101
|
Kiguchi N, Saika F, Fukazawa Y, Matsuzaki S, Kishioka S. Critical role of GRP receptor-expressing neurons in the spinal transmission of imiquimod-induced psoriatic itch. Neuropsychopharmacol Rep 2020; 40:287-290. [PMID: 32584520 PMCID: PMC7722649 DOI: 10.1002/npr2.12120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 11/08/2022] Open
Abstract
AIM Ample evidence indicates that gastrin-releasing peptide receptor (GRPR)-expressing neurons play a critical role in the transmission of acute itch. However, the pathophysiology of spinal mechanisms underlying intractable itch such as psoriasis remains unclear. In this study, we aimed to determine whether itch-responsive GRPR+ neurons contribute to the spinal transmission of imiquimod (IMQ)-induced psoriatic itch. METHODS To generate a psoriasis model, C57BL/6J mice received a daily topical application of 5% IMQ cream on their shaved back skin for 7-10 consecutive days. GRP+ neurons were inhibited using Cre-dependent expression of Gi-designer receptors exclusively activated by designer drugs (DREADDs), while GRPR+ neurons were ablated by intrathecal administration of bombesin-saporin. RESULTS Repeated topical application of IMQ elicited psoriasis-like dermatitis and scratching behaviors. The mRNA expression levels of GRP and GRPR were upregulated in the cervical spinal dorsal horn (SDH) on days 7 and 10 after IMQ application. Either chemogenetic silencing of GRP+ neurons by Gi-DREADD or ablation of GRPR+ neurons significantly attenuated IMQ-induced scratching behaviors. CONCLUSION The GRP-GRPR system might be enhanced in the SDH, and itch-responsive GRPR+ neurons largely contribute to intractable itch in a mouse model of psoriasis.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Yohji Fukazawa
- Department of Anatomy, Kansai University of Health Sciences, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan.,Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan
| |
Collapse
|
102
|
Saika F, Matsuzaki S, Kobayashi D, Ideguchi Y, Nakamura TY, Kishioka S, Kiguchi N. Chemogenetic Regulation of CX3CR1-Expressing Microglia Using Gi-DREADD Exerts Sex-Dependent Anti-Allodynic Effects in Mouse Models of Neuropathic Pain. Front Pharmacol 2020; 11:925. [PMID: 32636748 PMCID: PMC7318895 DOI: 10.3389/fphar.2020.00925] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Despite growing evidence suggesting that spinal microglia play an important role in the molecular mechanism underlying experimental neuropathic pain (NP) in male rodents, evidence regarding the sex-dependent role of these microglia in NP is insufficient. In this study, we evaluated the effects of microglial regulation on NP using Gi-designer receptors exclusively activated by designer drugs (Gi-DREADD) driven by the microglia-specific Cx3cr1 promoter. For the Cre-dependent expression of human Gi-coupled M4 muscarinic receptors (hM4Di) in CX3C chemokine receptor 1-expressing (CX3CR1+) cells, R26-LSL-hM4Di-DREADD mice were crossed with CX3CR1-Cre mice. Mouse models of NP were generated by partial sciatic nerve ligation (PSL) and treatment with anti-cancer agent paclitaxel (PTX) or oxaliplatin (OXA), and mechanical allodynia was evaluated using the von Frey test. Immunohistochemistry revealed that hM4Di was specifically expressed on Iba1+ microglia, but not on astrocytes or neurons in the spinal dorsal horn of CX3CR1-hM4Di mice. PSL-induced mechanical allodynia was significantly attenuated by systemic (intraperitoneal, i.p.) administration of 10 mg/kg of clozapine N-oxide (CNO), a hM4Di-selective ligand, in male CX3CR1-hM4Di mice. The mechanical threshold in naive CX3CR1-hM4Di mice was not altered by i.p. administration of CNO. Consistently, local (intrathecal, i.t.) administration of CNO (20 nmol) significantly relieved PSL-induced mechanical allodynia in male CX3CR1-hM4Di mice. However, neither i.p. nor i.t. administration of CNO affected PSL-induced mechanical allodynia in female CX3CR1-hM4Di mice. Both i.p. and i.t. administration of CNO relieved PTX-induced mechanical allodynia in male CX3CR1-hM4Di mice, and a limited effect of i.p. CNO was observed in female CX3CR1-hM4Di mice. Unlike PTX-induced allodynia, OXA-induced mechanical allodynia was slightly improved, but not significantly relieved, by i.p. administration of CNO in both male and female CX3CR1-hM4Di mice. These results suggest that spinal microglia can be regulated by Gi-DREADD and support the notion that CX3CR1+ spinal microglia play sex-dependent roles in nerve injury-induced NP; however, their roles may vary among different models of NP.
Collapse
Affiliation(s)
- Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan.,Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuya Ideguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Tomoe Y Nakamura
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan.,Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
103
|
Inayat S, Qandeel, Nazariahangarkolaee M, Singh S, McNaughton BL, Whishaw IQ, Mohajerani MH. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep 2020; 43:zsz297. [PMID: 31825510 PMCID: PMC7294415 DOI: 10.1093/sleep/zsz297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Indexed: 01/29/2023] Open
Abstract
The synaptic homeostasis theory of sleep proposes that low neurotransmitter activity in sleep optimizes memory consolidation. We tested this theory by asking whether increasing acetylcholine levels during early sleep would weaken motor memory consolidation. We trained separate groups of adult mice on the rotarod walking task and the single pellet reaching task, and after training, administered physostigmine, an acetylcholinesterase inhibitor, to increase cholinergic tone in subsequent sleep. Post-sleep testing showed that physostigmine impaired motor skill acquisition of both tasks. Home-cage video monitoring and electrophysiology revealed that physostigmine disrupted sleep structure, delayed non-rapid-eye-movement sleep onset, and reduced slow-wave power in the hippocampus and cortex. Additional experiments showed that: (1) the impaired performance associated with physostigmine was not due to its effects on sleep structure, as 1 h of sleep deprivation after training did not impair rotarod performance, (2) a reduction in cholinergic tone by inactivation of cholinergic neurons during early sleep did not affect rotarod performance, and (3) stimulating or blocking muscarinic and nicotinic acetylcholine receptors did not impair rotarod performance. Taken together, the experiments suggest that the increased slow wave activity and inactivation of both muscarinic and nicotinic receptors during early sleep due to reduced acetylcholine contribute to motor memory consolidation.
Collapse
Affiliation(s)
- Samsoon Inayat
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Qandeel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Surjeet Singh
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Center for the Neurobiology of Learning and Memory, University of California, Irvine
| | - Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
104
|
Adipocyte G i signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat Commun 2020; 11:2995. [PMID: 32532984 PMCID: PMC7293267 DOI: 10.1038/s41467-020-16756-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Adipocyte dysfunction links obesity to insulin resistance and type 2 diabetes. Adipocyte function is regulated by receptor-mediated activation of heterotrimeric G proteins. Little is known about the potential in vivo metabolic roles of Gi-type G proteins expressed by adipocytes, primarily due to the lack of suitable animal models. To address this question, we generated mice lacking functional Gi proteins selectively in adipocytes. Here we report that these mutant mice displayed significantly impaired glucose tolerance and reduced insulin sensitivity when maintained on an obesogenic diet. In contrast, using a chemogenetic strategy, we demonstrated that activation of Gi signaling selectively in adipocytes greatly improved glucose homeostasis and insulin signaling. We also elucidated the cellular mechanisms underlying the observed metabolic phenotypes. Our data support the concept that adipocyte Gi signaling is essential for maintaining euglycemia. Drug-mediated activation of adipocyte Gi signaling may prove beneficial for restoring proper glucose homeostasis in type 2 diabetes. Gs-coupled receptor signaling is well known to modulate adipocyte metabolism, but the role of Gi-coupled receptors in adipose tissue is less well understood. Here the authors show that signaling via Gi-type G proteins expressed by adipocytes is essential for maintaining proper blood glucose homeostasis.
Collapse
|
105
|
Hrvatin S, Sun S, Wilcox OF, Yao H, Lavin-Peter AJ, Cicconet M, Assad EG, Palmer ME, Aronson S, Banks AS, Griffith EC, Greenberg ME. Neurons that regulate mouse torpor. Nature 2020; 583:115-121. [PMID: 32528180 DOI: 10.1038/s41586-020-2387-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
The advent of endothermy, which is achieved through the continuous homeostatic regulation of body temperature and metabolism1,2, is a defining feature of mammalian and avian evolution. However, when challenged by food deprivation or harsh environmental conditions, many mammalian species initiate adaptive energy-conserving survival strategies-including torpor and hibernation-during which their body temperature decreases far below its homeostatic set-point3-5. How homeothermic mammals initiate and regulate these hypothermic states remains largely unknown. Here we show that entry into mouse torpor, a fasting-induced state with a greatly decreased metabolic rate and a body temperature as low as 20 °C6, is regulated by neurons in the medial and lateral preoptic area of the hypothalamus. We show that restimulation of neurons that were activated during a previous bout of torpor is sufficient to initiate the key features of torpor, even in mice that are not calorically restricted. Among these neurons we identify a population of glutamatergic Adcyap1-positive cells, the activity of which accurately determines when mice naturally initiate and exit torpor, and the inhibition of which disrupts the natural process of torpor entry, maintenance and arousal. Taken together, our results reveal a specific neuronal population in the mouse hypothalamus that serves as a core regulator of torpor. This work forms a basis for the future exploration of mechanisms and circuitry that regulate extreme hypothermic and hypometabolic states, and enables genetic access to monitor, initiate, manipulate and study these ancient adaptations of homeotherm biology.
Collapse
Affiliation(s)
- Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Senmiao Sun
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Oren F Wilcox
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Hanqi Yao
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Marcelo Cicconet
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, USA
| | - Elena G Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | | | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric C Griffith
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
106
|
Solinski HJ, Kriegbaum MC, Tseng PY, Earnest TW, Gu X, Barik A, Chesler AT, Hoon MA. Nppb Neurons Are Sensors of Mast Cell-Induced Itch. Cell Rep 2020; 26:3561-3573.e4. [PMID: 30917312 PMCID: PMC6490177 DOI: 10.1016/j.celrep.2019.02.089] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/25/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Itch is an unpleasant skin sensation that can be triggered by exposure to many chemicals, including those released by mast cells. The natriuretic polypeptide b (Nppb)-expressing class of sensory neurons, when activated, elicits scratching responses in mice, but it is unclear which itch-inducing agents stimulate these cells and the receptors involved. Here, we identify receptors expressed by Nppb neurons and demonstrate the functional importance of these receptors as sensors of endogenous pruritogens released by mast cells. Our search for receptors in Nppb neurons reveals that they express leukotriene, serotonin, and sphingosine-1-phosphate receptors. Targeted cell ablation, calcium imaging of primary sensory neurons, and conditional receptor knockout studies demonstrate that these receptors induce itch by the direct stimulation of Nppb neurons and neurotransmission through the canonical gastrin-releasing peptide (GRP)-dependent spinal cord itch pathway. Together, our results define a molecular and cellular pathway for mast cell-induced itch.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Mette C Kriegbaum
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Thomas W Earnest
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Xinglong Gu
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Arnab Barik
- National Center for Complementary and Integrative Health, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, NIH, 35A Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
107
|
Kaiser E, Tian Q, Wagner M, Barth M, Xian W, Schröder L, Ruppenthal S, Kaestner L, Boehm U, Wartenberg P, Lu H, McMillin SM, Bone DBJ, Wess J, Lipp P. DREADD technology reveals major impact of Gq signalling on cardiac electrophysiology. Cardiovasc Res 2020; 115:1052-1066. [PMID: 30321287 DOI: 10.1093/cvr/cvy251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/02/2018] [Accepted: 10/11/2018] [Indexed: 02/04/2023] Open
Abstract
AIMS Signalling via Gq-coupled receptors is of profound importance in many cardiac diseases such as hypertrophy and arrhythmia. Nevertheless, owing to their widespread expression and the inability to selectively stimulate such receptors in vivo, their relevance for cardiac function is not well understood. We here use DREADD technology to understand the role of Gq-coupled signalling in vivo in cardiac function. METHODS AND RESULTS We generated a novel transgenic mouse line that expresses a Gq-coupled DREADD (Dq) in striated muscle under the control of the muscle creatine kinase promotor. In vivo injection of the DREADD agonist clozapine-N-oxide (CNO) resulted in a dose-dependent, rapid mortality of the animals. In vivo electrocardiogram data revealed severe cardiac arrhythmias including lack of P waves, atrioventricular block, and ventricular tachycardia. Following Dq activation, electrophysiological malfunction of the heart could be recapitulated in the isolated heart ex vivo. Individual ventricular and atrial myocytes displayed a positive inotropic response and arrhythmogenic events in the absence of altered action potentials. Ventricular tissue sections revealed a strong co-localization of Dq with the principal cardiac connexin CX43. Western blot analysis with phosphor-specific antibodies revealed strong phosphorylation of a PKC-dependent CX43 phosphorylation site following CNO application in vivo. CONCLUSION Activation of Gq-coupled signalling has a major impact on impulse generation, impulse propagation, and coordinated impulse delivery in the heart. Thus, Gq-coupled signalling does not only modulate the myocytes' Ca2+ handling but also directly alters the heart's electrophysiological properties such as intercellular communication. This study greatly advances our understanding of the plethora of modulatory influences of Gq signalling on the heart in vivo.
Collapse
Affiliation(s)
- Elisabeth Kaiser
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Qinghai Tian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Michael Wagner
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Monika Barth
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Wenying Xian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Laura Schröder
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Sandra Ruppenthal
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Molecular Signaling (PZMS), Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, Saarland University, Homburg, Germany
| | - Philipp Wartenberg
- Center for Molecular Signaling (PZMS), Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, Saarland University, Homburg, Germany
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sara M McMillin
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Derek B J Bone
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Lab. of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter Lipp
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology; Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
108
|
Barry DM, Liu XT, Liu B, Liu XY, Gao F, Zeng X, Liu J, Yang Q, Wilhelm S, Yin J, Tao A, Chen ZF. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun 2020; 11:1397. [PMID: 32170060 PMCID: PMC7070094 DOI: 10.1038/s41467-020-15230-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch. Using a Grp-Cre knock-in mouse line, we show that the upper epidermis of the skin is exclusively innervated by GRP fibers, whose activation via optogeneics and chemogenetics in the skin evokes itch- but not pain-related scratching or wiping behaviors. In contrast, intersectional genetic ablation of spinal Grp neurons does not affect itch nor pain transmission, demonstrating that spinal Grp neurons are dispensable for itch transmission. These data indicate that GRP is a neuropeptide in sensory neurons for non-histaminergic itch, and GRP sensory neurons are dedicated to itch transmission.
Collapse
Affiliation(s)
- Devin M Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xue-Ting Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Benlong Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian-Yu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiansi Zeng
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- College of Life Sciences, Xinyang Normal University, 237 Nanhu Road, 464000, Xinyang, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jun Yin
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ailin Tao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Center for Immunology, Inflammation, Immune-mediated disease, Guangzhou Medical University, 510260, Guangzhou, Guangdong, P.R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
109
|
Kiguchi N, Uta D, Ding H, Uchida H, Saika F, Matsuzaki S, Fukazawa Y, Abe M, Sakimura K, Ko MC, Kishioka S. GRP receptor and AMPA receptor cooperatively regulate itch-responsive neurons in the spinal dorsal horn. Neuropharmacology 2020; 170:108025. [PMID: 32142790 DOI: 10.1016/j.neuropharm.2020.108025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 01/19/2023]
Abstract
Gastrin-releasing peptide (GRP) receptor-expressing (GRPR)+ neurons have a central role in the spinal transmission of itch. Because their fundamental regulatory mechanisms are not yet understood, it is important to determine how such neurons are excited and integrate itch sensation. In this study, we investigated the mechanisms for the activation of itch-responsive GRPR+ neurons in the spinal dorsal horn (SDH). GRPR+ neurons expressed the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) containing the GluR2 subunit. In mice, peripherally elicited histaminergic and non-histaminergic itch was prevented by intrathecal (i.t.) administration of the AMPAR antagonist NBQX, which was consistent with the fact that firing of GRPR+ neurons in SDH under histaminergic and non-histaminergic itch was completely blocked by NBQX, but not by the GRPR antagonist RC-3095. Because GRP+ neurons in SDH contain glutamate, we investigated the role of GRP+ (GRP+/Glu+) neurons in regulating itch. Chemogenetic inhibition of GRP+ neurons suppressed both histaminergic and non-histaminergic itch without affecting the mechanical pain threshold. In nonhuman primates, i.t. administration of NBQX also attenuated peripherally elicited itch without affecting the thermal pain threshold. In a mouse model of diphenylcyclopropenone (DCP)-induced contact dermatitis, GRP, GRPR, and AMPAR subunits were upregulated in SDH. DCP-induced itch was prevented by either silencing GRP+ neurons or ablation of GRPR+ neurons. Altogether, these findings demonstrate that GRP and glutamate cooperatively regulate GRPR+ AMPAR+ neurons in SDH, mediating itch sensation. GRP-GRPR and the glutamate-AMPAR system may play pivotal roles in the spinal transmission of itch in rodents and nonhuman primates.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama City, Toyama, 930-0194, Japan
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Hitoshi Uchida
- Department of Cellular Neuropathology, Brain Research Institute Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| | - Yohji Fukazawa
- Department of Anatomy, Kansai University of Health Sciences, Sennan-gun, Osaka, 590-0482, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata City, Niigata, 951-8585, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, 28144, USA
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama City, Wakayama, 641-0012, Japan
| |
Collapse
|
110
|
Peeters LM, Missault S, Keliris AJ, Keliris GA. Combining designer receptors exclusively activated by designer drugs and neuroimaging in experimental models: A powerful approach towards neurotheranostic applications. Br J Pharmacol 2020; 177:992-1002. [PMID: 31658365 PMCID: PMC7042113 DOI: 10.1111/bph.14885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
Abstract
The combination of chemogenetics targeting specific brain cell populations with in vivo imaging techniques provides scientists with a powerful new tool to study functional neural networks at the whole-brain scale. A number of recent studies indicate the potential of this approach to increase our understanding of brain function in health and disease. In this review, we discuss the employment of a specific chemogenetic tool, designer receptors exclusively activated by designer drugs, in conjunction with non-invasive neuroimaging techniques such as PET and MRI. We highlight the utility of using this multiscale approach in longitudinal studies and its ability to identify novel brain circuits relevant to behaviour that can be monitored in parallel. In addition, some identified shortcomings in this technique and more recent efforts to overcome them are also presented. Finally, we discuss the translational potential of designer receptors exclusively activated by designer drugs in neuroimaging and the promise it holds for future neurotheranostic applications.
Collapse
|
111
|
Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih YYI, Grandjean J. Animal Functional Magnetic Resonance Imaging: Trends and Path Toward Standardization. Front Neuroinform 2020; 13:78. [PMID: 32038217 PMCID: PMC6987455 DOI: 10.3389/fninf.2019.00078] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.
Collapse
Affiliation(s)
- Francesca Mandino
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Domenic H. Cerri
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clement M. Garin
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Milou Straathof
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M. Mallar Chakravarty
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Marc Dhenain
- Direction de la Recherche Fondamentale, MIRCen, Institut de Biologie François Jacob, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Fontenay-aux-Roses, France
- Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Rick M. Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, Rovereto, Italy
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich–Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Georgia Tech, Emory University, Atlanta, GA, United States
| | - Jason P. Lerch
- Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| | - Yen-Yu Ian Shih
- Center for Animal MRI, Department of Neurology, Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joanes Grandjean
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Radiology and Nuclear Medicine, Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
112
|
Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, Gonçalves WA, Shwartz Y, Fast EM, Su Y, Zon LI, Regev A, Buenrostro JD, Cunha TM, Chiu IM, Fisher DE, Hsu YC. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature 2020; 577:676-681. [PMID: 31969699 PMCID: PMC7184936 DOI: 10.1038/s41586-020-1935-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/13/2019] [Indexed: 01/24/2023]
Abstract
Empirical and anecdotal evidence have associated stress with accelerated hair greying (formation of unpigmented hairs)1,2, but the scientific evidence linking the two is scant. Here, we report that acute stress leads to hair greying through fast depletion of melanocyte stem cells (MeSCs). Combining adrenalectomy, denervation, chemogenetics3,4, cell ablation, and MeSC-specific adrenergic receptor knockout, we found that stress-induced MeSC loss is independent of immune attack or adrenal stress hormones. Rather, hair greying results from activation of the sympathetic nerves that innervate the MeSC niche. Upon stress, sympathetic nerve activation leads to burst release of the neurotransmitter norepinephrine, which drives quiescent MeSCs into rapid proliferation, followed by differentiation, migration, and permanent depletion from the niche. Transient suppression of MeSC proliferation prevents stress-induced hair greying. Our studies demonstrate that acute stress-induced neuronal activity can drive rapid and permanent loss of somatic stem cells, and illustrate an example in which somatic stem cell maintenance is directly influenced by the overall physiological state of the organism.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Sai Ma
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Megan He
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Pankaj Baral
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Sekyu Choi
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - William A Gonçalves
- Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Eva M Fast
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yiqun Su
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Thiago M Cunha
- Department of Immunology, Harvard Medical School, Boston, MA, USA.,Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
113
|
Wang YC, Galeffi F, Wang W, Li X, Lu L, Sheng H, Hoffmann U, Turner DA, Yang W. Chemogenetics-mediated acute inhibition of excitatory neuronal activity improves stroke outcome. Exp Neurol 2020; 326:113206. [PMID: 31962128 DOI: 10.1016/j.expneurol.2020.113206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke significantly perturbs neuronal homeostasis leading to a cascade of pathologic events causing brain damage. In this study, we assessed acute stroke outcome after chemogenetic inhibition of forebrain excitatory neuronal activity. METHODS We generated hM4Di-TG transgenic mice expressing the inhibitory hM4Di, a Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic receptor, in forebrain excitatory neurons. Clozapine-N-oxide (CNO) was used to activate hM4Di DREADD. Ischemic stroke was induced by transient occlusion of the middle cerebral artery. Neurologic function and infarct volumes were evaluated. Excitatory neuronal suppression in the hM4Di-TG mouse forebrain was assessed electrophysiologically in vitro and in vivo, based on evoked synaptic responses, and in vivo based on occurrence of potassium-induced cortical spreading depolarizations. RESULTS Detailed characterization of hM4Di-TG mice confirmed that evoked synaptic responses in both in vitro hippocampal slices and in vivo motor cortex were significantly reduced after CNO-mediated activation of the inhibitory hM4Di DREADD. Further, CNO treatment had no obvious effects on physiology and motor function in either control or hM4Di-TG mice. Importantly, hM4Di-TG mice treated with CNO at either 10 min before ischemia or 30 min after reperfusion exhibited significantly improved neurologic function and smaller infarct volumes compared to CNO-treated control mice. Mechanistically, we showed that potassium-induced cortical spreading depression episodes were inhibited, including frequency and duration of DC shift, in CNO-treated hM4Di-TG mice. CONCLUSIONS Our data demonstrate that acute inhibition of a subset of excitatory neurons after ischemic stroke can prevent brain injury and improve functional outcome. This study, together with the previous work in optogenetic neuronal modulation during the chronic phase of stroke, supports the notion that targeting neuronal activity is a promising strategy in stroke therapy.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | | - Wei Wang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Anesthesiology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Xuan Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Liping Lu
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ulrike Hoffmann
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Dennis A Turner
- Research and Surgery Services, Durham VAMC, Durham, NC, USA; Departments of Neurosurgery, Neurobiology and Biomedical Engineering, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
114
|
Deftu AF, Suter MR. Glia and Pain in Spinal Cord. THE SENSES: A COMPREHENSIVE REFERENCE 2020:235-248. [DOI: 10.1016/b978-0-12-809324-5.24214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
115
|
Zhu B, Eom J, Hunt RF. Transplanted interneurons improve memory precision after traumatic brain injury. Nat Commun 2019; 10:5156. [PMID: 31727894 PMCID: PMC6856380 DOI: 10.1038/s41467-019-13170-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Repair of the traumatically injured brain has been envisioned for decades, but regenerating new neurons at the site of brain injury has been challenging. We show GABAergic progenitors, derived from the embryonic medial ganglionic eminence, migrate long distances following transplantation into the hippocampus of adult mice with traumatic brain injury, functionally integrate as mature inhibitory interneurons and restore post-traumatic decreases in synaptic inhibition. Grafted animals had improvements in memory precision that were reversed by chemogenetic silencing of the transplanted neurons and a long-lasting reduction in spontaneous seizures. Our results reveal a striking ability of transplanted interneurons for incorporating into injured brain circuits, and this approach is a powerful therapeutic strategy for correcting post-traumatic memory and seizure disorders.
Collapse
Affiliation(s)
- Bingyao Zhu
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Jisu Eom
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
116
|
Lee D, Krishnan B, Zhang H, Park HR, Ro EJ, Jung YN, Suh H. Activity of hippocampal adult-born neurons regulates alcohol withdrawal seizures. JCI Insight 2019; 4:128770. [PMID: 31578307 DOI: 10.1172/jci.insight.128770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/31/2019] [Indexed: 01/12/2023] Open
Abstract
Alcohol withdrawal (AW) after chronic alcohol exposure produces a series of symptoms, with AW-associated seizures being among the most serious and dangerous. However, the mechanism underlying AW seizures has yet to be established. In our mouse model, a sudden AW produced 2 waves of seizures: the first wave includes a surge of multiple seizures that occurs within hours to days of AW, and the second wave consists of sustained expression of epileptiform spikes and wave discharges (SWDs) during a protracted period of abstinence. We revealed that the structural and functional adaptations in newborn dentate granule cells (DGCs) in the hippocampus underlie the second wave of seizures but not the first wave. While the general morphology of newborn DGCs remained unchanged, AW increased the dendritic spine density of newborn DGCs, suggesting that AW induced synaptic connectivity of newborn DGCs with excitatory afferent neurons and enhanced excitability of newborn DGCs. Indeed, specific activation and suppression of newborn DGCs by the chemogenetic DREADD method increased and decreased the expression of epileptiform SWDs, respectively, during abstinence. Thus, our study unveiled that the pathological plasticity of hippocampal newborn DGCs underlies AW seizures during a protracted period of abstinence, providing critical insight into hippocampal neural circuits as a foundation to understand and treat AW seizures.
Collapse
Affiliation(s)
| | - Balu Krishnan
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | - Yu-Na Jung
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
117
|
Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. J Neurosci 2019; 39:8929-8939. [PMID: 31548232 DOI: 10.1523/jneurosci.1032-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 02/03/2023] Open
Abstract
The histaminergic neurons of the tuberomammillary nucleus (TMNHDC) of the posterior hypothalamus have long been implicated in promoting arousal. More recently, a role for GABAergic signaling by the TMNHDC neurons in arousal control has been proposed. Here, we investigated the effects of selective chronic disruption of GABA synthesis (via genetic deletion of the GABA synthesis enzyme, glutamic acid decarboxylase 67) or GABAergic transmission (via genetic deletion of the vesicular GABA transporter (VGAT)) in the TMNHDC neurons on sleep-wake in male mice. We also examined the effects of acute chemogenetic activation and optogenetic inhibition of TMNHDC neurons upon arousal in male mice. Unexpectedly, we found that neither disruption of GABA synthesis nor GABAergic transmission altered hourly sleep-wake quantities, perhaps because very few TMNHDC neurons coexpressed VGAT. Acute chemogenetic activation of TMNHDC neurons did not increase arousal levels above baseline but did enhance vigilance when the mice were exposed to a behavioral cage change challenge. Similarly, acute optogenetic inhibition had little effect upon baseline levels of arousal. In conclusion, we could not identify a role for GABA release by TMNHDC neurons in arousal control. Further, if TMNHDC neurons do release GABA, the mechanism by which they do so remains unclear. Our findings support the view that TMNHDC neurons may be important for enhancing arousal under certain conditions, such as exposure to a novel environment, but play only a minor role in behavioral and EEG arousal under baseline conditions.SIGNIFICANCE STATEMENT The histaminergic neurons of the tuberomammillary nucleus of the hypothalamus (TMNHDC) have long been thought to promote arousal. Additionally, TMNHDC neurons may counter-regulate the wake-promoting effects of histamine through co-release of the inhibitory neurotransmitter, GABA. Here, we show that impairing GABA signaling from TMNHDC neurons does not impact sleep-wake amounts and that few TMNHDC neurons contain the vesicular GABA transporter, which is presumably required to release GABA. We further show that acute activation or inhibition of TMNHDC neurons has limited effects upon baseline arousal levels and that activation enhances vigilance during a behavioral challenge. Counter to general belief, our findings support the view that TMNHDC neurons are neither necessary nor sufficient for the initiation and maintenance of arousal under baseline conditions.
Collapse
|
118
|
Panthi S, Leitch B. The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the cortico-thalamocortical network on seizure generation and behaviour. Neurobiol Dis 2019; 132:104610. [PMID: 31494287 DOI: 10.1016/j.nbd.2019.104610] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Feed-forward inhibition (FFI) is an essential mechanism within the brain, to regulate neuronal firing and prevent runaway excitation. In the cortico-thalamocortical (CTC) network, fast spiking parvalbumin-expressing (PV+) inhibitory interneurons regulate the firing of pyramidal cells in the cortex and relay neurons in the thalamus. PV+ interneuron dysfunction has been implicated in several neurological disorders, including epilepsy. Previously, we demonstrated that loss of excitatory AMPA-receptors, specifically at synapses on PV+ interneurons in CTC feedforward microcircuits, occurs in the stargazer mouse model of absence epilepsy. These mice present with absence seizures characterized by spike and wave discharges (SWDs) on electroencephalogram (EEG) and concomitant behavioural arrest, similar to childhood absence epilepsy. The aim of the current study was to investigate the impact of loss of FFI within the CTC on absence seizure generation and behaviour using new Designer Receptor Exclusively Activated by Designer Drug (DREADD) technology. We crossed PV-Cre mice with Cre-dependent hM4Di DREADD strains of mice, which allowed Cre-recombinase-mediated restricted expression of inhibitory Gi-DREADDs in PV+ interneurons. We then tested the impact of global and focal (within the CTC network) silencing of PV+ interneurons. CNO mediated silencing of all PV+ interneurons by intraperitoneal injection caused the impairment of motor control, decreased locomotion and increased anxiety in a dose-dependent manner. Such silencing generated pathological oscillations similar to absence-like seizures. Focal silencing of PV+ interneurons within cortical or thalamic feedforward microcircuits, induced SWD-like oscillations and associated behavioural arrest. Epileptiform activity on EEG appeared significantly sooner after focal injection compared to peripheral injection of CNO. However, the mean duration of each oscillatory burst and spike frequency was similar, irrespective of mode of CNO delivery. No significant changes were observed in vehicle-treated or non-DREADD wild-type control animals. These data suggest that dysfunctional feed-forward inhibition in CTC microcircuits may be an important target for future therapy strategies for some patients with absence seizures. Additionally, silencing of PV+ interneurons in other brain regions may contribute to anxiety related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
119
|
Tunc-Ozcan E, Peng CY, Zhu Y, Dunlop SR, Contractor A, Kessler JA. Activating newborn neurons suppresses depression and anxiety-like behaviors. Nat Commun 2019; 10:3768. [PMID: 31434877 PMCID: PMC6704083 DOI: 10.1038/s41467-019-11641-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
The etiology of major depressive disorder (MDD), the leading cause of worldwide disability, is unknown. The neurogenic hypothesis proposes that MDD is linked to impairments of adult neurogenesis in the hippocampal dentate gyrus (DG), while the effects of antidepressants are mediated by increased neurogenesis. However, alterations in neurogenesis and endophenotypes are not always causally linked, and the relationship between increased neurogenesis and altered behavior is controversial. To address causality, we used chemogenetics in transgenic mice to selectively manipulate activity of newborn DG neurons. Suppressing excitability of newborn neurons without altering neurogenesis abolish the antidepressant effects of fluoxetine. Remarkably, activating these neurons is sufficient to alleviate depression-like behavior and reverse the adverse effects of unpredictable chronic mild stress. Our results demonstrate a direct causal relationship between newborn neuronal activity and affective behavior. Thus, strategies that target not only neurogenesis but also activity of newborn neurons may lead to more effective antidepressants. It is unclear if there is a causal link between increased neurogenesis and altered affective behaviors in major depressive disorders. Here, the authors show that selectively suppressing the excitability of newborn neurons, without altering neurogenesis, abolishes the antidepressant effects of fluoxetine.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Chian-Yu Peng
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yiwen Zhu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sara R Dunlop
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anis Contractor
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
120
|
V2a Neurons Constrain Extradiaphragmatic Respiratory Muscle Activity at Rest. eNeuro 2019; 6:ENEURO.0492-18.2019. [PMID: 31324674 PMCID: PMC6709210 DOI: 10.1523/eneuro.0492-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 02/01/2023] Open
Abstract
Breathing requires precise control of respiratory muscles to ensure adequate ventilation. Neurons within discrete regions of the brainstem produce oscillatory activity to control the frequency of breathing. Less is understood about how spinal and pontomedullary networks modulate the activity of respiratory motor neurons to produce different patterns of activity during different behaviors (i.e., during exercise, coughing, swallowing, vocalizing, or at rest) or following disease or injury. Here, we use a chemogenetic approach to inhibit the activity of glutamatergic V2a neurons in the brainstem and spinal cord of neonatal and adult mice to assess their potential roles in respiratory rhythm generation and patterning respiratory muscle activity. Using whole-body plethysmography (WBP), we show that V2a neuron function is required in neonatal mice to maintain the frequency and regularity of respiratory rhythm. However, silencing V2a neurons in adult mice increases respiratory frequency and ventilation, without affecting regularity. Thus, the excitatory drive provided by V2a neurons is less critical for respiratory rhythm generation in adult compared to neonatal mice. In addition, we used simultaneous EMG recordings of the diaphragm and extradiaphragmatic respiratory muscles in conscious adult mice to examine the role of V2a neurons in patterning respiratory muscle activity. We find that silencing V2a neurons activates extradiaphragmatic respiratory muscles at rest, when they are normally inactive, with little impact on diaphragm activity. Thus, our results indicate that V2a neurons participate in a circuit that serves to constrain the activity of extradiaphragmatic respiratory muscles so that they are active only when needed.
Collapse
|
121
|
Akhmedov D, Kirkby NS, Mitchell JA, Berdeaux R. Imaging of Tissue-Specific and Temporal Activation of GPCR Signaling Using DREADD Knock-In Mice. Methods Mol Biol 2019; 1947:361-376. [PMID: 30969428 DOI: 10.1007/978-1-4939-9121-1_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Engineered G protein-coupled receptors (DREADDs, designer receptors exclusively activated by designer drugs) are convenient tools for specific activation of GPCR signaling in many cell types. DREADDs have been utilized as research tools to study numerous cellular and physiologic processes, including regulation of neuronal activity, behavior, and metabolism. Mice with random insertion transgenes and adeno-associated viruses have been widely used to express DREADDs in individual cell types. We recently created and characterized ROSA26-GsDREADD knock-in mice to allow Cre recombinase-dependent expression of a Gαs-coupled DREADD (GsD) fused to GFP in distinct cell populations in vivo. These animals also harbor a CREB-activated luciferase reporter gene for analysis of CREB activity by in vivo imaging, ex vivo imaging, or biochemical reporter assays. In this chapter, we provide detailed methods for breeding GsD animals, inducing GsD expression, stimulating GsD activity, and measuring basal and stimulated CREB reporter bioluminescence in tissues in vivo, ex vivo, and in vitro. These animals are available from our laboratory for non-profit research.
Collapse
Affiliation(s)
- Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jane A Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
122
|
Roth BL. How structure informs and transforms chemogenetics. Curr Opin Struct Biol 2019; 57:9-16. [DOI: 10.1016/j.sbi.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
123
|
Caron A, Reynolds RP, Castorena CM, Michael NJ, Lee CE, Lee S, Berdeaux R, Scherer PE, Elmquist JK. Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Mol Metab 2019; 27:11-21. [PMID: 31279640 PMCID: PMC6717754 DOI: 10.1016/j.molmet.2019.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/24/2023] Open
Abstract
Objective The sympathetic nervous system (SNS) is a key regulator of the metabolic and endocrine functions of adipose tissue. Increased SNS outflow promotes fat mobilization, stimulates non-shivering thermogenesis, promotes browning, and inhibits leptin production. Most of these effects are attributed to norepinephrine activation of the Gs-coupled beta adrenergic receptors located on the surface of the adipocytes. Evidence suggests that other adrenergic receptor subtypes, including the Gi-coupled alpha 2 adrenergic receptors might also mediate the SNS effects on adipose tissue. However, the impact of acute stimulation of adipocyte Gs and Gi has never been reported. Methods We harness the power of chemogenetics to develop unique mouse models allowing the specific and spatiotemporal stimulation of adipose tissue Gi and Gs signaling. We evaluated the impact of chemogenetic stimulation of these pathways on glucose homeostasis, lipolysis, leptin production, and gene expression. Results Stimulation of Gs signaling in adipocytes induced rapid and sustained hypoglycemia. These hypoglycemic effects were secondary to increased insulin release, likely consequent to increased lipolysis. Notably, we also observed differences in gene regulation and ex vivo lipolysis in different adipose depots. In contrast, acute stimulation of Gi signaling in adipose tissue did not affect glucose metabolism or lipolysis, but regulated leptin production. Conclusion Our data highlight the significance of adipose Gs signaling in regulating systemic glucose homeostasis. We also found previously unappreciated heterogeneity across adipose depots following acute stimulation. Together, these results highlight the complex interactions of GPCR signaling in adipose tissue and demonstrate the usefulness of chemogenetic technology to better understand adipocyte function. Chemogenetic stimulation of Gs signaling in adipose tissue potently induces hypoglycemia in mice. The magnitude by which adipose Gs stimulation reduces blood glucose is similar to the hypoglycemic effects of insulin. Chemogenetic stimulation of Gs signaling in adipose tissue ex vivo stimulates lipolysis. Chemogenetic stimulation of adipose Gi signaling does not affect glycemia or lipolysis, but increases leptin levels. Our data demonstrate the usefulness of chemogenetic technology to understand adipocytes functions.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ryan P Reynolds
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos M Castorena
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalie J Michael
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte E Lee
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, Center for Metabolic and Degenerative Diseases at the Brown Foundation, Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K Elmquist
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
124
|
Zhu L, Dattaroy D, Pham J, Wang L, Barella LF, Cui Y, Wilkins KJ, Roth BL, Hochgeschwender U, Matschinsky FM, Kaestner KH, Doliba NM, Wess J. Intra-islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 2019; 5:127994. [PMID: 31012868 DOI: 10.1172/jci.insight.127994] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucagon, a hormone released from pancreatic alpha-cells, plays a key role in maintaining proper glucose homeostasis and has been implicated in the pathophysiology of diabetes. In vitro studies suggest that intra-islet glucagon can modulate the function of pancreatic beta-cells. However, because of the lack of suitable experimental tools, the in vivo physiological role of this intra-islet cross-talk has remained elusive. To address this issue, we generated a novel mouse model that selectively expressed an inhibitory designer G protein-coupled receptor (Gi DREADD) in α-cells only. Drug-induced activation of this inhibitory designer receptor almost completely shut off glucagon secretion in vivo, resulting in significantly impaired insulin secretion, hyperglycemia, and glucose intolerance. Additional studies with mouse and human islets indicated that intra-islet glucagon stimulates insulin release primarily by activating β-cell GLP-1 receptors. These new findings strongly suggest that intra-islet glucagon signaling is essential for maintaining proper glucose homeostasis in vivo. Our work may pave the way toward the development of novel classes of antidiabetic drugs that act by modulating intra-islet cross-talk between α- and β-cells.
Collapse
Affiliation(s)
- Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diptadip Dattaroy
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Lingdi Wang
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Kenneth J Wilkins
- Biostatistics Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Ute Hochgeschwender
- Neuroscience Program and College of Medicine, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Franz M Matschinsky
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolai M Doliba
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
125
|
Mironova E, Suliman F, Stockand JD. Renal Na + excretion consequent to pharmacogenetic activation of G q-DREADD in principal cells. Am J Physiol Renal Physiol 2019; 316:F758-F767. [PMID: 30724104 PMCID: PMC6483033 DOI: 10.1152/ajprenal.00612.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Stimulation of metabotropic Gq-coupled purinergic P2Y2 receptors decreases activity of the epithelial Na+ channel (ENaC) in renal principal cells of the distal nephron. The physiological consequences of P2Y2 receptor signaling disruption in the P2Y2 receptor knockout mouse are decreased Na+ excretion and increased arterial blood pressure. However, because of the global nature of this knockout model, the quantitative contribution of ENaC and distal nephron compared with that of upstream renal vascular and tubular elements to changes in urinary excretion and arterial blood pressure is obscure. Moreover, it is uncertain whether stimulation of P2Y2 receptor inhibition of ENaC is sufficient to drive renal (urinary) Na+ excretion (UNaV). Here, using a pharmacogenetic approach and selective agonism of the P2Y2 receptor, we test the sufficiency of targeted stimulation of Gq signaling in principal cells of the distal nephron and P2Y2 receptors to increase UNaV. Selective stimulation of the P2Y2 receptor with the ligand MRS2768 decreased ENaC activity in freshly isolated tubules (as assessed by patch-clamp electrophysiology) and increased UNaV (as assessed in metabolic cages). Similarly, selective agonism of hM3Dq-designer receptors exclusively activated by designer drugs (DREADD) restrictively expressed in principal cells of the distal nephron with clozapine- N-oxide decreased ENaC activity and, consequently, increased UNaV. Clozapine- N-oxide, when applied to control littermates, failed to affect ENaC and UNaV. This study represents the first use of pharmacogenetic (DREADD) technology in the renal tubule and demonstrated that selective activation of the P2Y2 receptor and Gq signaling in principal cells is sufficient to promote renal salt excretion.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Faroug Suliman
- Division of Nephrology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
126
|
Cheng Y, Wang J. The use of chemogenetic approaches in alcohol use disorder research and treatment. Alcohol 2019; 74:39-45. [PMID: 30442535 DOI: 10.1016/j.alcohol.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 02/09/2023]
Abstract
Several novel techniques were developed recently to explore neural circuit mechanisms of neuropsychiatric disorders. These techniques include the Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic tools, which represent valuable platforms for selective and non-invasive control of neural activity with a high degree of spatial resolution. Among all variants, Gq- and Gi-DREADDs are widely used by neuroscientists to dissect out the circuitry and cellular signals. This review is focused on strategies to access a specific neuronal population or circuit using the DREADD technique and summarizes the current knowledge of the DREADDs' application in alcohol use disorder research and therapeutics.
Collapse
|
127
|
Alhadeff AL, Su Z, Hernandez E, Klima ML, Phillips SZ, Holland RA, Guo C, Hantman AW, De Jonghe BC, Betley JN. A Neural Circuit for the Suppression of Pain by a Competing Need State. Cell 2019; 173:140-152.e15. [PMID: 29570993 DOI: 10.1016/j.cell.2018.02.057] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 02/21/2018] [Indexed: 12/25/2022]
Abstract
Hunger and pain are two competing signals that individuals must resolve to ensure survival. However, the neural processes that prioritize conflicting survival needs are poorly understood. We discovered that hunger attenuates behavioral responses and affective properties of inflammatory pain without altering acute nociceptive responses. This effect is centrally controlled, as activity in hunger-sensitive agouti-related protein (AgRP)-expressing neurons abrogates inflammatory pain. Systematic analysis of AgRP projection subpopulations revealed that the neural processing of hunger and inflammatory pain converge in the hindbrain parabrachial nucleus (PBN). Strikingly, activity in AgRP → PBN neurons blocked the behavioral response to inflammatory pain as effectively as hunger or analgesics. The anti-nociceptive effect of hunger is mediated by neuropeptide Y (NPY) signaling in the PBN. By investigating the intersection between hunger and pain, we have identified a neural circuit that mediates competing survival needs and uncovered NPY Y1 receptor signaling in the PBN as a target for pain suppression.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhenwei Su
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elen Hernandez
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle L Klima
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophie Z Phillips
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruby A Holland
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
128
|
Gq-Coupled Muscarinic Receptor Enhancement of KCNQ2/3 Channels and Activation of TRPC Channels in Multimodal Control of Excitability in Dentate Gyrus Granule Cells. J Neurosci 2018; 39:1566-1587. [PMID: 30593498 DOI: 10.1523/jneurosci.1781-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
KCNQ (Kv7, "M-type") K+ channels and TRPC (transient receptor potential, "canonical") cation channels are coupled to neuronal discharge properties and are regulated via Gq/11-protein-mediated signals. Stimulation of Gq/11-coupled receptors both consumes phosphatidylinositol 4,5-bisphosphate (PIP2) via phosphalipase Cβ hydrolysis and stimulates PIP2 synthesis via rises in Ca2+ i and other signals. Using brain-slice electrophysiology and Ca2+ imaging from male and female mice, we characterized threshold K+ currents in dentate gyrus granule cells (DGGCs) and CA1 pyramidal cells, the effects of Gq/11-coupled muscarinic M1 acetylcholine (M1R) stimulation on M current and on neuronal discharge properties, and elucidated the intracellular signaling mechanisms involved. We observed disparate signaling cascades between DGGCs and CA1 neurons. DGGCs displayed M1R enhancement of M-current, rather than suppression, due to stimulation of PIP2 synthesis, which was paralleled by increased PIP2-gated G-protein coupled inwardly rectifying K+ currents as well. Deficiency of KCNQ2-containing M-channels ablated the M1R-induced enhancement of M-current in DGGCs. Simultaneously, M1R stimulation in DGGCs induced robust increases in [Ca2+]i, mostly due to TRPC currents, consistent with, and contributing to, neuronal depolarization and hyperexcitability. CA1 neurons did not display such multimodal signaling, but rather M current was suppressed by M1R stimulation in these cells, similar to the previously described actions of M1R stimulation on M-current in peripheral ganglia that mostly involves PIP2 depletion. Therefore, these results point to a pleiotropic network of cholinergic signals that direct cell-type-specific, precise control of hippocampal function with strong implications for hyperexcitability and epilepsy.SIGNIFICANCE STATEMENT At the neuronal membrane, protein signaling cascades consisting of ion channels and metabotropic receptors govern the electrical properties and neurotransmission of neuronal networks. Muscarinic acetylcholine receptors are G-protein-coupled metabotropic receptors that control the excitability of neurons through regulating ion channels, intracellular Ca2+ signals, and other second-messenger cascades. We have illuminated previously unknown actions of muscarinic stimulation on the excitability of hippocampal principal neurons that include M channels, TRPC (transient receptor potential, "canonical") cation channels, and powerful regulation of lipid metabolism. Our results show that these signaling pathways, and mechanisms of excitability, are starkly distinct between peripheral ganglia and brain, and even between different principal neurons in the hippocampus.
Collapse
|
129
|
Yudin Y, Rohacs T. Inhibitory G i/O-coupled receptors in somatosensory neurons: Potential therapeutic targets for novel analgesics. Mol Pain 2018; 14:1744806918763646. [PMID: 29580154 PMCID: PMC5882016 DOI: 10.1177/1744806918763646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary sensory neurons in the dorsal root ganglia and trigeminal ganglia are responsible for sensing mechanical and thermal stimuli, as well as detecting tissue damage. These neurons express ion channels that respond to thermal, mechanical, or chemical cues, conduct action potentials, and mediate transmitter release. These neurons also express a large number of G-protein coupled receptors, which are major transducers for extracellular signaling molecules, and their activation usually modulates the primary transduction pathways. Receptors that couple to phospholipase C via heterotrimeric Gq/11 proteins and those that activate adenylate cyclase via Gs are considered excitatory; they positively regulate somatosensory transduction and they play roles in inflammatory sensitization and pain, and in some cases also in inducing itch. On the other hand, receptors that couple to Gi/o proteins, such as opioid or GABAB receptors, are generally inhibitory. Their activation counteracts the effect of Gs-stimulation by inhibiting adenylate cyclase, as well as exerts effects on ion channels, usually resulting in decreased excitability. This review will summarize knowledge on Gi-coupled receptors in sensory neurons, focusing on their roles in ion channel regulation and discuss their potential as targets for analgesic and antipruritic medications.
Collapse
Affiliation(s)
- Yevgen Yudin
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tibor Rohacs
- 1 Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
130
|
Abstract
Chemogenetic technologies enable selective pharmacological control of specific cell populations. An increasing number of approaches have been developed that modulate different signaling pathways. Selective pharmacological control over G protein-coupled receptor signaling, ion channel conductances, protein association, protein stability, and small molecule targeting allows modulation of cellular processes in distinct cell types. Here, we review these chemogenetic technologies and instances of their applications in complex tissues in vivo and ex vivo.
Collapse
Affiliation(s)
- Deniz Atasoy
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| | - Scott M Sternson
- Department of Physiology, School of Medicine and Regenerative-Restorative Medicine Research Center (REMER), Istanbul Medipol University , Istanbul , Turkey ; and Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia
| |
Collapse
|
131
|
Jaiswal PB, Mistretta OC, Ward PJ, English AW. Chemogenetic Enhancement of Axon Regeneration Following Peripheral Nerve Injury in the SLICK-A Mouse. Brain Sci 2018; 8:brainsci8050093. [PMID: 29786639 PMCID: PMC5977084 DOI: 10.3390/brainsci8050093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
The effects of chemogenetics on axon regeneration following peripheral nerve transection and repair were studied in mice expressing a Cre-dependent excitatory designer receptor exclusively activated by designer drugs (DREADD) and Cre-recombinase/yellow fluorescent protein (YFP) in a subset of motor and sensory neurons and cortical motoneurons (SLICK-A). Sciatic nerves were cut and repaired and mice were treated either once, at the time of injury, or five days per week for two weeks with clozapine N-oxide (CNO) (1 mg/kg, i.p.), or were untreated controls. Two weeks after injury, the lengths of YFP+ axon profiles were measured in nerves harvested from euthanized animals. Compared to untreated controls, regenerating axon lengths were not significantly longer in mice treated only once with CNO, but they were more than three times longer in mice receiving CNO repeatedly. Based on results of retrograde labeling experiments, axons of more sensory and motor neurons had regenerated successfully in mice receiving multiple CNO treatments than animals receiving only one treatment or no treatments. The increase in numbers of labeled sensory, but not motor neurons could be accounted for by increases in the proportion of retrogradely labeled neurons also expressing the DREADD. Chemogenetic increases in neuronal excitability represent a potent and innovative treatment to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam B Jaiswal
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Olivia C Mistretta
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Patricia J Ward
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
132
|
WT1-Expressing Interneurons Regulate Left-Right Alternation during Mammalian Locomotor Activity. J Neurosci 2018; 38:5666-5676. [PMID: 29789381 DOI: 10.1523/jneurosci.0328-18.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/12/2018] [Accepted: 05/12/2018] [Indexed: 12/31/2022] Open
Abstract
The basic pattern of activity underlying stepping in mammals is generated by a neural network located in the caudal spinal cord. Within this network, the specific circuitry coordinating left-right alternation has been shown to involve several groups of molecularly defined interneurons. Here we characterize a population of spinal neurons that express the Wilms' tumor 1 (WT1) gene and investigate their role during locomotor activity in mice of both sexes. We demonstrate that WT1-expressing cells are located in the ventromedial region of the spinal cord of mice and are also present in the human spinal cord. In the mouse, these cells are inhibitory, project axons to the contralateral spinal cord, terminate in close proximity to other commissural interneuron subtypes, and are essential for appropriate left-right alternation during locomotion. In addition to identifying WT1-expressing interneurons as a key component of the locomotor circuitry, this study provides insight into the manner in which several populations of molecularly defined interneurons are interconnected to generate coordinated motor activity on either side of the body during stepping.SIGNIFICANCE STATEMENT In this study, we characterize WT1-expressing spinal interneurons in mice and demonstrate that they are commissurally projecting and inhibitory. Silencing of this neuronal population during a locomotor task results in a complete breakdown of left-right alternation, whereas flexor-extensor alternation was not significantly affected. Axons of WT1 neurons are shown to terminate nearby commissural interneurons, which coordinate motoneuron activity during locomotion, and presumably regulate their activity. Finally, the WT1 gene is shown to be present in the spinal cord of humans, raising the possibility of functional homology between these species. This study not only identifies a key component of the locomotor circuitry but also begins to unravel the connectivity among the growing number of molecularly defined interneurons that comprise this neural network.
Collapse
|
133
|
Zenchak JR, Palmateer B, Dorka N, Brown TM, Wagner LM, Medendorp WE, Petersen ED, Prakash M, Hochgeschwender U. Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson's disease mouse model. J Neurosci Res 2018; 98:458-468. [PMID: 29577367 DOI: 10.1002/jnr.24237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
The need to develop efficient therapies for neurodegenerative diseases is urgent, especially given the increasing percentages of the population living longer, with increasing chances of being afflicted with conditions like Parkinson's disease (PD). A promising curative approach toward PD and other neurodegenerative diseases is the transplantation of stem cells to halt and potentially reverse neuronal degeneration. However, stem cell therapy does not consistently lead to improvement for patients. Using remote stimulation to optogenetically activate transplanted cells, we attempted to improve behavioral outcomes of stem cell transplantation. We generated a neuronal precursor cell line expressing luminopsin 3 (LMO3), a luciferase-channelrhodopsin fusion protein, which responds to the luciferase substrate coelenterazine (CTZ) with emission of blue light that in turn activates the opsin. Neuronal precursor cells were injected bilaterally into the striatum of homozygous aphakia mice, which carry a spontaneous mutation leading to lack of dopaminergic neurons and symptoms of PD. Following transplantation, the cells were stimulated over a period of 10 days by intraventricular injections of CTZ. Mice receiving CTZ demonstrated significantly improved motor skills in a rotarod test compared to mice receiving vehicle. Thus, bioluminescent optogenetic stimulation of transplanted neuronal precursor cells shows promising effects in improving locomotor behavior in the aphakia PD mouse model and encourages further studies to elucidate the mechanisms and long-term outcomes of these beneficial effects.
Collapse
Affiliation(s)
- Jessica R Zenchak
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Brandon Palmateer
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Nicolai Dorka
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Tariq M Brown
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Lina-Marie Wagner
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | | | - Eric D Petersen
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Mansi Prakash
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| |
Collapse
|
134
|
Grace PM, Wang X, Strand KA, Baratta MV, Zhang Y, Galer EL, Yin H, Maier SF, Watkins LR. DREADDed microglia in pain: Implications for spinal inflammatory signaling in male rats. Exp Neurol 2018. [PMID: 29530713 DOI: 10.1016/j.expneurol.2018.03.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The absence of selective pharmacological tools is a major barrier to the in vivo study of microglia. To address this issue, we developed a Gq- and Gi-coupled Designer Receptor Exclusively Activated by a Designer Drug (DREADD) to enable selective stimulation or inhibition of microglia, respectively. DREADDs under a CD68 (microglia/macrophage) promoter were intrathecally transfected via an AAV9 vector. Naïve male rats intrathecally transfected with Gq (stimulatory) DREADDs exhibited significant allodynia following intrathecal administration of the DREADD-selective ligand clozapine-N-oxide (CNO), which was abolished by intrathecal interleukin-1 receptor antagonist. Chronic constriction injury-induced allodynia was attenuated by intrathecal CNO in male rats intrathecally transfected with Gi (inhibitory) DREADDs. To explore mechanisms, BV2 cells were stably transfected with Gq or Gi DREADDs in vitro. CNO treatment induced pro-inflammatory mediator production per se from cells expressing Gq-DREADDs, and inhibited lipopolysaccharide- and CCL2-induced inflammatory signaling from cells expressing Gi-DREADDs. These studies are the first to manipulate microglia function using DREADDs, which allow the role of glia in pain to be conclusively demonstrated, unconfounded by neuronal off-target effects that exist for all other drugs that also inhibit glia. Hence, these studies are the first to conclusively demonstrate that in vivo stimulation of resident spinal microglia in intact spinal cord is a) sufficient for allodynia, and b) necessary for allodynia induced by peripheral nerve injury. DREADDs are a unique tool to selectively explore the physiological and pathological role of microglia in vivo.
Collapse
Affiliation(s)
- Peter M Grace
- Department of Psychology and Neuroscience, The Center for Neuroscience, University of Colorado, Boulder, CO, USA; Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Xiaohui Wang
- Department of Psychology and Neuroscience, The Center for Neuroscience, University of Colorado, Boulder, CO, USA; Department of Chemistry and Biochemistry, BioFrontiers Institute, The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Keith A Strand
- Department of Psychology and Neuroscience, The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Yingning Zhang
- Department of Psychology and Neuroscience, The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Erika L Galer
- Department of Psychology and Neuroscience, The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Hang Yin
- Department of Chemistry and Biochemistry, BioFrontiers Institute, The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, The Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
135
|
Keenan WT, Fernandez DC, Shumway LJ, Zhao H, Hattar S. Eye-Drops for Activation of DREADDs. Front Neural Circuits 2017; 11:93. [PMID: 29218003 PMCID: PMC5703865 DOI: 10.3389/fncir.2017.00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are an important tool for modulating and understanding neural circuits. Depending on the DREADD system used, DREADD-targeted neurons can be activated or repressed in vivo following a dose of the DREADD agonist clozapine-N-oxide (CNO). Because DREADD experiments often involve behavioral assays, the method of CNO delivery is important. Currently, the most common delivery method is intraperitoneal (IP) injection. IP injection is both a fast and reliable technique, but it is painful and stressful particularly when many injections are required. We sought an alternative CNO delivery paradigm, which would retain the speed and reliability of IP injections without being as invasive. Here, we show that CNO can be effectively delivered topically via eye-drops. Eye-drops robustly activated DREADD-expressing neurons in the brain and peripheral tissues and does so at the same dosages as IP injection. Eye-drops provide an easier, less invasive and less stressful method for activating DREADDs in vivo.
Collapse
Affiliation(s)
- William T. Keenan
- Biology Department, Johns Hopkins University, Baltimore, MD, United States
| | - Diego C. Fernandez
- Biology Department, Johns Hopkins University, Baltimore, MD, United States
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lukas J. Shumway
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Haiqing Zhao
- Biology Department, Johns Hopkins University, Baltimore, MD, United States
| | - Samer Hattar
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
136
|
Resolving Behavioral Output via Chemogenetic Designer Receptors Exclusively Activated by Designer Drugs. J Neurosci 2017; 36:9268-82. [PMID: 27605603 DOI: 10.1523/jneurosci.1333-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) have proven to be highly effective neuromodulatory tools for the investigation of neural circuits underlying behavioral outputs. They exhibit a number of advantages: they rely on cell-specific manipulations through canonical intracellular signaling pathways, they are easy and cost-effective to implement in a laboratory setting, and they are easily scalable for single-region or full-brain manipulations. On the other hand, DREADDs rely on ligand-G-protein-coupled receptor interactions, leading to coarse temporal dynamics. In this review we will provide a brief overview of DREADDs, their implementation, and the advantages and disadvantages of their use in animal systems. We also will provide numerous examples of their use across a broad variety of biomedical research fields.
Collapse
|
137
|
Jiang J, Cui H, Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. Am J Physiol Regul Integr Comp Physiol 2017; 313:R633-R645. [PMID: 28794102 DOI: 10.1152/ajpregu.00091.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 12/29/2022]
Abstract
Remote and selective spatiotemporal control of the activity of neurons to regulate behavior and physiological functions has been a long-sought goal in system neuroscience. Identification and subsequent bioengineering of light-sensitive ion channels (e.g., channelrhodopsins, halorhodopsin, and archaerhodopsins) from the bacteria have made it possible to use light to artificially modulate neuronal activity, namely optogenetics. Recent advance in genetics has also allowed development of novel pharmacological tools to selectively and remotely control neuronal activity using engineered G protein-coupled receptors, which can be activated by otherwise inert drug-like small molecules such as the designer receptors exclusively activated by designer drug, a form of chemogenetics. The cutting-edge optogenetics and pharmacogenetics are powerful tools in neuroscience that allow selective and bidirectional modulation of the activity of defined populations of neurons with unprecedented specificity. These novel toolboxes are enabling significant advances in deciphering how the nervous system works and its influence on various physiological processes in health and disease. Here, we discuss the fundamental elements of optogenetics and chemogenetics approaches and some of the applications that yielded significant advances in various areas of neuroscience and beyond.
Collapse
Affiliation(s)
- Jingwei Jiang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Huxing Cui
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; .,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
138
|
Jaiswal PB, Tung JK, Gross RE, English AW. Motoneuron activity is required for enhancements in functional recovery after peripheral nerve injury in exercised female mice. J Neurosci Res 2017; 98:448-457. [PMID: 28771790 DOI: 10.1002/jnr.24109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023]
Abstract
Inhibitory luminopsins (iLMO2) integrate opto- and chemo-genetic approaches and allow for cell-type specific inhibition of neuronal activity. When exposed to a Renilla luciferase substrate, Coelenterazine (CTZ), iLMO2 generates bioluminescence-mediated activation of its amino-terminal halorhodopsin, resulting in neuronal inhibition. Moderate daily exercise in the form of interval treadmill-training (IT) applied following a peripheral nerve injury results in enhanced motor axon regeneration and muscle fiber reinnervation in female mice. We hypothesized that iLMO2 mediated inhibition of motoneuron activity during IT would block this enhancement. Unilateral intramuscular injections of Cre-dependent AAV2/9-EF1a-DIO-iLMO2 (∼8.5 x 1013 vg/ml) were made into the gastrocnemius and tibialis anterior muscles of young female ChAT-IRES-Cre mice, thereby limiting iLMO2 expression specifically to their motoneurons. Four to six weeks were allowed for retrograde viral transduction after which a unilateral sciatic nerve transection (Tx) and repair was performed. Animals were randomized into four groups: IT only, IT + CTZ, CTZ only, and untreated (UT). Three weeks post Tx-repair, the maximal amplitude direct muscle responses (M-max) in both muscles in the IT only group were significantly greater than in UT mice, consistent with the enhancing effects of this exercise regimen. Inhibiting motoneuron activity during exercise by a single injection of CTZ, administered 30 minutes prior to exercise, completely blocked the enhancing effect of exercise. Similar treatments with CTZ in mice without iLMO2 had no effect on regeneration. Neuronal activity is required for successful enhancement of motor axon regeneration by exercise.
Collapse
Affiliation(s)
- Poonam B Jaiswal
- Department of Cell Biology and Emory University, Atlanta, GA, USA
| | - Jack K Tung
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Arthur W English
- Department of Cell Biology and Emory University, Atlanta, GA, USA
| |
Collapse
|
139
|
Wang S, Lim J, Joseph J, Wang S, Wei F, Ro JY, Chung MK. Spontaneous and Bite-Evoked Muscle Pain Are Mediated by a Common Nociceptive Pathway With Differential Contribution by TRPV1. THE JOURNAL OF PAIN 2017; 18:1333-1345. [PMID: 28669862 DOI: 10.1016/j.jpain.2017.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/01/2017] [Accepted: 06/20/2017] [Indexed: 01/30/2023]
Abstract
Spontaneous pain and function-associated pain are prevalent symptoms of multiple acute and chronic muscle pathologies. We established mouse models for evaluating spontaneous pain and bite-evoked pain from masseter muscle, and determined the roles of transient receptor potential cation channel subfamily V member 1 (TRPV1) and the contribution of TRPV1- or neurokinin 1 (NK1)-dependent nociceptive pathways. Masseter muscle inflammation increased Mouse Grimace Scale scores and face-wiping behavior, which were attenuated by pharmacological or genetic inhibition of TRPV1. Masseter inflammation led to a significant reduction in bite force. Inhibition of TRPV1 only marginally relieved the inflammation-induced reduction of bite force. These results suggest a differential extent of contribution of TRPV1 to the 2 types of muscle pain. However, chemical ablation of TRPV1-expressing nociceptors or chemogenetic silencing of TRPV1-lineage nerve terminals in masseter muscle attenuated inflammation-induced changes in Mouse Grimace Scale scores as well as bite force. Furthermore, ablation of neurons expressing NK1 receptor in trigeminal subnucleus caudalis also prevented both types of muscle pain. Our results suggest that TRPV1 differentially contributes to spontaneous pain and bite-evoked muscle pain, but TRPV1-expressing afferents and NK1-expressing second-order neurons commonly mediate both types of muscle pain. Therefore, manipulation of the nociceptive circuit may provide a novel approach for management of acute or chronic craniofacial muscle pain. PERSPECTIVE We report the profound contribution of TRPV1 to spontaneous muscle pain but not to bite-evoked muscle pain. These 2 types of muscle pain are transmitted through a common nociceptive pathway. These results may help to develop new strategies to manage multiple modes of muscle pain simultaneously by manipulating pain circuits.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Jongseuk Lim
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - John Joseph
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Sen Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Feng Wei
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Jin Y Ro
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
140
|
Gs-DREADD Knock-In Mice for Tissue-Specific, Temporal Stimulation of Cyclic AMP Signaling. Mol Cell Biol 2017; 37:MCB.00584-16. [PMID: 28167604 PMCID: PMC5394278 DOI: 10.1128/mcb.00584-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
Hundreds of hormones and ligands stimulate cyclic AMP (cAMP) signaling in different tissues through the activation of G-protein-coupled receptors (GPCRs). Although the functions and individual effectors of cAMP signaling are well characterized in many tissues, pleiotropic effects of GPCR agonists limit investigations of physiological functions of cAMP signaling in individual cell types at different developmental stages in vivo. To facilitate studies of cAMP signaling in specific cell populations in vivo, we harnessed the power of DREADD (designer receptors exclusively activated by designer drugs) technology by creating ROSA26-based knock-in mice for the conditional expression of a Gs-coupled DREADD (rM3Ds-green fluorescent protein [GFP], or “GsD”). After Cre recombinase expression, GsD is activated temporally by the administration of the ligand clozapine N-oxide (CNO). In the same allele, we engineered a CREB-luciferase reporter transgene for noninvasive bioluminescence monitoring of CREB activity. After viral delivery of Cre recombinase to hepatocytes in vivo, GsD is expressed and allows CNO-dependent cAMP signaling and glycogen breakdown. The long-term expression of GsD in the liver results in constitutive CREB activity and hyperglycemia. ROSA26-Gs-DREADD mice can be used to study the physiological effects of cAMP signaling, acute or chronic, in liver or any tissue or cell type for which transgenic or viral Cre drivers are available.
Collapse
|
141
|
Dobrzanski G, Kossut M. Application of the DREADD technique in biomedical brain research. Pharmacol Rep 2017; 69:213-221. [DOI: 10.1016/j.pharep.2016.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/25/2022]
|
142
|
Jaiswal PB, English AW. Chemogenetic enhancement of functional recovery after a sciatic nerve injury. Eur J Neurosci 2017; 45:1252-1257. [PMID: 28244163 DOI: 10.1111/ejn.13550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools used to modulate neuronal excitability. We hypothesized that activation of excitatory (Gq) DREADD by its designer ligand, clozapine-N-oxide (CNO), would increase the excitability of neurons whose axons have been transected following peripheral nerve injury, and that this increase will lead to an enhanced functional recovery. The lateral gastrocnemius (LG) muscle of adult female Lewis rats was injected unilaterally with AAV9- hsyn- hM3Dq-mCherry (7.6 × 109 viral genomes/μL) to transduce Gq-DREADD expression in LG neurons. The contralateral LG muscle served as an uninjected control. No significant changes in either spontaneous EMG activity or electrically evoked direct muscle (M) responses were found in either muscle after injection of CNO (1 mg/kg, i.p.). The amplitude of monosynaptic H-reflexes in LG was increased after CNO treatment exclusively in muscles previously injected with virus, suggesting that Gq-DREADD activation increased neuronal excitability. After bilateral sciatic nerve transection and repair, additional rats were treated similarly with CNO for up to three days after injury. Electrophysiological data were collected at 2, 4 and 6 weeks after injury. Evoked EMG responses were observed as early as 2 weeks after injury only in Gq-DREADD expressing virus injected LG muscle. By 4 weeks after injury, both M-response and H-reflex amplitudes were significantly greater in muscles previously injected with viral vector than contralateral, uninjected muscles. Increases in the excitability of injured neurons produced by this novel use of Gq-DREADD were sufficient to promote an enhancement in functional recovery after a sciatic nerve injury.
Collapse
Affiliation(s)
- Poonam B Jaiswal
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, 30322, USA
| | - Arthur W English
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, 30322, USA
| |
Collapse
|
143
|
Xie AX, Lee JJ, McCarthy KD. Ganglionic GFAP + glial Gq-GPCR signaling enhances heart functions in vivo. JCI Insight 2017; 2:e90565. [PMID: 28138563 DOI: 10.1172/jci.insight.90565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system (SNS) accelerates heart rate, increases cardiac contractility, and constricts resistance vessels. The activity of SNS efferent nerves is generated by a complex neural network containing neurons and glia. Gq G protein-coupled receptor (Gq-GPCR) signaling in glial fibrillary acidic protein-expressing (GFAP+) glia in the central nervous system supports neuronal function and regulates neuronal activity. It is unclear how Gq-GPCR signaling in GFAP+ glia affects the activity of sympathetic neurons or contributes to SNS-regulated cardiovascular functions. In this study, we investigated whether Gq-GPCR activation in GFAP+ glia modulates the regulatory effect of the SNS on the heart; transgenic mice expressing Gq-coupled DREADD (designer receptors exclusively activated by designer drugs) (hM3Dq) selectively in GFAP+ glia were used to address this question in vivo. We found that acute Gq-GPCR activation in peripheral GFAP+ glia significantly accelerated heart rate and increased left ventricle contraction. Pharmacological experiments suggest that the glial-induced cardiac changes were due to Gq-GPCR activation in satellite glial cells within the sympathetic ganglion; this activation led to increased norepinephrine (NE) release and beta-1 adrenergic receptor activation within the heart. Chronic glial Gq-GPCR activation led to hypotension in female Gfap-hM3Dq mice. This study provides direct evidence that Gq-GPCR activation in peripheral GFAP+ glia regulates cardiovascular functions in vivo.
Collapse
|