101
|
Zhu YX, Zhang ML, Zhong Y, Wang C, Jia WP. Modulation Effect of Peroxisome Proliferator-Activated Receptor Agonists on Lipid Droplet Proteins in Liver. J Diabetes Res 2016; 2016:8315454. [PMID: 26770990 PMCID: PMC4684860 DOI: 10.1155/2016/8315454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 06/02/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists are used for treating hyperglycemia and type 2 diabetes. However, the mechanism of action of these agonists is still under investigation. The lipid droplet-associated proteins FSP27/CIDEC and LSDP5, regulated directly by PPARγ and PPARα, are associated with hepatic steatosis and insulin sensitivity. Here, we evaluated the expression levels of FSP27/CIDEC and LSDP5 and the regulation of these proteins by consumption of a high-fat diet (HFD) or administration of PPAR agonists. Mice with diet-induced obesity were treated with the PPARγ or PPARα agonist, pioglitazone or fenofibrate, respectively. Liver tissues from db/db diabetic mice and human were also collected. Interestingly, FSP27/CIEDC was expressed in mouse and human livers and was upregulated in obese C57BL/6J mice. Fenofibrate treatment decreased hepatic triglyceride (TG) content and FSP27/CIDEC protein expression in mice fed an HFD diet. In mice, LSDP5 was not detected, even in the context of insulin resistance or treatment with PPAR agonists. However, LSDP5 was highly expressed in humans, with elevated expression observed in the fatty liver. We concluded that fenofibrate greatly decreased hepatic TG content and FSP27/CIDEC protein expression in mice fed an HFD, suggesting a potential regulatory role for fenofibrate in the amelioration of hepatic steatosis.
Collapse
Affiliation(s)
- Yun-Xia Zhu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ming-Liang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Chen Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- *Chen Wang:
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Shanghai Key Laboratory of Diabetes Mellitus, 600 Yishan Road, Shanghai 200233, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
102
|
WANG MIN, ZHAO SHUIPING, TAN MINGYUE. bZIP transmembrane transcription factor CREBH: Potential role in non-alcoholic fatty liver disease (Review). Mol Med Rep 2015; 13:1455-62. [DOI: 10.3892/mmr.2015.4749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
|
103
|
Lee HJ, Choi JS, Lee HJ, Kim WH, Park SI, Song J. Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction. J Nutr Biochem 2015; 26:1414-23. [DOI: 10.1016/j.jnutbio.2015.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 06/19/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023]
|
104
|
Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism. Mol Cell Biol 2015; 35:4121-34. [PMID: 26438600 DOI: 10.1128/mcb.00665-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH.
Collapse
|
105
|
Cefalù AB, Spina R, Noto D, Valenti V, Ingrassia V, Giammanco A, Panno MD, Ganci A, Barbagallo CM, Averna MR. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2015; 35:2694-9. [PMID: 26427795 DOI: 10.1161/atvbaha.115.306170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cyclic AMP responsive element-binding protein 3-like 3 (CREB3L3) is a novel candidate gene for dominant hypertriglyceridemia. To date, only 4 kindred with dominant hypertriglyceridemia have been found to be carriers of 2 nonsense mutations in CREB3L3 gene (245fs and W46X). We investigated a family in which hypertriglyceridemia displayed an autosomal dominant pattern of inheritance. APPROACH AND RESULTS The proband was a 49-year-old woman with high plasma triglycerides (≤1300 mg/dL; 14.68 mmol/L). Her father had a history of moderate hypertriglyceridemia, and her 51-year-old brother had triglycerides levels as high as 1600 mg/dL (18.06 mmol/L). To identify the causal mutation in this family, we analyzed the candidate genes of recessive and dominant forms of primary hypertriglyceridemia by direct sequencing. The sequencing of CREB3L3 gene led to the discovery of a novel minute frame shift mutation in exon 3 of CREB3L3 gene, predicted to result in the formation of a truncated protein devoid of function (c.359delG-p.K120fsX20). Heterozygosity for the c.359delG mutation resulted in a severe phenotype occurring later in life in the proband and her brother and a good response to diet and a hypotriglyceridemic treatment. The same mutation was detected in a 13-year-old daughter who to date is normotriglyceridemic. CONCLUSIONS We have identified a novel pathogenic mutation in CREB3L3 gene in a family with dominant hypertriglyceridemia with a variable pattern of penetrance.
Collapse
Affiliation(s)
- Angelo B Cefalù
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Rossella Spina
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Davide Noto
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Vincenza Valenti
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Valeria Ingrassia
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Antonina Giammanco
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Maria D Panno
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Antonina Ganci
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Carlo M Barbagallo
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.)
| | - Maurizio R Averna
- From the Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS), University of Palermo, Palermo, Italy (A.B.C., R.S., D.N., V.I., A. Giammanco, M.D.P., A. Ganci, C.M.B., M.R.A.); and Molecular Biology Diagnostic Laboratory, Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP "Paolo Giaccone", Palermo, Italy (A.B.C., R.S., D.N., V.V., V.I., M.R.A.).
| |
Collapse
|
106
|
Pietrangelo A. Genetics, Genetic Testing, and Management of Hemochromatosis: 15 Years Since Hepcidin. Gastroenterology 2015; 149:1240-1251.e4. [PMID: 26164493 DOI: 10.1053/j.gastro.2015.06.045] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022]
Abstract
The discovery of hepcidin in 2000 and the subsequent unprecedented explosion of research and discoveries in the iron field have dramatically changed our understanding of human disorders of iron metabolism. Today, hereditary hemochromatosis, the paradigmatic iron-loading disorder, is recognized as an endocrine disease due to the genetic loss of hepcidin, the iron hormone produced by the liver. This syndrome is due to unchecked transfer of iron into the bloodstream in the absence of increased erythropoietic needs and its toxic effects in parenchymatous organs. It is caused by mutations that affect any of the proteins that help hepcidin to monitor serum iron, including HFE and, in rarer instances, transferrin-receptor 2 and hemojuvelin, or make its receptor ferroportin, resistant to the hormone. In Caucasians, C282Y HFE homozygotes are numerous, but they are only predisposed to hemochromatosis; complete organ disease develops in a minority, due to alcohol abuse or concurrent genetic modifiers that are now being identified. HFE gene testing can be used to diagnose hemochromatosis in symptomatic patients, but analyses of liver histology and full gene sequencing are required to identify patients with rare, non-HFE forms of the disease. Due to the central pathogenic role of hepcidin, it is anticipated that nongenetic causes of hepcidin loss (eg, end-stage liver disease) can cause acquired forms of hemochromatosis. The mainstay of hemochromatosis management is still removal of iron by phlebotomy, first introduced in 1950s, but identification of hepcidin has not only shed new light on the pathogenesis of the disease and the approach to diagnosis, but etiologic therapeutic applications from these advances are now foreseen.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Unit of Internal Medicine 2 and Centre for Hemochromatosis, University Hospital of Modena, Modena, Italy.
| |
Collapse
|
107
|
Turola E, Petta S, Vanni E, Milosa F, Valenti L, Critelli R, Miele L, Maccio L, Calvaruso V, Fracanzani AL, Bianchini M, Raos N, Bugianesi E, Mercorella S, Di Giovanni M, Craxì A, Fargion S, Grieco A, Cammà C, Cotelli F, Villa E. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis. Dis Model Mech 2015; 8:1037-1046. [PMID: 26183212 PMCID: PMC4582103 DOI: 10.1242/dmm.019950] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Contrasting data exist on the effect of gender and menopause on the susceptibility, development and liver damage progression in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether menopause is associated with the severity of liver fibrosis in individuals with NAFLD and to explore the issue of ovarian senescence in experimental liver steatosis in zebrafish. In 244 females and age-matched males with biopsy-proven NAFLD, we assessed anthropometric, biochemical and metabolic features, including menopausal status (self-reported); liver biopsy was scored according to 'The Pathology Committee of the NASH Clinical Research Network'. Young and old male and female zebrafish were fed for 24 weeks with a high-calorie diet. Weekly body mass index (BMI), histopathological examination and quantitative real-time PCR analysis on genes involved in lipid metabolism, inflammation and fibrosis were performed. In the entire cohort, at multivariate logistic regression, male gender [odds ratio (OR): 1.408, 95% confidence interval (95% CI): 0.779-2.542, P=0.25] vs women at reproductive age was not associated with F2-F4 fibrosis, whereas a trend was observed for menopause (OR: 1.752, 95% CI: 0.956-3.208, P=0.06). In women, menopause (OR: 2.717, 95% CI: 1.020-7.237, P=0.04) was independently associated with F2-F4 fibrosis. Similarly, in overfed zebrafish, old female fish with failing ovarian function [as demonstrated by extremely low circulating estradiol levels (1.4±0.1 pg/µl) and prevailing presence of atretic follicles in the ovaries] developed massive steatosis and substantial fibrosis (comparable with that occurring in males), whereas young female fish developed less steatosis and were totally protected from the development of fibrosis. Ovarian senescence significantly increases the risk of fibrosis severity both in humans with NAFLD and in zebrafish with experimental steatosis.
Collapse
Affiliation(s)
- Elena Turola
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Salvatore Petta
- Division of Gastroenterology, DiBiMIS, University of Palermo, 90128 Palermo, Italy
| | - Ester Vanni
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Fabiola Milosa
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Section Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Rosina Critelli
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Luca Miele
- Institute of Internal Medicine, School of Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Livia Maccio
- Department of Pathology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Vincenza Calvaruso
- Division of Gastroenterology, DiBiMIS, University of Palermo, 90128 Palermo, Italy
| | - Anna L Fracanzani
- Department of Pathophysiology and Transplantation, Section Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Marcello Bianchini
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Nazarena Raos
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Serena Mercorella
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marisa Di Giovanni
- Department of Pathology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Antonio Craxì
- Division of Gastroenterology, DiBiMIS, University of Palermo, 90128 Palermo, Italy
| | - Silvia Fargion
- Department of Pathophysiology and Transplantation, Section Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Antonio Grieco
- Institute of Internal Medicine, School of Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Calogero Cammà
- Division of Gastroenterology, DiBiMIS, University of Palermo, 90128 Palermo, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
108
|
Cai Y, Ying F, Song E, Wang Y, Xu A, Vanhoutte PM, Tang EHC. Mice lacking prostaglandin E receptor subtype 4 manifest disrupted lipid metabolism attributable to impaired triglyceride clearance. FASEB J 2015; 29:4924-36. [PMID: 26271253 DOI: 10.1096/fj.15-274597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4.
Collapse
Affiliation(s)
- Yin Cai
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Ying
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Erfei Song
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eva Hoi-Ching Tang
- *Department of Pharmacology and Pharmacy, Department of Medicine, Department of Physiology, and the State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
109
|
Jaeger D, Schoiswohl G, Hofer P, Schreiber R, Schweiger M, Eichmann TO, Pollak NM, Poecher N, Grabner GF, Zierler KA, Eder S, Kolb D, Radner FPW, Preiss-Landl K, Lass A, Zechner R, Kershaw EE, Haemmerle G. Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids. J Hepatol 2015; 63:437-45. [PMID: 25733154 PMCID: PMC4518503 DOI: 10.1016/j.jhep.2015.02.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. METHODS Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. RESULTS Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. CONCLUSIONS AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Doris Jaeger
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Gabriele Schoiswohl
- Division of Endocrinology, Diabetes, and Metabolism, University of Pittsburgh, PA 15261, USA
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Nina M Pollak
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Nadja Poecher
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Kathrin A Zierler
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Sandra Eder
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Dagmar Kolb
- ZMF, Center for Medical Research, Medical University of Graz, A-8010 Graz, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Karina Preiss-Landl
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria
| | - Erin E Kershaw
- Division of Endocrinology, Diabetes, and Metabolism, University of Pittsburgh, PA 15261, USA
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, A-8010 Graz, Austria.
| |
Collapse
|
110
|
Rose M, Schubert C, Dierichs L, Gaisa NT, Heer M, Heidenreich A, Knüchel R, Dahl E. OASIS/CREB3L1 is epigenetically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro. Epigenetics 2015; 9:1626-40. [PMID: 25625847 DOI: 10.4161/15592294.2014.988052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CREB3L1 has been recently proposed as a novel metastasis suppressor gene in breast cancer. Our current study highlights CREB3L1 expression, regulation, and function in bladder cancer. We demonstrate a significant downregulation of CREB3L1 mRNA expression (n = 64) in primary bladder cancer tissues caused by tumor-specific CREB3L1 promoter hypermethylation (n = 51). Based on pyrosequencing CREB3L1 methylation was shown to be potentially associated with a more aggressive phenotype of bladder cancer. These findings were verified by an independent public data set containing data from 184 bladder tumors. In addition, immunohistochemical evaluation showed that CREB3L1 protein expression is decreased in bladder cancer tissues as well. Interestingly, protein loss is predominately observed in the nuclei of aggressive tumor cells. Based on in vitro models we clearly show that CREB3L1 re-expression mediates suppression of tumor cell migration and colony growth of high grade and invasive bladder cancer cells. The candidate tumor suppressor and TGF-β signaling inhibitor HTRA3 was furthermore identified as putative target gene of CREB3L1 in both invasive J82 bladder cells and primary bladder tumors. Hence, our data provide for the first time evidence that the transcription factor CREB3L1 may have an important role as a putative tumor suppressor in bladder cancer.
Collapse
Key Words
- ATCC, American Type Culture Collection
- BMP-2, bone morphogenetic protein 2
- CA, California
- CIS, Carcinoma in situ
- CREB3L1, element binding protein 3-like 1
- DAB, 3-3′ diaminobenzidine
- DAC, 5-aza-2′-deoxycytidine
- DNA, desoxyribonucleic acid
- EK, ethics committee
- ER, endoplasmic reticulum
- FC, fold change
- FFPE, formalin fixed paraffin embedded
- G1, well differentiated
- G2, moderately differentiated
- G3, poorly differentiated
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HCV, Hepatitis C virus
- HPV, human papilloma virus
- HTRA (1-4), high-temperature requirement factor A (1-4)
- HTRA3
- IQR, interquartile range
- IRS, immunoreactive score
- LMU, Ludwig-Maximilians-University
- M, methylated
- MIBC, muscle invasive bladder cancer
- MSP, methylation specific PCR
- NMIBC, non-muscle invasive bladder cancer
- NU, normal urothelium
- OASIS / CREB3L1
- OASIS, old astrocyte specifically-induced substance
- PCR, polymerase chain reaction
- RIP, regulated intramembrane proteolysis
- RWTH, Rheinisch Westfälisch Technische Hochschule
- SP1, site 1 protease
- SP2, site 2 protease
- TCGA, The Cancer Genome Atlas
- TGF-β, transforming growth factor beta
- TSA, trichostatin A
- TSS, transcription start site
- U, unmethylated
- UC, urothelial cell cancer
- UPR, unfold protein response
- USA, United States of America
- WHO, World Health Organization
- WI, Wisconsin
- bladder cancer
- cDNA, copy number desoxyribonucleic acid
- mRNA, messenger ribo nucleic acid
- n, number
- ns, not significant
- pTa, papillary non-invasive tumors
- promoter methylation
- s.e.m., standard error of the margin
- tumor cell migration
- tumor suppressor gene
Collapse
Affiliation(s)
- Michael Rose
- a Molecular Oncology Group; Institute of Pathology ; RWTH Aachen University ; Aachen , Germany
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Barbosa S, Carreira S, Bailey D, Abaitua F, O'Hare P. Phosphorylation and SCF-mediated degradation regulate CREB-H transcription of metabolic targets. Mol Biol Cell 2015; 26:2939-54. [PMID: 26108621 PMCID: PMC4571331 DOI: 10.1091/mbc.e15-04-0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022] Open
Abstract
CREB‑H, an endoplasmic reticulum-anchored transcription factor, plays a key role in regulating secretion and in metabolic and inflammatory pathways, but how its activity is modulated remains unclear. We examined processing of the nuclear active form and identified a motif around S87-S90 with homology to DSG-type phosphodegrons. We show that this region is subject to multiple phosphorylations, which regulate CREB-H stability by targeting it to the SCF(Fbw1a) E3 ubiquitin ligase. Data from phosphatase treatment, use of phosophospecific antibody, and substitution of serine residues demonstrate phosphorylation of candidate serines in the region, with the core S87/S90 motif representing a critical determinant promoting proteasome-mediated degradation. Candidate kinases CKII and GSK-3b phosphorylate CREB-H in vitro with specificities for different serines. Prior phosphorylation with GSK-3 at one or more of the adjacent serines substantially increases S87/S90-dependent phosphorylation by CKII. In vivo expression of a dominant-negative Cul1 enhances steady-state levels of CREB‑H, an effect augmented by Fbw1a. CREB-H directly interacts with Fbw1a in a phosphorylation-dependent manner. Finally, mutations within the phosphodegron, when incorporated into the full-length protein, result in increased levels of constitutively cleaved nuclear protein and increased transcription and secretion of a key endogenous target gene, apolipoprotein A IV.
Collapse
Affiliation(s)
- Sónia Barbosa
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Suzanne Carreira
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Daniel Bailey
- Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Fernando Abaitua
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Peter O'Hare
- Department of Medicine, Imperial College, London W2 1PG, United Kingdom
| |
Collapse
|
112
|
Raza-Iqbal S, Tanaka T, Anai M, Inagaki T, Matsumura Y, Ikeda K, Taguchi A, Gonzalez FJ, Sakai J, Kodama T. Transcriptome Analysis of K-877 (a Novel Selective PPARα Modulator (SPPARMα))-Regulated Genes in Primary Human Hepatocytes and the Mouse Liver. J Atheroscler Thromb 2015; 22:754-72. [PMID: 26040752 DOI: 10.5551/jat.28720] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Selective PPARα modulators (SPPARMα) are under development for use as next-generation lipid lowering drugs. In the current study, to predict the pharmacological and toxicological effects of a novel SPPARMα K-877, comprehensive transcriptome analyses of K-877-treated primary human hepatocytes and mouse liver tissue were carried out. METHODS Total RNA was extracted from the K-877 treated primary human hepatocytes and mouse liver and adopted to the transcriptome analysis. Using a cluster analysis, commonly and species specifically regulated genes were identified. Also, the profile of genes regulated by K-877 and fenofibrate were compared to examine the influence of different SPPARMα on the liver gene expression. RESULTS Consequently, a cell-based transactivation assay showed that K-877 activates PPARα with much greater potency and selectivity than fenofibric acid, the active metabolite of clinically used fenofibrate. K-877 upregulates the expression of several fatty acid β-oxidative genes in human hepatocytes and the mouse liver. Almost all genes up- or downregulated by K-877 treatment in the mouse liver were also regulated by fenofibrate treatment. In contrast, the K-877-regulated genes in the mouse liver were not affected by K-877 treatment in the Ppara-null mouse liver. Depending on the species, the peroxisomal biogenesis-related gene expression was robustly induced in the K-877-treated mouse liver, but not human hepatocytes, thus suggesting that the clinical dose of K-877 may not induce peroxisome proliferation or liver toxicity in humans. Notably, K-877 significantly induces the expression of clinically beneficial target genes (VLDLR, FGF21, ABCA1, MBL2, ENPEP) in human hepatocytes. CONCLUSION These results indicate that changes in the gene expression induced by K-877 treatment are mainly mediated through PPARα activation. K-877 regulates the hepatic gene expression as a SPPARMα and thus may improve dyslipidemia as well as metabolic disorders, such as metabolic syndrome and type 2 diabetes, without untoward side effects.
Collapse
Affiliation(s)
- Sana Raza-Iqbal
- Laboratory for Systems Biology and Medicine (LSBM), Research Center for Advanced Science and Technology (RCAST), University of Tokyo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Activation of hepatic CREBH and Insig signaling in the anti-hypertriglyceridemic mechanism of R-α-lipoic acid. J Nutr Biochem 2015; 26:921-8. [PMID: 26007286 DOI: 10.1016/j.jnutbio.2015.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/15/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
The activation of sterol regulatory element binding proteins (SREBPs) is regulated by insulin-induced genes 1 and 2 (Insig-1 and Insig-2) and SCAP. We previously reported that feeding R-α-lipoic acid (LA) to Zucker diabetic fatty (ZDF) rats improves severe hypertriglyceridemia. In this study, we investigated the role of cyclic AMP-responsive element binding protein H (CREBH) in the lipid-lowering mechanism of LA and its involvement in the SREBP-1c and Insig pathway. Incubation of McA cells with LA (0.2 mM) or glucose (6 mM) stimulated activation of CREBH. LA treatment further induced mRNA expression of Insig-1 and Insig-2a, but not Insig-2b, in glucose-treated cells. In vivo, feeding LA to obesity-induced hyperlipidemic ZDF rats activated hepatic CREBH and stimulated transcription and translation of Insig-1 and Insig-2a. Activation of CREBH and Insigs induced by LA suppressed processing of SREBP-1c precursor into nuclear SREBP-1c, which subsequently inhibited expression of genes involved in fatty acid synthesis, including FASN, ACC and SCD-1, and reduced triglyceride (TG) contents in both glucose-treated cells and ZDF rat livers. Additionally, LA treatment also decreased abundances of very low density lipoprotein (VLDL)-associated apolipoproteins, apoB100 and apoE, in glucose-treated cells and livers of ZDF rats, leading to decreased secretion of VLDL and improvement of hypertriglyceridemia. This study unveils a novel molecular mechanism whereby LA lowers TG via activation of hepatic CREBH and increased expression of Insig-1 and Insig-2a to inhibit de novo lipogenesis and VLDL secretion. These findings provide novel insight into the therapeutic potential of LA as an anti-hypertriglyceridemia dietary molecule.
Collapse
|
114
|
HBx induces the proliferation of hepatocellular carcinoma cells via AP1 over-expressed as a result of ER stress. Biochem J 2015; 466:115-21. [PMID: 25428452 DOI: 10.1042/bj20140819] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and chronic hepatitis B virus (HBV) infection is the most common risk factor for HCC. The HBV proteins can induce oncogenic or synergy effects with a hyperproliferative response on transformation into HCC. CREBH (cAMP-responsive, element-binding protein H), activated by stress in the endoplasmic reticulum (ER), is an ER-resident transmembrane bZIP (basic leucine zipper) transcription factor that is specifically expressed in the liver. In the present study, we address the role played by CREBH activated by ER stress in HBV-induced hepatic cell proliferation. We confirmed CREBH activation by ER stress and showed that it occurred as a result of/via hepatitis B virus X (HBx)-induced ER stress. CREBH activated by HBx increased the expression of AP-1 target genes through c-Jun induction. Under pathological conditions such as liver damage or liver regeneration, activated CREBH may have an important role to play in hepatic inflammation and cell proliferation, as an insulin receptor with dual functions under these conditions. We showed that CREBH activated by HBx interacted with HBx protein, leading to a synergistic effect on the expression of AP-1 target genes and the proliferation of HCC cells and mouse primary hepatocytes. In conclusion, in HBV-infected hepatic cells or patients with chronic HBV, CREBH may induce proliferation of hepatic cells in co-operation with HBx, resulting in HCC.
Collapse
|
115
|
Xu X, Park JG, So JS, Lee AH. Transcriptional activation of Fsp27 by the liver-enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis. Hepatology 2015; 61:857-69. [PMID: 25125366 PMCID: PMC4329115 DOI: 10.1002/hep.27371] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Fat-specific protein 27 (Fsp27) is a lipid droplet-associated protein that promotes lipid droplet (LD) growth and triglyceride (TG) storage in white adipocytes. Fsp27 is also highly expressed in the steatotic liver and contributes to TG accumulation. In this study we discovered that the liver produces Fsp27β, an alternative Fsp27 isoform, which contains 10 additional amino acids at the N-terminus of the original Fsp27 (Fsp27α). White adipose tissue (WAT) and the liver specifically expressed Fsp27α and Fsp27β transcripts, respectively, which were driven by distinct promoters. The Fsp27β promoter was activated by the liver-enriched transcription factor cyclic-AMP-responsive-element-binding protein H (CREBH) but not by peroxisome proliferator-activated receptor gamma (PPARγ), which activated the Fsp27α promoter. Enforced expression of the constitutively active CREBH strongly induced Fsp27β and the human ortholog CIDEC2 in mouse hepatocytes and HepG2 cells, respectively. In contrast, loss of CREBH decreased hepatic Fsp27β in fasted mice, suggesting that CREBH plays a critical role in Fsp27β expression in the liver. Similar to Fsp27α, Fsp27β localized on the surface of lipid droplets and suppressed lipolysis. Consequently, enforced expression of Fsp27β or CREBH promoted lipid droplet enlargement and TG accumulation in the liver. CONCLUSION The CREBH-Fsp27β axis is important for regulating lipid droplet dynamics and TG storage in the liver.
Collapse
Affiliation(s)
| | | | | | - Ann-Hwee Lee
- To whom correspondence should be addressed: Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA. Tel: 1-212-746-9087
| |
Collapse
|
116
|
Development of certain novel N-(2-(2-(2-oxoindolin-3-ylidene)hydrazinecarbonyl)phenyl)-benzamides and 3-(2-oxoindolin-3-ylideneamino)-2-substituted quinazolin-4(3H)-ones as CFM-1 analogs: design, synthesis, QSAR analysis and anticancer activity. Eur J Med Chem 2014; 92:191-201. [PMID: 25555142 DOI: 10.1016/j.ejmech.2014.12.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/25/2014] [Accepted: 12/26/2014] [Indexed: 12/12/2022]
Abstract
The reaction of N-(2-(hydrazinecarbonyl)aryl)benzamides 2a, b with indoline-2,3-diones 4ae in acidified ethanolic solution furnished the corresponding N-(2-(2-(2-oxoindolin-3-ylidene)hydrazinecarbonyl)phenyl)benzamides 5aj, respectively. Furthermore, 3-(2-oxoindolin-3-ylideneamino)-2-substituted quinazolin-4(3H)-ones 6aj were prepared by the reaction of 3-amino-2-arylquinazolin-4(3H)-one 3a, b with 4ae. Six derivatives of the twenty newly synthesized compounds showed remarkable antitumor activity against most of the tested cell lines, Daoy, UW228-2, Huh-7, Hela and MDA-MB231. Although these six compounds were more potent than the standard drug (CFM-1), indeed compounds 5b, 5d and 6b were the best candidates with IC50 values in the range 1.866.87, 4.4210.89 and 1.468.60 μg/ml and percentage inhibition in the range 77.188.7, 59.4184.8 and 75.488.0%, respectively. QSAR analyses on the current series of derivatives also have been performed for all five cancer cell lines and thus 10 statistically significant models were developed and internally cross validated.
Collapse
|
117
|
Mao HZ, Ehrhardt N, Bedoya C, Gomez JA, DeZwaan-McCabe D, Mungrue IN, Kaufman RJ, Rutkowski DT, Péterfy M. Lipase maturation factor 1 (lmf1) is induced by endoplasmic reticulum stress through activating transcription factor 6α (Atf6α) signaling. J Biol Chem 2014; 289:24417-27. [PMID: 25035425 PMCID: PMC4148868 DOI: 10.1074/jbc.m114.588764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Indexed: 11/06/2022] Open
Abstract
Lipase maturation factor 1 (Lmf1) is a critical determinant of plasma lipid metabolism, as demonstrated by severe hypertriglyceridemia associated with its mutations in mice and human subjects. Lmf1 is a chaperone localized to the endoplasmic reticulum (ER) and required for the post-translational maturation and activation of several vascular lipases. Despite its importance in plasma lipid homeostasis, the regulation of Lmf1 remains unexplored. We report here that Lmf1 expression is induced by ER stress in various cell lines and in tunicamycin (TM)-injected mice. Using genetic deficiencies in mouse embryonic fibroblasts and mouse liver, we identified the Atf6α arm of the unfolded protein response as being responsible for the up-regulation of Lmf1 in ER stress. Experiments with luciferase reporter constructs indicated that ER stress activates the Lmf1 promoter through a GC-rich DNA sequence 264 bp upstream of the transcriptional start site. We demonstrated that Atf6α is sufficient to induce the Lmf1 promoter in the absence of ER stress, and this effect is mediated by the TM-responsive cis-regulatory element. Conversely, Atf6α deficiency induced by genetic ablation or a dominant-negative form of Atf6α abolished TM stimulation of the Lmf1 promoter. In conclusion, our results indicate that Lmf1 is an unfolded protein response target gene, and Atf6α signaling is sufficient and necessary for activation of the Lmf1 promoter. Importantly, the induction of Lmf1 by ER stress appears to be a general phenomenon not restricted to lipase-expressing cells, which suggests a lipase-independent cellular role for this protein in ER homeostasis.
Collapse
Affiliation(s)
- Hui Z Mao
- From the Medical Genetics Research Institute and
| | | | - Candy Bedoya
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Javier A Gomez
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Imran N Mungrue
- the Department of Pharmacology and Experimental Therapeutics, Louisiana State University School of Medicine, New Orleans, Louisiana 70112
| | - Randal J Kaufman
- Degenerative Disease Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology and Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Miklós Péterfy
- From the Medical Genetics Research Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, the Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|
118
|
Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014; 21:396-413. [PMID: 24702237 PMCID: PMC4076992 DOI: 10.1089/ars.2014.5851] [Citation(s) in RCA: 984] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction-oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. RECENT ADVANCES Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. CRITICAL ISSUES Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. FUTURE DIRECTIONS A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- 1 Degenerative Diseases Program, Sanford Burnham Medical Research Institute , La Jolla, California
| | | |
Collapse
|
119
|
Carpenter JE, Grose C. Varicella-zoster virus glycoprotein expression differentially induces the unfolded protein response in infected cells. Front Microbiol 2014; 5:322. [PMID: 25071735 PMCID: PMC4076746 DOI: 10.3389/fmicb.2014.00322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 02/03/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR): XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER) and CHOP expression. Herein we report the results of a UPR specific PCR array that measures the levels of mRNA of 84 different components of the UPR in VZV infected cells as compared to tunicamycin treated cells as a positive control and uninfected, untreated cells as a negative control. Tunicamycin is a mixture of chemicals that inhibits N-linked glycosylation in the ER with resultant protein misfolding and the UPR. We found that VZV differentially induces the UPR when compared to tunicamycin treatment. For example, tunicamycin treatment moderately increased (8-fold) roughly half of the array elements while downregulating only three (one ERAD and two FOLD components). VZV infection on the other hand upregulated 33 components including a little described stress sensor CREB-H (64-fold) as well as ER membrane components INSIG and gp78, which modulate cholesterol synthesis while downregulating over 20 components mostly associated with ERAD and FOLD. We hypothesize that this expression pattern is associated with an expanding ER with downregulation of active degradation by ERAD and apoptosis as the cell attempts to handle abundant viral glycoprotein synthesis.
Collapse
Affiliation(s)
- John E Carpenter
- Virology Laboratory, Department of Infectious Diseases, University of Iowa Children's Hospital Iowa City, IA, USA
| | - Charles Grose
- Virology Laboratory, Department of Infectious Diseases, University of Iowa Children's Hospital Iowa City, IA, USA
| |
Collapse
|
120
|
β-Cryptoxanthin alleviates diet-induced nonalcoholic steatohepatitis by suppressing inflammatory gene expression in mice. PLoS One 2014; 9:e98294. [PMID: 24858832 PMCID: PMC4032271 DOI: 10.1371/journal.pone.0098294] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/30/2014] [Indexed: 02/06/2023] Open
Abstract
Recent nutritional epidemiological surveys showed that serum β-cryptoxanthin inversely associates with the risks for insulin resistance and liver dysfunction. Consumption of β-cryptoxanthin possibly prevents nonalcoholic steatohepatitis (NASH), which is suggested to be caused by insulin resistance and oxidative stress from nonalcoholic fatty liver disease. To evaluate the effect of β-cryptoxanthin on diet-induced NASH, we fed a high-cholesterol and high-fat diet (CL diet) with or without 0.003% β-cryptoxanthin to C56BL/6J mice for 12 weeks. After feeding, β-cryptoxanthin attenuated fat accumulation, increases in Kupffer and activated stellate cells, and fibrosis in CL diet-induced NASH in the mice. Comprehensive gene expression analysis showed that although β-cryptoxanthin histochemically reduced steatosis, it was more effective in inhibiting inflammatory gene expression change in NASH. β-Cryptoxanthin reduced the alteration of expression of genes associated with cell death, inflammatory responses, infiltration and activation of macrophages and other leukocytes, quantity of T cells, and free radical scavenging. However, it showed little effect on the expression of genes related to cholesterol and other lipid metabolism. The expression of markers of M1 and M2 macrophages, T helper cells, and cytotoxic T cells was significantly induced in NASH and reduced by β-cryptoxanthin. β-Cryptoxanthin suppressed the expression of lipopolysaccharide (LPS)-inducible and/or TNFα-inducible genes in NASH. Increased levels of the oxidative stress marker thiobarbituric acid reactive substances (TBARS) were reduced by β-cryptoxanthin in NASH. Thus, β-cryptoxanthin suppresses inflammation and the resulting fibrosis probably by primarily suppressing the increase and activation of macrophages and other immune cells. Reducing oxidative stress is likely to be a major mechanism of inflammation and injury suppression in the livers of mice with NASH.
Collapse
|
121
|
Zhang D, Lu K, Dong Z, Jiang G, Xu W, Liu W. The effect of exposure to a high-fat diet on microRNA expression in the liver of blunt snout bream (Megalobrama amblycephala). PLoS One 2014; 9:e96132. [PMID: 24788396 PMCID: PMC4008502 DOI: 10.1371/journal.pone.0096132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/02/2014] [Indexed: 12/15/2022] Open
Abstract
Blunt snout bream (Megalobrama amblycephala) are susceptible to hepatic steatosis when maintained in modern intensive culture systems. The aim of this study was to investigate the potential roles of microRNAs (miRNAs) in diet-induced hepatic steatosis in this species. MiRNAs, small non-coding RNAs that regulate gene expression at the posttranscriptional level, are involved in diverse biological processes, including lipid metabolism. Deep sequencing of hepatic small RNA libraries from blunt snout bream fed normal-fat and high-fat diets identified 202 (193 known and 9 novel) miRNAs, of which 12 were differentially expressed between the normal-fat and high-fat diet groups. Quantitative stem-loop reverse transcriptase-polymerase chain reaction analyses confirmed the upregulation of miR-30c and miR-30e-3p and the downregulation of miR-145 and miR-15a-5p in high-fat diet-fed fish. Bioinformatics tools were used to predict the targets of these verified miRNAs and to explore potential downstream gene ontology biological process categories and Kyoto Encyclopedia of Genes and Genomes pathways. Six putative lipid metabolism-related target genes (fetuin-B, Cyp7a1, NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 2, 3-oxoacid CoA transferase 1b, stearoyl-CoA desaturase, and fatty-acid synthase) were identified as having potential important roles in the development of diet-induced hepatic steatosis in blunt snout bream. The results presented here are a foundation for future studies of miRNA-controlled lipid metabolism regulatory networks in blunt snout bream.
Collapse
Affiliation(s)
- Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Kangle Lu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- * E-mail: (WL); (ZD)
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weina Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (WL); (ZD)
| |
Collapse
|
122
|
Kuivenhoven JA, Hegele RA. Mining the genome for lipid genes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1993-2009. [PMID: 24798233 DOI: 10.1016/j.bbadis.2014.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022]
Abstract
Mining of the genome for lipid genes has since the early 1970s helped to shape our understanding of how triglycerides are packaged (in chylomicrons), repackaged (in very low density lipoproteins; VLDL), and hydrolyzed, and also how remnant and low-density lipoproteins (LDL) are cleared from the circulation. Gene discoveries have also provided insights into high-density lipoprotein (HDL) biogenesis and remodeling. Interestingly, at least half of these key molecular genetic studies were initiated with the benefit of prior knowledge of relevant proteins. In addition, multiple important findings originated from studies in mouse, and from other types of non-genetic approaches. Although it appears by now that the main lipid pathways have been uncovered, and that only modulators or adaptor proteins such as those encoded by LDLRAP1, APOA5, ANGPLT3/4, and PCSK9 are currently being discovered, genome wide association studies (GWAS) in particular have implicated many new loci based on statistical analyses; these may prove to have equally large impacts on lipoprotein traits as gene products that are already known. On the other hand, since 2004 - and particularly since 2010 when massively parallel sequencing has become de rigeur - no major new insights into genes governing lipid metabolism have been reported. This is probably because the etiologies of true Mendelian lipid disorders with overt clinical complications have been largely resolved. In the meantime, it has become clear that proving the importance of new candidate genes is challenging. This could be due to very low frequencies of large impact variants in the population. It must further be emphasized that functional genetic studies, while necessary, are often difficult to accomplish, making it hazardous to upgrade a variant that is simply associated to being definitively causative. Also, it is clear that applying a monogenic approach to dissect complex lipid traits that are mostly of polygenic origin is the wrong way to proceed. The hope is that large-scale data acquisition combined with sophisticated computerized analyses will help to prioritize and select the most promising candidate genes for future research. We suggest that at this point in time, investment in sequence technology driven candidate gene discovery could be recalibrated by refocusing efforts on direct functional analysis of the genes that have already been discovered. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Jan Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Section Molecular Genetics, Antonius Deusinglaan 1, 9713GZ Groningen, The Netherlands
| | - Robert A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
123
|
Vecchi C, Montosi G, Garuti C, Corradini E, Sabelli M, Canali S, Pietrangelo A. Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology 2014; 146:1060-1069. [PMID: 24361124 PMCID: PMC3989026 DOI: 10.1053/j.gastro.2013.12.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hepatic gluconeogenesis provides fuel during starvation, and is abnormally induced in obese individuals or those with diabetes. Common metabolic disorders associated with active gluconeogenesis and insulin resistance (obesity, metabolic syndrome, diabetes, and nonalcoholic fatty liver disease) have been associated with alterations in iron homeostasis that disrupt insulin sensitivity and promote disease progression. We investigated whether gluconeogenic signals directly control Hepcidin, an important regulator of iron homeostasis, in starving mice (a model of persistently activated gluconeogenesis and insulin resistance). METHODS We investigated hepatic regulation of Hepcidin expression in C57BL/6Crl, 129S2/SvPas, BALB/c, and Creb3l3-/- null mice. Mice were fed a standard, iron-balanced chow diet or an iron-deficient diet for 9 days before death, or for 7 days before a 24- to 48-hour starvation period; liver and spleen tissues then were collected and analyzed by quantitative reverse-transcription polymerase chain reaction and immunoblot analyses. Serum levels of iron, hemoglobin, Hepcidin, and glucose also were measured. We analyzed human hepatoma (HepG2) cells and mouse primary hepatocytes to study transcriptional control of Hamp (the gene that encodes Hepcidin) in response to gluconeogenic stimuli using small interfering RNA, luciferase promoter, and chromatin immunoprecipitation analyses. RESULTS Starvation led to increased transcription of the gene that encodes phosphoenolpyruvate carboxykinase 1 (a protein involved in gluconeogenesis) in livers of mice, increased levels of Hepcidin, and degradation of Ferroportin, compared with nonstarved mice. These changes resulted in hypoferremia and iron retention in liver tissue. Livers of starved mice also had increased levels of Ppargc1a mRNA and Creb3l3 mRNA, which encode a transcriptional co-activator involved in energy metabolism and a liver-specific transcription factor, respectively. Glucagon and a cyclic adenosine monophosphate analog increased promoter activity and transcription of Hamp in cultured liver cells; levels of Hamp were reduced after administration of small interfering RNAs against Ppargc1a and Creb3l3. PPARGC1A and CREB3L3 bound the Hamp promoter to activate its transcription in response to a cyclic adenosine monophosphate analog. Creb3l3-/- mice did not up-regulate Hamp or become hypoferremic during starvation. CONCLUSIONS We identified a link between glucose and iron homeostasis, showing that Hepcidin is a gluconeogenic sensor in mice during starvation. This response is involved in hepatic metabolic adaptation to increased energy demands; it preserves tissue iron for vital activities during food withdrawal, but can cause excessive iron retention and hypoferremia in disorders with persistently activated gluconeogenesis and insulin resistance.
Collapse
Affiliation(s)
- Chiara Vecchi
- Center for Hemochromatosis and Metabolic Liver Diseases, Department of Medical and Surgical Sciences, University Hospital of Modena, Modena, Italy
| | - Giuliana Montosi
- Center for Hemochromatosis and Metabolic Liver Diseases, Department of Medical and Surgical Sciences, University Hospital of Modena, Modena, Italy
| | - Cinzia Garuti
- Center for Hemochromatosis and Metabolic Liver Diseases, Department of Medical and Surgical Sciences, University Hospital of Modena, Modena, Italy
| | - Elena Corradini
- Center for Hemochromatosis and Metabolic Liver Diseases, Department of Medical and Surgical Sciences, University Hospital of Modena, Modena, Italy
| | - Manuela Sabelli
- Center for Hemochromatosis and Metabolic Liver Diseases, Department of Medical and Surgical Sciences, University Hospital of Modena, Modena, Italy
| | - Susanna Canali
- Center for Hemochromatosis and Metabolic Liver Diseases, Department of Medical and Surgical Sciences, University Hospital of Modena, Modena, Italy
| | - Antonello Pietrangelo
- Center for Hemochromatosis and Metabolic Liver Diseases, Department of Medical and Surgical Sciences, University Hospital of Modena, Modena, Italy.
| |
Collapse
|
124
|
Abstract
PURPOSE OF REVIEW The endoplasmic reticulum (ER) maintains cellular metabolic homeostasis by coordinating protein synthesis, secretion activities, lipid biosynthesis and calcium (Ca²⁺) storage. In this review, we will discuss how altered ER homeostasis contributes to dysregulation of hepatic lipid metabolism and contributes to liver-associated metabolic diseases. RECENT FINDINGS Perturbed ER functions or accumulation of unfolded protein in the ER leads to the activation of the unfolded protein response (UPR) to protect the cell from ER stress. Recent findings pinpoint the key regulatory role of the UPR in hepatic lipid metabolism and demonstrate the potential causal mechanism of ER stress in metabolic dysregulation including diabetes and obesity. SUMMARY A wide range of factors can alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatic lipid metabolism and liver disease. The UPR constitutes a series of adaptive programs that preserve ER protein-folding environment and maintain hepatic lipid homeostasis. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human liver-associated metabolic diseases.
Collapse
Affiliation(s)
- Shiyu Wang
- Degenerative Disease Research, Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | |
Collapse
|
125
|
Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res 2014; 54:86-112. [PMID: 24607340 DOI: 10.1016/j.plipres.2014.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
Abstract
Triacyglycerols are a major energy reserve of the body and are normally stored in adipose tissue as lipid droplets (LDs). The liver, however, stores energy as glycogen and digested triglycerides in the form of fatty acids. In stressed condition such as obesity, imbalanced nutrition and drug induced liver injury hepatocytes accumulate excess lipids in the form of LDs whose prolonged storage leads to disease conditions most notably non-alcoholic fatty liver disease (NAFLD). Fatty liver disease has become a major health burden with more than 90% of obese, nearly 70% of overweight and about 25% of normal weight patients being affected. Notably, research in recent years has shown LD as highly dynamic organelles for maintaining lipid homeostasis through fat storage, protein sorting and other molecular events studied in adipocytes and other cells of living organisms. This review focuses on the molecular events of LD formation in hepatocytes and the importance of cross talk between different cell types and their signalling in NAFLD as to provide a perspective on molecular mechanisms as well as possibilities for different therapeutic intervention strategies.
Collapse
Affiliation(s)
- Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
126
|
Intermittent selective clamping improves rat liver regeneration by attenuating oxidative and endoplasmic reticulum stress. Cell Death Dis 2014; 5:e1107. [PMID: 24603335 PMCID: PMC3973205 DOI: 10.1038/cddis.2014.65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/10/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
Abstract
Intermittent clamping of the portal trial is an effective method to avoid excessive blood loss during hepatic resection, but this procedure may cause ischemic damage to liver. Intermittent selective clamping of the lobes to be resected may represent a good alternative as it exposes the remnant liver only to the reperfusion stress. We compared the effect of intermittent total or selective clamping on hepatocellular injury and liver regeneration. Entire hepatic lobes or only lobes to be resected were subjected twice to 10 min of ischemia followed by 5 min of reperfusion before hepatectomy. We provided evidence that the effect of intermittent clamping can be damaging or beneficial depending to its mode of application. Although transaminase levels were similar in all groups, intermittent total clamping impaired liver regeneration and increased apoptosis. In contrast, intermittent selective clamping improved liver protein secretion and hepatocyte proliferation when compared with standard hepatectomy. This beneficial effect was linked to better adenosine-5′-triphosphate (ATP) recovery, nitric oxide production, antioxidant activities and endoplasmic reticulum adaptation leading to limit mitochondrial damage and apoptosis. Interestingly, transient and early chaperone inductions resulted in a controlled activation of the unfolded protein response concomitantly to endothelial nitric oxide synthase, extracellular signal-regulated kinase-1/2 (ERK1/2) and p38 MAPK activation that favors liver regeneration. Endoplasmic reticulum stress is a central target through which intermittent selective clamping exerts its cytoprotective effect and improves liver regeneration. This procedure could be applied as a powerful protective modality in the field of living donor liver transplantation and liver surgery.
Collapse
|
127
|
Otsuka H, Sasaki K, Okimura S, Nagamura M, Watanabe R, Kawabe M. Contribution of Fibroblasts Cultured on 3D Silica Nonwoven Fabrics to Cocultured Hepatocytes Function. CHEM LETT 2014. [DOI: 10.1246/cl.130955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science
| | - Kohei Sasaki
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science
| | - Saya Okimura
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science
| | - Masako Nagamura
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science
| | | | | |
Collapse
|
128
|
Kim H, Mendez R, Zheng Z, Chang L, Cai J, Zhang R, Zhang K. Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor α to regulate metabolic hormone FGF21. Endocrinology 2014; 155:769-82. [PMID: 24424044 PMCID: PMC3929740 DOI: 10.1210/en.2013-1490] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid metabolism is tightly regulated by nuclear receptors, transcription factors, and cellular enzymes. In this study, we demonstrated that the liver-enriched transcription factor CREBH (cAMP-responsive element binding protein, hepatocyte specific) and peroxisome proliferator-activated receptor α (PPARα) function as binary transcriptional activators to regulate lipid metabolism by activating fibroblast growth factor 21 (FGF21), a hepatic hormone that regulates whole-body energy homeostasis. Gain- and loss-of-function studies indicated that CREBH regulates triglyceride and fatty acid metabolism in animals under fasting or on an atherogenic high-fat (AHF) diet. CREBH and PPARα act as interactive trans-activators that regulate each other for their expression. Activated CREBH protein interacts with PPARα to form a functional complex upon fasting or the AHF diet, and both factors are required for induction of the metabolic hormone FGF21. The CREBH-PPARα complex was found to bind to integrated CRE-PPAR-responsive element-binding motifs in the FGF21 gene promoter. Whereas CREBH and PPARα function in synergy to activate FGF21 gene expression, PPARα relies on CREBH to exert its trans-activation effect on FGF21. Supporting the key role of CREBH in regulating FGF21, infusion of recombinant FGF21 protein can reverse hypertriglyceridemia and hypoketonemia and partially rescue nonalcoholic steatohepatitis developed in the CREBH-null mice after the AHF diet. Our study demonstrated a transcriptional regulatory axis of CREBH-PPARα-FGF21 in maintaining lipid homeostasis under metabolic stress. The functional relationship between CREBH and PPARα in regulating FGF21 may represent an important transcriptional coactivation mechanism that orchestrates the processes of energy supply upon metabolic alteration.
Collapse
Affiliation(s)
- Hyunbae Kim
- Center for Molecular Medicine and Genetics (H.K., R.M., Z.Z., J.C., R.Z., K.Z.), Department of Immunology and Microbiology (K.Z.), The Wayne State University School of Medicine, Detroit, Michigan 48201; and Cardiovascular Center (L.C.), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | | | | | | | | | | | |
Collapse
|
129
|
Misra J, Chanda D, Kim DK, Cho SR, Koo SH, Lee CH, Back SH, Choi HS. Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH. PLoS One 2014; 9:e86342. [PMID: 24466039 PMCID: PMC3899246 DOI: 10.1371/journal.pone.0086342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022] Open
Abstract
The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions.
Collapse
Affiliation(s)
- Jagannath Misra
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Dipanjan Chanda
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Rye Cho
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Medical Sciences, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
130
|
Zheng Z, Zhang C, Yan J, Ruan Y, Zhao X, San X, Mao Y, Sun Q, Zhang K, Fan Z. Diabetes mellitus is associated with hepatocellular carcinoma: a retrospective case-control study in hepatitis endemic area. PLoS One 2013; 8:e84776. [PMID: 24386416 PMCID: PMC3873428 DOI: 10.1371/journal.pone.0084776] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/19/2013] [Indexed: 12/14/2022] Open
Abstract
Background A number of case-control patient studies have been conducted to investigate the association between diabetes mellitus (DM) and hepatocellular carcinoma (HCC). Despite some controversial reports, it has been suggested that DM is associated with HCC. The previous studies on this subject vary in the selection of populations, sample sizes, methodology, and analysis results. Therefore, it is necessary to further delineate the involvement of DM, together with other related risk factors, in HCC with large sample size and strict analysis methodology. Methods We conducted a hospital-based retrospective case-control study at Perking Union Medical College Hospital, China. A total of 1,568 patients with liver diseases were enrolled in the statistical study to evaluate the association of DM and other risk factors with HCC. Among these patients, 716 of them were diagnosed with benign liver diseases, and 852 patients were diagnosed as HCC. We utilized binary logistic regression and stepwise logistic regression to investigate the associations among DM, hypertension, fatty liver, cirrhosis, gallstone, HBV infection, HCV infection, and HCC. Results Statistical analysis through the stepwise regression model indicated that the prevalence of DM, male gender, cirrhosis, HCV infection, or HBV infection is higher in the HCC patient group compared to the control group. However, the prevalence of gallstone is negatively associated with HCC cases. DM co-exists with HBV infection, male gender, and age in the HCC cases. Binary logistic regression analysis suggested that DM may synergize with HBV infection in HCC development. Conclusion DM is strongly associated with the increased risk of HCC regardless of the prevalence of HBV infection, HCV infection, cirrhosis, male gender, and age. However, the synergistic interaction between DM and HBV in HCC occurrence is significant. Therefore, DM patients with HBV infection represent a very high HCC risk population and should be considered for HCC close surveillance program.
Collapse
Affiliation(s)
- Ze Zheng
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Chao Zhang
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jianhua Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanping Ruan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyi Zhao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingting San
- Department of Hepatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yilei Mao
- Department of Hepatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qinghua Sun
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, Ohio State University, Columbus, Ohio, United States of America
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (KZ); (QS); (ZF)
| | - Kezhong Zhang
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (KZ); (QS); (ZF)
| | - Zhongjie Fan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (KZ); (QS); (ZF)
| |
Collapse
|
131
|
Arensdorf AM, Diedrichs D, Rutkowski DT. Regulation of the transcriptome by ER stress: non-canonical mechanisms and physiological consequences. Front Genet 2013; 4:256. [PMID: 24348511 PMCID: PMC3844873 DOI: 10.3389/fgene.2013.00256] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022] Open
Abstract
The mammalian unfolded protein response (UPR) is propagated by three ER-resident transmembrane proteins, each of which initiates a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends to genes involved in diverse physiological processes having seemingly little to do with ER protein folding, and this includes a substantial number of mRNAs that are suppressed by stress rather than stimulated. Through multiple non-canonical mechanisms emanating from each of the UPR pathways, the cell dynamically regulates transcription and mRNA degradation. Here we highlight these mechanisms and their increasingly appreciated impact on physiological processes.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Danilo Diedrichs
- Department of Mathematics and Computer Science, Wheaton College Wheaton, IL, USA
| | - D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
132
|
Otsuka H, Sasaki K, Okimura S, Nagamura M, Nakasone Y. Micropatterned co-culture of hepatocyte spheroids layered on non-parenchymal cells to understand heterotypic cellular interactions. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:065003. [PMID: 27877623 PMCID: PMC5090304 DOI: 10.1088/1468-6996/14/6/065003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/17/2013] [Indexed: 05/29/2023]
Abstract
Microfabrication and micropatterning techniques in tissue engineering offer great potential for creating and controlling cellular microenvironments including cell-matrix interactions, soluble stimuli and cell-cell interactions. Here, we present a novel approach to generate layered patterning of hepatocyte spheroids on micropatterned non-parenchymal feeder cells using microfabricated poly(ethylene glycol) (PEG) hydrogels. Micropatterned PEG-hydrogel-treated substrates with two-dimensional arrays of gelatin circular domains (ϕ = 100 μm) were prepared by photolithographic method. Only on the critical structure of PEG hydrogel with perfect protein rejection, hepatocytes were co-cultured with non-parenchymal cells to be led to enhanced hepatocyte functions. Then, we investigated the mechanism of the functional enhancement in co-culture with respect to the contributions of soluble factors and direct cell-cell interactions. In particular, to elucidate the influence of soluble factors on hepatocyte function, hepatocyte spheroids underlaid with fibroblasts (NIH/3T3 mouse fibroblasts) or endothelial cells (BAECs: bovine aortic endothelial cells) were compared with physically separated co-culture of hepatocyte monospheroids with NIH3T3 or BAEC using trans-well culture systems. Our results suggested that direct heterotypic cell-to-cell contact and soluble factors, both of these between hepatocytes and fibroblasts, significantly enhanced hepatocyte functions. In contrast, direct heterotypic cell-to-cell contact between hepatocytes and endothelial cells only contributed to enhance hepatocyte functions. This patterning technique can be a useful experimental tool for applications in basic science, drug screening and tissue engineering, as well as in the design of artificial liver devices.
Collapse
Affiliation(s)
- Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohei Sasaki
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Saya Okimura
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masako Nagamura
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Nakasone
- Department of Chemical Sciences and Technology, Graduate School of Chemical Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
133
|
Cornejo VH, Pihán P, Vidal RL, Hetz C. Role of the unfolded protein response in organ physiology: Lessons from mouse models. IUBMB Life 2013; 65:962-75. [DOI: 10.1002/iub.1224] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Víctor Hugo Cornejo
- Biomedical Neuroscience Institute; Faculty of Medicine, University of Chile; Santiago Chile
- Center for Molecular Studies of the Cell; Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute; Faculty of Medicine, University of Chile; Santiago Chile
- Center for Molecular Studies of the Cell; Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute; Faculty of Medicine, University of Chile; Santiago Chile
- Center for Molecular Studies of the Cell; Program of Cellular and Molecular Biology; Institute of Biomedical Sciences; University of Chile; Santiago Chile
- Neurounion Biomedical Foundation; Santiago Chile
- Department of Immunology and Infectious Diseases; Harvard School of Public Health; Boston MA USA
| |
Collapse
|
134
|
Arensdorf AM, Dezwaan McCabe D, Kaufman RJ, Rutkowski DT. Temporal clustering of gene expression links the metabolic transcription factor HNF4α to the ER stress-dependent gene regulatory network. Front Genet 2013; 4:188. [PMID: 24069029 PMCID: PMC3781334 DOI: 10.3389/fgene.2013.00188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
The unfolded protein response (UPR) responds to disruption of endoplasmic reticulum (ER) function by initiating signaling cascades that ultimately culminate in extensive transcriptional regulation. Classically, this regulation includes genes encoding ER chaperones, ER-associated degradation factors, and others involved in secretory protein folding and processing, and is carried out by the transcriptional activators that are produced as a consequence of UPR activation. However, up to half of the mRNAs regulated by ER stress are downregulated rather than upregulated, and the mechanisms linking ER stress and UPR activation to mRNA suppression are poorly understood. To begin to address this issue, we used a "bottom-up" approach to study the metabolic gene regulatory network controlled by the UPR in the liver, because ER stress in the liver leads to lipid accumulation, and fatty liver disease is the most common liver disease in the western world. qRT-PCR profiling of mouse liver mRNAs during ER stress revealed that suppression of the transcriptional regulators C/EBPα, PPARα, and PGC-1α preceded lipid accumulation, and was then followed by suppression of mRNAs encoding key enzymes involved in fatty acid oxidation and lipoprotein biogenesis and transport. Mice lacking the ER stress sensor ATF6α, which experience persistent ER stress and profound lipid accumulation during challenge, were then used as the basis for a functional genomics approach that allowed genes to be grouped into distinct expression profiles. This clustering predicted that ER stress would suppress the activity of the metabolic transcriptional regulator HNF4α-a finding subsequently confirmed by chromatin immunopreciptation at the Cebpa and Pgc1a promoters. Our results establish a framework for hepatic gene regulation during ER stress and suggest that HNF4α occupies the apex of that framework. They also provide a unique resource for the community to further explore the temporal regulation of gene expression during ER stress in vivo.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | | | | | | |
Collapse
|
135
|
Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013; 12:703-19. [DOI: 10.1038/nrd3976] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
136
|
Chanda D, Kim YH, Li T, Misra J, Kim DK, Kim JR, Kwon J, Jeong WI, Ahn SH, Park TS, Koo SH, Chiang JYL, Lee CH, Choi HS. Hepatic cannabinoid receptor type 1 mediates alcohol-induced regulation of bile acid enzyme genes expression via CREBH. PLoS One 2013; 8:e68845. [PMID: 23894352 PMCID: PMC3718807 DOI: 10.1371/journal.pone.0068845] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 12/16/2022] Open
Abstract
Bile acids concentration in liver is tightly regulated to prevent cell damage. Previous studies have demonstrated that deregulation of bile acid homeostasis can lead to cholestatic liver disease. Recently, we have shown that ER-bound transcription factor Crebh is a downstream effector of hepatic Cb1r signaling pathway. In this study, we have investigated the effect of alcohol exposure on hepatic bile acid homeostasis and elucidated the mediatory roles of Cb1r and Crebh in this process. We found that alcohol exposure or Cb1r-agonist 2-AG treatment increases hepatic bile acid synthesis and serum ALT, AST levels in vivo alongwith significant increase in Crebh gene expression and activation. Alcohol exposure activated Cb1r, Crebh, and perturbed bile acid homeostasis. Overexpression of Crebh increased the expression of key bile acid synthesis enzyme genes via direct binding of Crebh to their promoters, whereas Cb1r knockout and Crebh-knockdown mice were protected against alcohol-induced perturbation of bile acid homeostasis. Interestingly, insulin treatment protected against Cb1r-mediated Crebh-induced disruption of bile acid homeostasis. Furthermore, Crebh expression and activation was found to be markedly increased in insulin resistance conditions and Crebh knockdown in diabetic mice model (db/db) significantly reversed alcohol-induced disruption of bile acid homeostasis. Overall, our study demonstrates a novel regulatory mechanism of hepatic bile acid metabolism by alcohol via Cb1r-mediated activation of Crebh, and suggests that targeting Crebh can be of therapeutic potential in ameliorating alcohol-induced perturbation of bile acid homeostasis.
Collapse
Affiliation(s)
- Dipanjan Chanda
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Jagannath Misra
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jung Ran Kim
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Joseph Kwon
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Hoon Ahn
- Drug Discovery Platform Technology Team, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - John Y L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (CHL); (HSC)
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Medical Sciences, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail: (CHL); (HSC)
| |
Collapse
|
137
|
Identification and characterization of cyclic AMP response element-binding protein H response element in the human apolipoprotein A5 gene promoter. BIOMED RESEARCH INTERNATIONAL 2013; 2013:892491. [PMID: 23957007 PMCID: PMC3730137 DOI: 10.1155/2013/892491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/03/2013] [Accepted: 06/27/2013] [Indexed: 12/14/2022]
Abstract
The cyclic AMP response element-binding protein H (CREBH) plays important roles in hepatic lipogenesis, fatty acid oxidation, and lipolysis under metabolic stress. Here, we report CREBH as a novel regulator of human APOA5. Knockdown of endogenous CREBH expression via small interfering RNA resulted in the downregulation of human APOA5 mRNA expression in human hepatoma cells, HepG2. Sequence analysis suggested that putative CREBH response element (CREBHRE) is located in the human APOA5 promoter region and is highly conserved in both human and rodent. To clarify whether the human APOA5 promoter is regulated by CREBH, we analyzed the human APOA5 promoter region using a transient transfection assay and determined that transfection of CREBH induced human APOA5 promoter activity. Moreover, it was shown that CREBH directly regulated human APOA5 gene expression by binding to a unique CREBHRE located in the proximal human APOA5 promoter region, using 5′-deletion and mutagenesis of human APOA5 promoter analysis and chromatin immunoprecipitation assay. Taken together, our results demonstrated that human APOA5 is directly regulated by CREBH via CREBHRE and provided a new insight into the role of this liver-specific bZIP transcription factor in lipoprotein metabolism and triglyceride homeostasis.
Collapse
|
138
|
Kadowaki H, Nishitoh H. Signaling pathways from the endoplasmic reticulum and their roles in disease. Genes (Basel) 2013; 4:306-33. [PMID: 24705207 PMCID: PMC3924831 DOI: 10.3390/genes4030306] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle in which newly synthesized secretory and transmembrane proteins are assembled and folded into their correct tertiary structures. However, many of these ER proteins are misfolded as a result of various stimuli and gene mutations. The accumulation of misfolded proteins disrupts the function of the ER and induces ER stress. Eukaryotic cells possess a highly conserved signaling pathway, termed the unfolded protein response (UPR), to adapt and respond to ER stress conditions, thereby promoting cell survival. However, in the case of prolonged ER stress or UPR malfunction, apoptosis signaling is activated. Dysfunction of the UPR causes numerous conformational diseases, including neurodegenerative disease, metabolic disease, inflammatory disease, diabetes mellitus, cancer, and cardiovascular disease. Thus, ER stress-induced signaling pathways may serve as potent therapeutic targets of ER stress-related diseases. In this review, we will discuss the molecular mechanisms of the UPR and ER stress-induced apoptosis, as well as the possible roles of ER stress in several diseases.
Collapse
Affiliation(s)
- Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
139
|
Watanabe K, Watson E, Cremona ML, Millings EJ, Lefkowitch JH, Fischer SG, LeDuc CA, Leibel RL. ILDR2: an endoplasmic reticulum resident molecule mediating hepatic lipid homeostasis. PLoS One 2013; 8:e67234. [PMID: 23826244 PMCID: PMC3691114 DOI: 10.1371/journal.pone.0067234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus, with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts related to neutral lipid synthesis and cholesterol were increased, suggesting “relief” of the secondary suppression imposed by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal interactions, and the relatively extended time-course over which these studies were conducted, we cannot assign causal primacy to either the effects on hepatic lipid homeostasis or ER stress responses.
Collapse
Affiliation(s)
- Kazuhisa Watanabe
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Elizabeth Watson
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Maria Laura Cremona
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Elizabeth J. Millings
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Jay H. Lefkowitch
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Stuart G. Fischer
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Charles A. LeDuc
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center and Department of Pediatrics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
140
|
The role of the unfolded protein response in diabetes mellitus. Semin Immunopathol 2013; 35:333-50. [PMID: 23529219 DOI: 10.1007/s00281-013-0369-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/13/2013] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) plays a key role in the synthesis and modification of secretory and membrane proteins in all eukaryotic cells. Under normal conditions, these proteins are correctly folded and assembled in the ER. However, when cells are exposed to environmental factors such as overproduction of ER proteins, viral infections, or glucose deprivation, the secretory and membrane proteins can accumulate in unfolded or misfolded forms in the lumen of the ER, and consequently, cause stress in the ER. To maintain cellular homeostasis, cells induce several responses to ER stress. In mammalian cells, ER stress responses are induced by a diversity of signal pathways. There are three ER-located transmembrane proteins that play important roles in mammalian ER stress responses: activating transcription factor 6, inositol-requiring protein 1, and protein kinase RNA-like endoplasmic reticulum kinase. ER stress is linked to various diseases, including diabetes. This review highlights the particular importance of ER stress-responsive molecules in insulin biosynthesis, glyconeogenesis, insulin resistance, glucose intolerance, and pancreatic β-cell apoptosis. An understanding of the pathogenic mechanism of diabetes from the aspect of ER stress is crucial in formulating therapeutic strategies.
Collapse
|
141
|
Vickers KC, Sethupathy P, Baran-Gale J, Remaley AT. Complexity of microRNA function and the role of isomiRs in lipid homeostasis. J Lipid Res 2013; 54:1182-91. [PMID: 23505317 DOI: 10.1194/jlr.r034801] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of biological pathways that govern lipid metabolic phenotypes. Recent advances in high-throughput small RNA sequencing technology have revealed the complex and dynamic repertoire of miRNAs. Specifically, it has been demonstrated that a single genomic locus can give rise to multiple, functionally distinct miRNA isoforms (isomiR). There are several mechanisms by which isomiRs can be generated, including processing heterogeneity and posttranscriptional modifications, such as RNA editing, exonuclease-mediated nucleotide trimming, and/or nontemplated nucleotide addition (NTA). NTAs are dominant at the 3'-end of a miRNA, are most commonly uridylation or adenlyation events, and are catalyzed by one or more of several nucleotidyl transferase enzymes. 3' NTAs can affect miRNA stability and/or activity and are physiologically regulated, whereas modifications to the 5'-ends of miRNAs likely alter miRNA targeting activity. Recent evidence also suggests that the biogenesis of specific miRNAs, or small RNAs that act as miRNAs, can occur through unconventional mechanisms that circumvent key canonical miRNA processing steps. The unveiling of miRNA diversity has significantly added to our view of the complexity of miRNA function. In this review we present the current understanding of the biological relevance of isomiRs and their potential role in regulating lipid metabolism.
Collapse
Affiliation(s)
- Kasey C Vickers
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | |
Collapse
|
142
|
Min AK, Jeong JY, Go Y, Choi YK, Kim YD, Lee IK, Park KG. cAMP response element binding protein H mediates fenofibrate-induced suppression of hepatic lipogenesis. Diabetologia 2013; 56:412-22. [PMID: 23150180 DOI: 10.1007/s00125-012-2771-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/18/2012] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Fenofibrate is a drug used to treat hyperlipidaemia that works by inhibiting hepatic triacylglycerol synthesis. Sterol regulatory element binding protein-1c (SREBP-1c) is a major regulator of the expression of genes involved in hepatic triacylglycerol synthesis. In addition, endoplasmic reticulum (ER)-bound transcription factor families are involved in the control of various metabolic pathways. Here, we show a novel function for an ER-bound transcription factor, cAMP response element binding protein H (CREBH), in fenofibrate-mediated inhibition of hepatic lipogenesis. METHODS The effects of fenofibrate and adenovirus-mediated Crebh (also known as Creb313) overexpression (Ad-Crebh) on hepatic SREBP-1c production and lipogenesis in vitro and in vivo were investigated. We also examined whether downregulation of endogenous hepatic Crebh by small interfering (si)RNA restores the fenofibrate effect on hepatic lipogenesis and SREBP-1c production. Finally, we examined the mechanism by which CREBH inhibits hepatic SREBP-1c production. RESULTS Fasting and fenofibrate treatment induced CREBH production and decreased SREBP-1c levels. Indeed, Ad-Crebh inhibited insulin- and liver X receptor agonist TO901317-induced Srebp-1c (also known as Srebf1) mRNA expression in cultured hepatocytes. Moreover, increased production of CREBH in the liver of mice following tail-vein injection of Ad-Crebh inhibited high-fat diet-induced hepatic steatosis through inhibition of Srebp-1c expression. The inhibition of endogenous Crebh expression by siRNA restored fenofibrate-induced suppression of Srebp-1c expression and hepatic lipid accumulation both in vitro and in vivo. CONCLUSIONS/INTERPRETATION These results show that fenofibrate decreases hepatic lipid synthesis through induction of CREBH. This study suggests CREBH as a novel negative regulator of SREBP-1c production and hepatic lipogenesis.
Collapse
Affiliation(s)
- A-K Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Aging and Metabolism, WCU Program, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | | | | | | | | | |
Collapse
|
143
|
Barbosa S, Fasanella G, Carreira S, Llarena M, Fox R, Barreca C, Andrew D, O'Hare P. An orchestrated program regulating secretory pathway genes and cargos by the transmembrane transcription factor CREB-H. Traffic 2013; 14:382-98. [PMID: 23279168 DOI: 10.1111/tra.12038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
CREB3 proteins comprise a set of ER-localized bZip transcription factors defined by the presence of a transmembrane domain. They are regulated by inter-compartmental transport, Golgi cleavage and nuclear transport where they promote appropriate transcriptional responses. Although CREB3 proteins play key roles in differentiation, inflammation and metabolism, a general framework relating their defining features to these diverse activities is lacking. We identify unique features of CREB3 organization including the ATB domain, which we show it is essential for transcriptional activity. This domain is absent in all other human bZip factors, but conserved in Drosophila CREBA, which controls secretory pathway genes (SPGs). Furthermore, each of the five human CREB3 factors was capable of activating SPGs in Drosophila, dependent upon the ATB domain. Expression of the CREB3 protein, CREB-H, in 293 cells, upregulated genes involved in secretory capacity, extracellular matrix formation and lipid metabolism and increased secretion of specific cargos. In liver cells, which normally express CREB-H, the active form specifically induced secretion of apolipoproteins, including ApoA-IV, ApoAI, consistent with data implicating CREB-H in metabolic homeostasis. Based on these data and other recent studies, we propose a general role for the CREB3 family in regulating secretory capacity, with particular relevance to specialized cargos.
Collapse
Affiliation(s)
- Sónia Barbosa
- Department of Medicine, Imperial College, London, W2 1PG, UK
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Cao SS, Kaufman RJ. Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin Ther Targets 2013; 17:437-48. [PMID: 23324104 DOI: 10.1517/14728222.2013.756471] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress, a condition that dramatically affects protein folding homeostasis in cells, has been associated with a number of metabolic diseases. Emerging preclinical and clinical evidence supports the notion that pharmacological modulators of ER stress have therapeutic potential as novel treatments of metabolic disorders. AREAS COVERED In this review, the molecular mechanisms of ER stress and the unfolded protein response (UPR) in the pathogenesis of metabolic diseases are discussed, highlighting the roles of various UPR components revealed using disease models in mice. Special emphasis is placed on the use of novel small molecules in animal disease models and human pathologies, including type 2 diabetes, obesity, fatty liver disease, and atherosclerosis. EXPERT OPINION ER stress is a highly promising therapeutic target for metabolic disease. Small molecular chemical chaperones have already demonstrated therapeutic efficacy in animal and human studies. The emergence of compounds that target specific UPR signaling pathways will provide more options for this purpose. Although the findings are promising, more studies are needed to elucidate the efficacy and side effects of these small molecules for future use in humans.
Collapse
Affiliation(s)
- Stewart Siyan Cao
- Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
145
|
Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors 2013; 39:101-21. [PMID: 23339042 DOI: 10.1002/biof.1072] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/19/2012] [Indexed: 12/14/2022]
Abstract
Recent evidence suggests potential benefits from phytochemicals and micronutrients in reducing the elevated oxidative and lipid-mediated stress associated with inflammation, obesity, and atherosclerosis. These compounds may either directly scavenge reactive oxygen or nitrogen species or they may modulate the activity of signal transduction enzymes leading to changes in the expression of antioxidant genes. Alternatively, they may reduce plasma lipid levels by modulating lipid metabolic genes in tissues and thus reduce indirectly lipid-mediated oxidative and endoplasmic reticulum stress through their hypolipidemic effect. Here we review the proposed molecular mechanisms by which curcumin, a polyphenol present in the rhizomes of turmeric (Curcuma longa) spice, influences oxidative and lipid-mediated stress in the vascular system. At the molecular level, mounting experimental evidence suggests that curcumin may act chemically as scavenger of free radicals and/or influences signal transduction (e.g., Akt, AMPK) and modulates the activity of specific transcription factors (e.g., FOXO1/3a, NRF2, SREBP1/2, CREB, CREBH, PPARγ, and LXRα) that regulate the expression of genes involved in free radicals scavenging (e.g., catalase, MnSOD, and heme oxygenase-1) and lipid homeostasis (e.g., aP2/FABP4, CD36, HMG-CoA reductase, and carnitine palmitoyltransferase-I (CPT-1)). At the cellular level, curcumin may induce a mild oxidative and lipid-metabolic stress leading to an adaptive cellular stress response by hormetic stimulation of these cellular antioxidant defense systems and lipid metabolic enzymes. The resulting lower oxidative and lipid-mediated stress may not only explain the beneficial effects of curcumin on inflammation, cardiovascular, and neurodegenerative disease, but may also contribute to the increase in maximum life-span observed in animal models.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
146
|
Mendez R, Zheng Z, Fan Z, Rajagopalan S, Sun Q, Zhang K. Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue. Am J Transl Res 2013; 29:225802. [PMID: 23573366 DOI: 10.1088/1361-648x/aa68eb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent epidemiological studies have suggested a link between exposure to ambient air-pollution and susceptibility to metabolic disorders such as Type II diabetes mellitus. Previously, we provided evidence that both short- and long-term exposure to concentrated ambient particulate matter with aerodynamic diameter <2.5 μm (PM2.5) induces multiple abnormalities associated with the pathogenesis of Type II diabetes mellitus, including insulin resistance, visceral adipose inflammation, brown adipose mitochondrial adipose changes, and hepatic endoplasmic reticulum (ER) stress. In this report, we show that chronic inhalation exposure to PM2.5 (10 months exposure) induces macrophage infiltration and Unfolded Protein Response (UPR), an intracellular stress signaling that regulates cell metabolism and survival, in mouse white adipose tissue in vivo. Gene expression studies suggested that PM2.5 exposure induces two distinct UPR signaling pathways mediated through the UPR transducer inositol-requiring 1α (IRE1α): 1) ER-associated Degradation (ERAD) of unfolded or misfolded proteins, and 2) Regulated IRE1-dependent Decay (RIDD) of mRNAs. Along with the induction of the UPR pathways and macrophage infiltration, expression of genes involved in lipogenesis, adipocyte differentiation, and lipid droplet formation was increased in the adipose tissue of the mice exposed to PM2.5. In vitro study confirmed that PM2.5 can trigger phosphorylation of the UPR transducer IRE1α and activation of macrophages. These results provide novel insights into PM2.5-triggered cell stress response in adipose tissue and increase our understanding of pathophysiological effects of particulate air pollution on the development of metabolic disorders.
Collapse
Affiliation(s)
- Roberto Mendez
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
147
|
Endoplasmic reticulum factor ERLIN2 regulates cytosolic lipid content in cancer cells. Biochem J 2012; 446:415-25. [PMID: 22690709 DOI: 10.1042/bj20112050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased de novo lipogenesis is a hallmark of aggressive cancers. Lipid droplets, the major form of cytosolic lipid storage, have been implicated in cancer cell proliferation and tumorigenesis. Recently, we identified the ERLIN2 [ER (endoplasmic reticulum) lipid raft-associated 2) gene that is amplified and overexpressed in aggressive human breast cancer. Previous studies demonstrated that ERLIN2 plays a supporting oncogenic role by facilitating the transformation of human breast cancer cells. In the present study, we found that ERLIN2 supports cancer cell growth by regulating cytosolic lipid droplet production. ERLIN2 is preferably expressed in human breast cancer cells or hepatoma cells and is inducible by insulin signalling or when cells are cultured in lipoprotein-deficient medium. Increased expression of ERLIN2 promotes the accumulation of cytosolic lipid droplets in breast cancer cells or hepatoma cells in response to insulin or overload of unsaturated fatty acids. ERLIN2 regulates activation of SREBP (sterol regulatory element-binding protein) 1c, the key regulator of de novo lipogenesis, in cancer cells. ERLIN2 was found to bind to INSIG1 (insulin-induced gene 1), a key ER membrane protein that blocks SREBP activation. Consistent with the role of ERLIN2 in regulating cytosolic lipid content, down-regulation of ERLIN2 in breast cancer or hepatoma cells led to lower cell proliferation rates. The present study revealed a novel role for ERLIN2 in supporting cancer cell growth by promoting the activation of the key lipogenic regulator SREBP1c and the production of cytosolic lipid droplets. The identification of ERLIN2 as a regulator of cytosolic lipid content in cancer cells has important implications for understanding the molecular basis of tumorigenesis and the treatment of cancer.
Collapse
|
148
|
Wang S, Chen Z, Lam V, Han J, Hassler J, Finck BN, Davidson NO, Kaufman RJ. IRE1α-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab 2012; 16:473-86. [PMID: 23040069 PMCID: PMC3569089 DOI: 10.1016/j.cmet.2012.09.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/17/2012] [Accepted: 09/05/2012] [Indexed: 12/15/2022]
Abstract
The unfolded protein response (UPR) is a signaling pathway required to maintain endoplasmic reticulum (ER) homeostasis and hepatic lipid metabolism. Here, we identify an essential role for the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α)-X box binding protein 1 (XBP1) arm of the UPR in regulation of hepatic very low-density lipoprotein (VLDL) assembly and secretion. Hepatocyte-specific deletion of Ire1α reduces lipid partitioning into the ER lumen and impairs the assembly of triglyceride (TG)-rich VLDL but does not affect TG synthesis, de novo lipogenesis, or the synthesis or secretion of apolipoprotein B (apoB). The defect in VLDL assembly is, at least in part, due to decreased microsomal triglyceride-transfer protein (MTP) activity resulting from reduced protein disulfide isomerase (PDI) expression. Collectively, our findings reveal a key role for the IRE1α-XBP1s-PDI axis in linking ER homeostasis with regulation of VLDL production and hepatic lipid homeostasis that may provide a therapeutic target for disorders of lipid metabolism.
Collapse
Affiliation(s)
- Shiyu Wang
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Zhouji Chen
- Division of Geriatrics, and Nutrition Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Vivian Lam
- Department of Medical School, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Jaeseok Han
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Justin Hassler
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
| | - Brian N. Finck
- Division of Geriatrics, and Nutrition Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Randal J. Kaufman
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
- Department of Biological Chemistry, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan Medical Center, 1150 West Medical Center Drive, Ann Arbor, MI 48109
- corresponding author: Degenerative Disease Research Program, Neuroscience, Aging, and Stem Cell Research Center, Sanford-Burnham Medical Research Institute 10901 North Torrey Pines Road La Jolla, CA 92037 T: 858-795-5149; F: 858-795-5273
| |
Collapse
|
149
|
Abstract
A central function of the endoplasmic reticulum (ER) is to coordinate protein biosynthetic and secretory activities in the cell. Alterations in ER homeostasis cause accumulation of misfolded/unfolded proteins in the ER. To maintain ER homeostasis, eukaryotic cells have evolved the unfolded protein response (UPR), an essential adaptive intracellular signaling pathway that responds to metabolic, oxidative stress, and inflammatory response pathways. The UPR has been implicated in a variety of diseases including metabolic disease, neurodegenerative disease, inflammatory disease, and cancer. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human disease.
Collapse
Affiliation(s)
- Shiyu Wang
- Degenerative Disease Research Program, Neuroscience, Aging, and Stem Cell Research Center, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
150
|
Abstract
PURPOSE OF REVIEW Cyclic-AMP-responsive-element-binding protein H (CREB-H) is a transcription factor that is highly and selectively expressed in liver and small intestine. Here I summarize recent findings on the role of CREB-H in lipid metabolism. RECENT FINDINGS Recent studies have demonstrated that hepatic CREB-H is transcriptionally activated by fasting, and induces lipid metabolism genes, such as Apoa4, Apoa5, and Apoc2 apolipoproteins which exhibit stimulatory effects on lipoprotein lipase (LPL). Consistent with the essential role of LPL in triglyceride clearance, CREB-H-deficient mice showed hypertriglyceridemia, associated with defective production of these apolipoproteins and decreased LPL activity. DNA sequencing of the CREB3L3 gene (encoding CREB-H) identified multiple nonsynonymous mutations in CREB3L3 in individuals with extreme hypertriglyceridemia. SUMMARY Recent studies uncover a novel function of CREB-H in the regulation of triglyceride metabolism in rodents and humans. In liver and small intestine, CREB-H induces LPL coactivators, Apoa4, Apoa5, and Apoc2 that facilitate triglyceride clearance from plasma.
Collapse
Affiliation(s)
- Ann-Hwee Lee
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA.
| |
Collapse
|