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1366-74. [PMID: 22771251 DOI: 10.1016/j.jplph.2012.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/01/2012] [Accepted: 05/14/2012] [Indexed: 05/09/2023]
Abstract
The relationship between potassium deficiency and the antioxidative defense system has received little study. The aim of this work was to study the induction of oxidative stress in response to K(+) deficiency and the putative role of antioxidants. The tomato plants were grown in hydroponic systems to determine the role of reactive oxygen species (ROS) in the root response to potassium deprivation. Parameters of oxidative stress (malondialdehyde and hydrogen peroxide (H(2)O(2)) concentration), activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)) and antioxidant molecules (ascorbate (ASC) and glutathione) were investigated. H(2)O(2) was subcellularly located by laser confocal microscopy after potassium starvation in roots. During the first 24h, H(2)O(2) induced the cascade of the cellular response to low potassium, and ROS accumulation was located mainly in epidermal cells in the elongation zone and meristematic cells of the root tip and the epidermal cells of the mature zones of potassium starved roots. The activity of the antioxidative enzymes SOD, peroxidase and APX in potassium deprivation significantly increased, whereas CAT and DHAR activity was significantly depressed in the potassium starvation treatment compared to controls. GR did not show significant differences between control and potassium starvation treatments. Based on these results, we put forward the hypothesis that antioxidant molecule accumulations probably scavenge H(2)O(2) and might be regenerated by the ASC-glutathione cycle enzymes, such as DHAR and GR.
Collapse
Affiliation(s)
- M Hernandez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus de Espinardo, 30100 Espinardo-Murcia, Spain
| | | | | | | | | | | |
Collapse
|
1284
|
Chen H, Chen J, Guo Y, Wen Y, Liu J, Liu W. Evaluation of the role of the glutathione redox cycle in Cu(II) toxicity to green algae by a chiral perturbation approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 120-121:19-26. [PMID: 22609738 DOI: 10.1016/j.aquatox.2012.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 06/01/2023]
Abstract
The effect of heavy metal toxicity on the environment is usually linked to changes in the glutathione redox cycle and oxidative damage as causative events. However, it is unknown whether changes in the glutathione redox cycle are a cause or result of Cu(II) toxicity. Herein, a new chiral perturbation strategy involving a chiral herbicide, dichlorprop (DCPP), as a perturbation factor was used. According to the dose-response fitting curve of DCPP and the combination with Cu(II), 40 μM (R)-DCPP and (S)-DCPP, whose toxicities were low enough to not significantly perturb the Cu(II) toxicity, were selected as the chiral perturbation factor. When Scenedesmus obliquus was incubated with the chiral perturbation factor and 10 μM Cu(II), chiral perturbation was observed in the chlorophyll content and the PAM chlorophyll fluorescence. Then, the role of the glutathione redox cycle in the toxicity of Cu(II) was evaluated with the chiral perturbation approach. The results revealed that the GSH differences in algae cells exposed to (R)-DCPP or (S)-DCPP were well correlated with the differences in the production of reactive oxygen species (ROS) after exposure to the two enantiomers. When (R)-DCPP or (S)-DCPP was added with Cu(II) to the algae culture, treatment with (R)-DCPP-Cu resulted in a decrease in the GSH content in algae cells compared to the control, whereas treatment with (S)-DCPP-Cu resulted in an increase in the GSH. The GSH/GSSG ratio and GR activity also showed similar enantioselectivities. The enantioselectivities would not exist if the changes of in glutathione redox cycle were the cause. Therefore, these data provide indirect evidence that ROS induced cell toxicity of Cu is a causative event, which results in the response of the glutathione redox cycle. These results also provided an implication that before sustainable detoxification strategies for heavy metal pollutants were proposed, it is better that the roles of ROS production and glutathione redox cycle are elucidated. In this case, the chiral perturbation strategy may be a good choice.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
1285
|
Dempsey RW, Merchant A, Tausz M. Differences in ascorbate and glutathione levels as indicators of resistance and susceptibility in Eucalyptus trees infected with Phytophthora cinnamomi. TREE PHYSIOLOGY 2012; 32:1148-1160. [PMID: 22977205 DOI: 10.1093/treephys/tps076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study we investigated the role that ascorbate (AA) and glutathione (GSH) play in the plant pathogen interaction of susceptible Eucalyptus sieberi L. A. Johnson and resistant Eucalyptus sideroxylon Woolls with Phytophthora cinnamomi Rands root infection. In a glasshouse study, seedlings were grown in soil-free plant boxes to facilitate the inoculation of the root systems by a P. cinnamomi zoospore solution. Ascorbate and GSH concentrations were measured in infected roots and leaves, along with leaf gas exchange, chlorophyll fluorescence and carbohydrate concentrations over a time course up to 312 h (13 days) post-inoculation (pi). At the early stages of infection (from 24 h pi), significant decreases in AA and GSH concentrations were observed in the infected roots and leaves of the susceptible E. sieberi seedlings. At the later stage of infection (312 h pi), the earlier AA decreases in the leaves of infected plants had become significant increases. In contrast, late, significant AA increases in the absence of any GSH changes were observed in the infected roots of the resistant E. sideroxylon seedlings. In E. sideroxylon leaves, a significant GSH increase occurred at 24 h pi; however, by 312 h pi the earlier increase had become a significant decrease, while no changes occurred in AA. In E. sieberi, photosynthesis (A), stomatal conductance (g(s)) and PSII quantum efficiency (Φ(PSII)) were reduced by ~60, 80 and 30%, respectively, in infected plants and remained significantly lower than uninfected controls for the duration of the experiment. Significant reductions in these parameters did not occur until later (120 h pi for g(s) and 312 h pi for A and Φ(PSII)), and to a lesser extent in the resistant species. Non-structural carbohydrate analysis of roots and leaves indicate that carbohydrate metabolism and resource flow between shoots and roots may have been altered at later infection stages. This study suggests that reduced antioxidant capacity, leaf physiological function and carbohydrate metabolism are associated with susceptibility in E. sieberi to P. cinnamomi infection, while AA increases and new root formation were associated with resistance in E. sideroxylon.
Collapse
Affiliation(s)
- Raymond W Dempsey
- Department of Forest and Ecosystem Science, Melbourne School of Land and Environment, University of Melbourne, Creswick, VIC 3363, Australia.
| | | | | |
Collapse
|
1286
|
Xia X, Zhang HM, Andriunas FA, Offler CE, Patrick JW. Extracellular hydrogen peroxide, produced through a respiratory burst oxidase/superoxide dismutase pathway, directs ingrowth wall formation in epidermal transfer cells of Vicia faba cotyledons. PLANT SIGNALING & BEHAVIOR 2012; 7:1125-8. [PMID: 22899058 PMCID: PMC3489643 DOI: 10.4161/psb.21320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intricate, and often polarized, ingrowth walls of transfer cells (TCs) amplify their plasma membrane surface areas to confer a transport function of supporting high rates of nutrient exchange across apo-/symplasmic interfaces. The TC ingrowth wall comprises a uniform wall layer on which wall ingrowths are deposited. Signals and signal cascades inducing trans-differentiation events leading to formation of TC ingrowth walls are poorly understood. Vicia faba cotyledons offer a robust experimental model to examine TC induction as, when placed into culture, their adaxial epidermal cells rapidly (h) and synchronously form polarized ingrowth walls accessible for experimental observations. Using this model, we recently reported findings consistent with extracellular hydrogen peroxide, produced through a respiratory burst oxidase homolog/superoxide dismutase pathway, initiating cell wall biosynthetic activity and providing directional information guiding deposition of the polarized uniform wall. Our conclusions rested on observations derived from pharmacological manipulations of hydrogen peroxide production and correlative gene expression data sets. A series of additional studies were undertaken, the results of which verify that extracellular hydrogen peroxide contributes to regulating ingrowth wall formation and is generated by a respiratory burst oxidase homolog/superoxide dismutase pathway.
Collapse
|
1287
|
Timm S, Mielewczik M, Florian A, Frankenbach S, Dreissen A, Hocken N, Fernie AR, Walter A, Bauwe H. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One 2012; 7:e42809. [PMID: 22912743 PMCID: PMC3422345 DOI: 10.1371/journal.pone.0042809] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/12/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Photorespiratory carbon metabolism was long considered as an essentially closed and nonregulated pathway with little interaction to other metabolic routes except nitrogen metabolism and respiration. Most mutants of this pathway cannot survive in ambient air and require CO(2)-enriched air for normal growth. Several studies indicate that this CO(2) requirement is very different for individual mutants, suggesting a higher plasticity and more interaction of photorespiratory metabolism as generally thought. To understand this better, we examined a variety of high- and low-level parameters at 1% CO(2) and their alteration during acclimation of wild-type plants and selected photorespiratory mutants to ambient air. METHODOLOGY AND PRINCIPAL FINDINGS The wild type and four photorespiratory mutants of Arabidopsis thaliana (Arabidopsis) were grown to a defined stadium at 1% CO(2) and then transferred to normal air (0.038% CO(2)). All other conditions remained unchanged. This approach allowed unbiased side-by-side monitoring of acclimation processes on several levels. For all lines, diel (24 h) leaf growth, photosynthetic gas exchange, and PSII fluorescence were monitored. Metabolite profiling was performed for the wild type and two mutants. During acclimation, considerable variation between the individual genotypes was detected in many of the examined parameters, which correlated with the position of the impaired reaction in the photorespiratory pathway. CONCLUSIONS Photorespiratory carbon metabolism does not operate as a fully closed pathway. Acclimation from high to low CO(2) was typically steady and consistent for a number of features over several days, but we also found unexpected short-term events, such as an intermittent very massive rise of glycine levels after transition of one particular mutant to ambient air. We conclude that photorespiration is possibly exposed to redox regulation beyond known substrate-level effects. Additionally, our data support the view that 2-phosphoglycolate could be a key regulator of photosynthetic-photorespiratory metabolism as a whole.
Collapse
Affiliation(s)
- Stefan Timm
- University of Rostock, Department of Plant Physiology, Rostock, Germany
| | - Michael Mielewczik
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
- Institute of Bio- and Geosciences IBG-2, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexandra Florian
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Silja Frankenbach
- University of Rostock, Department of Plant Physiology, Rostock, Germany
| | - Anne Dreissen
- Institute of Bio- and Geosciences IBG-2, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nadine Hocken
- Institute of Bio- and Geosciences IBG-2, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Achim Walter
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
- Institute of Bio- and Geosciences IBG-2, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hermann Bauwe
- University of Rostock, Department of Plant Physiology, Rostock, Germany
| |
Collapse
|
1288
|
Bai XG, Chen JH, Kong XX, Todd CD, Yang YP, Hu XY, Li DZ. Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 2012; 53:710-20. [PMID: 22683602 DOI: 10.1016/j.freeradbiomed.2012.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/03/2012] [Accepted: 05/27/2012] [Indexed: 11/30/2022]
Abstract
Both carbon monoxide (CO) and nitric oxide (NO) play fundamental roles in plant responses to environmental stress. Glutathione (GSH) homeostasis through the glutathione-ascorbate cycle regulates the cellular redox status and protects the plant from damage due to reactive oxygen species (ROS) or reactive nitrogen species (RNS). Most recalcitrant seeds are sensitive to chilling stress, but the roles of and cross talk among CO, NO, ROS, and GSH in recalcitrant seeds under low temperature are not well understood. Here, we report that the germination of recalcitrant Baccaurea ramiflora seeds shows sensitivity to chilling stress, but application of exogenous CO or NO markedly increased GSH accumulation, enhanced the activities of antioxidant enzymes involved in the glutathione-ascorbate cycle, decreased the content of H(2)O(2) and RNS, and improved the tolerance of seeds to low-temperature stress. Compared to orthodox seeds such as maize, only transient accumulation of CO and NO was induced and only a moderate increase in GSH was shown in the recalcitrant B. ramiflora seeds. Exogenous CO or NO treatment further increased the GSH accumulation and S-nitrosoglutathione reductase (GSNOR) activity in B. ramiflora seeds under chilling stress. In contrast, suppressing CO or NO generation, removing GSH, or blocking GSNOR activity resulted in increases in ROS and RNS and impaired the germination of CO- or NO-induced seeds under chilling stress. Based on these results, we propose that CO acts as a novel regulator to improve the tolerance of recalcitrant seeds to low temperatures through NO-mediated glutathione homeostasis.
Collapse
Affiliation(s)
- Xue-gui Bai
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | | | | | | | | | | |
Collapse
|
1289
|
Benyamina SM, Baldacci-Cresp F, Couturier J, Chibani K, Hopkins J, Bekki A, de Lajudie P, Rouhier N, Jacquot JP, Alloing G, Puppo A, Frendo P. TwoSinorhizobium melilotiglutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation. Environ Microbiol 2012; 15:795-810. [DOI: 10.1111/j.1462-2920.2012.02835.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
1290
|
Cruz-Rus E, Amaya I, Valpuesta V. The challenge of increasing vitamin C content in plant foods. Biotechnol J 2012; 7:1110-21. [DOI: 10.1002/biot.201200041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 12/15/2022]
|
1291
|
Bieker S, Riester L, Stahl M, Franzaring J, Zentgraf U. Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L. cv. Mozart. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:540-54. [PMID: 22805117 DOI: 10.1111/j.1744-7909.2012.01147.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to analyze the signaling function of hydrogen peroxide (H(2)O(2)) production in senescence in more detail, we manipulated intracellular H(2)O(2) levels in Arabidopsis thaliala (L.) Heynh by using the hydrogen-peroxide-sensitive part of the Escherichia coli transcription regulator OxyR, which was directed to the cytoplasm as well as into the peroxisomes. H(2)O(2) levels were lowered and senescence was delayed in both transgenic lines, but OxyR was found to be more effective in the cytoplasm. To transfer this knowledge to crop plants, we analyzed oilseed rape plants Brassica napus L. cv. Mozart for H(2)O(2) and its scavenging enzymes catalase (CAT) and ascorbate peroxidase (APX) during leaf and plant development. H(2)O(2) levels were found to increase during bolting and flowering time, but no increase could be observed in the very late stages of senescence. With increasing H(2)O(2) levels, CAT and APX activities declined, so it is likely that similar mechanisms are used in oilseed rape and Arabidopsis to control H(2)O(2) levels. Under elevated CO(2) conditions, oilseed rape senescence was accelerated and coincided with an earlier increase in H(2)O(2) levels, indicating that H(2)O(2) may be one of the signals to inducing senescence in a broader range of Brassicaceae.
Collapse
Affiliation(s)
- Stefan Bieker
- ZMBP (Center for Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
1292
|
Juvany M, Müller M, Munné-Bosch S. Leaves of field-grown mastic trees suffer oxidative stress at the two extremes of their lifespan. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:584-594. [PMID: 22765357 DOI: 10.1111/j.1744-7909.2012.01141.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Leaf senescence is a complex phenomenon occurring in all plant species, but it is still poorly understood in plants grown in Mediterranean field conditions and well-adapted to harsh climatic conditions. To better understand the physiological processes underlying leaf senescence in mastic trees (Pistacia lentiscus L.), we evaluated leaf growth, water and N content, photosystem II (PSII) photochemistry, lipid peroxidation and levels of photosynthetic pigments, antioxidants, abscisic acid, and salicylic acid and jasmonic acid during the complete leaf lifespan, from early expansion to late senescence in relation to natural climatic conditions in the field. While mature leaves suffered from water and N deficit during late spring and summer, both young (emerging) and old (senescing) leaves were most sensitive to photo-oxidative stress, as indicated by reductions in the F(v)/F(m) ratio and enhanced lipid peroxidation during late autumn and winter. Reductions in the F(v)/F(m) ratio were associated with low α-tocopherol (vitamin E) levels, while very old, senescing leaves additionally showed severe anthocyanin losses. We have concluded that both young (emerging) and old (senescing) leaves suffer oxidative stress in mastic trees, which may be linked in part to suboptimal temperatures during late autumn and winter as well as to low vitamin E levels.
Collapse
Affiliation(s)
- Marta Juvany
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
1293
|
Fernie AR, Obata T, Allen AE, Araújo WL, Bowler C. Leveraging metabolomics for functional investigations in sequenced marine diatoms. TRENDS IN PLANT SCIENCE 2012; 17:395-403. [PMID: 22465020 DOI: 10.1016/j.tplants.2012.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 05/31/2023]
Abstract
Recent years have witnessed the genomic decoding of a wide range of photosynthetic organisms from the model plant Arabidopsis thaliana and the complex genomes of important crop species to single-celled marine phytoplankton. The comparative sequencing of green, red and brown algae has provided considerable insight into a number of important questions concerning their evolution, physiology and metabolism. The combinatorial application of metabolomics has further deepened our understanding both of the function of individual genes and of metabolic processes. Here we discuss the power of utilising metabolomics in conjunction with sequencing data to gain greater insight into the metabolic hierarchies underpinning the function of individual organisms, using unicellular marine diatoms as a case study to exemplify the advantages of this approach.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | | | | | | | | |
Collapse
|
1294
|
Zhang Z, Wang J, Zhang R, Huang R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:273-87. [PMID: 22417285 DOI: 10.1111/j.1365-313x.2012.04996.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant in plants, and its biosynthesis is finely regulated through developmental and environmental cues; however, the regulatory mechanism remains unclear. In this report, the knockout and knockdown mutants of Arabidopsis AtERF98 decreased the AsA level, whereas the overexpression of AtERF98 increased it, which suggests that AtERF98 plays an important role in regulating AsA biosynthesis. AtERF98-overexpressing plants showed enhanced expression of AsA synthesis genes in the d-mannose/l-galactose (d-Man/l-Gal) pathway and the myo-inositol pathway gene MIOX4, as well as of AsA turnover genes. In contrast, AtERF98 mutants showed decreased expression of AsA synthesis genes in the d-Man/l-Gal pathway but not of the myo-inositol pathway gene or AsA turnover genes. In addition, the role of AtERF98 in regulating AsA production was significantly impaired in the d-Man/l-Gal pathway mutant vtc1-1, but the expression of the myo-inositol pathway gene or AsA turnover genes was not affected, which indicates that the regulation of AtERF98 in AsA synthesis is primarily mediated by the d-Man/l-Gal pathway. Transient expression and chromatin immunoprecipitation assays further showed that AtERF98 binds to the promoter of VTC1, which indicates that AtERF98 modulates AsA biosynthesis by directly regulating the expression of the AsA synthesis genes. Moreover, the knockout mutant aterf98-1 displayed decreased salt-induced AsA synthesis and reduced tolerance to salt. The supplementation of exogenous AsA increased the salt tolerance of aterf98-1; coincidently, the enhanced salt tolerance of AtERF98-overexpressing plants was impaired in vtc1-1. Thus, our data provide evidence that the regulation of AtERF98 in AsA biosynthesis contributes to enhanced salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | |
Collapse
|
1295
|
Ferreira ML, Nobre Esposito JB, de Souza SR, Domingos M. Critical analysis of the potential of Ipomoea nil'Scarlet O'Hara' for ozone biomonitoring in the sub-tropics. ACTA ACUST UNITED AC 2012; 14:1959-67. [PMID: 22706014 DOI: 10.1039/c2em30026e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to analyze critically the potential of Ipomoea nil'Scarlet O'Hara' for O(3) biomonitoring in the sub-tropics. Four field experiments (one in each season of 2006) were carried out in a location of the city of São Paulo mainly polluted by O(3). Each experiment started with 50 plants, and lasted 28 days. Sub-lots of five plants were taken at intervals between three or four days long. Groups of four plants were also exposed in closed chambers to filtered air or to 40, 50 or 80 ppb of O(3) for three consecutive hours a day for six days. The percentage of leaf injury (interveinal chloroses and necroses), the concentrations of ascorbic acid (AA) and the activity of superoxide dismutase (SOD) and peroxidases (POD) were determined in the 5th, 6th and 7th oldest leaves on the main stem of the plants taken in all experiments. Visible injury occurred in the plants from all experiments. Seasonality in the antioxidant responses observed in plants grown under field conditions was associated with meteorological variables and ozone concentrations five days before leaf analyses. The highest levels of antioxidants occurred during the spring. The percentage of leaf injury was explained (R(2) = 0.97, p < 0.01) by the reduction in the levels of AA and activity of POD five days before the leaf analyses and by the reduction in the levels of particulate matter, and enhancement of temperature and global radiation 10 days before this same day. Although I. nil may be employed for qualitative O(3) biomonitoring, its efficiency for quantitative biomonitoring in the sub-tropics may be compromised, depending on how intense the oxidative power of the environment is.
Collapse
|
1296
|
Cho SC, Chao YY, Kao CH. Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:892-898. [PMID: 22420996 DOI: 10.1016/j.jplph.2012.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
While growing in the field, plants may encounter several different forms of abiotic stress simultaneously, rather than a single stress. In this study, we investigated the effects of calcium (Ca) deficiency on cadmium (Cd) toxicity in rice seedlings. Calcium deficiency alone decreased the length, fresh and dry weight, and the Ca concentration in shoots and roots. Also, the content of glutathione (GSH), the ratio of GSH/oxidized glutathione, and the activity of catalase were lower in Ca-deficient leaves compared to control leaves. Exogenous Cd caused a decrease in the contents of chlorophyll and protein, and induced oxidative stress. Based on these stress indicators, we found that Ca deficiency enhanced Cd toxicity in rice seedlings. Under exogenous Cd application, internal Cd concentrations were higher in Ca-deficient shoots and roots than in the respective controls. Moreover, we observed that Ca deficiency decreased heat-shock (HS) induced expression of HS protein genes Oshsp17.3, Oshsp17.7, and Oshsp18.0 in leaves thereby weakening the protection system and increasing Cd stress. In conclusion, Ca deficiency enhances Cd toxicity, and Ca may be required for HS response in rice seedlings.
Collapse
Affiliation(s)
- Shih-Chueh Cho
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
1297
|
Yang Y, Chen J, Liu Q, Ben C, Todd CD, Shi J, Yang Y, Hu X. Comparative Proteomic Analysis of the Thermotolerant Plant Portulaca oleracea Acclimation to Combined High Temperature and Humidity Stress. J Proteome Res 2012; 11:3605-23. [DOI: 10.1021/pr300027a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yunqiang Yang
- Key Laboratory of Biodiversity
and Biogeography, Kunming Institute of Botany, Institute of Tibet
Plateau Research, Chinese Academy of Science, Kunming 650204, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Qi Liu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325035, China
| | - Cécile Ben
- Université de Toulouse, EcoLab, Castanet Tolosan,
31326, France
| | - Christopher D. Todd
- Department
of Biology, University of Saskatchewan,
Saskatoon, Canada S7N 5E2
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Nanjing 210037, China
| | - Yongping Yang
- Key Laboratory of Biodiversity
and Biogeography, Kunming Institute of Botany, Institute of Tibet
Plateau Research, Chinese Academy of Science, Kunming 650204, China
| | - Xiangyang Hu
- Key Laboratory of Biodiversity
and Biogeography, Kunming Institute of Botany, Institute of Tibet
Plateau Research, Chinese Academy of Science, Kunming 650204, China
| |
Collapse
|
1298
|
Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Front Physiol 2012; 3:182. [PMID: 22685440 PMCID: PMC3368394 DOI: 10.3389/fphys.2012.00182] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/17/2012] [Indexed: 12/17/2022] Open
Abstract
The two forms of inorganic arsenic, arsenate (AsV) and arsenite (AsIII), are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analog of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or dithiol co-factors. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.
Collapse
Affiliation(s)
- Patrick M. Finnegan
- Faculty of Natural and Agricultural Sciences, School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| | - Weihua Chen
- Faculty of Natural and Agricultural Sciences, School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
1299
|
Ribeiro C, Cambraia J, Peixoto PHP, Fonseca Júnior ÉMD. Antioxidant system response induced by aluminum in two rice cultivars. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s1677-04202012000200004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
1300
|
Clemente MR, Bustos-Sanmamed P, Loscos J, James EK, Pérez-Rontomé C, Navascués J, Gay M, Becana M. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3923-34. [PMID: 22442424 PMCID: PMC3388825 DOI: 10.1093/jxb/ers083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 05/04/2023]
Abstract
In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.
Collapse
Affiliation(s)
- Maria R. Clemente
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| | - Pilar Bustos-Sanmamed
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| | - Jorge Loscos
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| | - Euan K. James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Carmen Pérez-Rontomé
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| | - Joaquín Navascués
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| | - Marina Gay
- CSIC-UAB Proteomics Laboratory, Instituto de Investigaciones Biomédicas de Barcelona-CSIC, 08193 Bellaterra, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|