101
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
He B, Zhu X, Zhao C, Wang G, Ma Y, Yang W. Cytocompatible Fabrication of Yeast Cells/Fabrics Composite Sheet for Bioethanol Production. Macromol Rapid Commun 2018; 39:e1800212. [PMID: 29947153 DOI: 10.1002/marc.201800212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/06/2018] [Indexed: 11/10/2022]
Abstract
Entrapment of living cells into a polymer network has significant potential in various fields such as biomass conversion and tissue engineering. A crucial challenge for this strategy is to provide a mild enough condition to preserve cell viability. Here, a facile and cytocompatible method to entrap living yeast cells into a poly(ethylene glycol) (PEG) network grafting from polypropylene nonwoven fabrics via visible-light-induced surface living graft crosslinking polymerization is reported. Due to the mild reaction conditions and excellent biocompatibility of PEG, the immobilized yeast cells could maintain their viability and proliferate well. The obtained composite sheet has excellent long-term stability and shows no significant efficiency loss after 25 cycles of repeated batch bioethanol fermentation. The immobilized yeast cells exhibit 18.0% higher bioethanol fermentation efficiency than free cells. This strategy for immobilization of living cells with high viability has significant potential application.
Collapse
Affiliation(s)
- Bin He
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xing Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
103
|
Lau HK, Paul A, Sidhu I, Li L, Sabanayagam CR, Parekh SH, Kiick KL. Microstructured Elastomer-PEG Hydrogels via Kinetic Capture of Aqueous Liquid-Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1701010. [PMID: 29938180 PMCID: PMC6010786 DOI: 10.1002/advs.201701010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/22/2018] [Indexed: 05/31/2023]
Abstract
Heterogeneous hydrogels with desired matrix complexity are studied for a variety of biomimetic materials. Despite the range of such microstructured materials described, few methods permit independent control over microstructure and microscale mechanics by precisely controlled, single-step processing methods. Here, a phototriggered crosslinking methodology that traps microstructures in liquid-liquid phase-separated solutions of a highly elastomeric resilin-like polypeptide (RLP) and poly(ethylene glycol) (PEG) is reported. RLP-rich domains of various diameters can be trapped in a PEG continuous phase, with the kinetics of domain maturation dependent on the degree of acrylation. The chemical composition of both hydrogel phases over time is assessed via in situ hyperspectral coherent Raman microscopy, with equilibrium concentrations consistent with the compositions derived from NMR-measured coexistence curves. Atomic force microscopy reveals that the local mechanical properties of the two phases evolve over time, even as the bulk modulus of the material remains constant, showing that the strategy permits control of mechanical properties on micrometer length scales, of relevance in generating mechanically robust materials for a range of applications. As one example, the successful encapsulation, localization, and survival of primary cells are demonstrated and suggest the potential application of phase-separated RLP-PEG hydrogels in regenerative medicine applications.
Collapse
Affiliation(s)
- Hang Kuen Lau
- Department of Materials Science and EngineeringUniversity of Delaware201 DuPont HallNewarkDE19716USA
| | - Alexandra Paul
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSE‐412 96Sweden
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Ishnoor Sidhu
- Department of Biological SciencesUniversity of DelawareNewarkDE19716USA
| | - Linqing Li
- Department of Materials Science and EngineeringUniversity of Delaware201 DuPont HallNewarkDE19716USA
| | | | - Sapun H. Parekh
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kristi L. Kiick
- Department of Materials Science and EngineeringUniversity of Delaware201 DuPont HallNewarkDE19716USA
- Delaware Biotechnology Institute15 Innovation WayNewarkDE19711USA
| |
Collapse
|
104
|
Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, Yoo JJ. Biofabrication strategies for 3D in vitro models and regenerative medicine. NATURE REVIEWS. MATERIALS 2018; 3:21-37. [PMID: 31223488 PMCID: PMC6586020 DOI: 10.1038/s41578-018-0006-y] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Organs are complex systems composed of different cells, proteins and signalling molecules that are arranged in a highly ordered structure to orchestrate a myriad of functions in our body. Biofabrication strategies can be applied to engineer 3D tissue models in vitro by mimicking the structure and function of native tissue through the precise deposition and assembly of materials and cells. This approach allows the spatiotemporal control over cell-cell and cell-extracellular matrix communication and thus the recreation of tissue-like structures. In this Review, we examine biofabrication strategies for the construction of functional tissue replacements and organ models, focusing on the development of biomaterials, such as supramolecular and photosensitive materials, that can be processed using biofabrication techniques. We highlight bioprinted and bioassembled tissue models and survey biofabrication techniques for their potential to recreate complex tissue properties, such as shape, vasculature and specific functionalities. Finally, we discuss challenges, such as scalability and the foreign body response, and opportunities in the field and provide an outlook to the future of biofabrication in regenerative medicine.
Collapse
Affiliation(s)
- Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, Netherlands
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Highley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuya Morimoto
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
105
|
Kamperman T, Karperien M, Le Gac S, Leijten J. Single-Cell Microgels: Technology, Challenges, and Applications. Trends Biotechnol 2018; 36:850-865. [PMID: 29656795 DOI: 10.1016/j.tibtech.2018.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Single-cell-laden microgels effectively act as the engineered counterpart of the smallest living building block of life: a cell within its pericellular matrix. Recent breakthroughs have enabled the encapsulation of single cells in sub-100-μm microgels to provide physiologically relevant microniches with minimal mass transport limitations and favorable pharmacokinetic properties. Single-cell-laden microgels offer additional unprecedented advantages, including facile manipulation, culture, and analysis of individual cell within 3D microenvironments. Therefore, single-cell microgel technology is expected to be instrumental in many life science applications, including pharmacological screenings, regenerative medicine, and fundamental biological research. In this review, we discuss the latest trends, technical challenges, and breakthroughs, and present our vision of the future of single-cell microgel technology and its applications.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/DBE_MIRA
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/UTwente
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/utwenteEN
| | - Jeroen Leijten
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands.
| |
Collapse
|
106
|
Farhat W, Hasan A, Lucia L, Becquart F, Ayoub A, Kobeissy F. Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials Approach for Enhancing Natural Tissue Function. IEEE Rev Biomed Eng 2018; 12:333-351. [PMID: 29993840 DOI: 10.1109/rbme.2018.2824335] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stem-cell-based therapy is a promising approach for the treatment of a myriad of diseases and injuries. However, the low rate of cell survival and the uncontrolled differentiation of the injected stem cells currently remain key challenges in advancing stem cell therapeutics. Hydrogels are biomaterials that are potentially highly effective candidates for scaffold systems for stem cells and other molecular encapsulation approaches to target in vivo delivery. Hydrogel-based strategies can potentially address several current challenges in stem cell therapy. We present a concise overview of the recent advances in applications of hydrogels in stem cell therapies, with a focus particularly on the recent advances in the design and approaches for application of hydrogels in tissue engineering. The capability of hydrogels to either enhance the function of the transplanted stem cells by promoting their controlled differentiation or enhance the recruitment of endogenous adult stem cells to the injury site for repair is also reviewed. Finally, the importance of impacts and the desired relationship between the scaffold system and the encapsulated stem cells are discussed.
Collapse
|
107
|
Agrawal G, Agrawal R. Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity. Polymers (Basel) 2018; 10:E418. [PMID: 30966453 PMCID: PMC6415239 DOI: 10.3390/polym10040418] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In this paper, recent developments in the chemical design of functional microgels are summarized. A wide range of available synthetic methods allows the incorporation of various reactive groups, charges, or biological markers inside the microgel network, thus controlling the deformation and swelling degree of the resulting smart microgels. These microgels can respond to various stimuli, such as temperature, pH, light, electric field, etc. and can show unique deformation behavior at the interface. Due to their switchability and interfacial properties, these smart microgels are being extensively explored for various applications, such as antifouling coatings, cell encapsulation, catalysis, controlled drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur 247001, Uttar Pradesh, India.
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| |
Collapse
|
108
|
Lopa S, Mondadori C, Mainardi VL, Talò G, Costantini M, Candrian C, Święszkowski W, Moretti M. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair. Stem Cells Int 2018; 2018:6594841. [PMID: 29535776 PMCID: PMC5838503 DOI: 10.1155/2018/6594841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.
Collapse
Affiliation(s)
- Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Carlotta Mondadori
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Valerio Luca Mainardi
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics-Chemistry, Material and Chemical Engineering Department “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Marco Costantini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Christian Candrian
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Unità di Traumatologia e Ortopedia-ORL, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| |
Collapse
|
109
|
Day JR, David A, Cichon AL, Kulkarni T, Cascalho M, Shikanov A. Immunoisolating poly(ethylene glycol) based capsules support ovarian tissue survival to restore endocrine function. J Biomed Mater Res A 2018; 106:1381-1389. [PMID: 29318744 DOI: 10.1002/jbm.a.36338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
A common irreversible adverse effect of life-saving anticancer treatments is loss of gonadal endocrine function and fertility, calling for a need to focus on post-treatment quality of life. Here, we investigated the use of poly(ethylene glycol)-vinyl sulfone (PEG-VS) based capsules to support syngeneic donor ovarian tissue for restoration of endocrine function in mice. We designed a dual immunoisolating capsule (PEG-Dual) by tuning the physical properties of the PEG hydrogels and combining proteolytically degradable and nondegradable layers to meet the numerous requirements for encapsulation and immunoisolation of ovarian tissue, such as nutrient diffusion and tissue expansion. Tuning the components of the PEG-Dual capsule to have similar physical properties allowed for concentric encapsulation. Upon implantation, the PEG-based capsules supported ovarian tissue survival and led to a significant decrease in follicle stimulating hormone levels 60 days postimplantation. Mice that received the implants resumed regular estrous cycle activity and follicle development in the implanted grafts. The PEG-Dual capsule provided an environment conducive for tissue survival, while providing a barrier to the host environment. This study demonstrated for the first time that immunoisolating PEG-VS capsules can support ovarian follicular development resulting in the restoration of ovarian endocrine function and can be applied to future allogeneic studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1381-1389, 2018.
Collapse
Affiliation(s)
- James R Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | - Anu David
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | - Alexa L Cichon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | - Tanay Kulkarni
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, 48109
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
110
|
Day JR, David A, Kim J, Farkash EA, Cascalho M, Milašinović N, Shikanov A. The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host. Acta Biomater 2018; 67:42-52. [PMID: 29242160 DOI: 10.1016/j.actbio.2017.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
Abstract
Poly(ethylene glycol) (PEG) can be functionalized and modified with various moieties allowing for a multitude of cross-linking chemistries. Here, we investigate how vinyl sulfone, acrylate, and maleimide functional end groups affect hydrogel formation, physical properties, viability of encapsulated cells, post-polymerization modification, and inflammatory response of the host. We have shown that PEG-VS hydrogels, in the presence of a co-monomer, N-vinyl-2-pyrrolidone (NVP), form more efficiently than PEG-Ac and PEG-Mal hydrogels, resulting in superior physical properties after 6 min of ultraviolet light exposure. PEG-VS hydrogels exhibited hydrolytic stability and non-fouling characteristics, as well as the ability to be modified with biological motifs, such as RGD, after polymerization. Additionally, unmodified PEG-VS hydrogels resulted in lesser inflammatory response, cellular infiltration, and macrophage recruitment after implantation for 28 days in mice. These findings show that altering the end group chemistry of PEG macromer impacts characteristics of the photo-polymerized network. We have developed a tunable non-degradable PEG system that is conducive for cell or tissue encapsulation and evokes a minimal inflammatory response, which could be utilized for future immunoisolation applications. STATEMENT OF SIGNIFICANCE The objective of this study was to develop a tunable non-degradable PEG system that is conducive for encapsulation and evokes a minimal inflammatory response, which could be utilized for immunoisolation applications. This study has demonstrated that reactive functional groups of the PEG macromers impact free radical mediated network formation. Here, we show PEG-VS hydrogels meet the design criteria for an immunoisolating device as PEG-VS hydrogels form efficiently via photo-polymerization, impacting bulk properties, was stable in physiological conditions, and elicited a minimal inflammatory response. Further, NVP can be added to the precursor solution to expedite the cross-linking process without impacting cellular response upon encapsulation. These findings present an additional approach/chemistry to encapsulate cells or tissue for immunoisolation applications.
Collapse
|
111
|
Geraili A, Jafari P, Hassani MS, Araghi BH, Mohammadi MH, Ghafari AM, Tamrin SH, Modarres HP, Kolahchi AR, Ahadian S, Sanati-Nezhad A. Controlling Differentiation of Stem Cells for Developing Personalized Organ-on-Chip Platforms. Adv Healthc Mater 2018; 7. [PMID: 28910516 DOI: 10.1002/adhm.201700426] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/01/2017] [Indexed: 01/09/2023]
Abstract
Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood-brain barrier, bone marrow, heart, liver, lung, tumor, and vascular), with an emphasis on the critical role of stem cells in the synthesis of complex tissues. This study further recaps the design, fabrication, high-throughput performance, and improved functionality of stem-cell-based OOCs, technical challenges, obstacles against implementing their potential applications, and future perspectives related to different experimental platforms.
Collapse
Affiliation(s)
- Armin Geraili
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
- Graduate Program in Biomedical Engineering; Western University; London N6A 5B9 ON Canada
| | - Parya Jafari
- Graduate Program in Biomedical Engineering; Western University; London N6A 5B9 ON Canada
- Department of Electrical Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
| | - Mohsen Sheikh Hassani
- Department of Systems and Computer Engineering; Carleton University; 1125 Colonel By Drive Ottawa K1S 5B6 ON Canada
| | - Behnaz Heidary Araghi
- Department of Materials Science and Engineering; Sharif University of Technology; Azadi, Tehran 14588-89694 Iran
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto Ontario M5S 3E5 Canada
| | - Amir Mohammad Ghafari
- Department of Stem Cells and Developmental Biology; Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; Tehran 16635-148 Iran
| | - Sara Hasanpour Tamrin
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
| | - Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto Ontario M5S 3E5 Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory (BioM); Department of Mechanical and Manufacturing Engineering; University of Calgary; 2500 University Drive N.W. Calgary T2N 1N4 AB Canada
- Center for Bioengineering Research and Education; Biomedical Engineering Program; University of Calgary; Calgary T2N 1N4 AB Canada
| |
Collapse
|
112
|
Sivakumaran D, Mueller E, Hoare T. Microfluidic production of degradable thermoresponsive poly(N-isopropylacrylamide)-based microgels. SOFT MATTER 2017; 13:9060-9070. [PMID: 29177347 DOI: 10.1039/c7sm01361b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly monodisperse and hydrolytically degradable thermoresponsive microgels on the tens-to-hundreds of micron size scale have been fabricated based on simultaneous on-chip mixing and emulsification of aldehyde and hydrazide-functionalized poly(N-isopropylacrylamide) precursor polymers. The microfluidic chip can run for extended periods without upstream gelation and can produce monodisperse (<10% particle size variability) microgels on the size range of ∼30-90 μm, with size tunable according to the flow rate of the oil continuous phase. Fluorescence analysis indicates a uniform distribution of each reactive pre-polymer inside the microgels while micromechanical testing suggests that smaller microfluidic-produced microgels exhibit significantly higher compressive moduli compared to bulk hydrogels of the same composition, an effect we attribute to improved mixing (and thus crosslinking) of the precursor polymer solutions within the microfluidic device. The microgels retain the reversible volume phase transition behavior of conventional microgels but can be hydrolytically degraded back into their oligomeric precursor polymer fragments, offering potential for microgel clearance following use in vivo.
Collapse
Affiliation(s)
- Daryl Sivakumaran
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S 4L7, Canada.
| | | | | |
Collapse
|
113
|
McNamara MC, Sharifi F, Wrede AH, Kimlinger DF, Thomas DG, Vander Wiel JB, Chen Y, Montazami R, Hashemi NN. Microfibers as Physiologically Relevant Platforms for Creation of 3D Cell Cultures. Macromol Biosci 2017; 17. [PMID: 29148617 DOI: 10.1002/mabi.201700279] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Indexed: 12/28/2022]
Abstract
Microfibers have received much attention due to their promise for creating flexible and highly relevant tissue models for use in biomedical applications such as 3D cell culture, tissue modeling, and clinical treatments. A generated tissue or implanted material should mimic the natural microenvironment in terms of structural and mechanical properties as well as cell adhesion, differentiation, and growth rate. Therefore, the mechanical and biological properties of the fibers are of importance. This paper briefly introduces common fiber fabrication approaches, provides examples of polymers used in biomedical applications, and then reviews the methods applied to modify the mechanical and biological properties of fibers fabricated using different approaches for creating a highly controlled microenvironment for cell culturing. It is shown that microfibers are a highly tunable and versatile tool with great promise for creating 3D cell cultures with specific properties.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Farrokh Sharifi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Daniel F Kimlinger
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Deepak-George Thomas
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | - Yuanfen Chen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
114
|
Xia P, Zhang K, Gong Y, Li G, Yan S, Yin J. Injectable Stem Cell Laden Open Porous Microgels That Favor Adipogenesis: In Vitro and in Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34751-34761. [PMID: 28930432 DOI: 10.1021/acsami.7b13065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microgels, with large surface area per volume, show great advantages in adipose tissue engineering due to their injectability and similarity with natural extracellular matrix. However, to date, no studies have tried applying microgels to adipose tissue regeneration. Herein, based on double-bonded poly(l-glutamic acid)-g-2-hydroxyethyl methacrylate (PLGA-g-HEMA) and maleic anhydride-modified chitosan (MCS), an open porous microgel with high hydrophilicity and great injectability is successfully prepared (microgels diameters of 200-300 μm, pore diameter of 38 μm, and porosity of 88.3%). The storage modulus of 30 mg/mL of the microgel dispersions is 2000 Pa, which is similar to that of the native adipose tissue. The spheroidal stem cell shape and extensive cell-cell connections can be formed in the present microgels to promote adipogenic differentiation and realize adipose tissue regeneration. After injection in vitro, the microgels can maintain high stem cell viability up to 14 days. The extensive Oil red O staining is observed after adipogenic induction for 14 days. After 12 weeks postimplantation, adipose tissues can be regenerated well. Blood vessels are formed in the neogenerated tissues. The degradation rate of microgels roughly matches with the adipose tissue formation rate. The study offers an applicable microgel system to boost the adipose tissue regeneration.
Collapse
Affiliation(s)
- Pengfei Xia
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Yan Gong
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Guifei Li
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Shifeng Yan
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials, Shanghai University , 99 Shangda Road, Shanghai 200444, People's Republic of China
| |
Collapse
|
115
|
Biomaterial-assisted cell therapy in osteoarthritis: From mesenchymal stem cells to cell encapsulation. Best Pract Res Clin Rheumatol 2017; 31:730-745. [DOI: 10.1016/j.berh.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
|
116
|
Li P, Dou X, Müller M, Feng C, Chang MW, Frettlöh M, Schönherr H. Autoinducer Sensing Microarrays by Reporter Bacteria Encapsulated in Hybrid Supramolecular-Polysaccharide Hydrogels. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/27/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Ping Li
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Xiaoqiu Dou
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites; School of Materials Science and Engineering; Shanghai Jiaotong University; 800 Dongchuan Road 200240 Shanghai P. R. China
| | - Matthew Wook Chang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; 14 Medical Drive Singapore 117599 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
| | | | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ); Department of Chemistry and Biology; University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| |
Collapse
|
117
|
Rinker TE, Philbrick BD, Temenoff JS. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core. Acta Biomater 2017; 56:91-101. [PMID: 28013102 PMCID: PMC5478455 DOI: 10.1016/j.actbio.2016.12.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
Abstract
Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. STATEMENT OF SIGNIFICANCE Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic core-shell heparin-PEG microparticles presented here overcome this limitation by sequestering proteins through a PEG-based shell onto a protein-protective heparin core, temporarily isolating bound proteins from the cellular microenvironment, and re-delivering proteins only after degradation of the PEG-based shell. Thus, these core-shell microparticles have potential to be a novel tool to harness and isolate proteins produced in the cellular environment and then control when proteins are re-introduced for the most effective tissue regeneration and repair.
Collapse
Affiliation(s)
- Torri E Rinker
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA.
| | - Brandon D Philbrick
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA.
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, 30332 Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, 30332 Atlanta, GA, USA.
| |
Collapse
|
118
|
Allazetta S, Negro A, Lutolf MP. Microfluidic Programming of Compositional Hydrogel Landscapes. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- S. Allazetta
- Laboratory of Stem Cell Bioengineering; Institute of Bioengineering; School of Life Sciences and School of Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne Switzerland
| | - A. Negro
- Laboratory of Stem Cell Bioengineering; Institute of Bioengineering; School of Life Sciences and School of Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne Switzerland
| | - M. P. Lutolf
- Laboratory of Stem Cell Bioengineering; Institute of Bioengineering; School of Life Sciences and School of Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne Switzerland
- Institute of Chemical Sciences and Engineering; School of Basic Sciences; EPFL; CH-1015 Lausanne Switzerland
| |
Collapse
|
119
|
Huang H, Yu Y, Hu Y, He X, Usta OB, Yarmush ML. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. LAB ON A CHIP 2017; 17:1913-1932. [PMID: 28509918 PMCID: PMC5548188 DOI: 10.1039/c7lc00262a] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel microcapsules provide miniaturized and biocompatible niches for three-dimensional (3D) in vitro cell culture. They can be easily generated by droplet-based microfluidics with tunable size, morphology, and biochemical properties. Therefore, microfluidic generation and manipulation of cell-laden microcapsules can be used for 3D cell culture to mimic the in vivo environment towards applications in tissue engineering and high throughput drug screening. In this review of recent advances mainly since 2010, we will first introduce general characteristics of droplet-based microfluidic devices for cell encapsulation with an emphasis on the fluid dynamics of droplet breakup and internal mixing as they directly influence microcapsule's size and structure. We will then discuss two on-chip manipulation strategies: sorting and extraction from oil into aqueous phase, which can be integrated into droplet-based microfluidics and significantly improve the qualities of cell-laden hydrogel microcapsules. Finally, we will review various applications of hydrogel microencapsulation for 3D in vitro culture on cell growth and proliferation, stem cell differentiation, tissue development, and co-culture of different types of cells.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yin Yu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yong Hu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University,
Columbus, USA
| | - O. Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
- Department of Biomedical Engineering, Rutgers University,
Piscataway, New Jersey 08854, United States
| |
Collapse
|
120
|
Foster GA, García AJ. Bio-synthetic materials for immunomodulation of islet transplants. Adv Drug Deliv Rev 2017; 114:266-271. [PMID: 28532691 PMCID: PMC5581997 DOI: 10.1016/j.addr.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Clinical islet transplantation is an effective therapy in restoring physiological glycemic control in type 1 diabetics. However, allogeneic islets derived from cadaveric sources elicit immune responses that result in acute and chronic islet destruction. To prevent immune destruction of islets, transplant recipients require lifelong delivery of immunosuppressive drugs, which are associated with debilitating side effects. Biomaterial-based strategies to eliminate the need for immunosuppressive drugs are an emerging therapy for improving islet transplantation. In this context, two main approaches have been used: 1) encapsulation of islets to prevent infiltration and contact of immune cells, and 2) local release of immunomodulatory molecules from biomaterial systems that suppress local immunity. Synthetic biomaterials provide excellent control over material properties, molecule presentation, and therapeutic release, and thus, are an emerging platform for immunomodulation to facilitate islet transplantation. This review highlights various synthetic biomaterial-based strategies for preventing immune rejection of islet allografts.
Collapse
Affiliation(s)
- Greg A Foster
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
121
|
Yang J, Li J, Li X, Wang X, Yang Y, Kawazoe N, Chen G. Nanoencapsulation of individual mammalian cells with cytoprotective polymer shell. Biomaterials 2017; 133:253-262. [PMID: 28445804 DOI: 10.1016/j.biomaterials.2017.04.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022]
Abstract
Nanoencapsulation of individual mammalian cells has great potential in biomedical, biotechnological and bioelectronic applications. However, existing techniques for cell nanoencapsulation generally yield short sustaining period and loose structure of encapsulation shell, which fails to meet the long-term cytoprotection and immunosuppression requirements. Here, we report a mild method to realize the nanoencapsulation of individual mammalian cells by layer-by-layer (LbL) assembly of gelatin inner layer and cross-linking of poly(ethylene glycol) (PEG) outer layer through thiol-click chemistry. With the present method, the encapsulated individual HeLa cells showed a high viability, long persistence period and effective resistance against macro external entities and high physical stress. Moreover, on-demand cell release could also be achieved by selective cleavage of succinimide thioether linkage in the outer PEG layer. The approach presented here may provide a new and versatile method for the cleavable nanoencapsulation of individual mammalian cells.
Collapse
Affiliation(s)
- Jianmin Yang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jingchao Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Xiaomeng Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Xinlong Wang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yingjun Yang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Naoki Kawazoe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Guoping Chen
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan; Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
122
|
Lou S, Zhang X, Zhang J, Deng J, Kong D, Li C. Pancreatic islet surface bioengineering with a heparin-incorporated starPEG nanofilm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:24-31. [PMID: 28575981 DOI: 10.1016/j.msec.2017.03.295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Cell surface engineering could protect implanted cells from host immune rejections while modify the cellular landscape for better post-transplantation graft function and survival. Islet transplantation is considered the most promising therapeutic option with the potential to cure diabetes. Current approach to improve clinical efficacy of pancreatic islet transplantation is alginate encapsulation. However, disappointing outcomes have been reported in clinical trials due to larger islet size resulted by encapsulation and alginate-elicited host immune responses. We have developed an ultrathin nanofilm of starPEG with incorporated heparin (Hep-PEG) that binds covalently to the amine groups of islet surface membrane via its N-hydroxysuccinimide groups. The Hep-PEG nanocoating elicited minimal alteration on islet volume in culture. Hep-PEG-coated islets exhibited robust islet viability accompanied by uncompromised islet insulin secretory function. Instant blood-mediated inflammatory reaction was also reduced by Hep-PEG islet coating, accompanied by enhanced intra-islet revascularization. In addition, despite its semi-permeability, Hep-PEG islet coating promoted the survival of islets exposed to pro-inflammatory cytokines. Considering that inflammation and hypoxia are primary causes of immediate cell loss for cell therapy, the Hep-PEG nanofilm represents a viable approach for cell surface engineering which would improve the clinical outcome of cell therapies.
Collapse
Affiliation(s)
- Shaofeng Lou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuyuan Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin 300192, China
| | - Jimin Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juan Deng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin 300192, China.
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science& Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
123
|
Li F, Truong VX, Thissen H, Frith JE, Forsythe JS. Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8589-8601. [PMID: 28225583 DOI: 10.1021/acsami.7b00728] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stem cell injections for the treatment of articular cartilage damage are a promising approach to achieve tissue regeneration. However, this method is encumbered by high cell apoptosis rates, low retention in the cartilage lesion, and inefficient chondrogenesis. Here, we have used a facile, very low cost-based microfluidic technique to create visible light-cured microgels composed of gelatin norbornene (GelNB) and a poly(ethylene glycol) (PEG) cross-linker. In addition, we have demonstrated that the process enables the rapid in situ microencapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs) under biocompatible microfluidic-processing conditions for long-term maintenance. The hBMSCs exhibited an unusually high degree of chondrogenesis in the GelNB microgels with chondro-inductive media, specifically toward the hyaline cartilage structure, with significant upregulation in type II collagen expression compared to the bulk hydrogel and "gold standard" pellet culture. Overall, we have demonstrated that these protein-based microgels can be engineered as promising therapeutic candidates for articular cartilage regeneration, with additional potential to be used in a variety of other applications in regenerative medicine.
Collapse
Affiliation(s)
- Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University , Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
124
|
Siltanen C, Diakatou M, Lowen J, Haque A, Rahimian A, Stybayeva G, Revzin A. One step fabrication of hydrogel microcapsules with hollow core for assembly and cultivation of hepatocyte spheroids. Acta Biomater 2017; 50:428-436. [PMID: 28069506 DOI: 10.1016/j.actbio.2017.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022]
Abstract
3D hepatic microtissues can serve as valuable liver analogues for cell-based therapies and for hepatotoxicity screening during preclinical drug development. However, hepatocytes rapidly dedifferentiate in vitro, and typically require 3D culture systems or co-cultures for phenotype rescue. In this work we present a novel microencapsulation strategy, utilizing coaxial flow-focusing droplet microfluidics to fabricate microcapsules with liquid core and poly(ethylene glycol) (PEG) gel shell. When entrapped inside these capsules, primary hepatocytes rapidly formed cell-cell contacts and assembled into compact spheroids. High levels of hepatic function were maintained inside the capsules for over ten days. The microencapsulation approach described here is compatible with difficult-to-culture primary epithelial cells, allows for tuning gel mechanical properties and diffusivity, and may be used in the future for high density suspension cell cultures. STATEMENT OF SIGNIFICANCE Our paper combines an interesting new way for making capsules with cultivation of difficult-to-maintain primary epithelial cells (hepatocytes). The microcapsules described here will enable high density suspension culture of hepatocytes or other cells and may be used as building blocks for engineering tissues.
Collapse
|
125
|
|
126
|
Giraldo JA, Molano RD, Rengifo HR, Fotino C, Gattás-Asfura KM, Pileggi A, Stabler CL. The impact of cell surface PEGylation and short-course immunotherapy on islet graft survival in an allogeneic murine model. Acta Biomater 2017; 49:272-283. [PMID: 27915019 DOI: 10.1016/j.actbio.2016.11.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
Islet transplantation is a promising therapy for Type 1 diabetes mellitus; however, host inflammatory and immune responses lead to islet dysfunction and destruction, despite potent systemic immunosuppression. Grafting of poly(ethylene glycol) (PEG) to the periphery of cells or tissues can mitigate inflammation and immune recognition via generation of a steric barrier. Herein, we sought to evaluate the complementary impact of islet PEGylation with a short-course immunotherapy on the survival of fully-MHC mismatched islet allografts (DBA/2 islets into diabetic C57BL/6J recipients). Anti-Lymphocyte Function-associated Antigen 1 (LFA-1) antibody was selected as a complementary, transient, systemic immune monotherapy. Islets were PEGylated via an optimized protocol, with resulting islets exhibiting robust cell viability and function. Following transplantation, a significant subset of diabetic animals receiving PEGylated islets (60%) or anti-LFA-1 antibody (50%) exhibited long-term (>100d) normoglycemia. The combinatorial approach proved synergistic, with 78% of the grafts exhibiting euglycemia long-term. Additional studies examining graft cellular infiltrates at early time points characterized the local impact of the transplant protocol on graft survival. Results illustrate the capacity of a simple polymer grafting approach to impart significant immunoprotective effects via modulation of the local transplant environment, while short-term immunotherapy serves to complement this effect. STATEMENT OF SIGNIFICANCE We believe this study is important and of interest to the biomaterials and transplant community for several reasons: 1) it provides an optimized protocol for the PEGylation of islets, with minimal impact on the coated islets, which can be easily translated for clinical applications; 2) this optimized protocol demonstrates the benefits of islet PEGylation in providing modest immunosuppression in a murine model; 3) this work demonstrates the combinatory impact of PEGylation with short-course immunotherapy (via LFA-1 blockage), illustrating the capacity of PEGylation to complement existing immunotherapy; and 4) it suggests macrophage phenotype shifting as the potential mechanism for this observed benefit.
Collapse
Affiliation(s)
- Jaime A Giraldo
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA
| | - Hernán R Rengifo
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Carmen Fotino
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Kerim M Gattás-Asfura
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Antonello Pileggi
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA; Department of Microbiology & Immunology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
127
|
Kamperman T, Henke S, van den Berg A, Shin SR, Tamayol A, Khademhosseini A, Karperien M, Leijten J. Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro- and Macroenvironments. Adv Healthc Mater 2017; 6. [PMID: 27973710 DOI: 10.1002/adhm.201600913] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/11/2016] [Indexed: 01/09/2023]
Abstract
Modular bioinks based on single cell microgels within distinct injectable prepolymers enable uncoupling of biomaterials' micro- and macroenvironments. These inks allow biofabrication of 3D constructs that recapitulate the multiscale modular design of native tissues with a single cell resolution. This approach represents a major step forward in endowing engineered constructs with the multifunctionality that underlies the behavior of native tissues.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Drienerlolaan 5 7500AE Enschede The Netherlands
| | - Sieger Henke
- Department of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Drienerlolaan 5 7500AE Enschede The Netherlands
| | - Albert van den Berg
- BIOS Lab on a Chip group; MESA+ Institute for Nanotechnology; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; 7500AE Enschede The Netherlands
| | - Su Ryon Shin
- Biomaterials Innovation Research Center; Brigham and Women's Hospital; Harvard Medical School; 02139 Cambridge MA USA
- Harvard-MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology; 02139 Cambridge MA USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; 02115 Boston MA USA
| | - Ali Tamayol
- Biomaterials Innovation Research Center; Brigham and Women's Hospital; Harvard Medical School; 02139 Cambridge MA USA
- Harvard-MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology; 02139 Cambridge MA USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; 02115 Boston MA USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center; Brigham and Women's Hospital; Harvard Medical School; 02139 Cambridge MA USA
- Harvard-MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology; 02139 Cambridge MA USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; 02115 Boston MA USA
- Department of Physics; King Abdulaziz University; 21589 Jeddah Saudi Arabia
- Department of Bioindustrial Technologies; College of Animal Bioscience and Technology; Konkuk University; Hwayang-dong, Gwangjin-gu Seoul 143-701 Republic of Korea
| | - Marcel Karperien
- Department of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Drienerlolaan 5 7500AE Enschede The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Drienerlolaan 5 7500AE Enschede The Netherlands
- Biomaterials Innovation Research Center; Brigham and Women's Hospital; Harvard Medical School; 02139 Cambridge MA USA
- Harvard-MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology; 02139 Cambridge MA USA
| |
Collapse
|
128
|
Foster GA, Headen DM, González-García C, Salmerón-Sánchez M, Shirwan H, García AJ. Protease-degradable microgels for protein delivery for vascularization. Biomaterials 2017; 113:170-175. [PMID: 27816000 PMCID: PMC5121008 DOI: 10.1016/j.biomaterials.2016.10.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
Degradable hydrogels to deliver bioactive proteins represent an emerging platform for promoting tissue repair and vascularization in various applications. However, implanting these biomaterials requires invasive surgery, which is associated with complications such as inflammation, scarring, and infection. To address these shortcomings, we applied microfluidics-based polymerization to engineer injectable poly(ethylene glycol) microgels of defined size and crosslinked with a protease degradable peptide to allow for triggered release of proteins. The release rate of proteins covalently tethered within the microgel network was tuned by modifying the ratio of degradable to non-degradable crosslinkers, and the released proteins retained full bioactivity. Microgels injected into the dorsum of mice were maintained in the subcutaneous space and degraded within 2 weeks in response to local proteases. Furthermore, controlled release of VEGF from degradable microgels promoted increased vascularization compared to empty microgels or bolus injection of VEGF. Collectively, this study motivates the use of microgels as a viable method for controlled protein delivery in regenerative medicine applications.
Collapse
Affiliation(s)
- Greg A Foster
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Devon M Headen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cristina González-García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Engineering, Division of Biomedical Engineering, University of Glasgow, Glasgow, Scotland, UK
| | - Manuel Salmerón-Sánchez
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Engineering, Division of Biomedical Engineering, University of Glasgow, Glasgow, Scotland, UK
| | - Haval Shirwan
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
129
|
Feng Y, Lee Y. Microfluidic fabrication of hollow protein microcapsules for rate-controlled release. RSC Adv 2017. [DOI: 10.1039/c7ra08645h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using an internal phase separation method to direct protein self-assembly and control the formation of microcapsules.
Collapse
Affiliation(s)
- Yiming Feng
- Department of Food Science and Human Nutrition
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Youngsoo Lee
- Department of Food Science and Human Nutrition
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
130
|
Sakai S, Yamamoto Y, Enkhtuul G, Ueda K, Arai K, Taya M, Nakamura M. Inkjetting Plus Peroxidase-Mediated Hydrogelation Produces Cell-Laden, Cell-Sized Particles with Suitable Characters for Individual Applications. Macromol Biosci 2016; 17. [PMID: 27930858 DOI: 10.1002/mabi.201600416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/02/2016] [Indexed: 01/25/2023]
Abstract
The authors report a method to prepare cell-laden, cell-sized microparticles from various materials suitable for individual applications. The method includes a piezoelectric inkjetting technology and a horseradish peroxidase (HRP)-catalyzed crosslinking reaction. The piezoelectric inkjetting technology enables production of cell-laden, cell-sized (20-60 μm) droplets from a polymer aqueous solution. The HRP-catalyzed crosslinking of the polymer in the ejected solution enables production of spherical microparticles from various materials. Superior cytocompatibility of the microencapsulation method is confirmed from the viability and growth profiles of normal murine mammary gland epithelial cells.
Collapse
Affiliation(s)
- Shinji Sakai
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Yusuke Yamamoto
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Gantumur Enkhtuul
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Kohei Ueda
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Kenichi Arai
- Department of Regenerative Medicine and Biomedical Engineering, Saga University, Saga, 849-8501, Japan.,Graduate School of Science and Technology for Research, University of Toyama, Toyama, 930-8555, Japan
| | - Masahito Taya
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Makoto Nakamura
- Graduate School of Science and Technology for Research, University of Toyama, Toyama, 930-8555, Japan
| |
Collapse
|
131
|
Shendi D, Albrecht DR, Jain A. Anti-Fas conjugated hyaluronic acid microsphere gels for neural stem cell delivery. J Biomed Mater Res A 2016; 105:608-618. [PMID: 27737520 DOI: 10.1002/jbm.a.35930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
Abstract
Central nervous system (CNS) injuries and diseases result in neuronal damage and loss of function. Transplantation of neural stem cells (NSCs) has been shown to improve locomotor function after transplantation. However, due to the immune and inflammatory response at the injury site, the survival rate of the engrafted cells is low. Engrafted cell viability has been shown to increase when transplanted within a hydrogel. Hyaluronic acid (HA) hydrogels have natural anti-inflammatory properties and the backbone can be modified to introduce bioactive agents, such as anti-Fas, which we have previously shown to promote NSC survival while suppressing immune cell activity in bulk hydrogels in vitro. Although bulk HA hydrogels have shown to promote stem cell survival, microsphere gels for NSC encapsulation and delivery may have additional advantages. In this study, a flow-focusing microfluidic device was used to fabricate either vinyl sulfone-modified HA (VS-HA) or anti-Fas-conjugated HA (anti-Fas HA) microsphere gels encapsulated with NSCs. The majority of encapsulated NSCs remained viable for at least 24 h in the VS-HA and anti-Fas HA microsphere gels. Moreover, T-cells cultured in suspension with the anti-Fas HA microsphere gels had reduced viability after contact with the microsphere gels compared to the media control and soluble anti-Fas conditions. This approach can be adapted to encapsulate various cell types for therapeutic strategies in other physiological systems in order to increase survival by reducing the immune response. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 608-618, 2017.
Collapse
Affiliation(s)
- Dalia Shendi
- Nano-Neural Therapeutics Laboratory, Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Anjana Jain
- Nano-Neural Therapeutics Laboratory, Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
132
|
Jiang W, Li M, Chen Z, Leong KW. Cell-laden microfluidic microgels for tissue regeneration. LAB ON A CHIP 2016; 16:4482-4506. [PMID: 27797383 PMCID: PMC5110393 DOI: 10.1039/c6lc01193d] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Regeneration of diseased tissue is one of the foremost concerns for millions of patients who suffer from tissue damage each year. Local delivery of cell-laden hydrogels offers an attractive approach for tissue repair. However, due to the typical macroscopic size of these cell constructs, the encapsulated cells often suffer from poor nutrient exchange. These issues can be mitigated by incorporating cells into microscopic hydrogels, or microgels, whose large surface-to-volume ratio promotes efficient mass transport and enhanced cell-matrix interactions. Using microfluidic technology, monodisperse cell-laden microgels with tunable sizes can be generated in a high-throughput manner, making them useful building blocks that can be assembled into tissue constructs with spatially controlled physicochemical properties. In this review, we examine microfluidics-generated cell-laden microgels for tissue regeneration applications. We provide a brief overview of the common biomaterials, gelation mechanisms, and microfluidic device designs that are used to generate these microgels, and summarize the most recent works on how they are applied to tissue regeneration. Finally, we discuss future applications of microfluidic cell-laden microgels as well as existing challenges that should be resolved to stimulate their clinical application.
Collapse
Affiliation(s)
- Weiqian Jiang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
133
|
Rossow T, Lienemann PS, Mooney DJ. Cell Microencapsulation by Droplet Microfluidic Templating. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Torsten Rossow
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - Philipp S. Lienemann
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering; Cambridge MA 02138 USA
| |
Collapse
|
134
|
Chen Q, Chen D, Wu J, Lin JM. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold. BIOMICROFLUIDICS 2016; 10:064115. [PMID: 27990217 PMCID: PMC5148761 DOI: 10.1063/1.4972107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/30/2016] [Indexed: 05/27/2023]
Abstract
Designing cell-compatible, bio-degradable, and stimuli-responsive hydrogels is very important for biomedical applications in cellular delivery and micro-scale tissue engineering. Here, we report achieving flexible control of cellular microencapsulation, permeability, and release by rationally designing a diblock copolymer, alginate-conjugated poly(N-isopropylacrylamide) (Alg-co-PNiPAM). We use the microfluidic technique to fabricate the bifunctional copolymers into thousands of mono-disperse droplet-templated hydrogel microparticles for controlled encapsulation and triggered release of mammalian cells. In particular, the grafting PNiPAM groups in the synthetic cell-laden microgels produce lots of nano-aggregates into hydrogel networks at elevated temperature, thereafter enhancing the permeability of microparticle scaffolds. Importantly, the hydrogel scaffolds are readily fabricated via on-chip quick gelation by triggered release of Ca2+ from the Ca-EDTA complex; it is also quite exciting that very mild release of microencapsulated cells is achieved via controlled degradation of hydrogel scaffolds through a simple strategy of competitive affinity of Ca2+ from the Ca-Alginate complex. This finding suggests that we are able to control cellular encapsulation and release through ion-induced gelation and degradation of the hydrogel scaffolds. Subsequently, we demonstrate a high viability of microencapsulated cells in the microgel scaffolds.
Collapse
Affiliation(s)
- Qiushui Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing, China
| | - Dong Chen
- Institute of Process Equipment, College of Chemical and Biological Engineering, Zhejiang University , Hangzhou, China
| | - Jing Wu
- School of Science, China University of Geosciences (Beijing) , Beijing, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University , Beijing, China
| |
Collapse
|
135
|
Heida T, Neubauer JW, Seuss M, Hauck N, Thiele J, Fery A. Mechanically Defined Microgels by Droplet Microfluidics. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Jens W. Neubauer
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Maximilian Seuss
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Leibniz Research Cluster (LRC); Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Leibniz Research Cluster (LRC); Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics; Leibniz-Institut für Polymerforschung Dresden e.V; Hohe Str. 6 01069 Dresden Germany
- Department of Physical Chemistry of Polymeric Materials; Technische Universität Dresden; Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
136
|
Karimi M, Bahrami S, Mirshekari H, Basri SMM, Nik AB, Aref AR, Akbari M, Hamblin MR. Microfluidic systems for stem cell-based neural tissue engineering. LAB ON A CHIP 2016; 16:2551-71. [PMID: 27296463 PMCID: PMC4935609 DOI: 10.1039/c6lc00489j] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. and Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamed Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran. and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Iran.
| | - Amir R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA.
| | - Mohsen Akbari
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA. and Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
137
|
Lau HK, Li L, Jurusik AK, Sabanayagam CR, Kiick KL. Aqueous Liquid–Liquid Phase Separation of Resilin-Like Polypeptide/Polyethylene Glycol Solutions for the Formation of Microstructured Hydrogels. ACS Biomater Sci Eng 2016; 3:757-766. [DOI: 10.1021/acsbiomaterials.6b00076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hang Kuen Lau
- Department
of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States
| | - Linqing Li
- Department
of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States
| | - Anna K. Jurusik
- Department
of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States
| | | | - Kristi L. Kiick
- Department
of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States
- Department
of Biomedical Engineering, University of Delaware, 150 Academy
Street, Newark Delaware 19176, United States
- Delaware Biotechnology Institute, 15 Innovation Way, Newark Delaware 19711, United States
| |
Collapse
|
138
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
139
|
Methods for Generating Hydrogel Particles for Protein Delivery. Ann Biomed Eng 2016; 44:1946-58. [PMID: 27160672 DOI: 10.1007/s10439-016-1637-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Proteins represent a major class of therapeutic molecules with vast potential for the treatment of acute and chronic diseases and regenerative medicine applications. Hydrogels have long been investigated for their potential in carrying and delivering proteins. As compared to bulk hydrogels, hydrogel microparticles (microgels) hold promise in improving aspects of delivery owing to their less traumatic route of entry into the body and improved versatility. This review discusses common methods of fabricating microgels, including emulsion polymerization, microfluidic techniques, and lithographic techniques. Microgels synthesized from both natural and synthetic polymers are discussed, as are a series of microgels fashioned from environment-responsive materials.
Collapse
|
140
|
David A, Day J, Shikanov A. Immunoisolation to prevent tissue graft rejection: Current knowledge and future use. Exp Biol Med (Maywood) 2016; 241:955-61. [PMID: 27188513 DOI: 10.1177/1535370216647129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This review focuses on the concept of immunoisolation and how this method has evolved over the last few decades. The concept of immunoisolation came out of the need to protect allogeneic transplant tissue from the host immune system and avoid systemic side effects of immunosuppression. The latter remains a significant hurdle in clinical translation of using tissue transplants for restoring endocrine function in diabetes, growth hormone deficiency, and other conditions. Herein, we review the most significant works studying the use of hydrogels, specifically alginate and poly (ethylene glycol), and membranes for immunoisolation and discuss how this approach can be applied in reproductive biology.
Collapse
Affiliation(s)
- Anu David
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
141
|
Chen Q, Utech S, Chen D, Prodanovic R, Lin JM, Weitz DA. Controlled assembly of heterotypic cells in a core-shell scaffold: organ in a droplet. LAB ON A CHIP 2016; 16:1346-9. [PMID: 26999495 PMCID: PMC4829496 DOI: 10.1039/c6lc00231e] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper reports a droplet-based microfluidic approach to fabricate a large number of monodisperse, portable microtissues, each in an individual drop. We use water-water-oil double emulsions as templates and spatially assemble hepatocytes in the core and fibroblasts in the shell, forming a 3D liver model in a drop.
Collapse
Affiliation(s)
- Qiushui Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China. and John A. Paulson School of Engineering and Applied Sciences, Department of Physics, Harvard University, Cambridge, MA 02139, USA.
| | - Stefanie Utech
- John A. Paulson School of Engineering and Applied Sciences, Department of Physics, Harvard University, Cambridge, MA 02139, USA.
| | - Dong Chen
- John A. Paulson School of Engineering and Applied Sciences, Department of Physics, Harvard University, Cambridge, MA 02139, USA.
| | - Radivoje Prodanovic
- Faculty of Chemistry, University of Belgrade, Studentskitrg 12, Belgrade, Serbia
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Department of Physics, Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
142
|
Siltanen C, Yaghoobi M, Haque A, You J, Lowen J, Soleimani M, Revzin A. Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomater 2016; 34:125-132. [PMID: 26774761 DOI: 10.1016/j.actbio.2016.01.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/11/2015] [Accepted: 01/12/2016] [Indexed: 01/17/2023]
Abstract
A major challenge in tissue engineering is to develop robust protocols for differentiating ES and iPS cells to functional adult tissues at a clinically relevant scale. The goal of this study is to develop a high throughput platform for generating bioactive, stem cell-laden microgels to direct differentiation in a well-defined microenvironment. We describe a droplet microfluidics system for fabricating microgels composed of polyethylene glycol and heparin, with tunable geometric, mechanical, and chemical properties, at kHz rates. Heparin-containing hydrogel particles sequestered growth factors Nodal and FGF-2, which are implicated in specifying pluripotent cells to definitive endoderm. Mouse ESCs were encapsulated into heparin microgels with a single dose of Nodal and FGF-2, and expressed high levels of endoderm markers Sox17 and FoxA2 after 5 days. These results highlight the use of microencapsulation for tailoring the stem cell microenvironment to promote directed differentiation, and may provide a straightforward path to large scale bioprocessing in the future. STATEMENT OF SIGNIFICANCE Multicellular spheroids and microtissues are valuable for tissue engineering, but fabrication approaches typically sacrifice either precision or throughput. Microfluidic encapsulation in polymeric biomaterials is a promising technique for rapidly generating cell aggregates with excellent control of microenvironmental parameters. Here we describe the microfluidic fabrication of bioactive, heparin-based microgels, and demonstrate the adsorption of heparin-binding growth factors for enhancing directed differentiation of embryonic stem cells toward endoderm. This approach also facilitated a ∼90-fold decrease in consumption of exogenous growth factors compared to conventional differentiation protocols.
Collapse
|
143
|
Wu F, Ju XJ, He XH, Jiang MY, Wang W, Liu Z, Xie R, He B, Chu LY. A novel synthetic microfiber with controllable size for cell encapsulation and culture. J Mater Chem B 2016; 4:2455-2465. [DOI: 10.1039/c6tb00209a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic microfiber for cell encapsulation and culture via a rapid and mild crosslinking reaction in microfluidic devices.
Collapse
Affiliation(s)
- Fang Wu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
- State Key Laboratory of Polymer Materials Engineering
| | - Xiao-Heng He
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Ming-Yue Jiang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Wei Wang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Zhuang Liu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Rui Xie
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Bin He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering
- Sichuan University
- Chengdu
- P. R. China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
144
|
Allazetta S, Kolb L, Zerbib S, Bardy J, Lutolf MP. Cell-Instructive Microgels with Tailor-Made Physicochemical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5647-5656. [PMID: 26349486 DOI: 10.1002/smll.201501001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/19/2015] [Indexed: 06/05/2023]
Abstract
A microfluidic in vitro cell encapsulation platform to systematically test the effects of microenvironmental parameters on cell fate in 3D is developed. Multiple cell types including fibroblasts, embryonic stem cells, and cancer cells are incorporated in enzymatically cross-linked poly(ethylene glycol)-based microgels having defined and tunable mechanical and biochemical properties. Furthermore, different approaches to prevent cell "escape" from the microcapsules are explored and shown to substantially enhance the potential of this technology. Finally, coencapsulation of microgels within nondegradable gels allows cell viability, proliferation, and morphology to be studied in different microenvironmental conditions up to two weeks in culture.
Collapse
Affiliation(s)
- Simone Allazetta
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laura Kolb
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Samantha Zerbib
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jo'an Bardy
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
145
|
Cell-laden Polymeric Microspheres for Biomedical Applications. Trends Biotechnol 2015; 33:653-666. [DOI: 10.1016/j.tibtech.2015.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/10/2015] [Accepted: 09/08/2015] [Indexed: 01/16/2023]
|
146
|
Hu Y, Liu C, Li D, Long Y, Song K, Tung CH. Magnetic Compression of Polyelectrolyte Microcapsules for Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11195-11199. [PMID: 26402037 DOI: 10.1021/acs.langmuir.5b02229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, microcapsules with a magnetic particle as the core and polyelectrolyte multilayers as the shell were fabricated. The cavity of the microcapsules was created by etching the SiO2 layer, which was first coated on the magnetic core particle, and the size of the cavity can be adjusted by the thickness of the SiO2 layer. This magnetically responsive microcapsule deforms upon application of a constant magnetic field and results in the release of the core content, and the release velocity could be controlled by the strength of the magnetic field. This release mechanism is proactive and repeatable, combined with its localized and remote controllability; it can be a powerful tool for delivering medical agents on site.
Collapse
Affiliation(s)
| | - Chuanyong Liu
- University of the Chinese Academy of Sciences , Beijing 100049, China
| | - Dongzhi Li
- University of the Chinese Academy of Sciences , Beijing 100049, China
| | | | | | | |
Collapse
|
147
|
Allazetta S, Lutolf MP. Stem cell niche engineering through droplet microfluidics. Curr Opin Biotechnol 2015; 35:86-93. [PMID: 26051090 DOI: 10.1016/j.copbio.2015.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 01/25/2023]
Abstract
Stem cells reside in complex niches in which their behaviour is tightly regulated by various biochemical and biophysical signals. In order to unveil some of the crucial stem cell-niche interactions and expedite the implementation of stem cells in clinical and pharmaceutical applications, in vitro methodologies are being developed to reconstruct key features of stem cell niches. Recently, droplet-based microfluidics has emerged as a promising strategy to build stem cell niche models in a miniaturized and highly precise fashion. This review highlights current advances in using droplet microfluidics in stem cell biology. We also discuss recent efforts in which microgel technology has been interfaced with high-throughput analyses to engender screening paradigms with an unparalleled potential for basic and applied biological studies.
Collapse
Affiliation(s)
- Simone Allazetta
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, Switzerland.
| |
Collapse
|
148
|
Glasnov TN. Highlights from the Flow Chemistry Literature 2014 (Parts 3 and 4). J Flow Chem 2015. [DOI: 10.1556/jfc-d-14-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
149
|
Liu W, Wang JC, Wang J. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics. LAB ON A CHIP 2015; 15:1195-204. [PMID: 25571856 DOI: 10.1039/c4lc01242a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Three-dimensional tumor culture methods offer a high degree of biological and clinical relevance to in vitro models as well as cancer therapy. However, a straightforward, dynamic, and high-throughput method for micro-manipulation of 3D tumors is not yet well established. In this study, we present a novel and simple strategy for producing biomimetic 3D tumors in a controllable, high throughput manner based on an integrated microfluidic system with well-established pneumatic microstructures. Serial manipulations, including one-step cell localization, array-like self-assembly, and real-time analysis of 3D tumors, are accomplished smoothly in the microfluidic device. The recovery of tumor products from the chip is performed by dynamic off-switch of the pneumatic microstructures. In addition, this microfluidic platform is demonstrated to be capable of producing multiple types of 3D tumors and performing the evaluation of tumor targeting by nanomedicine. The pneumatic microfluidic-based 3D tumor production shows potential for research on tumor biology, tissue engineering, and drug delivery.
Collapse
Affiliation(s)
- Wenming Liu
- Colleges of Science and Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | | | |
Collapse
|
150
|
Lau HK, Kiick KL. Opportunities for multicomponent hybrid hydrogels in biomedical applications. Biomacromolecules 2015; 16:28-42. [PMID: 25426888 PMCID: PMC4294583 DOI: 10.1021/bm501361c] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/14/2014] [Indexed: 02/08/2023]
Abstract
Hydrogels provide mechanical support and a hydrated environment that offer good cytocompatibility and controlled release of molecules, and myriad hydrogels thus have been studied for biomedical applications. In the past few decades, research in these areas has shifted increasingly to multicomponent hydrogels that better capture the multifunctional nature of native biological environments and that offer opportunities to selectively tailor materials properties. This review summarizes recent approaches aimed at producing multicomponent hydrogels, with descriptions of contemporary chemical and physical approaches for forming networks, and of the use of both synthetic and biologically derived molecules to impart desired properties. Specific multicomponent materials with enhanced mechanical properties are presented, as well as materials in which multiple biological functions are imparted for applications in tissue engineering, cancer treatment, and gene therapies. The progress in the field suggests significant promise for these approaches in the development of biomedically relevant materials.
Collapse
Affiliation(s)
- Hang Kuen Lau
- Department of Materials Science and Engineering and ‡Biomedical Engineering, University of Delaware , Newark Delaware 19716, United States
| | | |
Collapse
|