1351
|
Kaye EC, Baker JN, Broniscer A. Management of diffuse intrinsic pontine glioma in children: current and future strategies for improving prognosis. CNS Oncol 2015; 3:421-31. [PMID: 25438813 DOI: 10.2217/cns.14.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is one of the deadliest pediatric central nervous system cancers in spite of treatment with radiation therapy, the current standard of care. The outcome of affected children remains dismal despite multiple clinical trials that investigated radiation therapy combined with chemotherapy. Recently, multiple genome-wide studies unveiled the distinct molecular characteristics of DIPGs and preclinical models of DIPG were developed to mimic the human disease. Both of these accomplishments have generated tremendous progress in the research of new therapies for children with DIPG. Here we review some of these promising new strategies.
Collapse
Affiliation(s)
- Erica C Kaye
- Department of Oncology, St Jude Children's Research Hospital; 262 Danny Thomas Place, Mail Stop 260, Memphis, TN 38105, USA
| | | | | |
Collapse
|
1352
|
Wolf D, Sopper S, Pircher A, Gastl G, Wolf AM. Treg(s) in Cancer: Friends or Foe? J Cell Physiol 2015; 230:2598-605. [DOI: 10.1002/jcp.25016] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Dominik Wolf
- Medical Clinic 3; Oncology; Hematology and Rheumatology; University Hospital Bonn (UKB); Bonn Germany
- Department of Hematology and Oncology; Internal Medicine 5; Medical University Innsbruck; Innsbruck Austria
| | - Sieghart Sopper
- Department of Hematology and Oncology; Internal Medicine 5; Medical University Innsbruck; Innsbruck Austria
- Tyrolean Cancer Research Institute (TKFI); Medical University Innsbruck; Innsbruck Austria
| | - Andreas Pircher
- Department of Hematology and Oncology; Internal Medicine 5; Medical University Innsbruck; Innsbruck Austria
| | - Guenther Gastl
- Department of Hematology and Oncology; Internal Medicine 5; Medical University Innsbruck; Innsbruck Austria
| | - Anna Maria Wolf
- Medical Clinic 3; Oncology; Hematology and Rheumatology; University Hospital Bonn (UKB); Bonn Germany
- Department of Hematology and Oncology; Internal Medicine 5; Medical University Innsbruck; Innsbruck Austria
| |
Collapse
|
1353
|
Abstract
PURPOSE OF REVIEW Over the last 18 months, substantial progress has been made in demonstrating the clinical efficacy of harnessing the immune system to treat a variety of both solid and hematologic malignancies. This review summarizes and evaluates these seminal studies. RECENT FINDINGS The two treatment modalities most responsible for the success of immune based therapies in cancer are adoptive T-cell therapy and immunoregulatory antibodies. Specifically, immunotherapy is generating responses in malignancies that would otherwise have no traditional curative options such as CD19-targeted chimeric antigen receptors to treat relapsed/refractory acute lymphocytic leukemia and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1 blockade alone or in combination to treat metastatic melanoma and other solid tumors. SUMMARY We are at a turning point for the field of cancer immunotherapy. The scientific community is now, after decades of research, proving that these treatments have great promise for patients. Ongoing preclinical research and clinical trials over the next few years will determine the extent of impact cancer immunotherapy will have on the treatment of the general population.
Collapse
|
1354
|
Ascierto ML, Melero I, Ascierto PA. Melanoma: From Incurable Beast to a Curable Bet. The Success of Immunotherapy. Front Oncol 2015; 5:152. [PMID: 26217587 PMCID: PMC4500097 DOI: 10.3389/fonc.2015.00152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/22/2015] [Indexed: 01/22/2023] Open
Abstract
After Coley's observation in 1891 of tumor regression in a patient who developed a postoperative infection, the field of immunotherapy is finally reborn. Avoiding immune destruction is now considered a hallmark of cancer, and the immunotherapy arena has exploded with the recent advances demonstrating an improvement in survival and a durability of response in patients with different cancer types, which translates into improved overall survival benefit. Here, we provide an overview of the main immune-oncology treatment strategies that, either alone or in combination, are undergoing clinical development. Namely, we will refer to those immunotherapeutic strategies that include adoptive transfer of ex vivo activated T cells, immunomodulatory monoclonal antibodies, and cancer vaccines. Our major focus will be to describe these approaches in melanoma, a cancer type transformed by immunotherapy into a potentially curable disease.
Collapse
Affiliation(s)
| | - Ignacio Melero
- Department of Oncology, Centro de Investigación Médica Aplicada (CIMA), Clinica Universidad de Navarra, Pamplona, Spain
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori Fondazione “G. Pascale”, Napoli, Italy
| |
Collapse
|
1355
|
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015; 115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Citation(s) in RCA: 560] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Darrell J Irvine
- The Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University , 400 Technology Square, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | | | | | | |
Collapse
|
1356
|
Corrigan-Curay J, Kiem HP, Baltimore D, O'Reilly M, Brentjens RJ, Cooper L, Forman S, Gottschalk S, Greenberg P, Junghans R, Heslop H, Jensen M, Mackall C, June C, Press O, Powell D, Ribas A, Rosenberg S, Sadelain M, Till B, Patterson AP, Jambou RC, Rosenthal E, Gargiulo L, Montgomery M, Kohn DB. T-cell immunotherapy: looking forward. Mol Ther 2015; 22:1564-74. [PMID: 25186558 DOI: 10.1038/mt.2014.148] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jacqueline Corrigan-Curay
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - David Baltimore
- California Institute of Technology, Pasadena, California, USA
| | - Marina O'Reilly
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | - Philip Greenberg
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Crystal Mackall
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Carl June
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oliver Press
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel Powell
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Antoni Ribas
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Steven Rosenberg
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michel Sadelain
- Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Brian Till
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Amy P Patterson
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert C Jambou
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Eugene Rosenthal
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Linda Gargiulo
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Maureen Montgomery
- Office of Science Policy, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Donald B Kohn
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
1357
|
van de Ven K, Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy 2015; 7:655-67. [DOI: 10.2217/imt.15.32] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
1358
|
Li K, Zhang Q, Zhang Y, Yang J, Zheng J. T-cell-associated cellular immunotherapy for lung cancer. J Cancer Res Clin Oncol 2015; 141:1249-58. [PMID: 25381064 DOI: 10.1007/s00432-014-1867-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of the present study was to discuss recent findings on the role of T cells in lung cancer to provide information on their potential application, especially in cellular immunotherapy. METHODS Data on the different types of T cells that are currently used for the treatment of lung cancer were obtained by searching the PUBMED database. RESULTS Cytotoxic T lymphocytes, natural killer T cells, γδ T cells, lymphokine-activated killer cells, tumor-infiltrating lymphocytes, cytokine-induced killer cells and gene-modified T cells were analyzed to determine the benefits and drawbacks of their application in the treatment of lung cancer. Advances in the study of their antitumor mechanisms and directions for future research were discussed. CONCLUSIONS T cells are critical for tumorigenesis and therefore important targets for the treatment of lung cancer. T-cell-associated cellular immunotherapy opens up a window of opportunity for the development of complementary methods to traditional lung cancer treatments, which warrants further investigation to improve the clinical outcomes of lung cancer patients.
Collapse
MESH Headings
- Cytokine-Induced Killer Cells/immunology
- Cytokine-Induced Killer Cells/transplantation
- Cytotoxicity, Immunologic/physiology
- Humans
- Immunotherapy, Adoptive/methods
- Killer Cells, Lymphokine-Activated/immunology
- Killer Cells, Lymphokine-Activated/transplantation
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/transplantation
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
Collapse
Affiliation(s)
- Ke Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, West Huaihai Road 84#, Xuzhou, 221002, Jiangsu, China
| | | | | | | | | |
Collapse
|
1359
|
Turnis ME, Andrews LP, Vignali DAA. Inhibitory receptors as targets for cancer immunotherapy. Eur J Immunol 2015; 45:1892-905. [PMID: 26018646 PMCID: PMC4549156 DOI: 10.1002/eji.201344413] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/25/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
Abstract
Inhibitory receptors expressed on T cells control immune responses while limiting autoimmunity. However, tumors can hijack these "checkpoints" for protection from immune attack. Tumor-specific T cells that exhibit an exhausted, unresponsive phenotype express high levels of inhibitory receptors including CTLA4, PD1, and LAG3, among others. Intratumoral regulatory T cells promote immunosuppression and also express multiple inhibitory receptors. Overcoming this inhibitory receptor-mediated immune tolerance has thus been a major focus of recent cancer immunotherapeutic developments. Here, we review how boosting the host's immune system by blocking inhibitory receptor signaling with antagonistic mAbs restores the capacity of T cells to drive durable antitumor immune responses. Clinical trials targeting the CTLA4 and PD1 pathways have shown durable effects in multiple tumor types. Many combinatorial therapies are currently being investigated with encouraging results that highlight enhanced antitumor immunogenicity and improved patient survival. Finally, we will discuss the ongoing identification and dissection of novel T-cell inhibitory receptor pathways, which could lead to the development of new combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Meghan E Turnis
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
1360
|
Kelleher RJ, Balu-Iyer S, Loyall J, Sacca AJ, Shenoy GN, Peng P, Iyer V, Fathallah AM, Berenson CS, Wallace PK, Tario J, Odunsi K, Bankert RB. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine-Dependent Arrest in the T-cell Signaling Cascade. Cancer Immunol Res 2015; 3:1269-78. [PMID: 26112921 DOI: 10.1158/2326-6066.cir-15-0086] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients' antitumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T-cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80 nm. The T-cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS-expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle-induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immunosuppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T-cell function represent a potential therapeutic target for patients with ovarian cancer.
Collapse
Affiliation(s)
- Raymond J Kelleher
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Sathy Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Jenni Loyall
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Anthony J Sacca
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Gautam N Shenoy
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Peng Peng
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York
| | - Vandana Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Anas M Fathallah
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Charles S Berenson
- School of Medicine, Infectious Disease Division, University at Buffalo, Buffalo, New York, and Department of Veteran Affairs, Western New York Health Care System, Buffalo, New York
| | - Paul K Wallace
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| | - Joseph Tario
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Richard B Bankert
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York.
| |
Collapse
|
1361
|
Schreiner J, Thommen DS, Herzig P, Bacac M, Klein C, Roller A, Belousov A, Levitsky V, Savic S, Moersig W, Uhlenbrock F, Heinzelmann-Schwarz VA, Umana P, Pisa P, von Bergwelt-Baildon M, Lardinois D, Müller P, Karanikas V, Zippelius A. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor. Oncoimmunology 2015; 5:e1062969. [PMID: 27057429 DOI: 10.1080/2162402x.2015.1062969] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/18/2022] Open
Abstract
T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction.
Collapse
Affiliation(s)
- Jens Schreiner
- Laboratory of Cancer Immunology, Department of Biomedicine , Basel, Switzerland
| | - Daniela S Thommen
- Laboratory of Cancer Immunology, Department of Biomedicine, Basel, Switzerland; Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Petra Herzig
- Laboratory of Cancer Immunology, Department of Biomedicine , Basel, Switzerland
| | - Marina Bacac
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland
| | - Andreas Roller
- Roche Pharma Research and Early Development, Roche Innovation Center Penzberg, Roche Innovation Center Penzberg , Penzberg, Germany
| | - Anton Belousov
- Roche Pharma Research and Early Development, Roche Innovation Center Penzberg, Roche Innovation Center Penzberg , Penzberg, Germany
| | - Victor Levitsky
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland
| | - Spasenija Savic
- Institute of Pathology, University Hospital Basel , Basel, Switzerland
| | - Wolfgang Moersig
- Department of Surgery, University Hospital Basel , Basel, Switzerland
| | | | | | - Pablo Umana
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland
| | - Pavel Pisa
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland
| | | | - Didier Lardinois
- Department of Surgery, University Hospital Basel , Basel, Switzerland
| | - Philipp Müller
- Laboratory of Cancer Immunology, Department of Biomedicine , Basel, Switzerland
| | - Vaios Karanikas
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland
| | - Alfred Zippelius
- Laboratory of Cancer Immunology, Department of Biomedicine, Basel, Switzerland; Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
1362
|
The Healthcare Ecosystem and Biomedical Research Funding. Nanomedicine (Lond) 2015. [DOI: 10.1201/b18615-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
1363
|
Lollini PL, Cavallo F, Nanni P, Quaglino E. The Promise of Preventive Cancer Vaccines. Vaccines (Basel) 2015; 3:467-89. [PMID: 26343198 PMCID: PMC4494347 DOI: 10.3390/vaccines3020467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
Years of unsuccessful attempts at fighting established tumors with vaccines have taught us all that they are only able to truly impact patient survival when used in a preventive setting, as would normally be the case for traditional vaccines against infectious diseases. While true primary cancer prevention is still but a long-term goal, secondary and tertiary prevention are already in the clinic and providing encouraging results. A combination of immunopreventive cancer strategies and recently approved checkpoint inhibitors is a further promise of forthcoming successful cancer disease control, but prevention will require a considerable reduction of currently reported toxicities. These considerations summed with the increased understanding of tumor antigens allow space for an optimistic view of the future.
Collapse
Affiliation(s)
- Pier-Luigi Lollini
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Viale Filopanti 22, Bologna 40126, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| | - Patrizia Nanni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Viale Filopanti 22, Bologna 40126, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino 10126, Italy.
| |
Collapse
|
1364
|
Autologous tumor lysate/Bacillus Calmette-Guérin immunotherapy as an adjuvant to conventional breast cancer therapy. Clin Transl Oncol 2015; 17:884-7. [PMID: 26077120 PMCID: PMC4608991 DOI: 10.1007/s12094-015-1320-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/03/2015] [Indexed: 12/22/2022]
Abstract
Introduction
Autologous tumor cell vaccines rely on the concept of preserving an individual’s own tumorigenic makeup, expressing its unique set of tumor-associated antigens as well as antigenic elements from the surrounding stroma. These autologous tumor characteristics are usually presented with an immune adjuvant in the hopes of enhancing an immune response. Methods The autologous vaccine we used was composed of tumor cells combined with BCG and formalin. Animal safety and toxicity were evaluated using mice tumors for the immunotherapy. A small number of patients with advanced stage breast cancer were recruited for an uncontrolled study, using the vaccine solely or combined with chemotherapy/radiotherapy. Results The immunotherapy had shown to be safe in mice and humans. Upon a 5-year follow-up, the survival rate was 60 % for the combined treatment. Conclusions The data suggest that the combined treatment could be a feasible and safe therapeutic strategy. However, further controlled studies should be conducted.
Collapse
|
1365
|
Chakravarti D, Wong WW. Synthetic biology in cell-based cancer immunotherapy. Trends Biotechnol 2015; 33:449-61. [PMID: 26088008 DOI: 10.1016/j.tibtech.2015.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Abstract
The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. We first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing.
Collapse
Affiliation(s)
- Deboki Chakravarti
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
1366
|
Klinke DJ. Enhancing the discovery and development of immunotherapies for cancer using quantitative and systems pharmacology: Interleukin-12 as a case study. J Immunother Cancer 2015; 3:27. [PMID: 26082838 PMCID: PMC4468964 DOI: 10.1186/s40425-015-0069-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
Recent clinical successes of immune checkpoint modulators have unleashed a wave of enthusiasm associated with cancer immunotherapy. However, this enthusiasm is dampened by persistent translational hurdles associated with cancer immunotherapy that mirror the broader pharmaceutical industry. Specifically, the challenges associated with drug discovery and development stem from an incomplete understanding of the biological mechanisms in humans that are targeted by a potential drug and the financial implications of clinical failures. Sustaining progress in expanding the clinical benefit provided by cancer immunotherapy requires reliably identifying new mechanisms of action. Along these lines, quantitative and systems pharmacology (QSP) has been proposed as a means to invigorate the drug discovery and development process. In this review, I discuss two central themes of QSP as applied in the context of cancer immunotherapy. The first theme focuses on a network-centric view of biology as a contrast to a "one-gene, one-receptor, one-mechanism" paradigm prevalent in contemporary drug discovery and development. This theme has been enabled by the advances in wet-lab capabilities to assay biological systems at increasing breadth and resolution. The second theme focuses on integrating mechanistic modeling and simulation with quantitative wet-lab studies. Drawing from recent QSP examples, large-scale mechanistic models that integrate phenotypic signaling-, cellular-, and tissue-level behaviors have the potential to lower many of the translational hurdles associated with cancer immunotherapy. These include prioritizing immunotherapies, developing mechanistic biomarkers that stratify patient populations and that reflect the underlying strength and dynamics of a protective host immune response, and facilitate explicit sharing of our understanding of the underlying biology using mechanistic models as vehicles for dialogue. However, creating such models require a modular approach that assumes that the biological networks remain similar in health and disease. As oncogenesis is associated with re-wiring of these biological networks, I also describe an approach that combines mechanistic modeling with quantitative wet-lab experiments to identify ways in which malignant cells alter these networks, using Interleukin-12 as an example. Collectively, QSP represents a new holistic approach that may have profound implications for how translational science is performed.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 25606 USA
| |
Collapse
|
1367
|
Shi Y, Ping YF, Zhang X, Bian XW. Hostile takeover: glioma stem cells recruit TAMs to support tumor progression. Cell Stem Cell 2015; 16:219-20. [PMID: 25748928 DOI: 10.1016/j.stem.2015.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The dynamic interaction between cancer cells and immune cells is a critical concern for developing effective tumor immunotherapies. In a recent issue of Nature Cell Biology, Zhou et al. (2015) report that glioma stem cells secrete Periostin (POSTN), which recruits tumor-associated macrophages (TAMs) and supports the tumor-promoting M2 subtype.
Collapse
Affiliation(s)
- Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Yi-fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China
| | - Xiu-wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
1368
|
Qiu Z, Grenier JM, Khanna KM. Reviving virus based cancer vaccines by using cytomegalovirus vectors expressing modified tumor antigens. Oncoimmunology 2015; 5:e1056974. [PMID: 26942064 DOI: 10.1080/2162402x.2015.1056974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022] Open
Abstract
Cancer vaccines that have utilized various immunization strategies to induce antitumor immunity have largely failed in clinical settings. We have recently developed a cancer vaccine using a cytomegalovirus (CMV) based vector that expressed a modified melanoma antigen that elicited a robust antitumor CD8+ T cell response and tumor rejection.
Collapse
Affiliation(s)
| | | | - Kamal M Khanna
- Department of Immunology; Department of Pediatrics; University of Connecticut Health Center; Farmington, CT USA
| |
Collapse
|
1369
|
Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization. Cancer Immunol Res 2015; 3:946-55. [PMID: 26041735 DOI: 10.1158/2326-6066.cir-14-0206] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/17/2015] [Indexed: 01/22/2023]
Abstract
DNA vaccines have demonstrated antitumor efficacy in multiple preclinical models, but low immunogenicity has been observed in several human clinical trials. This has led to many approaches seeking to improve the immunogenicity of DNA vaccines. We previously reported that a DNA vaccine encoding the cancer-testis antigen SSX2, modified to encode altered epitopes with increased MHC class I affinity, elicited a greater frequency of cytolytic, multifunctional CD8(+) T cells in non-tumor-bearing mice. We sought to test whether this optimized vaccine resulted in increased antitumor activity in mice bearing an HLA-A2-expressing tumor engineered to express SSX2. We found that immunization of tumor-bearing mice with the optimized vaccine elicited a surprisingly inferior antitumor effect relative to the native vaccine. Both native and optimized vaccines led to increased expression of PD-L1 on tumor cells, but antigen-specific CD8(+) T cells from mice immunized with the optimized construct expressed higher PD-1. Splenocytes from immunized animals induced PD-L1 expression on tumor cells in vitro. Antitumor activity of the optimized vaccine could be increased when combined with antibodies blocking PD-1 or PD-L1, or by targeting a tumor line not expressing PD-L1. These findings suggest that vaccines aimed at eliciting effector CD8(+) T cells, and DNA vaccines in particular, might best be combined with PD-1 pathway inhibitors in clinical trials. This strategy may be particularly advantageous for vaccines targeting prostate cancer, a disease for which antitumor vaccines have demonstrated clinical benefit and yet PD-1 pathway inhibitors alone have shown little efficacy to date.
Collapse
Affiliation(s)
- Brian T Rekoske
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Heath A Smith
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Brian M Olson
- The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Brett B Maricque
- The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin. The Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
1370
|
Abstract
Given recent technological advances and advances in our understanding of cancer, immunotherapy of cancer is being used with clear clinical benefit. The immunosuppression accompanying cancer itself, as well as with current cancer treatment with radiation or chemotherapy, impairs adaptive immune effectors to a greater extent than innate effector cells. In addition to being less suppressed, innate immune cells are capable of being enhanced via immune-stimulatory regimens. Most strategies being investigated to promote innate immune responses against cancer do not require complex, patient-specific, ex vivo cellular or molecular creation of therapeutic agents; thus they can, generally, be used as "off the shelf" therapeutics that could be administered by most cancer clinics. Successful applications of innate immunotherapy in the clinic have effectively targeted components of the innate immune response. Preclinical data demonstrate how initiation of innate immune responses can lead to subsequent adaptive long-term cancer immunity. We hypothesize that integration of innate immune activation strategies into combination therapies for cancer treatment will lead to more effective and long-term clinical benefit.
Collapse
Affiliation(s)
- Jacob L Goldberg
- Department of Pediatrics, The University of Wisconsin, Madison WI
| | - Paul M Sondel
- Department of Pediatrics, The University of Wisconsin, Madison WI; Department of Human Oncology, The University of Wisconsin, Madison WI; Department of Genetics, The University of Wisconsin, Madison WI.
| |
Collapse
|
1371
|
Eshhar Z. From the mouse cage to human therapy: a personal perspective of the emergence of T-bodies/chimeric antigen receptor T cells. Hum Gene Ther 2015; 25:773-8. [PMID: 25244568 DOI: 10.1089/hum.2014.2532] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zelig Eshhar
- Department of Immunology, The Weizmann Institute of Science , Rehovot, Israel 76100
| |
Collapse
|
1372
|
Ruella M, Gill S. How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia. Expert Opin Biol Ther 2015; 15:761-6. [PMID: 25640460 DOI: 10.1517/14712598.2015.1009888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antigen-specific T cell-based immunotherapy is getting its day in the sun. The contemporaneous development of two potent CD19-specific immunotherapeutic modalities for the treatment of B-cell malignancies provides exciting opportunities for patients, physicians and scientists alike. Patients with relapsed, refractory or poor-risk B-cell acute lymphoblastic leukemia (ALL) previously had few therapeutic options and now have two potential new lifelines. Physicians will have the choice between two powerful modalities and indeed could potentially enroll some patients on trials exploring both modalities if needed. For scientists interested in tumor immunology, the advent of chimeric antigen receptor T-cell therapy and of bispecific T-cell engagers (BiTEs) provides unprecedented opportunities to explore the promise and limitations of antigen-specific T-cell therapy in the context of human leukemia. In this article, we compare chimeric antigen receptor T cells and BiTEs targeting CD19 in B-cell ALL in the setting of the available clinical literature.
Collapse
Affiliation(s)
- Marco Ruella
- University of Pennsylvania, Perelman School of Medicine, Translational Research Program , Philadelphia, PA , USA
| | | |
Collapse
|
1373
|
Chen ZY, Ma F, Huang H, He CY. Synthetic immunity to break down the bottleneck of cancer immunotherapy. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0794-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
1374
|
Mancini N, Sautto GA, Clementi N, Burioni R, Clementi M. Chimeric antigen receptor (CAR)-redirected T cells: is there a place for them in infectious diseases? Clin Microbiol Infect 2015; 21:715-6. [PMID: 26027914 DOI: 10.1016/j.cmi.2015.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Affiliation(s)
- N Mancini
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - G A Sautto
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy
| | - N Clementi
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy
| | - R Burioni
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - M Clementi
- Laboratorio di Microbiologia e Virologia, Ospedale San Raffaele, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
1375
|
Brancato SJ, Lewi K, Agarwal PK. Evolving immunotherapy strategies in urothelial cancer. Am Soc Clin Oncol Educ Book 2015:e284-90. [PMID: 25993187 DOI: 10.14694/edbook_am.2015.35.e284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The treatment of nonmuscle-invasive urothelial carcinoma with bacillus Calmette-Guérin (BCG) represents the importance of immunotherapy in the treatment of cancer. Despite its clinical efficacy, up to 30% of patients will ultimately experience progression to muscle-invasive disease. This, along with an improved understanding of the biologic pathways involved, has led to efforts to improve, enhance, or alter the immune response in the treatment of urothelial carcinoma. A number of novel therapeutic approaches currently are being pursued, including recombinant BCG to induce T helper type 1 (Th1) immune responses, nonlive Mycobacterium agents, targeted agents toward cancer-associated antigens, immune-modulating vaccines, and adoptive T-cell therapies. Here, we review the current and future immunotherapy treatment options for patients with urothelial cancer.
Collapse
Affiliation(s)
- Sam J Brancato
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| | - Keidren Lewi
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| | - Piyush K Agarwal
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| |
Collapse
|
1376
|
Rahimian S, Fransen MF, Kleinovink JW, Amidi M, Ossendorp F, Hennink WE. Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer. Biomaterials 2015; 61:33-40. [PMID: 25993015 DOI: 10.1016/j.biomaterials.2015.04.043] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/30/2015] [Indexed: 01/24/2023]
Abstract
This study investigated the feasibility of the use of polymeric microparticles for sustained and local delivery of immunomodulatory antibodies in immunotherapy of cancer. Local delivery of potent immunomodulatory antibodies avoids unwanted systemic side effects while retaining their anti-tumor effects. Microparticles based on poly(lactic-co-hydroxymethyl-glycolic acid) (pLHMGA) and loaded with two distinct types of immunomodulatory antibodies (CTLA-4 antibody blocking inhibitory receptors on T cells or CD40 agonistic antibody stimulating dendritic cells) were prepared by double emulsion solvent evaporation technique. The obtained particles had a diameter of 12-15 μm to avoid engulfment by phagocytes and were slightly porous as shown by SEM analysis. The loading efficiency of the antibodies in the microparticles was >85%. The in vitro release profile of antiCD40 and antiCTLA-4 from microparticles showed a burst release of about 20% followed by a sustained release of the content up to 80% of the loading in around 30 days. The therapeutic efficacy of the microparticulate formulations was studied in colon carcinoma tumor model (MC-38). Mice bearing subcutaneous MC-38 tumors were treated with the same dose of immunomodulatory antibodies formulated either in incomplete Freund's adjuvant (IFA) or in microparticles. The antibody-loaded microparticles showed comparable therapeutic efficacy to the IFA formulation with no local adverse effects. The biodegradable microparticles were fully resorbed in vivo and no remnants of inflammatory depots as observed with IFA were present in the cured mice. Moreover the microparticles exhibited lower antibody serum levels in comparison with IFA formulations which lowers the probability of systemic adverse effects. In conclusion, pLHMGA microparticles are excellent delivery systems in providing long-lasting and non-toxic antibody therapy for immunotherapy of cancer.
Collapse
Affiliation(s)
- Sima Rahimian
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Willem Kleinovink
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Maryam Amidi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
1377
|
Ramsland PA, Hutchinson AT, Carter PJ. Therapeutic antibodies: Discovery, design and deployment. Mol Immunol 2015; 67:1-3. [PMID: 25990602 DOI: 10.1016/j.molimm.2015.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Therapeutic antibodies have come of age with major progress being made in cancer, autoimmunity and chronic inflammation, as well as a wide range of other human diseases. Antibody engineering is further driving development of novel antibody formats and genetically modified cell-based therapies that harness the power of the immune system to progress cures in otherwise intractable human diseases. Nevertheless, there are still significant challenges ahead for basic and applied research relating to therapeutic antibodies. This special issue of the journal provides reviews and opinions that relate to the discovery, design and deployment of antibodies as therapeutics.
Collapse
Affiliation(s)
- Paul A Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia; Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC 3084, Australia; School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, WA 6845, Australia.
| | - Andrew T Hutchinson
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia; School of Life Sciences, Centre for Health Technologies, University of Technology Sydney, Ultimo, NSW 2007, Australia; Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Paul J Carter
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
1378
|
Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int J Cancer 2015; 137:2083-92. [DOI: 10.1002/ijc.29583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/30/2015] [Indexed: 12/30/2022]
|
1379
|
Nelles ME, Paige CJ. CD4 + T cell plasticity engenders robust immunity in response to cytokine therapy. Oncoimmunology 2015; 4:e994370. [PMID: 25949915 PMCID: PMC4404832 DOI: 10.4161/2162402x.2014.994370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023] Open
Abstract
CD4+ T cells represent an entire arm of the immune system that has hitherto been incompletely understood, but their potential to act as both helper and effector may make them optimal protagonists in immunotherapeutic approaches to treat cancer. Cytokine therapy can activate this population in a manner that ensures maximal diversification of effector function for a robust immune response.
Collapse
Affiliation(s)
- Megan E Nelles
- Ontario Cancer Institute; Princess Margaret Cancer Centre; University Health Network ; Toronto, Ontario, Canada ; Department of Medical Biophysics; University of Toronto ; Toronto, Ontario, Canada
| | - Christopher J Paige
- Ontario Cancer Institute; Princess Margaret Cancer Centre; University Health Network ; Toronto, Ontario, Canada ; Department of Medical Biophysics; University of Toronto ; Toronto, Ontario, Canada ; Department of Immunology; University of Toronto ; Toronto, Ontario, Canada
| |
Collapse
|
1380
|
Greco R, Oliveira G, Stanghellini MTL, Vago L, Bondanza A, Peccatori J, Cieri N, Marktel S, Mastaglio S, Bordignon C, Bonini C, Ciceri F. Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 2015; 6:95. [PMID: 25999859 PMCID: PMC4419602 DOI: 10.3389/fphar.2015.00095] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/17/2015] [Indexed: 01/07/2023] Open
Abstract
While opening new frontiers for the cure of malignant and non-malignant diseases, the increasing use of cell therapy poses also several new challenges related to the safety of a living drug. The most effective and consolidated cell therapy approach is allogeneic hematopoietic stem cell transplantation (HSCT), the only cure for several patients with high-risk hematological malignancies. The potential of allogeneic HSCT is strictly dependent on the donor immune system, particularly on alloreactive T lymphocytes, that promote the beneficial graft-versus-tumor effect (GvT), but may also trigger the detrimental graft-versus-host-disease (GvHD). Gene transfer technologies allow to manipulate donor T-cells to enforce GvT and foster immune reconstitution, while avoiding or controlling GvHD. The suicide gene approach is based on the transfer of a suicide gene into donor lymphocytes, for a safe infusion of a wide T-cell repertoire, that might be selectively controlled in vivo in case of GvHD. The herpes simplex virus thymidine kinase (HSV-TK) is the suicide gene most extensively tested in humans. Expression of HSV-TK in donor lymphocytes confers lethal sensitivity to the anti-herpes drug, ganciclovir. Progressive improvements in suicide genes, vector technology and transduction protocols have allowed to overcome the toxicity of GvHD while preserving the antitumor efficacy of allogeneic HSCT. Several phase I-II clinical trials in the last 20 years document the safety and the efficacy of HSV-TK approach, able to maintain its clear value over the last decades, in the rapidly progressing horizon of cancer cellular therapy.
Collapse
Affiliation(s)
- Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Giacomo Oliveira
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Maria Teresa Lupo Stanghellini
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Luca Vago
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy ; Unit of Molecular and Functional Immunogenetics, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Attilio Bondanza
- Leukemia Immunotherapy Unit, Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Jacopo Peccatori
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Nicoletta Cieri
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Sarah Marktel
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Sara Mastaglio
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | | | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Program in Immunology and Bio-immunotherapy of Cancer, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan Italy
| |
Collapse
|
1381
|
Pereboeva L, Harkins L, Wong S, Lamb LS. The safety of allogeneic innate lymphocyte therapy for glioma patients with prior cranial irradiation. Cancer Immunol Immunother 2015; 64:551-62. [PMID: 25676710 PMCID: PMC11029122 DOI: 10.1007/s00262-015-1662-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 01/24/2015] [Indexed: 12/24/2022]
Abstract
The standard treatment of high-grade glioma presents a combination of radiotherapy, chemotherapy and surgery. Immunotherapy is proposed as a potential adjunct to standard cytotoxic regimens to target remaining microscopic disease following resection. We have shown ex vivo expanded/activated γδ T cells to be a promising innate lymphocyte therapy based on their recognition of stress antigens expressed on gliomas. However, successful integration of γδ T cell therapy protocols requires understanding the efficacy and safety of adoptively transferred immune cells in the post-treatment environment. The unique features of γδ T cell product and the environment (hypoxia, inflammation) can affect levels of expression of key cell receptors and secreted factors and either promote or hinder the feasibility of γδ T cell therapy. We investigated the potential for the γδ T cells to injure normal brain tissue that may have been stressed by treatment. We evaluated γδ T cell toxicity by assessing actual and correlative toxicity indicators in several available models including: (1) expression of stress markers on normal primary human astrocytes (as surrogate for brain parenchyma) after irradiation and temozolomide treatment, (2) cytotoxicity of γδ T cells on normal and irradiated primary astrocytes, (3) microglial activation and expression of stress-induced ligands in mouse brain after whole-brain irradiation and (4) expression of stress-induced markers on human brain tumors and on normal brain tissue. The lack of expression of stress-induced ligands in all tested models suggests that γδ T cell therapy is safe for brain tumor patients who undergo standard cytotoxic therapies.
Collapse
Affiliation(s)
- Larisa Pereboeva
- Division of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham (UAB), 1824 6th Ave S, WTI 510C, Birmingham, AL, 35294, USA,
| | | | | | | |
Collapse
|
1382
|
Hernández-Gil J, Cobaleda-Siles M, Zabaleta A, Salassa L, Calvo J, Mareque-Rivas JC. An Iron Oxide Nanocarrier Loaded with a Pt(IV) Prodrug and Immunostimulatory dsRNA for Combining Complementary Cancer Killing Effects. Adv Healthc Mater 2015; 4:1034-42. [PMID: 25846677 DOI: 10.1002/adhm.201500080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/08/2015] [Indexed: 01/10/2023]
Abstract
There is major current interest in harnessing the immune system against cancer and in developing drugs that provide complementary cancer killing mechanisms. Although the recent advent of nanoparticle-based drug delivery systems has improved the efficacy of platinum drugs for chemotherapy, one of the fundamental paradigms in their design and use is evading surveillance by the immune system to enhance anticancer efficacy. However, new studies are showing that chemotherapy can profit from actively targeting stimulation of the immune system and that suitably functionalized nanomaterials might be ideal for overcoming some key challenges in immunotherapy. Pt(IV) prodrug-modified PEGylated phospholipid micelles that encapsulate biocompatible iron oxide nanoparticles (IONPs) as a new delivery system for cisplatin are reported. The Pt(IV)-IONPs are functionalized with polyinosinic-polycytidylic acid (poly (I:C))--a double stranded RNA (dsRNA) analog widely used as an adjuvant in clinical trials of cancer immunotherapy. The Pt(IV)-IONPs and poly (I:C)--Pt(IV)-IONPs enhance by more than an order of magnitude the prodrug cytotoxicity in different tumor cells, while greatly increasing the ability of cisplatin and poly (I:C) to activate dendritic cells--the key cellular players in immunotherapy. The results suggest that these constructs hold promise for targeted chemoimmunotherapy.
Collapse
Affiliation(s)
- Javier Hernández-Gil
- Theranostic Nanomedicine Laboratory; CIC biomaGUNE; Paseo Miramón 182 20009 San Sebastián Spain
| | - Macarena Cobaleda-Siles
- Theranostic Nanomedicine Laboratory; CIC biomaGUNE; Paseo Miramón 182 20009 San Sebastián Spain
| | - Aintzane Zabaleta
- Theranostic Nanomedicine Laboratory; CIC biomaGUNE; Paseo Miramón 182 20009 San Sebastián Spain
| | - Luca Salassa
- Theranostic Nanomedicine Laboratory; CIC biomaGUNE; Paseo Miramón 182 20009 San Sebastián Spain
| | - Javier Calvo
- Theranostic Nanomedicine Laboratory; CIC biomaGUNE; Paseo Miramón 182 20009 San Sebastián Spain
| | - Juan C. Mareque-Rivas
- Theranostic Nanomedicine Laboratory; CIC biomaGUNE; Paseo Miramón 182 20009 San Sebastián Spain
- IKERBASQUE; Basque Foundation for Science; 48011 Bilbao Spain
| |
Collapse
|
1383
|
Bloy N, Buqué A, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncoimmunology 2015; 4:e1026531. [PMID: 26155408 PMCID: PMC4485755 DOI: 10.1080/2162402x.2015.1026531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.
Collapse
Key Words
- AFP, α-fetoprotein
- APC, antigen-presenting cell
- CDR, complementarity-determining region
- CEA, carcinoembryonic antigen
- CIN, cervical intraepithelial neoplasia
- CTLA4, cytotoxic T lymphocyte protein 4
- DAMP, damage-associated molecular pattern
- DC, dendritic cell
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GX-188E
- HCC, hepatocellular carcinoma
- HNSCC, head and neck squamous cell carcinoma
- HPV, human papillomavirus
- IL, interleukin
- OS, overall survival
- OVA, ovalbumin
- PAP, prostate acid phosphatase
- SCGB2A2, secretoglobin, family 2A, member 2
- SOX2, SRY (sex determining region Y)-box 2
- T, brachyury homolog
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- Treg, regulatory T cell
- VGX-3100
- WT1, Wilms tumor 1
- adjuvants
- dendritic cell
- electroporation
- mucosal immunity
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System; Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine; Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jitka Fucikova
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Radek Spisek
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
1384
|
Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngiow SF, Yong MCR, Teng MWL, Colonna M, Ritchie DS, Chesi M, Bergsagel PL, Hill GR, Smyth MJ, Martinet L. Immunosurveillance and therapy of multiple myeloma are CD226 dependent. J Clin Invest 2015; 125:2077-89. [PMID: 25893601 DOI: 10.1172/jci77181] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is an age-dependent hematological malignancy. Evaluation of immune interactions that drive MM relies on in vitro experiments that do not reflect the complex cellular stroma involved in MM pathogenesis. Here we used Vk*MYC transgenic mice, which spontaneously develop MM, and demonstrated that the immune system plays a critical role in the control of MM progression and the response to treatment. We monitored Vk*MYC mice that had been crossed with Cd226 mutant mice over a period of 3 years and found that CD226 limits spontaneous MM development. The CD226-dependent anti-myeloma immune response against transplanted Vk*MYC MM cells was mediated both by NK and CD8+ T cells through perforin and IFN-γ pathways. Moreover, CD226 expression was required for optimal antimyeloma efficacy of cyclophosphamide (CTX) and bortezomib (Btz), which are both standardly used to manage MM in patients. Activation of costimulatory receptor CD137 with mAb (4-1BB) exerted strong antimyeloma activity, while inhibition of coinhibitory receptors PD-1 and CTLA-4 had no effect. Taken together, the results of this study provide in vivo evidence that CD226 is important for MM immunosurveillance and indicate that specific immune components should be targeted for optimal MM treatment efficacy. As progressive immunosuppression associates with MM development, strategies aimed to increase immune functions may have important therapeutic implications in MM.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/physiology
- Antineoplastic Agents/therapeutic use
- Boronic Acids/therapeutic use
- Bortezomib
- CD8-Positive T-Lymphocytes/immunology
- CTLA-4 Antigen/antagonists & inhibitors
- Crosses, Genetic
- Cyclophosphamide/therapeutic use
- Disease Progression
- Genes, myc
- Genetic Predisposition to Disease
- Immunologic Surveillance/immunology
- Immunotherapy
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/physiology
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Pore Forming Cytotoxic Proteins/deficiency
- Pore Forming Cytotoxic Proteins/genetics
- Pore Forming Cytotoxic Proteins/physiology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Pyrazines/therapeutic use
- Receptors, Virus/deficiency
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Tumor Burden
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
|
1385
|
Chen TW, Razak AR, Bedard PL, Siu LL, Hansen AR. A systematic review of immune-related adverse event reporting in clinical trials of immune checkpoint inhibitors. Ann Oncol 2015; 26:1824-1829. [PMID: 25888611 DOI: 10.1093/annonc/mdv182] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/30/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There are limited data about the quality of immune-related adverse event (irAE) reporting in immune checkpoint inhibitor (ICI) clinical trial publications. METHODS A systematic search of citations from Medline, EMBASE and Cochrane databases identified prospective clinical trials involving ICIs in advanced solid tumors from 2003 to 2013. A 21-point quality score (QS) was adapted from the CONSORT harms extension statement. Linear regression was used to identify factors associated with quality reporting. RESULTS After a review of 2628 articles, 50 trial reports were included, with ICIs as either monotherapy (54%) or part of a combination regimen (46%). The mean QS was 11.21 points (range 3.50-17.50 points). The median grade 3/4 AE rate reported was 21% (range 0%-66%) and 29/50 (58%) trials concluded that irAEs were tolerable. Multivariate regression analysis revealed that year of publication (within last 5 years, P = 0.01) and journal impact factor >15 (P = 0.004) were associated with higher QS. Complete reporting of specific characteristics of irAEs including onset, management and reversibility were reported by 14%, 8% and 6% of studies, respectively. The incidence of grade 3/4 adverse events was higher for inhibitors against CTLA-4 compared with other immune checkpoints (P < 0.001). CONCLUSIONS The reporting of irAEs is suboptimal. A standardized reporting method of irAEs that accounts for tolerability, management and reversibility is needed and would enable a more precise evaluation of the therapeutic risk benefit ratio of ICIs.
Collapse
Affiliation(s)
- T W Chen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre-University Health Network, Toronto; Department of Medicine, University of Toronto, Toronto, Canada
| | - A R Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre-University Health Network, Toronto; Department of Medicine, University of Toronto, Toronto, Canada
| | - P L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre-University Health Network, Toronto; Department of Medicine, University of Toronto, Toronto, Canada
| | - L L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre-University Health Network, Toronto; Department of Medicine, University of Toronto, Toronto, Canada
| | - A R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre-University Health Network, Toronto; Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
1386
|
Novel CD4-Based Bispecific Chimeric Antigen Receptor Designed for Enhanced Anti-HIV Potency and Absence of HIV Entry Receptor Activity. J Virol 2015; 89:6685-94. [PMID: 25878112 DOI: 10.1128/jvi.00474-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/11/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Adoptive transfer of CD8 T cells genetically engineered to express "chimeric antigen receptors" (CARs) represents a potential approach toward an HIV infection "functional cure" whereby durable virologic suppression is sustained after discontinuation of antiretroviral therapy. We describe a novel bispecific CAR in which a CD4 segment is linked to a single-chain variable fragment of the 17b human monoclonal antibody recognizing a highly conserved CD4-induced epitope on gp120 involved in coreceptor binding. We compared a standard CD4 CAR with CD4-17b CARs where the polypeptide linker between the CD4 and 17b moieties is sufficiently long (CD4-35-17b CAR) versus too short (CD4-10-17b) to permit simultaneous binding of the two moieties to a single gp120 subunit. When transduced into a peripheral blood mononuclear cell (PBMC) or T cells thereof, all three CD4-based CARs displayed specific functional activities against HIV-1 Env-expressing target cells, including stimulation of gamma interferon (IFN-γ) release, specific target cell killing, and suppression of HIV-1 pseudovirus production. In assays of spreading infection of PBMCs with genetically diverse HIV-1 primary isolates, the CD4-10-17b CAR displayed enhanced potency compared to the CD4 CAR whereas the CD4-35-17b CAR displayed diminished potency. Importantly, both CD4-17b CARs were devoid of a major undesired activity observed with the CD4 CAR, namely, rendering the transduced CD8(+) T cells susceptible to HIV-1 infection. Likely mechanisms for the superior potency of the CD4-10-17b CAR over the CD4-35-17b CAR include the greater potential of the former to engage in the serial antigen binding required for efficient T cell activation and the ability of two CD4-10-17b molecules to simultaneously bind a single gp120 subunit. IMPORTANCE HIV research has been energized by prospects for a cure for HIV infection or, at least, for a "functional cure" whereby antiretroviral therapy can be discontinued without virus rebound. This report describes a novel CD4-based "chimeric antigen receptor" (CAR) which, when genetically engineered into T cells, gives them the capability to selectively respond to and kill HIV-infected cells. This CAR displays enhanced features compared to previously described CD4-based CARs, namely, increased potency and avoidance of the undesired rendering of the genetically modified CD8 T cells susceptible to HIV infection. When adoptively transferred back to the individual, the genetically modified T cells will hopefully provide durable killing of infected cells and sustained virus suppression without continued antiretroviral therapy, i.e., a functional cure.
Collapse
|
1387
|
Frahm M, Felgner S, Kocijancic D, Rohde M, Hensel M, Curtiss R, Erhardt M, Weiss S. Efficiency of conditionally attenuated Salmonella enterica serovar Typhimurium in bacterium-mediated tumor therapy. mBio 2015; 6:e00254-15. [PMID: 25873375 PMCID: PMC4453544 DOI: 10.1128/mbio.00254-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Increasing numbers of cancer cases generate a great urge for new treatment options. Applying bacteria like Salmonella enterica serovar Typhimurium for cancer therapy represents an intensively explored option. These bacteria have been shown not only to colonize solid tumors but also to exhibit an intrinsic antitumor effect. In addition, they could serve as tumor-targeting vectors for therapeutic molecules. However, the pathogenic S. Typhimurium strains used for tumor therapy need to be attenuated for safe application. Here, lipopolysaccharide (LPS) deletion mutants (ΔrfaL, ΔrfaG, ΔrfaH, ΔrfaD, ΔrfaP, and ΔmsbB mutants) of Salmonella were investigated for efficiency in tumor therapy. Of such variants, the ΔrfaD and ΔrfaG deep rough mutants exhibited the best tumor specificity and lowest pathogenicity. However, the intrinsic antitumor effect was found to be weak. To overcome this limitation, conditional attenuation was tested by complementing the mutants with an inducible arabinose promoter. The chromosomal integration of the respective LPS biosynthesis genes into the araBAD locus exhibited the best balance of attenuation and therapeutic benefit. Thus, the present study establishes a basis for the development of an applicably cancer therapeutic bacterium. IMPORTANCE Cancer has become the second most frequent cause of death in industrialized countries. This and the drawbacks of routine therapies generate an urgent need for novel treatment options. Applying appropriately modified S. Typhimurium for therapy represents the major challenge of bacterium-mediated tumor therapy. In the present study, we demonstrated that Salmonella bacteria conditionally modified in their LPS phenotype exhibit a safe tumor-targeting phenotype. Moreover, they could represent a suitable vehicle to shuttle therapeutic compounds directly into cancerous tissue without harming the host.
Collapse
Affiliation(s)
- Michael Frahm
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Roy Curtiss
- Biodesign Institute, Center for Infectious Diseases and Vaccinology, Tempe, Arizona, USA
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
1388
|
Miller JFAP, Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell 2015; 27:439-49. [PMID: 25858803 DOI: 10.1016/j.ccell.2015.03.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/01/2015] [Accepted: 03/16/2015] [Indexed: 01/04/2023]
Abstract
Recent advances in cancer immunotherapy have directly built on 50 years of fundamental and technological advances that made checkpoint blockade and T cell engineering possible. In this review, we intend to show that research, not specifically designed to bring relief or cure to any particular disease, can, when creatively exploited, lead to spectacular results in the management of cancer. The discovery of thymus immune function, T cells, and immune surveillance bore the seeds for today's targeted immune interventions and chimeric antigen receptors.
Collapse
Affiliation(s)
- Jacques F A P Miller
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3050, Australia.
| | - Michel Sadelain
- The Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
1389
|
Yin Z, Huang X. Boosting Humoral Immune Responses to Tumor-associated Carbohydrate Antigens with Virus-like Particles. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of carbohydrate-based anticancer vaccines is an attractive approach towards the prevention and treatment of cancer. The weak immunogenicity of carbohydrate antigens and tolerance by the immune system are major obstacles towards the design of effective cancer vaccines. Recently, virus-like particles have been shown to be a promising platform to overcome the aforementioned difficulties. In this chapter, we provide an overview on the structural and immunological features of virus-like particles in eliciting anti-carbohydrate antibody responses. The immuno-potentiating activities of several virus-like particle systems are compared, and insights into critical factors of virus-like particles that help shape the anti-carbohydrate responses are discussed.
Collapse
Affiliation(s)
- Zhaojun Yin
- Department of Chemistry, Chemistry Building, 578 S. Shaw Lane, Michigan State University East Lansing, MI 48824 USA
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, 578 S. Shaw Lane, Michigan State University East Lansing, MI 48824 USA
| |
Collapse
|
1390
|
Abstract
A host's microbiota may increase, diminish, or have no effect at all on cancer susceptibility. Assigning causal roles in cancer to specific microbes and microbiotas, unraveling host-microbiota interactions with environmental factors in carcinogenesis, and exploiting such knowledge for cancer diagnosis and treatment are areas of intensive interest. This Review considers how microbes and the microbiota may amplify or mitigate carcinogenesis, responsiveness to cancer therapeutics, and cancer-associated complications.
Collapse
Affiliation(s)
- Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
1391
|
Humphrey SE, Kasinski AL. RNA-guided CRISPR-Cas technologies for genome-scale investigation of disease processes. J Hematol Oncol 2015; 8:31. [PMID: 25888285 PMCID: PMC4389696 DOI: 10.1186/s13045-015-0127-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/14/2015] [Indexed: 12/26/2022] Open
Abstract
From its discovery as an adaptive bacterial and archaea immune system, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system has quickly been developed into a powerful and groundbreaking programmable nuclease technology for the global and precise editing of the genome in cells. This system allows for comprehensive unbiased functional studies and is already advancing the field by revealing genes that have previously unknown roles in disease processes. In this review, we examine and compare recently developed CRISPR-Cas platforms for global genome editing and examine the advancements these platforms have made in guide RNA design, guide RNA/Cas9 interaction, on-target specificity, and target sequence selection. We also explore some of the exciting therapeutic potentials of the CRISPR-Cas technology as well as some of the innovative new uses of this technology beyond genome editing.
Collapse
Affiliation(s)
- Sean E Humphrey
- Department of Biological Sciences, Purdue University, 1203 West State Street, West Lafayette, IN, 47907, USA.
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, 1203 West State Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
1392
|
Nishimura Y, Tomita Y, Yuno A, Yoshitake Y, Shinohara M. Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses. Cancer Sci 2015; 106:505-11. [PMID: 25726868 PMCID: PMC4452150 DOI: 10.1111/cas.12650] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/21/2015] [Accepted: 02/22/2015] [Indexed: 02/03/2023] Open
Abstract
Recent genome-wide cDNA microarray analysis of gene expression profiles in comprehensive tumor types coupled with isolation of cancer tissues by laser-microbeam microdissection have revealed ideal tumor-associated antigens (TAAs) that are frequently overexpressed in various cancers including head and neck squamous cell cancer (HNSCC) and lung cancer, but not in most normal tissues except for testis, placenta, and fetal organs. Preclinical studies using HLA-transgenic mice and human T cells in vitro showed that TAA-derived CTL-epitope short peptides (SPs) are highly immunogenic and induce HLA-A2 or -A24-restricted CTLs. Based on the accumulated evidence, we carried out a phase II clinical trial of the TAA-SP vaccine in advanced 37 HNSCC patients. This study showed a significant induction of TAA-specific CTLs in the majority of patients without serious adverse effects. Importantly, clinical responses including a complete response were observed in this study. Another phase II clinical trial of therapeutic TAA-SP vaccine, designed to evaluate the ability of prevention of recurrence, is ongoing in HNSCC patients who have received curative operations. Further studies in human preclinical studies and in vivo studies using HLA class I transgenic mice showed TAA-derived long peptides (TAA-LPs) have the capacity to induce not only promiscuous HLA class II-restricted CD4+ T helper type 1 cells but also tumor-specific CTLs through a cross-presentation mechanism. Moreover, we observed an augmentation of TAA-LP-specific T helper type 1 cell responses and tumor antigen-spreading in HNSCC patients vaccinated with TAA-SPs. This accumulated evidence suggests that therapeutic TAA-SPs and LPs vaccines may provide a promising cancer immunotherapy.
Collapse
Affiliation(s)
- Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Itoh Maxillofacial Hospital, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Itoh Maxillofacial Hospital, Kumamoto, Japan
| |
Collapse
|
1393
|
Hartley ML, Marshall JL. The Ruesch Center Symposium 2014: Fighting a Smarter War against Cancer Using Immunotherapy. COLORECTAL CANCER 2015. [DOI: 10.2217/crc.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ruesch Cancer Symposium, Washington DC, USA, 4–6 December 2014
Collapse
Affiliation(s)
- Marion L Hartley
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road, NW 20007, USA
| | - John L Marshall
- The Ruesch Center for the Cure of GI Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road, NW 20007, USA
| |
Collapse
|
1394
|
Buqué A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814. [PMID: 26137403 PMCID: PMC4485728 DOI: 10.1080/2162402x.2015.1008814] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022] Open
Abstract
Immunomodulatory monoclonal antibodies (mAbs) differ from their tumor-targeting counterparts because they exert therapeutic effects by directly interacting with soluble or (most often) cellular components of the immune system. Besides holding promise for the treatment of autoimmune and inflammatory disorders, immunomodulatory mAbs have recently been shown to constitute a potent therapeutic weapon against neoplastic conditions. One class of immunomodulatory mAbs operates by inhibiting safeguard systems that are frequently harnessed by cancer cells to establish immunological tolerance, the so-called "immune checkpoints." No less than 3 checkpoint-blocking mAbs have been approved worldwide for use in oncological indications, 2 of which during the past 12 months. These molecules not only mediate single-agent clinical activity in patients affected by specific neoplasms, but also significantly boost the efficacy of several anticancer chemo-, radio- or immunotherapies. Here, we summarize recent advances in the development of checkpoint-blocking mAbs, as well as of immunomodulatory mAbs with distinct mechanisms of action.
Collapse
Key Words
- CRC, colorectal carcinoma
- CTLA4, cytotoxic T lymphocyte-associated protein 4
- FDA, Food and Drug Administration
- IL, interleukin
- KIR, killer cell immunoglobulin-like receptor
- MEDI4736
- MPDL3280A
- NK, natural killer
- NSCLC, non-small cell lung carcinoma
- PD-1, programmed cell death 1
- RCC, renal cell carcinoma
- TGFβ1, transforming growth factor β1
- TLR, Toll-like receptor
- TNFRSF, tumor necrosis factor receptor superfamily
- Treg, regulatory T cell
- ipilimumab
- mAb, monoclonal antibody
- nivolumab
- pembrolizumab
- urelumab
Collapse
Affiliation(s)
- Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine, Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c.; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Wolf Hervé Fridman
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jitka Fucikova
- Sotio a.c.; Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Radek Spisek
- Sotio a.c.; Prague, Czech Republic
- Equipe 13, Center de Recherche des Cordeliers; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
1395
|
Abstract
INTRODUCTION Urothelial cancer (UC) remains a significant public health problem, with no new second-line agents FDA-approved in the US. Next-generation sequencing technologies are starting to generate a molecular landscape of UC thus revealing novel molecular targets. AREAS COVERED In this review, the authors provide a detailed review of novel molecular targets in UC based on published genomic analyses of urothelial tumors. We provide an overview of each molecular target with a brief discussion of therapeutic strategies and clinical trials targeting each pathway. EXPERT OPINION UC continues to be a lethal disease with no FDA-approved effective second-line therapies. Platinum resistance continues to be a daunting clinical problem. Next-generation sequencing methods have led to the elucidation of numerous molecular targets in UC, including PI3K, to the elucidation of numerous molecular targets in UC, including PI3K, ERBB2 and FGFR3, among many others. These molecular perturbations can be exploited therapeutically with targeted therapies in patient populations enriched for these molecular alterations, thus paving the way for precision medicine in UC management.
Collapse
Affiliation(s)
- Bishoy M Faltas
- Weill Cornell Medical College, Division of Hematology and Medical Oncology, Department of Medicine , New York, NY , USA
| | | | | | | |
Collapse
|
1396
|
Clements DR, Sterea AM, Kim Y, Helson E, Dean CA, Nunokawa A, Coyle KM, Sharif T, Marcato P, Gujar SA, Lee PWK. Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. THE JOURNAL OF IMMUNOLOGY 2015; 194:4397-412. [PMID: 25825443 DOI: 10.4049/jimmunol.1402132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/04/2015] [Indexed: 12/31/2022]
Abstract
Tumor-associated immunosuppression aids cancer cells to escape immune-mediated attack and subsequent elimination. Recently, however, many oncolytic viruses, including reovirus, have been reported to overturn such immunosuppression and promote the development of a clinically desired antitumor immunity, which is known to promote favorable patient outcomes. Contrary to this existing paradigm, in this article we demonstrate that reovirus augments tumor-associated immunosuppression immediately following its therapeutic administration. Our data show that reovirus induces preferential differentiation of highly suppressive CD11b(+), Gr-1(+), Ly6C(high) myeloid cells from bone marrow hematopoietic progenitor cells. Furthermore, reovirus administration in tumor-bearing hosts drives time-dependent recruitment of CD11b(+), Gr-1(+), Ly6C(high) myeloid cells in the tumor milieu, which is further supported by virus-induced increased expression of numerous immune factors involved in myeloid-derived suppressor cell survival and trafficking. Most importantly, CD11b(+), Gr-1(+), Ly6C(high) myeloid cells specifically potentiate the suppression of T cell proliferation and are associated with the absence of IFN-γ response in the tumor microenvironment early during oncotherapy. Considering that the qualitative traits of a specific antitumor immunity are largely dictated by the immunological events that precede its development, our findings are of critical importance and must be considered while devising complementary interventions aimed at promoting the optimum efficacy of oncolytic virus-based anticancer immunotherapies.
Collapse
Affiliation(s)
- Derek R Clements
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andra M Sterea
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Erin Helson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Cheryl A Dean
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Anna Nunokawa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Krysta Mila Coyle
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Tanveer Sharif
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and Strategy and Organizational Performance, Izaak Walton Killiam Health Centre, Halifax, Nova Scotia, Canada B3K 6R8
| | - Patrick W K Lee
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| |
Collapse
|
1397
|
Ostrand-Rosenberg S, Horn LA, Alvarez JA. Novel strategies for inhibiting PD-1 pathway-mediated immune suppression while simultaneously delivering activating signals to tumor-reactive T cells. Cancer Immunol Immunother 2015; 64:1287-93. [PMID: 25792524 DOI: 10.1007/s00262-015-1677-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
We previously developed cell-based vaccines as therapeutics for metastatic cancers. The vaccines were aimed at activating type I CD4(+)T cells and consisted of tumor cells transfected with genes encoding syngeneic MHC class II and CD80 costimulatory molecules, and lacking the MHC II-associated invariant chain. The vaccines showed some efficacy in mice with sarcoma, melanoma, and breast cancer and activated MHC class II syngeneic T cells from breast, lung, and melanoma patients. During the course of the vaccine studies, we observed that CD80 not only costimulated naïve T cells, but also bound to PD-L1 and prevented tumor cell-expressed PD-L1 from binding to its receptor PD-1 on activated T cells. A soluble form of CD80 (CD80-Fc) had the same effect and sustained IFNγ production by both human and murine PD-1(+) activated T cells in the presence of PD-L1(+) human or mouse tumor cells, respectively. In vitro studies with human tumor cells indicated that CD80-Fc was more effective than antibodies to either PD-1 or PD-L1 in sustaining T cell production of IFNγ. Additionally, in vivo studies with a murine tumor demonstrated that CD80-Fc was more effective than antibodies to PD-L1 in extending survival time. Studies with human T cells blocked for CD28 and with T cells from CD28 knockout mice demonstrated that CD80-Fc simultaneously inhibited PD-L1/PD-1-mediated immune suppression and delivered costimulatory signals to activated T cells, thereby amplifying T cell activation. These results suggest that CD80-Fc may be a useful monotherapy that minimizes PD-1 pathway immune suppression while simultaneously activating tumor-reactive T cells.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA,
| | | | | |
Collapse
|
1398
|
Yes, we need PhD immunologists! Trends Immunol 2015; 36:280-2. [PMID: 25801018 DOI: 10.1016/j.it.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022]
Abstract
Constrained research funding prompts some to advocate training fewer PhDs. However, PhD immunologists are critically needed for future health challenges. Rather than discouraging promising young scientists from pursuing doctorates, we should ensure that such training is relevant to many different career possibilities to which PhD immunologists can make valuable contributions.
Collapse
|
1399
|
Weigel KJ, Shen L, Thomas CL, Alber D, Drapalik L, Schafer ZT, Lee SW. Design and evaluation of a peptide-based immunotoxin for breast cancer therapeutics. FEBS Open Bio 2015; 5:202-8. [PMID: 25853036 PMCID: PMC4382514 DOI: 10.1016/j.fob.2015.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 10/26/2022] Open
Abstract
Immunotoxins are chimeric proteins comprising a specific cellular targeting domain linked to a cytotoxic factor. Here we describe the design and use of a novel, peptide-based immunotoxin that can initiate selective cytotoxicity on ErbB2-positive cells. ErbB2 is a receptor tyrosine kinase that is overexpressed in the tumor cells of approximately 30% of breast cancer patients. Immunotoxin candidates were designed to incorporate a targeting ligand with affinity for ErbB2 along with a membrane lysin-based toxin domain. One particular peptide candidate, NL1.1-PSA, demonstrated selective cytotoxicity towards ErbB2-overexpressing cell lines. We utilized a bioengineering strategy to show that recombinant NL1.1-PSA immunotoxin expression by Escherichia coli also conferred selective cytotoxicity towards ErbB2-overexpressing cells. Our findings hold significant promise for the use of effective immunotoxins in cancer therapeutics.
Collapse
Affiliation(s)
- Kelsey J Weigel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luqun Shen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Clayton L Thomas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel Alber
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lauren Drapalik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Zachary T Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA ; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA ; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
1400
|
Moalli F, Proulx ST, Schwendener R, Detmar M, Schlapbach C, Stein JV. Intravital and whole-organ imaging reveals capture of melanoma-derived antigen by lymph node subcapsular macrophages leading to widespread deposition on follicular dendritic cells. Front Immunol 2015; 6:114. [PMID: 25821451 PMCID: PMC4358226 DOI: 10.3389/fimmu.2015.00114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/01/2015] [Indexed: 11/13/2022] Open
Abstract
Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.
Collapse
Affiliation(s)
- Federica Moalli
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zürich , Zürich , Switzerland
| | - Reto Schwendener
- Institute of Molecular Cancer Research, University Zürich , Zürich , Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zürich , Zürich , Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital - Universitätsspital Bern , Bern , Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| |
Collapse
|