101
|
Meiering MS, Weigner D, Gärtner M, Carstens L, Keicher C, Hertrampf R, Beckmann CF, Mennes M, Wunder A, Weigand A, Grimm S. Functional activity and connectivity signatures of ketamine and lamotrigine during negative emotional processing: a double-blind randomized controlled fMRI study. Transl Psychiatry 2024; 14:436. [PMID: 39402015 PMCID: PMC11479267 DOI: 10.1038/s41398-024-03120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
Ketamine is a highly effective antidepressant (AD) that targets the glutamatergic system and exerts profound effects on brain circuits during negative emotional processing. Interestingly, the effects of ketamine on brain measures are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release. Examining the antagonistic effects of ketamine and lamotrigine on glutamate transmission holds promise to identify effects of ketamine that are mediated through changes in the glutamatergic system. Investigating this modulation in relation to both the acute and sustained effects of ketamine on functional activity and connectivity during negative emotional processing should therefore provide novel insights. 75 healthy subjects were investigated in a double-blind, single-dose, randomized, placebo-controlled, parallel-group study with three treatment conditions (ketamine, lamotrigine pre-treatment, placebo). Participants completed an emotional face viewing task during ketamine infusion and 24 h later. Acute ketamine administration decreased hippocampal and Default Mode Network (DMN) activity and increased fronto-limbic coupling during negative emotional processing. Furthermore, while lamotrigine abolished the ketamine-induced increase in functional connectivity, it had no acute effect on activity. Sustained (24 h later) effects of ketamine were only found for functional activity, with a significant reduction in the posterior DMN. This effect was blocked by pretreatment with lamotrigine. Our results suggest that both the acute increases in fronto-limbic coupling and the delayed decrease in posterior DMN activity, but not the attenuated limbic and DMN recruitment after ketamine, are mediated by altered glutamatergic transmission.
Collapse
Affiliation(s)
- Marvin S Meiering
- Medical School Berlin, Berlin, Germany.
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| | - David Weigner
- Medical School Berlin, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitiät Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
102
|
Dahan JDC, Dadiomov D, Bostoen T, Dahan A. Meta-correlation of the effect of ketamine and psilocybin induced subjective effects on therapeutic outcome. NPJ MENTAL HEALTH RESEARCH 2024; 3:45. [PMID: 39369173 PMCID: PMC11455954 DOI: 10.1038/s44184-024-00091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
There is some evidence that the subjective effects of ketamine and other psychedelics like psilocybin are crucial for their therapeutic outcomes, such as treatment of depression or substance use disorder (SUD). We performed a meta-analysis and systematic review on the correlation of subjective symptoms and dissociation versus ketamine-induced therapeutic outcomes in patients with depression or SUD. A similar analysis was conducted for psilocybin-induced therapeutic improvement. We retrieved 23 papers studying ketamine (21 on depression, 2 on SUD) in 471 patients and 8 papers studying psilocybin (6 on depression, 2 on SUD) in 183 patients. Our study demonstrated a modest role for subjective effects mediating therapeutic outcomes, with R2-values ranging from 5-10% for ketamine and for psilocybine the R2 was 24%. A greater mediating effect for psilocybin compared to ketamine was detected, particularly when restricting the analysis to depression. Additionally there is a greater mediating effect in SUD than depression, irrespective of treatment.
Collapse
Affiliation(s)
- Jack D C Dahan
- Amsterdam University Medical Center, Location Academic Medical Center (AMC), Amsterdam, the Netherlands
| | - David Dadiomov
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, USA
- Los Angeles General Medical Center, Los Angeles, CA, USA
| | - Tijmen Bostoen
- ARQ National Psychotrauma Center, Diemen, the Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Dahan
- Leiden University Medical Center, Leiden, the Netherlands.
- PainLess Foundation, Leiden, the Netherlands.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
103
|
Kaldewaij R, Salamone PC, Enmalm A, Östman L, Pietrzak M, Karlsson H, Löfberg A, Gauffin E, Samuelsson M, Gustavson S, Capusan AJ, Olausson H, Heilig M, Boehme R. Ketamine reduces the neural distinction between self- and other-produced affective touch: a randomized double-blind placebo-controlled study. Neuropsychopharmacology 2024; 49:1767-1774. [PMID: 38918578 PMCID: PMC11399133 DOI: 10.1038/s41386-024-01906-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
A coherent sense of self is crucial for social functioning and mental health. The N-methyl-D-aspartate antagonist ketamine induces short-term dissociative experiences and has therefore been used to model an altered state of self-perception. This randomized double-blind placebo-controlled cross-over study investigated the mechanisms for ketamine's effects on the bodily sense of self in the context of affective touch. Thirty healthy participants (15 females/15 males, age 19-39) received intravenous ketamine or placebo while performing self-touch and receiving touch by someone else during functional MRI - a previously established neural measure of tactile self-other-differentiation. Afterwards, tactile detection thresholds during self- and other-touch were assessed, as well as dissociative states, interoceptive awareness, and social touch attitudes. Compared to placebo, ketamine administration elicited dissociation and reduced neural activity associated with self-other-differentiation in the right temporoparietal cortex, which was most pronounced during other-touch. This reduction correlated with ketamine-induced reductions in interoceptive awareness. The temporoparietal cortex showed higher connectivity to somatosensory cortex and insula during other- compared to self-touch. This difference was augmented by ketamine, and correlated with dissociation strength for somatosensory cortex. These results demonstrate that disrupting the self-experience through ketamine administration affects neural activity associated with self-other-differentiation in a region involved in touch perception and social cognition, especially with regard to social touch by someone else. This process may be driven by ketamine-induced effects on top-down signaling, rendering the processing of predictable self-generated and unpredictable other-generated touch more similar. These findings provide further evidence for the intricate relationship of the bodily self with the tactile sense.
Collapse
Affiliation(s)
- Reinoud Kaldewaij
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Paula C Salamone
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Adam Enmalm
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Lars Östman
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Michal Pietrzak
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Hanna Karlsson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Andreas Löfberg
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Emelie Gauffin
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Martin Samuelsson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Sarah Gustavson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Andrea J Capusan
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Rebecca Boehme
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
104
|
Walaszek M, Kachlik Z, Cubała WJ. Low-carbohydrate diet as a nutritional intervention in a major depression disorder: focus on relapse prevention. Nutr Neurosci 2024; 27:1185-1198. [PMID: 38245881 DOI: 10.1080/1028415x.2024.2303218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Mood disorders are trending to be among the leading causes of years lived with disability. Despite multiple treatment options, around 30% patients with major depressive disorder (MDD) develop treatment resistant depression (TRD) and fail to respond to current pharmacological therapies. This study aimed to explore the potential benefits of nutritional treatment strategies, along with their molecular mechanisms of action, focusing especially on low-carbohydrate diet (LCHD), ketogenic diet (KD) and other strategies based on carbohydrates intake reduction. METHODS A comprehensive literature review was conducted to determine the impact of LCHD on alleviating depressive symptoms in patients with MDD, along with an explanation of its mode of action. RESULTS The study revealed significant impact of nutritional interventions based on restriction in carbohydrate intake such as LCHD, KD or sugar-sweetened beverages (SSB) exclusion on anxiety or depression symptoms reduction, mood improvement and lower risk of cognitive impairment or depression. The efficacy of these approaches is further substantiated by their underlying molecular mechanisms, mainly brain-derived neurotrophic factor (BDNF) which is a potential key target of sugar restriction diets in terms of neuroplasticity. DISCUSSION Healthcare professionals may consider implementing LCHD strategies for MDD and TRD patients to modify the disease process, maintain euthymia, and prevent depressive episode relapses. Ranging from the exclusion of SSB to the adherence to rigorous LCHD regimens, these nutritional approaches are safe, straightforward to implement, and may confer benefits for well-being and relapse prevention in this specific patient population.
Collapse
Affiliation(s)
- Michał Walaszek
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Zofia Kachlik
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Wiesław Jerzy Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
105
|
Padhan M, Mohapatra D, Mishra BR, Maiti R, Jena M. Efficacy and safety of add-on sarcosine in patients with major depressive disorder: A randomized controlled trial. J Psychiatr Res 2024; 178:298-304. [PMID: 39180989 DOI: 10.1016/j.jpsychires.2024.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The main hurdles with current therapies for major depressive disorder (MDD) include lack of efficacy, therapeutic latency, and adverse drug reactions. Add-on therapy to conventional antidepressants may result in better therapeutic outcomes to overcome these obstacles. Sarcosine (N-methyl glycine), an endogenous amino acid that acts by modulating the NMDA receptor, is available as a dietary supplement. So, the present study was planned to evaluate the efficacy and safety of add-on sarcosine to SSRIs in MDD. In the present randomized, double-blind clinical trial (NCT04975100), 60 eligible participants with MDD were randomly assigned to either the test group (SSRI + sarcosine) or the control group (SSRI + placebo). Clinical and biochemical parameters like MADRS, CGI, serum BDNF, and serum glycine were assessed at baseline and eight weeks. The mean reduction in MADRS score was significant in both the control (-8.7, 95% CI: -11.0 to -6.4, p < 0.001) and the test group (-13.3, 95% CI: -14.9 to -11.7, p < 0.001), but the change in the test group was significantly greater (-4.6, 95% CI: -7.5 to -1.7, p = 0.003). The test group had a significantly higher response rate (p = 0.007) and remission rate (p = 0.038) compared to the control group. There was a significant increase in serum BDNF in both groups; however, the change in the test group was significantly higher than in the control group (p = 0.041). Similarly, the test group had a significantly higher increase in serum glycine than the control group (p < 0.001). Sarcosine may be considered an efficacious and safe add-on therapy to standard SSRIs in the management of MDD. ClinicalTrial.gov IdentifierNCT04975100.
Collapse
Affiliation(s)
- Milan Padhan
- Dept. of Pharmacology All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Debadatta Mohapatra
- Dept. of Psychiatry All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Biswa Ranjan Mishra
- Dept. of Psychiatry All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Rituparna Maiti
- Dept. of Pharmacology All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| | - Monalisa Jena
- Dept. of Pharmacology All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India.
| |
Collapse
|
106
|
Kavalali ET, Monteggia LM. Synaptic basis of rapid antidepressant action. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01898-6. [PMID: 39343821 DOI: 10.1007/s00406-024-01898-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
The discovery of ketamine's rapid antidepressant action has generated intense interest in the field of neuropsychiatry. This discovery demonstrated that to alleviate the symptoms of depression, treatments do not need to elicit substantive alterations in neuronal circuitry or trigger neurogenesis, but rather drive synaptic plasticity mechanisms to compensate for the underlying pathophysiology. The possibility of a rapidly induced antidepressant effect makes therapeutic pursuit of fast-acting neuropsychiatric medications against mood disorders plausible. In the meantime, the accumulating clinical as well as preclinical observations raise critical questions on the nature of the specific synaptic plasticity events that mediate these rapid antidepressant effects. This work has triggered the current growing interest in alternative psychoactive compounds that are thought to have similar properties to ketamine and its action. This review covers our insight into these questions based on the work our group has conducted on this topic in the last decade.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Suite 7130 Medical Building III, Nashville, TN, 37240-7933, USA.
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Suite 7130 Medical Building III, Nashville, TN, 37240-7933, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Suite 7130 Medical Building III, Nashville, TN, 37240-7933, USA.
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Suite 7130 Medical Building III, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
107
|
Li LJ, Mo Y, Shi ZM, Huang XB, Ning YP, Wu HW, Yang XH, Zheng W. Psilocybin for major depressive disorder: a systematic review of randomized controlled studies. Front Psychiatry 2024; 15:1416420. [PMID: 39376971 PMCID: PMC11456834 DOI: 10.3389/fpsyt.2024.1416420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Objectives The purpose of this systematic review of randomized controlled trials (RCTs) was to evaluate the effectiveness, safety, and tolerability of psilocybin in adult patients with major depressive disorder (MDD). Methods A systematic search (up to September 14, 2023) was conducted for RCTs that examined the efficacy, safety, and tolerability of psilocybin in physically healthy adult patients with MDD. Three independent researchers extracted data from publications where the primary outcome was a change in depressive symptoms, and key secondary outcomes were changes in anxiety symptoms and suicidal ideation, discontinuation rates for any reason, and adverse drug reactions (ADRs). Results Five RCTs with 472 adult patients with MDD on psilocybin (n = 274) and controls (n = 198) were included. Two of the five RCTs (40%) reported mixed results, while the other three (60%) found that psilocybin had a beneficial effect on MDD treatment. Four RCTs (80%) assessing the anxiolytic effects of psilocybin for treating MDD found that psilocybin was significantly more effective than the control group in improving anxiety symptoms. Psilocybin was more effective than the control group in improving suicidal ideation in one out of five RCTs. Discontinuation rates were similar for any reason between the psilocybin group (2-13%) and the control group (4-21%) (P > 0.05). Four RCTs (80%) reported ADRs in detail. The most common ADR in both groups was headache. Conclusion Psilocybin was effective in improving depressive symptoms in over half of the included studies and reduced anxiety symptoms in patients with MDD. The long-term efficacy and safety of psilocybin for MDD treatment needs to be further investigated in large RCTs.
Collapse
Affiliation(s)
- Li-Juan Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yu Mo
- Department of Psychology, The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Zhan-Ming Shi
- Department of Psychology, Chongqing Jiangbei Mental Health Center, Chongqing, China
| | - Xing-Bing Huang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Hua-Wang Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Xin-Hu Yang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
108
|
Wróbel J, Średniawa W, Bramorska A, Dovgialo M, Wójcik DK, Hunt MJ. NMDA receptor antagonist high-frequency oscillations are transmitted via bottom-up feedforward processing. Sci Rep 2024; 14:21858. [PMID: 39300126 PMCID: PMC11413191 DOI: 10.1038/s41598-024-71749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
In mammals, NMDA receptor antagonists have been linked to the emergence of high-frequency oscillations (HFO, 130-180 Hz) in cortical and subcortical brain regions. The extent to which transmission of this rhythm is dependent on feedforward (bottom-up) or feedback (top-down) mechanisms is unclear. Previously, we have shown that the olfactory bulb (OB), known to orchestrate oscillations in many brain regions, is an important node in the NMDA receptor-dependent HFO network. Since the piriform cortex (PC) receives major input from the OB, and can modulate OB activity via feedback projections, it represents an ideal site to investigate transmission modalities. Here we show, using silicon probes, that NMDA receptor antagonist HFO are present in the PC associated with current dipoles, although of lower power than the OB. Granger causality and peak-lag analyses implicated the OB as the driver of HFO in the PC. Consistent with this, reversible inhibition of the OB resulted in a reduction of HFO power both locally and in the PC. In contrast, inhibition of the PC had minimal impact on OB activity. Collectively, these findings point to bottom-up mechanisms in mediating the transmission of NMDA receptor antagonist-HFO, at least in olfactory circuits.
Collapse
Affiliation(s)
- Jacek Wróbel
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Aleksandra Bramorska
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Marian Dovgialo
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Daniel Krzysztof Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Mark Jeremy Hunt
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
109
|
Frank GKW, Scolnick B. Therapeutic ketogenic diet as treatment for anorexia nervosa. Front Nutr 2024; 11:1392135. [PMID: 39296512 PMCID: PMC11409850 DOI: 10.3389/fnut.2024.1392135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder. However, we lack neurobiological models and interventions to explain and treat the core characteristics of food restriction, feeling fat, and body size overestimation. Research has made progress in understanding brain function involved in the pathophysiology of AN, but translating those results into biological therapies has been challenging. Studies have suggested that metabolic factors could contribute to developing and maintaining AN pathophysiology. Here, we describe a neurobiological model for why using a therapeutic ketogenic diet could address key alterations in brain function in AN and prevent the desire for weight loss and associated eating disorder-specific symptoms. This translational model is based on animal studies and human data and integrates behavioral traits, brain neural energy metabolism, and neurotransmitter function. Pilot data indicate that the intervention can dramatically reduce eating and body-related fears, although larger studies across illness stages still need to be conducted.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | | |
Collapse
|
110
|
K Freind JM, Beserra FR, Menezes BS, Mograbi DC. Therapeutic Protocols Using Ketamine and Esketamine for Depressive Disorders: A Systematic Review. J Psychoactive Drugs 2024; 56:496-512. [PMID: 37638529 DOI: 10.1080/02791072.2023.2248989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Depression is one of the most prevalent mental health disorders globally, causing severe emotional suffering, reducing life expectancy and increasing the risk of suicide. Recently, the use of dissociative psychedelic substances such as ketamine and esketamine for depressive disorders has expanded treatment options. We sought to analyze, through a systematic review, the existing protocols for the treatment of depression with ketamine and esketamine. The search adopted PRISMA criteria and was performed using PubMed and Web of Science databases. Procedures in each study were compared, focusing on the sample recruited, therapeutic approaches, including the clinical team and professionals engaged in treatment, medical procedures, description of the setting (including music) and factors such as specific medication (ketamine or esketamine), route of administration and dosage employed. Results indicated the predominance of a medical approach, with a limited number of studies on ketamine assisted psychotherapy (KAP) and other modalities of psychedelic assisted therapy. Additionally, there is limited information on psychosocial elements such as preparation, psychological support during session and integration of experience. Altogether these findings suggest that treatment of depression with ketamine or esketamine diverges in relation to the practices employed with psychedelic substances. This is discussed considering future research directions in the field.
Collapse
Affiliation(s)
- Julia M K Freind
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de janeiro, Brazil
| | - Fernando R Beserra
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de janeiro, Brazil
| | - Bruno S Menezes
- Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), Rio de janeiro, Brazil
| | - Daniel C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de janeiro, Brazil
- Institute of Psychiatry,Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
111
|
Hagarty DP, Dawoud A, Brea Guerrero A, Phillips K, Strong CE, Jennings SD, Crawford M, Martinez K, Csernecky O, Saland SK, Kabbaj M. Exploring ketamine's reinforcement, cue-induced reinstatement, and nucleus accumbens cFos activation in male and female long evans rats. Neuropharmacology 2024; 255:110008. [PMID: 38797243 PMCID: PMC11610499 DOI: 10.1016/j.neuropharm.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Ketamine (KET), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has rapid onset of antidepressant effects in Treatment-Resistant Depression patients and repeated infusions are required to sustain its antidepressant properties. However, KET is an addictive drug, and so more preclinical and clinical research is needed to assess the safety of recurring treatments in both sexes. Thus, the aim of this study was to investigate the reinforcing properties of various doses of KET (0-, 0.125-, 0.25-, 0.5 mg/kg/infusion) and assess KET's cue-induced reinstatement and neuronal activation in both sexes of Long Evans rats. Neuronal activation was assessed using the protein expression of the immediate early gene cFos in the nucleus accumbens (Nac), an important brain area implicated in reward, reinforcement and reinstatement to most drug-related cues. Our findings show that KET has reinforcing effects in both male and female rats, albeit exclusively at the highest two doses (0.25 and 0.5 mg/kg/infusion). Furthermore, we noted sex differences, particularly at the highest dose of ketamine, with female rats displaying a higher rate of self-administration. Interestingly, all groups that self-administered KET reinstated to drug-cues. Following drug cue-induced reinstatement test in rats exposed to KET (0.25 mg/kg/infusion) or saline, there was higher cFos protein expression in KET-treated animals compared to saline controls, and higher cFos expression in the core compared to the shell subregions of the Nac. As for reinstatement, there were no notable sex differences reported for cFos expression in the Nac. These findings reveal some sex and dose dependent effects in KET's reinforcing properties and that KET at all doses induced similar reinstatement in both sexes. This study also demonstrated that cues associated with ketamine induce comparable neuronal activation in the Nac of both male and female rats. This work warrants further research into the potential addictive properties of KET, especially when administered at lower doses which are now being used in the clinic for treating various psychopathologies.
Collapse
Affiliation(s)
- Devin P Hagarty
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Adam Dawoud
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alfonso Brea Guerrero
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kaynas Phillips
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Caroline E Strong
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Sarah Dollie Jennings
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Michelle Crawford
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Katherine Martinez
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Olivia Csernecky
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Samantha K Saland
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
112
|
Wen W, Wenjing Z, Xia X, Duan X, Zhang L, Duomao L, Zeyou Q, Wang S, Gao M, Liu C, Li H, Ma J. Efficacy of ketamine versus esketamine in the treatment of perioperative depression: A review. Pharmacol Biochem Behav 2024; 242:173773. [PMID: 38806116 DOI: 10.1016/j.pbb.2024.173773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Depression is a significant factor contributing to postoperative occurrences, and patients diagnosed with depression have a higher risk for postoperative complications. Studies on cardiovascular surgery extensively addresses this concern. Several studies report that people who undergo coronary artery bypass graft surgery have a 20% chance of developing postoperative depression. A retrospective analysis of medical records spanning 21 years, involving 817 patients, revealed that approximately 40% of individuals undergoing coronary artery bypass grafting (CABG) were at risk of perioperative depression. Patients endure prolonged suffering from illness because each attempt with standard antidepressants requires several weeks to be effective. In addition, multi-drug combination adjuvants or combination medication therapy may alleviate symptoms for some individuals, but they also increase the risk of side effects. Conventional antidepressants primarily modulate the monoamine system, whereas different therapies target the serotonin, norepinephrine, and dopamine systems. Esketamine is a fast-acting antidepressant with high efficacy. Esketamine is the S-enantiomer of ketamine, a derivative of phencyclidine developed in 1956. Esketamine exerts its effect by targeting the glutaminergic system the glutaminergic system. In this paper, we discuss the current depression treatment strategies with a focus on the pharmacology and mechanism of action of esketamine. In addition, studies reporting use of esketamine to treat perioperative depressive symptoms are reviwed, and the potential future applications of the drug are presented.
Collapse
Affiliation(s)
- Wen Wen
- Beijing Anzhen Hospital, Capital Medical University
| | - Zhao Wenjing
- Beijing Anzhen Hospital, Capital Medical University
| | - Xing Xia
- Beijing Anzhen Hospital, Capital Medical University
| | | | - Liang Zhang
- Beijing Anzhen Hospital, Capital Medical University
| | - Lin Duomao
- Beijing Anzhen Hospital, Capital Medical University
| | - Qi Zeyou
- Beijing Anzhen Hospital, Capital Medical University
| | - Sheng Wang
- Beijing Anzhen Hospital, Capital Medical University
| | - Mingxin Gao
- Beijing Anzhen Hospital, Capital Medical University
| | | | - Haiyang Li
- Beijing Anzhen Hospital, Capital Medical University.
| | - Jun Ma
- Beijing Anzhen Hospital, Capital Medical University.
| |
Collapse
|
113
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
114
|
Brezic N, Gligorevic S, Candido KD, Knezevic NN. Assessing suicide risk in chronic pain management: a narrative review across drug classes. Expert Opin Drug Saf 2024; 23:1135-1155. [PMID: 39126380 DOI: 10.1080/14740338.2024.2391999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Chronic pain presents a multifaceted challenge in clinical practice, necessitating a nuanced understanding of pharmacological interventions to optimize treatment outcomes. This review provides an outline of various pharmacological agents commonly used in chronic pain management and highlights their safety considerations, particularly regarding suicide risk. AREAS COVERED This review discusses the role of antidepressants, anticonvulsants, GABA receptor agonists, NMDA receptor antagonists, corticosteroids, cannabis and cannabinoids, bisphosphonates, calcitonin, and alpha-2 adrenergic receptor agonists in chronic pain management. It assesses their therapeutic benefits, potential for misuse, and psychiatric adverse effects, including the risk of suicide. Each pharmacological class is evaluated in terms of its efficacy, safety profile, and considerations for clinical practice. We searched peer-reviewed English literature on the topic using the MEDLINE database without time restrictions. EXPERT OPINION While pharmacological interventions offer promise in alleviating chronic pain, healthcare providers must carefully weigh their benefits against potential risks, including the risk of exacerbating psychiatric symptoms and increasing suicide risk. Individualized treatment approaches, close monitoring, and multidisciplinary collaboration are essential for optimizing pain management strategies while mitigating adverse effects. Ongoing research efforts are crucial for advancing our understanding of these pharmacological interventions and refining pain management practices.
Collapse
Affiliation(s)
- Nebojsa Brezic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
| | - Strahinja Gligorevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
| | - Kenneth D Candido
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| |
Collapse
|
115
|
Singh B. Ketamine and Esketamine for Depression in Daily Practice: Opportunities and Challenges. J Clin Psychopharmacol 2024; 44:451-455. [PMID: 39173027 DOI: 10.1097/jcp.0000000000001898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Affiliation(s)
- Balwinder Singh
- From the Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN
| |
Collapse
|
116
|
Chang L, Wei Y, Qu Y, Zhao M, Zhou X, Long Y, Hashimoto K. Role of oxidative phosphorylation in the antidepressant effects of arketamine via the vagus nerve-dependent spleen-brain axis. Neurobiol Dis 2024; 199:106573. [PMID: 38901783 DOI: 10.1016/j.nbd.2024.106573] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-β1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-β1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-β1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.
Collapse
Affiliation(s)
- Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Mingming Zhao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China; Department of Thyroid and Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
117
|
Wang G, Qi W, Liu QH, Guan W. GluN2A: A Promising Target for Developing Novel Antidepressants. Int J Neuropsychopharmacol 2024; 27:pyae037. [PMID: 39185814 PMCID: PMC12042802 DOI: 10.1093/ijnp/pyae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Depression is a heterogeneous disorder with high morbidity and disability rates that poses serious problems regarding mental health care. It is now well established that N-methyl D-aspartate receptor (NMDAR) modulators are being increasingly explored as potential therapeutic options for treating depression, although relatively little is known about their mechanisms of action. NMDARs are glutamate-gated ion channels that are ubiquitously expressed in the central nervous system (CNS), and they have been shown to play key roles in excitatory synaptic transmission. GluN2A, the predominant Glu2N subunit of functional NMDARs in neurons, is involved in various physiological processes in the CNS and is associated with diseases such as anxiety, depression, and schizophrenia. However, the role of GluN2A in the pathophysiology of depression has not yet been elucidated. METHODS We reviewed several past studies to better understand the function of GluN2A in depression. Additionally, we also summarized the pathogenesis of depression based on the regulation of GluN2A expression, particularly its interaction with neuroinflammation and neurogenesis, which has received considerable critical attention and is highly implicated in the onset of depression. RESULTS These evidence suggests that GluN2A overexpression impairs structural and functional synaptic plasticity, which contributes to the development of depression. Consequently, this knowledge is vital for the development of selective antagonists targeting GluN2A subunits using pharmacological and molecular methods. CONCLUSIONS Specific inhibition of the GluN2A NMDAR subunit is resistant to chronic stress-induced depressive-like behaviors, making them promising targets for the development of novel antidepressants.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People’s Hospital of Zhangjiagang City, Zhangjiagang, China
| | - Wang Qi
- Department of Pharmacology, The First People’s Hospital of Yancheng, Yancheng, China
| | - Qiu-Hua Liu
- Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People’s Hospital of Zhangjiagang City, Zhangjiagang, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China
| |
Collapse
|
118
|
Zhao Y, Wan J, Li Y. Genetically encoded sensors for in vivo detection of neurochemicals relevant to depression. J Neurochem 2024; 168:1721-1737. [PMID: 38468468 DOI: 10.1111/jnc.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 03/13/2024]
Abstract
Depressive disorders are a common and debilitating form of mental illness with significant impacts on individuals and society. Despite the high prevalence, the underlying causes and mechanisms of depressive disorders are still poorly understood. Neurochemical systems, including serotonin, norepinephrine, and dopamine, have been implicated in the development and perpetuation of depressive symptoms. Current treatments for depression target these neuromodulator systems, but there is a need for a better understanding of their role in order to develop more effective treatments. Monitoring neurochemical dynamics during depressive symptoms is crucial for gaining a better a understanding of their involvement in depressive disorders. Genetically encoded sensors have emerged recently that offer high spatial-temporal resolution and the ability to monitor neurochemical dynamics in real time. This review explores the neurochemical systems involved in depression and discusses the applications and limitations of current monitoring tools for neurochemical dynamics. It also highlights the potential of genetically encoded sensors for better characterizing neurochemical dynamics in depression-related behaviors. Furthermore, potential improvements to current sensors are discussed in order to meet the requirements of depression research.
Collapse
Affiliation(s)
- Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
119
|
Freudenberg F, Reif-Leonhard C, Reif A. Advancing past ketamine: emerging glutamatergic compounds for the treatment of depression. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01875-z. [PMID: 39207462 DOI: 10.1007/s00406-024-01875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Changes in glutamatergic neuroplasticity has been proposed as one of the core mechanisms underlying the pathophysiology of depression. In consequence components of the glutamatergic synapse have been explored as potential targets for antidepressant treatment. The rapid antidepressant effect of the NMDA receptor antagonist ketamine and subsequent approval of its S-enantiomer (i.e. esketamine), have set the precedent for investigation into other glutamatergic rapid acting antidepressants (RAADs). In this review, we discuss the potential of the different glutamatergic targets for antidepressant treatment. We describe important clinical outcomes of several key molecules targeting components of the glutamatergic synapse and their applicability as RAADs. Specifically, here we focus on substances beyond (es)ketamine, for which meaningful data from clinical trials are available, including arketamine, esmethadone, nitrous oxide and other glutamate receptor modulators. Molecules only successful in preclinical settings and case reports/series are only marginally discussed. With this review, we aim underscore the critical role of glutamatergic modulation in advancing antidepressant therapy, thereby possibly enhancing clinical outcomes but also to reducing the burden of depression through faster therapeutic effects.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany.
| | - Christine Reif-Leonhard
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| |
Collapse
|
120
|
Sarasso P, Billeci M, Ronga I, Raffone F, Martiadis V, Di Petta G. Disembodiment and Affective Resonances in Esketamine Treatment of Depersonalized Depression Subtype: Two Case Studies. Psychopathology 2024; 57:480-491. [PMID: 39173608 DOI: 10.1159/000539714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/02/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Dissociative experiences are considered undesirable ketamine's adverse events. However, they might be crucial for ketamine's antidepressant effects, at least in some depression subtypes. Current understandings of ketamine's therapeutic potentials converge on the so-called "relaxed prior hypothesis," suggesting that glutamatergic blockage up-weights bottom-up surprising somatosensory/affective states. As a result, ketamine improves short-term plasticity in depression by enhancing sensitivity to interoceptive signals. METHODS We selected 2 case studies for their paradigmatic description of "depersonalized depression" (Entfremdungsdepression) symptoms. Patients were included in a 6-month-long esketamine program for treatment resistant depression, during which we collected their spontaneous experience with esketamine. According to a neurophenomenological approach, we combined subjective reports from unstructured clinical interviews and the review of previous objective neuroimaging results and neurocomputational models to unveil the relation between esketamine antidepressant effects and interoceptive sensitivity. RESULTS According to our clinical observations, esketamine-induced dissociation might be particularly effective in the depersonalized depression subtype, in which interoceptive awareness and interaffectivity are particularly compromised. Ketamine and esketamine's dissociative effects and particularly disembodiment might suspend previously acquired patterns of feeling, sensing, and behaving. CONCLUSIONS Coherently with previous research, we suggest that esketamine-induced disembodiment allows for a transient window of psychological plasticity and enhanced sensitivity, where the body recovers its permeability to affective affordances.
Collapse
Affiliation(s)
- Pietro Sarasso
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Martina Billeci
- SPDC, Mental Health Department, Santa Maria delle Grazie Hospital, ASL 2, Naples, Italy
| | - Irene Ronga
- Brain Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | | | | | - Gilberto Di Petta
- SPDC, Mental Health Department, Santa Maria delle Grazie Hospital, ASL 2, Naples, Italy
| |
Collapse
|
121
|
Miranda-Riestra A, Cercós MG, Trueta C, Oikawa-Sala J, Argueta J, Constantino-Jonapa LA, Cruz-Garduño R, Benítez-King G, Estrada-Reyes R. Participation of Ca 2+-Calmodulin-Dependent Protein Kinase II in the Antidepressant-Like Effects of Melatonin. Mol Pharmacol 2024; 106:107-116. [PMID: 39079719 DOI: 10.1124/molpharm.124.000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine secreted by the pineal gland during the dark phase of the photoperiod. Its main function is the synchronization of different body rhythms with the dark-light cycle. Research on melatonin has significantly advanced since its discovery and we now know that it has considerable significance in various physiological processes, including immunity, aging, and reproduction. Moreover, in recent years evidence of the pharmacological possibilities of melatonin has increased. Indoleamine, on the other hand, has antidepressant-like effects in rodents, which may be mediated by the activation of calcium-calmodulin-dependent kinase II (CaMKII) and are also related to the regulation of neuroplasticity processes, including neurogenesis, synaptic maintenance, and long-term potentiation. Remarkably, patients with major depression show decreased levels of circulating melatonin in plasma. This review presents evidence of the antidepressant-like effects of melatonin in preclinical models and the participation of CaMKII in these actions. CaMKII's role in cognition and memory processes, which are altered in depressive states, are part of the review, and the effects of melatonin in these processes are also reviewed. Furthermore, participation of CaMKII on structural and synaptic plasticity and the effects of melatonin are also described. Finally, the advantages of using melatonin in combination with other antidepressants such as ketamine for neuroplasticity are described. Evidence supports that CaMKII is activated by melatonin and downstream melatonin receptors and may be the common effector in the synergistic effects of melatonin with other antidepressants. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin causes antidepressant-like effects in mice through calmodulin kinase II stimulation of downstream melatonin receptors as well as the participation of this enzyme in neuroplasticity, memory, and cognition. Finally, we describe evidence about the effectiveness of antidepressant-like effects of melatonin in combination with ketamine.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Montserrat G Cercós
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Citlali Trueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Luis A Constantino-Jonapa
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
122
|
Chen M, Ma S, Liu H, Dong Y, Tang J, Ni Z, Tan Y, Duan C, Li H, Huang H, Li Y, Cao X, Lingle CJ, Yang Y, Hu H. Brain region-specific action of ketamine as a rapid antidepressant. Science 2024; 385:eado7010. [PMID: 39116252 PMCID: PMC11665575 DOI: 10.1126/science.ado7010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Ketamine has been found to have rapid and potent antidepressant activity. However, despite the ubiquitous brain expression of its molecular target, the N-methyl-d-aspartate receptor (NMDAR), it was not clear whether there is a selective, primary site for ketamine's antidepressant action. We found that ketamine injection in depressive-like mice specifically blocks NMDARs in lateral habenular (LHb) neurons, but not in hippocampal pyramidal neurons. This regional specificity depended on the use-dependent nature of ketamine as a channel blocker, local neural activity, and the extrasynaptic reservoir pool size of NMDARs. Activating hippocampal or inactivating LHb neurons swapped their ketamine sensitivity. Conditional knockout of NMDARs in the LHb occluded ketamine's antidepressant effects and blocked the systemic ketamine-induced elevation of serotonin and brain-derived neurotrophic factor in the hippocampus. This distinction of the primary versus secondary brain target(s) of ketamine should help with the design of more precise and efficient antidepressant treatments.
Collapse
Affiliation(s)
- Min Chen
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Shuangshuang Ma
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Hanxiao Liu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yiyan Dong
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jingxiang Tang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yi Tan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chenchi Duan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200433, China
| | - Hui Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hefeng Huang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai 200062, China
| | - Christopher J. Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Yan Yang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
123
|
Martin J, Gholamali Nezhad F, Rueda A, Lee GH, Charlton CE, Soltanzadeh M, Ladha KS, Krishnan S, Diaconescu AO, Bhat V. Predicting treatment response to ketamine in treatment-resistant depression using auditory mismatch negativity: Study protocol. PLoS One 2024; 19:e0308413. [PMID: 39116153 PMCID: PMC11309493 DOI: 10.1371/journal.pone.0308413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Ketamine has recently attracted considerable attention for its rapid effects on patients with major depressive disorder, including treatment-resistant depression (TRD). Despite ketamine's promising results in treating depression, a significant number of patients do not respond to the treatment, and predicting who will benefit remains a challenge. Although its antidepressant effects are known to be linked to its action as an antagonist of the N-methyl-D-aspartate (NMDA) receptor, the precise mechanisms that determine why some patients respond and others do not are still unclear. OBJECTIVE This study aims to understand the computational mechanisms underlying changes in the auditory mismatch negativity (MMN) response following treatment with intravenous ketamine. Moreover, we aim to link the computational mechanisms to their underlying neural causes and use the parameters of the neurocomputational model to make individual treatment predictions. METHODS This is a prospective study of 30 patients with TRD who are undergoing intravenous ketamine therapy. Prior to 3 out of 4 ketamine infusions, EEG will be recorded while patients complete the auditory MMN task. Depression, suicidality, and anxiety will be assessed throughout the study and a week after the last ketamine infusion. To translate the effects of ketamine on the MMN to computational mechanisms, we will model changes in the auditory MMN using the hierarchical Gaussian filter, a hierarchical Bayesian model. Furthermore, we will employ a conductance-based neural mass model of the electrophysiological data to link these computational mechanisms to their neural causes. CONCLUSION The findings of this study may improve understanding of the mechanisms underlying response and resistance to ketamine treatment in patients with TRD. The parameters obtained from fitting computational models to EEG recordings may facilitate single-patient treatment predictions, which could provide clinically useful prognostic information. TRIAL REGISTRATION Clinicaltrials.gov NCT05464264. Registered June 24, 2022.
Collapse
Affiliation(s)
- Josh Martin
- Interventional Psychiatry Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Gyu Hee Lee
- Interventional Psychiatry Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Colleen E. Charlton
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Milad Soltanzadeh
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karim S. Ladha
- Department of Anesthesia, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Sridhar Krishnan
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Andreea O. Diaconescu
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
124
|
Deyama S, Sugie R, Tabata M, Kaneda K. Antidepressant-like effects of tomatidine and tomatine, steroidal alkaloids from unripe tomatoes, via activation of mTORC1 in the medial prefrontal cortex in lipopolysaccharide-induced depression model mice. Nutr Neurosci 2024; 27:795-808. [PMID: 37704369 DOI: 10.1080/1028415x.2023.2254542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACTKetamine, an N-methyl-D-aspartate receptor antagonist, produces rapid antidepressant effects in patients with treatment-resistant depression. However, owing to the undesirable adverse effects of ketamine, there is an urgent need for developing safer and more effective prophylactic and therapeutic interventions for depression. Preclinical studies have demonstrated that activation of the mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex (mPFC) mediates the rapid antidepressant effects of ketamine. The steroidal alkaloid tomatidine and its glycoside α-tomatine (tomatine) can activate mTORC1 signaling in peripheral tissues/cells. We examined whether tomatidine and tomatine exerted prophylactic and therapeutic antidepressant-like actions via mPFC mTORC1 activation using a mouse model of lipopolysaccharide (LPS)-induced depression. Male mice were intraperitoneally (i.p.) administered tomatidine/tomatine before and after the LPS challenge to test their prophylactic and therapeutic effects, respectively. LPS-induced depression-like behaviors in the tail suspension test (TST) and forced swim test (FST) were significantly reversed by prophylactic and therapeutic tomatidine/tomatine administration. LPS-induced anhedonia in the female urine sniffing test was reversed by prophylactic, but not therapeutic, injection of tomatidine, and by prophylactic and therapeutic administration of tomatine. Intra-mPFC infusion of rapamycin, an mTORC1 inhibitor, blocked the prophylactic and therapeutic antidepressant-like effects of tomatidine/tomatine in TST and FST. Moreover, both tomatidine and tomatine produced antidepressant-like effects in ovariectomized female mice, a model of menopause-associated depression. These results indicate that tomatidine and tomatine exert prophylactic and therapeutic antidepressant-like effects via mTORC1 activation in the mPFC and suggest these compounds as promising candidates for novel prophylactic and therapeutic agents for depression.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Rinako Sugie
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaki Tabata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
125
|
Ribeiro FC, Cozachenco D, Argyrousi EK, Staniszewski A, Wiebe S, Calixtro JD, Soares‐Neto R, Al‐Chami A, Sayegh FE, Bermudez S, Arsenault E, Cossenza M, Lacaille J, Nader K, Sun H, De Felice FG, Lourenco MV, Arancio O, Aguilar‐Valles A, Sonenberg N, Ferreira ST. The ketamine metabolite (2R,6R)-hydroxynorketamine rescues hippocampal mRNA translation, synaptic plasticity and memory in mouse models of Alzheimer's disease. Alzheimers Dement 2024; 20:5398-5410. [PMID: 38934107 PMCID: PMC11350050 DOI: 10.1002/alz.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-β oligomers (AβO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.
Collapse
Affiliation(s)
- Felipe C. Ribeiro
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Shane Wiebe
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Joao D. Calixtro
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Rubens Soares‐Neto
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Aycheh Al‐Chami
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Fatema El Sayegh
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Sara Bermudez
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Emily Arsenault
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Fluminense Federal UniversityBiomedical InstituteNiteróiRio de JaneiroBrazil
| | - Jean‐Claude Lacaille
- Department of Neurosciences, Université de MontréalCentre for Interdisciplinary Research on Brain and Learning and Research Group on Neural Signaling and CircuitsMontrealQuebecCanada
| | - Karim Nader
- Department of PsychologyMcGill UniversityMontrealQuebecCanada
| | - Hongyu Sun
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of PsychiatryQueen's UniversityKingstonOntarioCanada
- D'Or Institute for Research and EducationRio de JaneiroRio de JaneiroBrazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | | | - Nahum Sonenberg
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
- D'Or Institute for Research and EducationRio de JaneiroRio de JaneiroBrazil
- Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
126
|
Brenna CTA, Goldstein BI, Zarate CA, Orser BA. Repurposing General Anesthetic Drugs to Treat Depression: A New Frontier for Anesthesiologists in Neuropsychiatric Care. Anesthesiology 2024; 141:222-237. [PMID: 38856663 DOI: 10.1097/aln.0000000000005037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
During the last 100 years, the role of anesthesiologists in psychiatry has focused primarily on facilitating electroconvulsive therapy and mitigating postoperative delirium and other perioperative neurocognitive disorders. The discovery of the rapid and sustained antidepressant properties of ketamine, and early results suggesting that other general anesthetic drugs (including nitrous oxide, propofol, and isoflurane) have antidepressant properties, has positioned anesthesiologists at a new frontier in the treatment of neuropsychiatric disorders. Moreover, shared interest in understanding the biologic underpinnings of anesthetic drugs as psychotropic agents is eroding traditional academic boundaries between anesthesiology and psychiatry. This article presents a brief overview of anesthetic drugs as novel antidepressants and identifies promising future candidates for the treatment of depression. The authors issue a call to action and outline strategies to foster collaborations between anesthesiologists and psychiatrists as they work toward the common goals of repurposing anesthetic drugs as antidepressants and addressing mood disorders in surgical patients.
Collapse
Affiliation(s)
- Connor T A Brenna
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry and Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Beverley A Orser
- Department of Anesthesiology & Pain Medicine and Department of Physiology, University of Toronto, Toronto, Canada; Perioperative Brain Health Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
127
|
Jiang Y, Dong Y, Hu H. The N-methyl-d-aspartate receptor hypothesis of ketamine's antidepressant action: evidence and controversies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230225. [PMID: 38853549 PMCID: PMC11343275 DOI: 10.1098/rstb.2023.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
Substantial clinical evidence has unravelled the superior antidepressant efficacy of ketamine: in comparison to traditional antidepressants targeting the monoamine systems, ketamine, as an N-methyl-d-aspartate receptor (NMDAR) antagonist, acts much faster and more potently. Surrounding the antidepressant mechanisms of ketamine, there is ample evidence supporting an NMDAR-antagonism-based hypothesis. However, alternative arguments also exist, mostly derived from the controversial clinical results of other NMDAR inhibitors. In this article, we first summarize the historical development of the NMDAR-centred hypothesis of rapid antidepressants. We then classify different NMDAR inhibitors based on their mechanisms of inhibition and evaluate preclinical as well as clinical evidence of their antidepressant effects. Finally, we critically analyse controversies and arguments surrounding ketamine's NMDAR-dependent and NMDAR-independent antidepressant action. A better understanding of ketamine's molecular targets and antidepressant mechanisms should shed light on the future development of better treatment for depression. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Yihao Jiang
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| | - Yiyan Dong
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| |
Collapse
|
128
|
Zhang HL, Sun Y, Wu ZJ, Yin Y, Liu RY, Zhang JC, Zhang ZJ, Yau SY, Wu HX, Yuan TF, Zhang L, Adzic M, Chen G. Hippocampal PACAP signaling activation triggers a rapid antidepressant response. Mil Med Res 2024; 11:49. [PMID: 39044298 PMCID: PMC11265467 DOI: 10.1186/s40779-024-00548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.
Collapse
Affiliation(s)
- Hai-Lou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhang-Jie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rui-Yi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, 999077, China
| | - Suk-Yu Yau
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hao-Xin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai, 200030, China
| | - Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Miroslav Adzic
- "Vinča" Institute of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001, Belgrade, Serbia
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China.
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China.
| |
Collapse
|
129
|
Pattanaseri K, Lortrakul J, Jaisin K, Srifuengfung M, Sa-Nguanpanich N, Viravan N, Pariwatcharakul P, Makarasara W, Ratta-Apha W. A randomized controlled pilot study of daily intravenous ketamine over three days for treatment-resistant depression. BMC Psychiatry 2024; 24:512. [PMID: 39026266 PMCID: PMC11256507 DOI: 10.1186/s12888-024-05951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Studies have confirmed the rapid antidepressant action of ketamine in depressive episodes. Nevertheless, a standardized procedure for the delivery of ketamine infusion in individuals suffering from treatment-resistant depression, particularly in terms of infusion frequency and total dosage, remains undetermined. In addition, an efficacious ketamine regimen for persistent pain management involved a continuous 10-day infusion period with no notable adverse effects. Consequently, the primary objective of this study was to evaluate the antidepressant capacity of consecutive ketamine infusions spanning over three successive days, the duration of therapeutic response, and the overall safety profile of the treatment. METHODS In this randomized controlled trial, participants aged 18-64 with treatment-resistant depression were randomized to receive either intravenous ketamine or midazolam (used as an active placebo) for 40 min daily over three consecutive days. Statistical analysis using repeated measures ANOVA was employed to assess the changes in the total score of the Montgomery-Åsberg Depression Rating Scale (MADRS) and the clinical global impression-Severity from the initial assessment to 10 and 31 days post-infusion. Additionally, the duration of response and remission was evaluated using Kaplan-Meier survival analysis. RESULTS Out of 33 randomized participants, 20 underwent the treatment as planned. By day 10th, the ketamine group had a mean reduction in MADRS score of 12.55 (95% CI = 6.70-18.09), whereas the midazolam group had a decrease of 17.22 (95% CI = 11.09-23.36). This pattern continued to day 31, with ketamine showing a mean score decrease of 13.73 (95% CI = 7.54-19.91) and midazolam a fall of 12.44 (95% CI = 5.61-19.28). Both treatments were well tolerated, with dissociative symptoms in the ketamine group being temporary and ceasing by the end of each infusion. CONCLUSION Intravenous ketamine given for three consecutive days did not show a notable antidepressant advantage when compared to the active placebo midazolam, highlighting the need for further research into effective treatments schedules for treatment-resistant depression. TRIAL REGISTRATION NCT05026203, ClinicalTrials.gov, registered on 24/08/2021.
Collapse
Affiliation(s)
- Keerati Pattanaseri
- Faculty of Medicine Siriraj Hospital, Department of Psychiatry, Mahidol University, Bangkok Noi, Bangkok, Thailand.
| | - Juthawadee Lortrakul
- Faculty of Medicine Siriraj Hospital, Department of Psychiatry, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Kankamol Jaisin
- Faculty of Medicine Siriraj Hospital, Department of Psychiatry, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Maytinee Srifuengfung
- Faculty of Medicine Siriraj Hospital, Department of Psychiatry, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Naratip Sa-Nguanpanich
- Faculty of Medicine Siriraj Hospital, Department of Psychiatry, Mahidol University, Bangkok Noi, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Research Department, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Natee Viravan
- Faculty of Medicine Siriraj Hospital, Department of Psychiatry, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Pornjira Pariwatcharakul
- Faculty of Medicine Siriraj Hospital, Department of Psychiatry, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Wattanan Makarasara
- Faculty of Medicine Siriraj Hospital, Department of Anesthesiology, Mahidol University, Bangkok Noi, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Informatics and Data Innovation Center, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Woraphat Ratta-Apha
- Faculty of Medicine Siriraj Hospital, Department of Psychiatry, Mahidol University, Bangkok Noi, Bangkok, Thailand
| |
Collapse
|
130
|
Hurst KT, Vogeley A, Greenstein DK, Durland L, Makel S, Wang PR, Yavi M, Zarate CA, Ballard ED. Long-term follow-up of participants in ketamine clinical trials for mood disorders. J Affect Disord 2024; 357:134-137. [PMID: 38653350 PMCID: PMC11134418 DOI: 10.1016/j.jad.2024.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Participants who received ketamine at the NIMH were among the first to receive ketamine for depression in controlled clinical trials, providing a unique opportunity to assess long-term outcomes. This analysis evaluated the relationship between participating in a ketamine clinical trial and subsequent ketamine/esketamine use after leaving the research setting. METHODS Participants seen within the NIMH Experimental Therapeutics and Pathophysiology Branch from 2002 to 2022 (n = 1000) were contacted for follow-up assessment. Participants reported whether they had used ketamine/esketamine, sought non-prescribed ketamine, attempted suicide, or been psychiatrically hospitalized since discharge. Information regarding their recent depressive symptoms, dissociative symptoms, and hallucinations was also collected. RESULTS Of the 203 participants in follow-up assessments (55 % female, average time since leaving NIMH = 9.04 years), 52 (25.6 %) had originally received ketamine at the NIMH, and the rest had participated in non-ketamine studies. Individuals who had received ketamine at the NIMH were more likely to have received ketamine/esketamine post-discharge than those who did not receive ketamine at the NIMH (OR = 0.25, p < .001). Participants who reported using ketamine/esketamine post-discharge reported more depressive symptoms than those who had not (p < .001). Receiving ketamine at the NIMH was not associated with differences in suicide attempts, psychiatric hospitalizations, dissociation, hallucinations, or attempt to obtain non-prescribed ketamine. LIMITATIONS Low follow-up study participation rate; varying time since discharge. CONCLUSIONS Participants who received ketamine in an NIMH clinical trial were more likely to receive ketamine/esketamine post-discharge, but none reported symptoms indicating abuse. Results underscore the critical need for long-term follow-up of individuals receiving these and other rapid-acting antidepressants. CLINICAL TRIALS IDENTIFIER NCT04877977.
Collapse
Affiliation(s)
- Kelly T Hurst
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Abigail Vogeley
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Deanna K Greenstein
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Durland
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Makel
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Philip R Wang
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
131
|
Johnston JN, Zarate CA, Kvarta MD. Esketamine in depression: putative biomarkers from clinical research. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01865-1. [PMID: 38997425 PMCID: PMC11725628 DOI: 10.1007/s00406-024-01865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
The discovery of racemic (R, S)-ketamine as a rapid-acting antidepressant and the subsequent FDA approval of its (S)-enantiomer, esketamine, for treatment-resistant depression (TRD) are significant advances in the development of novel neuropsychiatric therapeutics. Esketamine is now recognized as a powerful tool for addressing persistent symptoms of TRD compared to traditional oral antidepressants. However, research on biomarkers associated with antidepressant response to esketamine has remained sparse and, to date, has been largely extrapolated from racemic ketamine studies. Genetic, proteomic, and metabolomic profiles suggest that inflammation and mitochondrial function may play a role in esketamine's antidepressant effects, though these preliminary results require verification. In addition, neuroimaging research has consistently implicated the prefrontal cortex, striatum, and anterior cingulate cortex in esketamine's effects. Esketamine also shows promise in perioperative settings for reducing depression and anxiety, and these effects appear to correlate with increased peripheral biomarkers such as brain-derived neurotrophic factor and serotonin. Further indications are likely to be identified with the continued repurposing of racemic ketamine, providing further opportunity for biomarker study and mechanistic understanding of therapeutic effects. Novel methodologies and well-designed biomarker-focused clinical research trials are needed to more clearly elucidate esketamine's therapeutic actions as well as biologically identify those most likely to benefit from this agent, allowing for the improved personalization of antidepressant treatment.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mark D Kvarta
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
132
|
Menculini G, Cinesi G, Scopetta F, Cardelli M, Caramanico G, Balducci PM, De Giorgi F, Moretti P, Tortorella A. Major challenges in youth psychopathology: treatment-resistant depression. A narrative review. Front Psychiatry 2024; 15:1417977. [PMID: 39056019 PMCID: PMC11269237 DOI: 10.3389/fpsyt.2024.1417977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Major depressive disorder (MDD) represents a major health issue in adolescents and young adults, leading to high levels of disability and profoundly impacting overall functioning. The clinical presentation of MDD in this vulnerable age group may slightly differ from what can be observed in adult populations, and psychopharmacological strategies do not always lead to optimal response. Resistance to antidepressant treatment has a prevalence estimated around 40% in youths suffering from MDD and is associated with higher comorbidity rates and suicidality. Several factors, encompassing biological, environmental, and clinical features, may contribute to the emergence of treatment-resistant depression (TRD) in adolescents and young adults. Furthermore, TRD may underpin the presence of an unrecognized bipolar diathesis, increasing the overall complexity of the clinical picture and posing major differential diagnosis challenges in the clinical practice. After summarizing current evidence on epidemiological and clinical correlates of TRD in adolescents and young adults, the present review also provides an overview of possible treatment strategies, including novel fast-acting antidepressants. Despite these pharmacological agents are promising in this population, their usage is expected to rely on risk-benefit ratio and to be considered in the context of integrated models of care.
Collapse
Affiliation(s)
- Giulia Menculini
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Gianmarco Cinesi
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Scopetta
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Matteo Cardelli
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Caramanico
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Pierfrancesco Maria Balducci
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Community Mental Health Center “CSM Terni”, Department of Psychiatry, Local Health Unit USL Umbria 2, Terni, Italy
| | - Filippo De Giorgi
- Division of Psychiatry, Clinical Psychology and Rehabilitation, General Hospital of Perugia, Perugia, Italy
| | - Patrizia Moretti
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alfonso Tortorella
- Section of Psychiatry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
133
|
Zang D, Yang X, Wang H, Li Z, Ma Y, Liu J, Mei X, Li S, Feng J, Shi X, Tan Z. Study on the antidepressant activity of (2R,6R; 2S,6S)-Hydroxynorketamine (HNK) and its derivatives. Clinics (Sao Paulo) 2024; 79:100435. [PMID: 38996724 PMCID: PMC11301192 DOI: 10.1016/j.clinsp.2024.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024] Open
Abstract
OBJECTIVE This study mainly explores (2R,6R; 2S,6S)-HNK and its compounds whether there are antidepressant effects. METHODS Four HNK compounds were obtained from 2-(Chlorophenyl) Cyclopentylmethanone. Forced swimming test, locomotor sensitization test, and conditioned location preference test were used to screen the antidepressant activity of the synthesized target compounds. RESULTS In the case of 10 mg HNK treatment, compared with saline, the immobile time of mice in the HNK group, I5 group and I6 group at 1 h and 7 days had statistical significance. In the case of 10 mg HNK treatment, compared with saline, the immobile time of compound C and D groups in the glass cylinder area was significantly different. In the locomotor sensitization test, the movement distance of compound C and D groups on day 15 and day 7 mice increased significantly compared with the first day. In the conditioned place preference experiment, compound C and compound D induced conditioned place preference in mice compared with the Veh group. CONCLUSION The results of the forced swimming test, locomotor sensitization test, and conditioned location preference test showed that compounds C and D may have certain anti-depressant activity. However, HNK exerts a rapid and significant antidepressant effect within 1 week, but the duration is short.
Collapse
Affiliation(s)
- Dongdong Zang
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen City, Guangdong Province, China
| | - Xuemei Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen City, Guangdong Province, China
| | - Hao Wang
- Department of Neurosurgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen City, Guangdong Province, China; Guangdong Engineering Technological Research Center for Nervous anatomy and Related Clinical Applications, Shenzhen City, Guangdong Province, China
| | - Zhenxing Li
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen City, Guangdong Province, China
| | - Yanjun Ma
- Shenzhen Ruijian Biotechnology Co., LTD, Shenzhen City, Guangdong Province, China
| | - Jianxi Liu
- Shenzhen Ruijian Biotechnology Co., LTD, Shenzhen City, Guangdong Province, China
| | - Xi Mei
- Zhuhai Pengkun Biomedicine Technology Co. LTD, Zhuhai City, Guangdong Province, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen City, Guangdong Province, China
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen City, Guangdong Province, China
| | - Xin Shi
- Department of Neurosurgery, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, Shenzhen City, Guangdong Province, China
| | - Zhen Tan
- Department of Neonatology, Shenzhen Children's Hospital, Shenzhen City, Guangdong Province, China; Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
134
|
Pan X, Gao Y, Guan K, Chen J, Ji B. Ghrelin/GHSR System in Depressive Disorder: Pathologic Roles and Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7324-7338. [PMID: 39057075 PMCID: PMC11275499 DOI: 10.3390/cimb46070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Depression is the most common chronic mental illness and is characterized by low mood, insomnia, and affective disorders. However, its pathologic mechanisms remain unclear. Numerous studies have suggested that the ghrelin/GHSR system may be involved in the pathophysiologic process of depression. Ghrelin plays a dual role in experimental animals, increasing depressed behavior and decreasing anxiety. By combining several neuropeptides and traditional neurotransmitter systems to construct neural networks, this hormone modifies signals connected to depression. The present review focuses on the role of ghrelin in neuritogenesis, astrocyte protection, inflammatory factor production, and endocrine disruption in depression. Furthermore, ghrelin/GHSR can activate multiple signaling pathways, including cAMP/CREB/BDNF, PI3K/Akt, Jak2/STAT3, and p38-MAPK, to produce antidepressant effects, given which it is expected to become a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Xingli Pan
- School of Biological Sciences, Jining Medical University, Jining 272067, China;
| | - Yuxin Gao
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Kaifu Guan
- School of Clinical Medicine, Jining Medical University, Jining 272067, China; (Y.G.); (K.G.)
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Bingyuan Ji
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| |
Collapse
|
135
|
Wang K, Tan X, Ding KM, Feng XZ, Zhao YY, Zhu WL, Li GH, Li SX. Dynamic regulation of phosphorylation of NMDA receptor GluN2B subunit tyrosine residues mediates ketamine rapid antidepressant effects. Pharmacol Res 2024; 205:107236. [PMID: 38797358 DOI: 10.1016/j.phrs.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.
Collapse
Affiliation(s)
- Ke Wang
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Pharmacology, Peking University Health Science Center, Beijing 100191, China
| | - Xuan Tan
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Xue-Zhu Feng
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Yu Zhao
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Li Zhu
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Guo-Hai Li
- Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
136
|
Gokalp D, Unal G. The role of mGluR5 on the therapeutic effects of ketamine in Wistar rats. Psychopharmacology (Berl) 2024; 241:1399-1415. [PMID: 38459971 PMCID: PMC11199271 DOI: 10.1007/s00213-024-06571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
RATIONALE Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown. OBJECTIVES We investigated the role of mGluR5 on the antidepressant, anxiolytic and fear memory-related effects of ketamine in adult male Wistar rats. METHODS Two sets of experiments were conducted. We first utilized the positive allosteric modulator CDPPB to investigate how acute mGluR5 activation regulates the therapeutic effects of ketamine (10 mg/kg). We then tested the synergistic antidepressant effect of mGluR5 antagonism and ketamine by combining MTEP with a sub-effective dose of ketamine (1 mg/kg). Behavioral despair, locomotor activity, anxiety-like behavior, and fear memory were respectively assessed in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and auditory fear conditioning. RESULTS Enhancing mGluR5 activity via CDPPB occluded the antidepressant effect of ketamine without changing locomotor activity. Furthermore, concomitant administration of MTEP and ketamine exhibited a robust synergistic antidepressant effect. The MTEP + ketamine treatment, however, blocked the anxiolytic effect observed by sole administration of MTEP or the low dose ketamine. CONCLUSIONS These findings suggest that suppressed mGluR5 activity is required for the antidepressant effects of ketamine. Consequently, the antagonism of mGluR5 enhances the antidepressant effectiveness of low dose ketamine, but eliminates its anxiolytic effects.
Collapse
Affiliation(s)
- Dilan Gokalp
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
137
|
Nayyer MA, Khan SM, Umer M, Imran H, Khalid S, Murtaza H, Sarfraz A, Atiq N, Rasool H, Fatima M. Efficacy and safety of peri-partum Esketamine for prevention of post-partum depression in women undergoing caesarian section: A meta-analysis and systematic review of randomized controlled trials. Asian J Psychiatr 2024; 97:104090. [PMID: 38820851 DOI: 10.1016/j.ajp.2024.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 06/02/2024]
Abstract
Postpartum depression (PPD) is a psychiatric condition affecting women post-childbirth. Medication combined with psychotherapy, is the current protocol for its treatment. A meta-analysis was conducted using RevMan 5.4 to explore the efficacy and safety of peri-partum administration of esketamine for preventing PPD. After searching several databases to retrieve the relevant RCTs, seven were included in this analysis, with dichotomous data presented as risk ratio and continuous data as mean difference. The study found a lower incidence of PPD in the esketamine group compared to the control group (RR= 0.37), with significant difference in EPDS scores between the two groups (MD= -1.23) in the first week postpartum. The esketamine group reported a lower prevalence of PPD 4-6 weeks postpartum (RR= 0.48), and no significant difference in EPDS scores after 4 weeks postpartum (MD = -0.10). The esketamine group had a significantly higher incidence of hallucination (RR= 13.85). Other adverse effects, such as dizziness (RR= 4.09), nausea (RR= 0.88), vomiting (RR=0.74), headache (RR=1.52), nightmares (RR=1.22), pruritus (RR=0.29), and drowsiness (RR=1.57) did not show significant differences between the two groups. The study found that esketamine, with manageable side effects, reduces the prevalence of post-partum depression (PPD) after one week as well as after four to six weeks. However, the findings are limited by the limited number of available RCTs, and future research should determine the ideal dosage, the most effective method of administration and the long-term safety profile of esketamine so that it may be considered as an adjunct therapy or a potential sole treatment option.
Collapse
Affiliation(s)
| | | | | | - Haim Imran
- King Edward Medical University, Lahore, Pakistan.
| | | | | | | | - Noor Atiq
- King Edward Medical University, Lahore, Pakistan.
| | - Hamna Rasool
- King Edward Medical University, Lahore, Pakistan.
| | - Madah Fatima
- Academic Department of Psychiatry and Behavioral Sciences, King Edward Medical University, Mayo Hospital, Lahore, Pakistan.
| |
Collapse
|
138
|
Seshadri A, Prokop LJ, Singh B. Efficacy of intravenous ketamine and intranasal esketamine with dose escalation for Major depression: A systematic review and meta-analysis. J Affect Disord 2024; 356:379-384. [PMID: 38537759 DOI: 10.1016/j.jad.2024.03.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVE Intravenous (IV) racemic ketamine and intranasal (IN) esketamine have demonstrated rapid antidepressant effects in treatment-resistant depression (TRD). This systematic review aims to evaluate the efficacy and safety of ketamine and esketamine at various dosages for depression. METHODS We included randomized controlled trials (RCTs) with parallel group dose comparison of ketamine and esketamine for depression/TRD. Ovid Medline, Embase, PsycINFO, Scopus and Cochrane databases were searched. Standardized mean differences were calculated using Hedges'-g to complete random effects meta-analysis. The efficacy outcomes were changes in depression outcomes for IV ketamine and IN esketamine respectively. Safety was assessed by reported adverse effects. RESULTS A random effects meta-analysis of studies (n = 12) showed efficacy in reducing depression symptoms with IV ketamine (Hedges'g = 1.52 [0.98-2.22], Z = 4.23, p < 0.001) and IN esketamine (Hedges' g = 0.31 [0.18-0.44], Z = 4.53, P < 0.001) compared to control/placebo. Treatment response was observed at IV ketamine doses ≤0.2 mg/kg, >0.2-0.5 mg/kg and > 0.5 mg/kg. Higher IV ketamine doses (>0.5 mg/kg) did not lead to greater treatment response. Esketamine doses of 56-84 mg were superior to 28 mg dose. LIMITATIONS Overall quality of evidence was low and limited by small number of studies. Publication bias was high. CONCLUSIONS This meta-analysis suggests that IV ketamine may be efficacious at doses as low as 0.2 mg/kg, with increasing dose response at 0.5 mg/kg, without demonstrable increased benefit at 1 mg/kg, based on a small number of studies. Efficacy for IN esketamine increases with doses above 28 mg with best response being found between 56 and 84 mg for reducing depressive symptoms.
Collapse
Affiliation(s)
- Ashok Seshadri
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.
| | - Larry J Prokop
- Mayo Medical Libraries, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
139
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
140
|
Kheirkhah M, Nugent AC, Livinski AA, Neely L, Johnson SC, Henter ID, Varnosfaderani SD, Price RB, Hejazi N, Yavi M, Jamalabadi H, Javaheripour N, Walter M, Zarate CA. Exploring the impact of music on response to ketamine/esketamine: A scoping review. Neurosci Biobehav Rev 2024; 162:105693. [PMID: 38697379 DOI: 10.1016/j.neubiorev.2024.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Music and ketamine are both known to affect therapeutic outcomes, but few studies have investigated their co-administration. This scoping review describes the existing literature on the joint use of music and ketamine-or esketamine (the S(+) enantiomer of ketamine)-in humans. The review considers that extant studies have explored the intersection of ketamine/esketamine and music in healthy volunteers and in patients of various age groups, at different dosages, through different treatment processes, and have varied the sequence of playing music relative to ketamine/esketamine administration. Studies investigating the use of music during ketamine anesthesia are also included in the review because anesthesia and sedation were the early drivers of ketamine use. Studies pertaining to recreational ketamine use were omitted. The review was limited to articles published in the English language but not restricted by publication year. To the best of our knowledge, this scoping review is the first comprehensive exploration of the interplay between music and ketamine/esketamine and offers valuable insights to researchers interested in designing future studies.
Collapse
Affiliation(s)
- Mina Kheirkhah
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Allison C Nugent
- Magnetoencephalography Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Alicia A Livinski
- NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Lucinda Neely
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sara C Johnson
- Department of Psychological Sciences, University of Connecticut, USA
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Rebecca B Price
- Departments of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nadia Hejazi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Mani Yavi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Germany
| | - Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
141
|
Calder CN, Kwan ATH, Teopiz KM, Wong S, Rosenblat JD, Mansur RB, Rhee TG, Ho R, Cao B, McIntyre RS. Number needed to treat (NNT) for ketamine and esketamine in adults with treatment-resistant depression: A systematic review and meta-analysis. J Affect Disord 2024; 356:753-762. [PMID: 38636712 DOI: 10.1016/j.jad.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Ketamine has been established as efficacious in adults living with Treatment-resistant Depression (TRD). Toward providing a quantifiable estimate of the clinical meaningfulness of the therapeutic benefit of ketamine, herein, we conduct a systematic review that aims to report the Number Needed to Treat (NNT) and the Number Needed to Harm (NNH). METHODS This systematic review searched Embase, Medline/Pubmed, PsycINFO and ClinicalTrials.gov from inception up to October 15th 2023, for placebo-controlled, Randomized Controlled Trials (RCTs) assessing racemic ketamine or esketamine therapy for unipolar TRD. We calculated NNT and NNH for ketamine treatments over various time points. RESULTS A total of 21 studies with 2042 participants were included. Racemic ketamine treatments had pooled NNTs for response of 7 at 4 h, 3 from one day to one week and 9 for studies at four weeks. Esketamine treatment was found to have a similar efficacy with an NNT of 2 at one day and 11 at four weeks. NNH values indicated low risk for ketamine treatments. LIMITATIONS Limitations in the data used include the possibility of functional unblinding and selective reporting bias. Moreover, the meta-analysis may have been limited in its precision by including low threshold definitions of treatment resistance (≥ 1 failed antidepressant) and low-dose ketamine treatments. CONCLUSION Herein, we determined that the NNT for ketamine treatment in adults living with TRD across different intervals of observation was <10. We conclude that the NNTs observed herein are highly clinically meaningful in this difficult to treat disorder.
Collapse
Affiliation(s)
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Joshua D Rosenblat
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Rodrigo B Mansur
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore.
| | - Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, PR China.
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
142
|
Juneja K, Afroze S, Goti Z, Sahu S, Asawa S, Bhuchakra HP, Natarajan B. Beyond therapeutic potential: a systematic investigation of ketamine misuse in patients with depressive disorders. DISCOVER MENTAL HEALTH 2024; 4:23. [PMID: 38951348 PMCID: PMC11217219 DOI: 10.1007/s44192-024-00077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Ketamine, a pharmacological agent that acts as an antagonist of the N-methyl-D-aspartate (NMDA) receptor, has garnered considerable interest because of its notable and expeditious antidepressant properties observed in individuals diagnosed with major depressive disorder (MDD) who exhibit resistance to conventional therapeutic interventions. A comprehensive and rigorous systematic review was undertaken to evaluate the prevalence of ketamine abuse undergoing ketamine treatment for depressive disorders. A comprehensive search was conducted across the electronic databases to identify pertinent studies published between 2021 and 2023. The present investigation incorporated a comprehensive range of studies encompassing the abuse or misuse of ketamine, including case reports, observational studies, and clinical trials. Data extraction and quality assessment were conducted in accordance with predetermined criteria. The findings of this systematic review demonstrate the importance of monitoring and addressing ketamine abuse in patients receiving ketamine treatment for depressive disorders like MDD. The wide range of reported prevalence rates highlights the need for standardized criteria and measures for defining and assessing ketamine abuse. This study presents a significant contribution to the field by introducing a novel screening questionnaire and assessment algorithm designed to identify and evaluate ketamine misuse among major depressive disorder (MDD) patients undergoing ketamine treatment. This innovative tool holds the potential to enhance clinical practice by providing healthcare professionals with a standardized approach to promptly detect and address ketamine misuse. The integration of this screening tool into routine care protocols can facilitate more effective monitoring and management of ketamine misuse in this population, ultimately leading to improved patient outcomes and safety.
Collapse
Affiliation(s)
| | - Sabah Afroze
- Shadan Hospital and Institute of Medical Sciences, Hyderabad, India
| | - Zeel Goti
- Government Medical College, Surat, India
| | | | | | | | | |
Collapse
|
143
|
Dar W. Aspartame-induced cognitive dysfunction: Unveiling role of microglia-mediated neuroinflammation and molecular remediation. Int Immunopharmacol 2024; 135:112295. [PMID: 38776852 DOI: 10.1016/j.intimp.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Aspartame, an artificial sweetener, is consumed by millions of people globally. There are multiple reports of aspartame and its metabolites affecting cognitive functions in animal models and humans, which include learning problems, headaches, seizures, migraines, irritable moods, anxiety, depression, and insomnia. These cognitive deficits and associated symptoms are partly attributed to dysregulated excitatory and inhibitory neurotransmitter balance due to aspartate released from aspartame, resulting in an excitotoxic effect in neurons, leading to neuronal damage. However, microglia, a central immunocompetent cell type in brain tissue and a significant player in inflammation can contribute to the impact. Microglia rapidly respond to changes in CNS homeostasis. Aspartame consumption might affect the microglia phenotype directly via methanol-induced toxic effects and indirectly via aspartic acid-mediated excitotoxicity, exacerbating symptoms of cognitive decline. Long-term oral consumption of aspartame thus might change microglia's phenotype from ramified to activated, resulting in chronic or sustained activation, releasing excess pro-inflammatory molecules. This pro-inflammatory surge might lead to the degeneration of healthy neurons and other glial cells, impairing cognition. This review will deliberate on possible links and research gaps that need to be explored concerning aspartame consumption, ecotoxicity and microglia-mediated inflammatory cognitive impairment. The study covers a comprehensive analysis of the impact of aspartame consumption on cognitive function, considering both direct and indirect effects, including the involvement of microglia-mediated neuroinflammation. We also propose a novel intervention strategy involving tryptophan supplementation to mitigate cognitive decline symptoms in individuals with prolonged aspartame consumption, providing a potential solution to address the adverse effects of aspartame on cognitive function.
Collapse
Affiliation(s)
- Waseem Dar
- Translational Neurobiology and Disease Modelling Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, 201314, India.
| |
Collapse
|
144
|
Flintoff JM, Alexander S, Kesby JP, Burne TH. The dynamic strategy shifting task: Optimisation of an operant task for assessing cognitive flexibility in rats. Front Psychiatry 2024; 15:1303728. [PMID: 39006823 PMCID: PMC11240049 DOI: 10.3389/fpsyt.2024.1303728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Although schizophrenia is associated with a broad range of symptoms including hallucinations, delusions, and reduced motivation, measures of cognitive dysfunction, including cognitive flexibility and executive function, are the strongest predictors of functional outcomes. Antipsychotic medications are useful for reducing psychotic symptoms, but they are ineffective at improving cognitive deficits. Despite extensive investment by industry, the transition from preclinical to clinical trials has not been successful for developing precognitive medications for individuals with schizophrenia. Here, we describe the optimisation of a novel dynamic strategy shifting task (DSST) using standard operant chambers to investigate the optimal stimuli required to limit the extensive training times required in previous tasks. Methods We determined that optimal learning by male and female Sprague Dawley rats for the flexibility task incorporated dynamic strategy shifts between spatial rules, such as following a visual cue or responding at one location, and non-spatial rules, such as responding to a central visual or auditory cue. A minimum of 6 correct consecutive responses were required to make a within-session change in the behavioural strategies. As a proof of concept, we trained and tested 84 Sprague Dawley rats on the DSST, and then assessed their cognitive flexibility using a within-subject design after an acute dose of ketamine (0, 3, 10 mg/kg). Rats made fewer premature and more perseverant responses to initiate a trial following ketamine. The effects of ketamine on trials to criterion was dependent on the rule. Results Ketamine induced a significant improvement on the reversal of a non-spatial visual discrimination rule. There was no significant effect of ketamine on the spatial visual or response discrimination rules. Discussion The DSST is a novel assay for studying distinct forms of cognitive flexibility and offers a rapid and adaptable means of assessing the ability to shift between increasingly challenging rule conditions. The DSST has potential utility in advancing our understanding of cognitive processes and the underlying neurobiological mechanisms related to flexibility in neuropsychiatric and neurological conditions where executive dysfunctions occur.>.
Collapse
Affiliation(s)
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - James Paul Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Thomas Henry Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| |
Collapse
|
145
|
Pedraz-Petrozzi B, Spangemacher M, Deicher A, Drews L, Defert J, Silva-Colmenero AY, Wein P, Riedinger E, Gründer G, Gilles M, Sartorius A, Reinwald JR. Baseline monocyte count predicts symptom improvement during intravenous ketamine therapy in treatment-resistant depression: a single-arm open-label observational study. Front Psychiatry 2024; 15:1415505. [PMID: 39045550 PMCID: PMC11265220 DOI: 10.3389/fpsyt.2024.1415505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
Background Neuroinflammatory processes in depression are associated with treatment resistance to conventional antidepressants. Ketamine is an effective new therapeutic option for treatment-resistant depression (TRD). Its well-established immunomodulatory properties are hypothesized to mediate its antidepressant effect. In this context, higher levels of inflammation may predict a better treatment response. However, conclusive evidence for this hypothesis is lacking. We thus investigated whether standard peripheral inflammatory cell markers and C-reactive protein (CRP) levels could predict symptom improvement during intravenous ketamine therapy in TRD patients. Methods 27 participants with TRD were treated with six weight-adjusted intravenous ketamine infusions (0.5 mg/kg bodyweight) over three weeks. Baseline assessments included CRP, absolute monocyte count (AMC), and absolute neutrophil count (ANC). Depression severity was measured using the Montgomery-Åsberg Depression Rating Scale (MADRS) at baseline (D1), after the first (D3) and before the last ketamine infusion (D18). Raters were blinded for the baseline laboratory assessments. Results 13 participants responded to ketamine treatment, and 8 participants partially responded. Baseline AMC showed a strong negative correlation with MADRS change at D3 (r=-0.57, p=0.002) and at D18 (r =-0.48, p=0.010), indicating that a high baseline AMC was associated with greater symptom improvement. A generalized linear model confirmed the association of baseline AMC with symptom improvement during ketamine treatment when additionally accounting for age, sex, and body mass index. Specifically, baseline AMC demonstrated predictive value to discriminate responders and partial responders from non-responders, but lacked discriminative ability between partial responders and responders. Baseline ANC correlated with the MADRS changes at D3 (r=-0.39, p=0.046), while CRP values did not correlate at all. Conclusions Our prospective single-arm open-label observational study demonstrated that baseline AMC reliably predicted symptom improvement during intravenous ketamine treatment in TRD patients. AMC could therefore serve as a simple and easily accessible marker for symptom improvement during ketamine therapy in daily clinical practice. Future studies with larger sample sizes and a more detailed longitudinal assessment of AMC subtypes are needed to better understand the specific relationship between monocytes and the neuromodulatory effects of ketamine.
Collapse
Affiliation(s)
- Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
- Research Group Stress-Related Disorders, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (Deutsches Zentrum für Psychische Gesundheit, DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Moritz Spangemacher
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (Deutsches Zentrum für Psychische Gesundheit, DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Anton Deicher
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Lena Drews
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Julie Defert
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Ana Yaiza Silva-Colmenero
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Paul Wein
- Research Group Translational Imaging, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Elena Riedinger
- Research Group Translational Imaging, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Gerhard Gründer
- German Centre for Mental Health (Deutsches Zentrum für Psychische Gesundheit, DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
- Research Group Stress-Related Disorders, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (Deutsches Zentrum für Psychische Gesundheit, DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (Deutsches Zentrum für Psychische Gesundheit, DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
- Research Group Translational Imaging, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
| | - Jonathan R. Reinwald
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
- German Centre for Mental Health (Deutsches Zentrum für Psychische Gesundheit, DZPG), Partner Site Heidelberg/Mannheim/Ulm, Mannheim, Germany
- Research Group Translational Imaging, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim - University of Heidelberg, Mannheim, Germany
- Research Group Systems Neuroscience and Mental Health, Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
146
|
Chen X, Wang X, Li C, Zhang Y, Feng S, Xu S. A scientometric analysis of research on the role of NMDA receptor in the treatment of depression. Front Pharmacol 2024; 15:1394730. [PMID: 38974036 PMCID: PMC11224522 DOI: 10.3389/fphar.2024.1394730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Background There have been numerous studies on NMDA receptors as therapeutic targets for depression. However, so far, there has been no comprehensive scientometric analysis of this field. Thus, we conducted a scientometric analysis with the aim of better elucidating the research hotspots and future trends in this field. Methods Publications on NMDAR in Depression between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC) database. Then, VOSviewer, CiteSpace, Scimago Graphica, and R-bibliometrix-were used for the scientometric analysis and visualization. Results 5,092 qualified documents were identified to scientometric analysis. In the past 20 years, there has been an upward trend in the number of annual publications. The United States led the world in terms of international collaborations, publications, and citations. 15 main clusters were identified from the co-cited references analysis with notable modularity (Q-value = 0.7628) and silhouette scores (S-value = 0.9171). According to the keyword and co-cited references analysis, treatment-resistant depression ketamine (an NMDAR antagonist), oxidative stress, synaptic plasticity, neuroplasticity related downstream factors like brain-derived neurotrophic factor were the research hotspots in recent years. Conclusion As the first scientometric analysis of NMDAR in Depression, this study shed light on the development, trends, and hotspots of research about NMDAR in Depression worldwide. The application and potential mechanisms of ketamine in the treatment of major depressive disorder (MDD) are still a hot research topic at present. However, the side effects of NMDAR antagonist like ketamine have prompted research on new rapid acting antidepressants.
Collapse
Affiliation(s)
| | | | | | | | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, China
| |
Collapse
|
147
|
Shafique H, Demers JC, Biesiada J, Golani LK, Cerne R, Smith JL, Szostak M, Witkin JM. ( R)-(-)-Ketamine: The Promise of a Novel Treatment for Psychiatric and Neurological Disorders. Int J Mol Sci 2024; 25:6804. [PMID: 38928508 PMCID: PMC11203826 DOI: 10.3390/ijms25126804] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
NMDA receptor antagonists have potential for therapeutics in neurological and psychiatric diseases, including neurodegenerative diseases, epilepsy, traumatic brain injury, substance abuse disorder (SUD), and major depressive disorder (MDD). (S)-ketamine was the first of a novel class of antidepressants, rapid-acting antidepressants, to be approved for medical use. The stereoisomer, (R)-ketamine (arketamine), is currently under development for treatment-resistant depression (TRD). The compound has demonstrated efficacy in multiple animal models. Two clinical studies disclosed efficacy in TRD and bipolar depression. A study by the drug sponsor recently failed to reach a priori clinical endpoints but post hoc analysis revealed efficacy. The clinical value of (R)-ketamine is supported by experimental data in humans and rodents, showing that it is less sedating, does not produce marked psychotomimetic or dissociative effects, has less abuse potential than (S)-ketamine, and produces efficacy in animal models of a range of neurological and psychiatric disorders. The mechanisms of action of the antidepressant effects of (R)-ketamine are hypothesized to be due to NMDA receptor antagonism and/or non-NMDA receptor mechanisms. We suggest that further clinical experimentation with (R)-ketamine will create novel and improved medicines for some of the neurological and psychiatric disorders that are underserved by current medications.
Collapse
Affiliation(s)
- Hana Shafique
- Duke University School of Medicine, Durham, NC 27710, USA
| | - Julie C. Demers
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Julia Biesiada
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Lalit K. Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Marta Szostak
- Department of Psychology, SWPS University, 03-815 Warsaw, Poland;
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA
| |
Collapse
|
148
|
Gärtner M, Weigand A, Meiering MS, Weigner D, Carstens L, Keicher C, Hertrampf R, Beckmann C, Mennes M, Wunder A, Grimm S. Negative emotionality shapes the modulatory effects of ketamine and lamotrigine in subregions of the anterior cingulate cortex. Transl Psychiatry 2024; 14:258. [PMID: 38890270 PMCID: PMC11189565 DOI: 10.1038/s41398-024-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Neuroimaging studies have identified the anterior cingulate cortex (ACC) as one of the major targets of ketamine in the human brain, which may be related to ketamine's antidepressant (AD) mechanisms of action. However, due to different methodological approaches, different investigated populations, and varying measurement timepoints, results are not consistent, and the functional significance of the observed brain changes remains a matter of open debate. Inhibition of glutamate release during acute ketamine administration by lamotrigine provides the opportunity to gain additional insight into the functional significance of ketamine-induced brain changes. Furthermore, the assessment of trait negative emotionality holds promise to link findings in healthy participants to potential AD mechanisms of ketamine. In this double-blind, placebo-controlled, randomized, single dose, parallel-group study, we collected resting-state fMRI data before, during, and 24 h after ketamine administration in a sample of 75 healthy male and female participants who were randomly allocated to one of three treatment conditions (ketamine, ketamine with lamotrigine pre- treatment, placebo). Spontaneous brain activity was extracted from two ventral and one dorsal subregions of the ACC. Our results showed activity decreases during the administration of ketamine in all three ACC subregions. However, only in the ventral subregions of the ACC this effect was attenuated by lamotrigine. 24 h after administration, ACC activity returned to baseline levels, but group differences were observed between the lamotrigine and the ketamine group. Trait negative emotionality was closely linked to activity changes in the subgenual ACC after ketamine administration. These results contribute to an understanding of the functional significance of ketamine effects in different subregions of the ACC by combining an approach to modulate glutamate release with the assessment of multiple timepoints and associations with trait negative emotionality in healthy participants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
149
|
Daher F, Villalobos NA, Hanley M, Atack JR, Popa MO, Fogaça MV. Basmisanil, an α5-GABA AR negative allosteric modulator, produces rapid and sustained antidepressant-like responses in male mice. Neurosci Lett 2024; 833:137828. [PMID: 38772437 PMCID: PMC11146097 DOI: 10.1016/j.neulet.2024.137828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
There is a critical need for safer and better-tolerated alternatives to address the current limitations of antidepressant treatments for major depressive disorder. Recently, drugs targeting the GABA system via α5-containing GABAA receptors (α5-GABAAR) as negative allosteric modulators (α5-NAMs) have shown promise in alleviating stress-related behaviors in preclinical studies, suggesting that α5-NAMs may have translational relevance as novel antidepressant medications. Here, we evaluated the efficacy of Basmisanil, an α5-NAM that has been evaluated in Phase 2 clinical studies as a cognitive enhancer, in a battery of behavioral tests relevant to coping strategies, motivation, and aversion in male mice, along with plasma and brain pharmacokinetic measurements. Our findings reveal that Basmisanil induces dose-dependent rapid antidepressant-like responses in the forced swim test and sucrose splash test without promoting locomotor stimulating effects. Furthermore, Basmisanil elicits sustained behavioral responses in the female urine sniffing test and sucrose splash test, observed 24 h and 48 h post-treatment, respectively. Bioanalysis of plasma and brain samples confirms effective blood-brain barrier penetration by Basmisanil and extrapolation to previously published data suggest that effects were observed at doses (10 and 30 mg/kg i.p.) corresponding to relatively modest levels of α5-GABAAR occupancy (40-65 %). These results suggest that Basmisanil exhibits a combination of rapid and sustained antidepressant-like effects highlighting the potential of α5-NAMs as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Fernanda Daher
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Narcy A Villalobos
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Marcus Hanley
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Mariana O Popa
- Medicines Discovery Institute, Cardiff University, Park Place, CF10 3AT, Cardiff, Wales, United Kingdom
| | - Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
150
|
Freitas AE, Feng B, Woo T, Galli S, Baker C, Ban Y, Truong J, Beyeler A, Zou Y. Planar cell polarity proteins mediate ketamine-induced restoration of glutamatergic synapses in prefrontal cortical neurons in a mouse model for chronic stress. Nat Commun 2024; 15:4945. [PMID: 38858386 PMCID: PMC11165002 DOI: 10.1038/s41467-024-48257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/23/2024] [Indexed: 06/12/2024] Open
Abstract
Single administration of low-dose ketamine has both acute and sustained anti-depressant effects. Sustained effect is associated with restoration of glutamatergic synapses in medial prefrontal cortic (mFPC) neurons. Ketamine induced profound changes in a number of molecular pathways in a mouse model for chronic stress. Cell-cell communication analyses predicted that planar-cell-polarity (PCP) signaling was decreased after chronic administration of corticosterone but increased following ketamine administration in most of the excitatory neurons. Similar decrease of PCP signaling in excitatory neurons was predicted in dorsolateral prefrontal cortical (dl-PFC) neurons of patients with major depressive disorder (MDD). We showed that the basolateral amygdala (BLA)-projecting infralimbic prefrontal cortex (IL PFC) neurons regulate immobility time in the tail suspension test and food consumption. Conditionally knocking out Celsr2 and Celsr3 or Prickle2 in the BLA-projecting IL PFC neurons abolished ketamine-induced synapse restoration and behavioral remission. Therefore, PCP proteins in IL PFC-BLA neurons mediate synapse restoration induced by of low-dose ketamine.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bo Feng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy Woo
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shae Galli
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Clayton Baker
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yue Ban
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jonathan Truong
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anna Beyeler
- Neurocentre Magendie, University of Bordeaux, 146, Rue Leo Saignat, 33000, Bordeaux, France
| | - Yimin Zou
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|