101
|
Wilson KC, Cruikshank WW, Center DM, Zhang Y. Prointerleukin-16 contains a functional CcN motif that regulates nuclear localization. Biochemistry 2002; 41:14306-12. [PMID: 12450396 DOI: 10.1021/bi020163v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The immunomodulatory cytokine interleukin-16 (IL-16) represents the secreted C-terminus of a larger precursor, pro-IL-16. Following cleavage by caspase 3, the residual N-terminal domain translocates into the nucleus, inducing G(0)/G(1) cell cycle arrest. We have previously identified a classical bipartite nuclear localization sequence (NLS) in the N-terminal domain of pro-IL-16. We now show that N-terminal to the NLS domain of pro-IL-16 are protein kinase CK2 substrate and cdc2 kinase substrate sites which, along with the NLS, constitute a dual phosphorylation-regulated CcN motif which regulates nuclear localization of pro-IL-16. In addition, we demonstrate that mutation of either site is associated with impairment of the N-terminal domain's ability to induce G(0)/G(1) cell cycle arrest. This is the first description of a functional CcN motif in a cytokine precursor.
Collapse
Affiliation(s)
- Kevin C Wilson
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
102
|
Akuta T, Eguchi A, Okuyama H, Senda T, Inokuchi H, Suzuki Y, Nagoshi E, Mizuguchi H, Hayakawa T, Takeda K, Hasegawa M, Nakanishi M. Enhancement of phage-mediated gene transfer by nuclear localization signal. Biochem Biophys Res Commun 2002; 297:779-86. [PMID: 12359220 DOI: 10.1016/s0006-291x(02)02282-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell membrane and the nuclear membrane are two major barriers hindering the free movement of various macromolecules through animal cells. Nevertheless, some proteins can actively bypass these barriers by dint of intrinsic peptidic signals, so incorporation of these signals might improve the efficacy of artificial gene delivery vehicles. We examined the role of the nuclear localization signal (NLS) in gene transfer, using recombinant lambda phage as a model of the polymer/DNA complexes. We prepared a lambda phage displaying a 32-mer NLS of SV40 T antigen on its surface (NLS phage), and found that this NLS phage, delivered into the cytoplasm by appropriate devices, has higher affinity for the nucleus and induces the expression of encapsulated marker genes more efficiently than does the wild-type phage. This suggests that the 32-mer NLS peptide will become a practical tool for artificial gene delivery vehicles with enhanced nuclear targeting activity.
Collapse
Affiliation(s)
- Teruo Akuta
- DNAVEC Research Inc., Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Apostolova MD, Ivanova IA, Dagnino C, D'Souza SJA, Dagnino L. Active nuclear import and export pathways regulate E2F-5 subcellular localization. J Biol Chem 2002; 277:34471-9. [PMID: 12089160 DOI: 10.1074/jbc.m205827200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidermal keratinocyte differentiation is accompanied by differential regulation of E2F genes, including up-regulation of E2F-5 and its concomitant association with the retinoblastoma family protein p130. This complex appears to play a role in irreversible withdrawal from the cell cycle in differentiating keratinocytes. We now report that keratinocyte differentiation is also accompanied by changes in E2F-5 subcellular localization, from the cytoplasm to the nucleus. To define the molecular determinants of E2F-5 nuclear import, we tested its ability to enter the nucleus in import assays in vitro using digitonin-permeabilized cells. We found that E2F-5 enters the nucleus through mediated transport processes that involve formation of nuclear pore complexes. It has been proposed that E2F-4 and E2F-5, which lack defined nuclear localization signal (NLS) consensus sequences, enter the nucleus in association with NLS-containing DP-2 or pRB family proteins. However, we show that nuclear import of E2F-5 only requires the first N-terminal 56 amino acid residues and is not dependent on interaction with DP or pRB family proteins. Because E2F-5 is predominantly cytoplasmic in undifferentiated keratinocytes and in other intact cells, we also examined whether this protein is subjected to active nuclear export. Indeed, E2F-5 is exported from the nucleus through leptomycin B-sensitive, CRM1-mediated transport, through a region corresponding to amino acid residues 130-154. This region excludes the DNA- and the p130-binding domains. Thus, the subcellular distribution of E2F-5 is tightly regulated in intact cells, through multiple functional domains that direct nucleocytoplasmic shuttling of this protein.
Collapse
Affiliation(s)
- Margarita D Apostolova
- Department of Physiology, Child Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
104
|
Nakanishi A, Shum D, Morioka H, Otsuka E, Kasamatsu H. Interaction of the Vp3 nuclear localization signal with the importin alpha 2/beta heterodimer directs nuclear entry of infecting simian virus 40. J Virol 2002; 76:9368-77. [PMID: 12186919 PMCID: PMC136453 DOI: 10.1128/jvi.76.18.9368-9377.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For nuclear entry of large nucleoprotein complexes, it is thought that one key nuclear localization signal (NLS) of a protein component becomes exposed to mediate importin recognition. We show that the nuclear entry of simian virus 40 involves a dynamic interplay between two distinct interiorly situated capsid NLSs, the Vp1 NLS and the Vp3 NLS, and the selective exposure and importin recognition of the Vp3 NLS. The Vp3 NLS-null mutants assembled normally into virion-like particles (VLP) in mutant DNA-transfected cells. When used to infect a new host, the null VLP entered the cell normally but was impaired in viral DNA nuclear entry due to a lack of recognition by the importin alpha 2/beta heterodimer, leading to reduced viability. Both Vp3 and Vp1 NLSs directed importin interaction in vitro, but the Vp1 NLS, which overlaps the Vp1 DNA binding domain, did not bind importins in the presence of DNA. The results suggest that certain canonical NLSs within a nucleoprotein complex, such as the Vp1 NLS, can be masked from functioning by binding to the nucleic acid component and that the availability of an NLS that is not masked and can become exposed for importin binding, such as the Vp3 NLS, is a general feature of the nuclear entry of the nucleoprotein complexes, including those of other animal viruses.
Collapse
Affiliation(s)
- Akira Nakanishi
- Department of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
105
|
Lindsay ME, Plafker K, Smith AE, Clurman BE, Macara IG. Npap60/Nup50 is a tri-stable switch that stimulates importin-alpha:beta-mediated nuclear protein import. Cell 2002; 110:349-60. [PMID: 12176322 DOI: 10.1016/s0092-8674(02)00836-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many nuclear-targeted proteins are transported through the nuclear pore complex (NPC) by the importin-alpha:beta receptor. We now show that Npap60 (also called Nup50), a protein previously believed to be a structural component of the NPC, is a Ran binding protein and a cofactor for importin-alpha:beta-mediated import. Npap60 is a tri-stable switch that alternates between binding modes. The C terminus binds importin-beta through RanGTP. The N terminus binds the C terminus of importin-alpha, while a central domain binds importin-beta. Npap60:importin-alpha:beta binds cargo and can stimulate nuclear import. Endogenous Npap60 can shuttle and is accessible from the cytoplasmic side of the nuclear envelope. These results identify Npap60 as a cofactor for importin-alpha:beta nuclear import and as a previously unidentified subunit of the importin complex.
Collapse
Affiliation(s)
- Mark E Lindsay
- Center for Cell Signaling, Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
106
|
Seamon JA, Jones KS, Miller C, Roth MJ. Inserting a nuclear targeting signal into a replication-competent Moloney murine leukemia virus affects viral export and is not sufficient for cell cycle-independent infection. J Virol 2002; 76:8475-84. [PMID: 12134052 PMCID: PMC155121 DOI: 10.1128/jvi.76.16.8475-8484.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of inserting reported nuclear localization signals (NLSs) into the Moloney murine leukemia virus (Mo-MuLV) integrase (IN) protein, within a replication-competent viral construct, were studied. In contrast to the virus harboring IN fused to the simian virus 40 (SV40) large T antigen NLS (SV40 NLS) (J. A. Seamon, M. Adams, S. Sengupta, and M. J. Roth, Virology 274:412-419, 2000), a codon-modified SV40 NLS was stably expressed during viral propagation. Incorporation of the codon-modified SV40 NLS into IN, however, altered the packaging of the Gag-Pol precursor in the virus; viral particles contained decreased levels of reverse transcriptase (RT) and IN. In addition, the virus showed delayed kinetics of viral DNA synthesis upon infection. A panel of infectious MuLVs containing alternative IN-NLS fusions was generated and assayed for cell cycle-independent infection. Viral infection with the NLS-tagged proteins, however, remained dependent on passage of the cells through mitosis. This finding has direct implications for engineering murine-based retroviral vectors for gene therapy.
Collapse
Affiliation(s)
- Jennifer A Seamon
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA
| | | | | | | |
Collapse
|
107
|
Nelson LM, Rose RC, Moroianu J. Nuclear import strategies of high risk HPV16 L1 major capsid protein. J Biol Chem 2002; 277:23958-64. [PMID: 11971900 DOI: 10.1074/jbc.m200724200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the late phase of human papillomavirus (HPV) infection, the L1 major capsid proteins enter the nuclei of host epithelial cells and, together with the L2 minor capsid proteins, assemble the replicated viral DNA into virions. We investigated the nuclear import of the L1 major capsid protein of high risk HPV16. When digitonin-permeabilized HeLa cells were incubated with HPV16 L1 capsomeres, the L1 protein was imported into the nucleus in a receptor-mediated manner. HPV16 L1 capsomeres formed complexes with Kap alpha2beta1 heterodimers via interaction with Kap alpha2. Accordingly, nuclear import of HPV16 L1 capsomeres was mediated by Kap alpha2beta1 heterodimers, required RanGDP and free GTP, and was independent of GTP hydrolysis. Remarkably, HPV16 L1 capsomeres also interacted with Kap beta2 and binding of RanGTP to Kap beta2 did not dissociate the HPV16 L1.Kap beta2 complex. Significantly, HPV16 L1 capsomeres inhibited the nuclear import of Kap beta2 and of a Kap beta2-specific M9-containing cargo. These data suggest that, during the productive stage of infection, while the HPV16 L1 major capsid protein enters the nucleus via the Kap alpha2beta1-mediated pathway to assemble the virions, it also inhibits the Kap beta2-mediated nuclear import of host hnRNP A1 protein and, in this way, favors virion formation.
Collapse
Affiliation(s)
- Lisa M Nelson
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
108
|
Miyamoto Y, Kim J, Yuba S, Yoneda Y. Genomic organization and chromosomal localization of the importin alpha1 gene in the mouse. Gene 2002; 288:49-56. [PMID: 12034493 DOI: 10.1016/s0378-1119(02)00456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Importin alpha1 (also referred to as NPI1 or importin alphaS1) gene encodes a member of the cytosolic receptor protein superfamily that recognizes classical monopartite and bipartite basic type nuclear localization signals and mediates nuclear protein import via an importin beta-dependent pathway. Here we report on the organization of the importin alpha1 locus in the mouse genome. The gene is approximately 40 kb in length from the translation initiation codon to the poly(A) additional site. The translated region of the gene is comprised of 13 coding exons and the exon-intron boundaries conform to the GT/AG rule. Importin alpha1 was mapped to a middle region of mouse chromosome 16 by fluorescence in situ hybridization analysis. Moreover, it was found by reverse transcriptase polymerase chain reaction analysis that importin alpha1 is widely expressed in various tissues in adult mice and at various stages during embyogenesis. This study is the first example that provides detailed genomic information on nuclear transport factors such as importins and exportins and provides a basis for further studies such as the generation of mutants in mice for purposes of investigating the role of importin alpha1 in development and differentiation.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Japan
| | | | | | | |
Collapse
|
109
|
Shibata S, Matsuoka Y, Yoneda Y. Nucleocytoplasmic transport of proteins and poly(A)+ RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 2002; 7:421-34. [PMID: 11952838 DOI: 10.1046/j.1365-2443.2002.00525.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND It is known that Tpr is a component of an intranuclear long filament which extends from the nuclear pore complex (NPC) into the nucleoplasm. Since the over-expression of the full-length of or some fragments of Tpr in living cells leads to the accumulation of poly(A)+ RNA within the nuclei, it is generally thought that a relationship exists between Tpr and the nuclear export of mRNA in mammalian cells. In contrast, the nuclear export of poly(A)+ RNA was not inhibited in a double deletion mutant of yeast Tpr homologues (Mlp1p and Mlp2p). Therefore, the precise function of Tpr remains unknown. RESULTS By microinjecting two types of polyclonal antibodies which are specific to Tpr into the cytoplasm of living mammalian interphase cells, we succeeded in reconstituting the Tpr-less nuclei. In the Tpr-less nuclei, the localization of the major components of the NPC, the nuclear import of SV40 T-NLS substrates and the nuclear export of HIV Rev NES-substrates were not affected. However poly(A)+ RNA accumulated in the non-snRNP splicing factor SC35-positive clusters, which became larger in size and fewer in number, compared with normal nuclei. CONCLUSION These results indicate that Tpr plays a critical role in the intranuclear dynamics of RNA pol II transcripts, including the processing, intranuclear transport and targeting, as well as their translocation through the NPC in mammalian cells.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
110
|
Yoneda Y, Kametaka A, Sekimoto T. How Many Pathways Are Available for Nuclear Protein Import in Cells. Acta Histochem Cytochem 2002. [DOI: 10.1267/ahc.35.435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University
| | - Ai Kametaka
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University
| | - Toshihiro Sekimoto
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
111
|
Forwood JK, Harley V, Jans DA. The C-terminal nuclear localization signal of the sex-determining region Y (SRY) high mobility group domain mediates nuclear import through importin beta 1. J Biol Chem 2001; 276:46575-82. [PMID: 11535586 DOI: 10.1074/jbc.m101668200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sex-determining factor SRY is a DNA-binding protein that diverts primordial gonads from the ovarian pathway toward male differentiation to form testes. It gains access to the nucleus through two distinct nuclear localization signals (NLSs) that flank the high mobility group (HMG) DNA-binding domain, but the mechanisms through which these NLSs operate have not been studied. In this study, we reconstitute the nuclear import of SRY in vitro, demonstrating a lack of requirement for exogenous factors for nuclear accumulation and a significant reduction in nuclear transport in the presence of antibodies to importin beta but not importin alpha. Using a range of quantitative binding assays including enzyme-linked immunosorbent assay, fluorescence polarization, and native gel mobility electrophoresis, we assess the binding of importins to SRY, demonstrating a high affinity recognition (in the low nm range) by Imp beta independent of Imp alpha. In assessing the contribution of each NLS, we found that the N-terminal NLS was recognized poorly by importins, whereas the C-terminal NLS was bound by importin beta with similar affinity to SRY. We also found that RanGTP, but not RanGDP, could dissociate the SRY-importin beta complex in solution using FP. We describe a novel double-fluorescent label DNA binding assay to demonstrate mutual exclusivity between importin beta recognition and DNA binding on the part of SRY, which may represent an alternative release mechanism upon nuclear entry. This study represents the first characterization of the nuclear import pathway for a HMG domain-containing protein. Importantly, it demonstrates for the first time that recognition of SRY by Imp beta is of comparable affinity to that with which Imp alpha/beta recognizes conventional NLS-containing substrates.
Collapse
Affiliation(s)
- J K Forwood
- Nuclear Signaling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City 2601, Australia
| | | | | |
Collapse
|
112
|
Abstract
The ability to orchestrate the transport of proteins between nucleus and cytoplasm provides cells with a powerful regulatory mechanism. Selective translocation between these compartments is often used to propagate cellular signals, and it is an intimate part of the processes that control cell division, viral replication, and other cellular events. Therefore, precise experimental control over protein localization, through the agency of light, would provide a powerful tool for the study and manipulation of these events. To this end, a prototype photoregulated nuclear localization signal (NLS) was derived from a native NLS. A library of 30 mutants of the bipartite NLS from Xenopus laevis nucleoplasmin containing a novel, photoisomerizable amino acid was prepared by parallel, solid-phase synthesis and screened in vitro for binding to the nuclear import receptor karyopherin alpha, which mediates the nuclear import of cellular proteins. A single peptide was identified in which the cis and trans photoisomers bind the receptor differentially. The strategy used to obtain this peptide is systematic and empirical; therefore, it is potentially applicable to any peptide-receptor system.
Collapse
Affiliation(s)
- S B Park
- Texas A&M University, Department of Chemistry, PO Box 30012, College Station, TX 77842-3012, USA
| | | |
Collapse
|
113
|
Catimel B, Teh T, Fontes MR, Jennings IG, Jans DA, Howlett GJ, Nice EC, Kobe B. Biophysical characterization of interactions involving importin-alpha during nuclear import. J Biol Chem 2001; 276:34189-98. [PMID: 11448961 DOI: 10.1074/jbc.m103531200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins containing the classical nuclear localization sequences (NLSs) are imported into the nucleus by the importin-alpha/beta heterodimer. Importin-alpha contains the NLS binding site, whereas importin-beta mediates the translocation through the nuclear pore. We characterized the interactions involving importin-alpha during nuclear import using a combination of biophysical techniques (biosensor, crystallography, sedimentation equilibrium, electrophoresis, and circular dichroism). Importin-alpha is shown to exist in a monomeric autoinhibited state (association with NLSs undetectable by biosensor). Association with importin-beta (stoichiometry, 1:1; K(D) = 1.1 x 10(-8) m) increases the affinity for NLSs; the importin-alpha/beta complex binds representative monopartite NLS (simian virus 40 large T-antigen) and bipartite NLS (nucleoplasmin) with affinities (K(D) = 3.5 x 10(-8) m and 4.8 x 10(-8) m, respectively) comparable with those of a truncated importin-alpha lacking the autoinhibitory domain (T-antigen NLS, K(D) = 1.7 x 10(-8) m; nucleoplasmin NLS, K(D) = 1.4 x 10(-8) m). The autoinhibitory domain (as a separate peptide) binds the truncated importin-alpha, and the crystal structure of the complex resembles the structure of full-length importin-alpha. Our results support the model of regulation of nuclear import mediated by the intrasteric autoregulatory sequence of importin-alpha and provide a quantitative description of the binding and regulatory steps during nuclear import.
Collapse
Affiliation(s)
- B Catimel
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Lixin R, Efthymiadis A, Henderson B, Jans DA. Novel properties of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun 2001; 284:185-93. [PMID: 11374889 DOI: 10.1006/bbrc.2001.4953] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polypeptide ligand angiogenin, a potent inducer of angiogenesis, localizes in the nucleus/nucleolus subsequent to endocytosis by relevant cell types. This study examines the kinetic properties of the nucleolar targeting signal (NTS) of angiogenin (IMRRRGL(35)) at the single cell level. We show that the NTS is sufficient to target green fluorescent protein (GFP), but not beta-galactosidase, to the nucleolus of rat hepatoma cells. Mutation of Arg(33) to Ala within the NTS abolishes targeting activity. Nuclear/nucleolar import conferred by the NTS of angiogenin is reduced by cytosolic factors as well as ATP and is independent of importins and Ran. The NTS also confers the ability to bind to nuclear/nucleolar components which is inhibited by ATP hydrolysis; nonhydrolysable GTP analogs prevent nuclear accumulation in the absence of an intact nuclear envelope through an apparent cytoplasmic retention mechanism. Since the lectin wheat germ agglutinin does not inhibit transport, we postulate a mechanism for angiogenin nuclear/nucleolar import involving passive diffusion of angiogenin through the nuclear pore and NTS-mediated nuclear/nucleolar retention, and with cytoplasmic retention modulating the process. This pathway is clearly distinct from that of conventional signal-mediated nuclear protein import.
Collapse
Affiliation(s)
- R Lixin
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City, Australia
| | | | | | | |
Collapse
|
115
|
Depienne C, Mousnier A, Leh H, Le Rouzic E, Dormont D, Benichou S, Dargemont C. Characterization of the nuclear import pathway for HIV-1 integrase. J Biol Chem 2001; 276:18102-7. [PMID: 11278458 DOI: 10.1074/jbc.m009029200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The karyophilic properties of the human immunodeficiency virus, type I (HIV-1) pre-integration complex (PIC) allow the virus to infect non-dividing cells. To better understand the mechanisms responsible for nuclear translocation of the PIC, we investigated nuclear import of HIV-1 integrase (IN), a PIC-associated viral enzyme involved in the integration of the viral genome in the host cell DNA. Accumulation of HIV-1 IN into nuclei of digitonin-permeabilized cells does not result from passive diffusion but rather from an active transport that occurs through the nuclear pore complexes. HIV-1 IN is imported by a saturable mechanism, implying that a limiting cellular factor is responsible for this process. Although IN has been previously proposed to contain classical basic nuclear localization signals, we found that nuclear accumulation of IN does not involve karyopherins alpha, beta1, and beta2-mediated pathways. Neither the non-hydrolyzable GTP analog, guanosine 5'-O-(thiotriphosphate), nor the GTP hydrolysis-deficient Ran mutant, RanQ69L, significantly affects nuclear import of IN, which depends instead on ATP hydrolysis. Therefore these results support the idea that IN import is not mediated by members of the karyopherin beta family. More generally, in vitro nuclear import of IN does not require addition of cytosolic factors, suggesting that cellular factor(s) involved in this active but atypical pathway process probably remain associated with the nuclear compartment or the nuclear pore complexes from permeabilized cells.
Collapse
Affiliation(s)
- C Depienne
- Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Université Paris VI, Université Paris VII, Paris 75251, France
| | | | | | | | | | | | | |
Collapse
|
116
|
Hieda M, Tachibana T, Fukumoto M, Yoneda Y. Nuclear import of the U1A splicesome protein is mediated by importin alpha /beta and Ran in living mammalian cells. J Biol Chem 2001; 276:16824-32. [PMID: 11278401 DOI: 10.1074/jbc.m008299200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U1A is a component of the uracil-rich small nuclear ribonucleoprotein. The molecular mechanism of nuclear import of U1A was investigated in vivo and in vitro. When recombinant deletion mutants of U1A are injected into the BHK21 cell cytoplasm, the nuclear localization signal (NLS) of U1A is found in the N-terminal half of the central domain (residues 100-144 in mouse U1A). In an in vitro assay, it was found that the U1A-NLS accumulated in only a portion of the nuclei in the absence of cytosolic extract. In contrast, the addition of importin alpha/beta and Ran induced the uniform nuclear accumulation of U1A-NLS in all cells. Furthermore, U1A was found to bind the C-terminal portion of importin alpha. In addition, the in vitro nuclear migration of full-length U1A was found to be exclusively dependent on importin alpha/beta and Ran. Moreover, in living cells, the full-length U1A accumulated in the nucleus in a Ran-dependent manner, and nuclear accumulation was inhibited by the importin beta binding domain of importin alpha. These results suggest that the nuclear import of U1A is mediated by at least two distinct pathways, an importin alpha/beta and Ran-dependent and an -independent pathway in permeabilized cells, and that the latter pathway may be suppressed in intact cells.
Collapse
Affiliation(s)
- M Hieda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka and Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
117
|
Forwood JK, Lam MH, Jans DA. Nuclear import of Creb and AP-1 transcription factors requires importin-beta 1 and Ran but is independent of importin-alpha. Biochemistry 2001; 40:5208-17. [PMID: 11318643 DOI: 10.1021/bi002732+] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the specific role of transcription factors (TFs) is nuclear, surprisingly little is known in quantitative terms regarding the pathways by which TFs localize in the nucleus. In this study, we use direct binding assays, native gel electrophoresis, and fluorescence polarization measurements to show for the first time that the cAMP-response element binding protein (CREB) and related AP-1 and jun and fos constituents are recognized by importin beta1 (Impbeta) with nanomolar affinity. We reconstitute the nuclear import of these TFs in vitro, demonstrating dependence on cytosolic factors, and show that this is due to the requirement for Impbeta, since antibodies to Impbeta, but not to importin alpha (Impalpha), inhibit nuclear accumulation significantly. We show that Impbeta is necessary and sufficient for docking of CREB at the nuclear envelope; that Ran is essential for CREB nuclear import is demonstrated by the reduction of nuclear accumulation effected by RanGTPgammaS but not RanGDP, and by dissociation of the Impbeta-CREB-GFP complex by RanGTPgammaS but not RanGDP as demonstrated using fluorescence polarization assays. The results support the existence of an Impbeta1- and Ran-mediated nuclear import pathway for CREB and related constitutively nuclear TFs, which is Impalpha-independent and thus distinct from import pathways utilized by inducible TFs.
Collapse
Affiliation(s)
- J K Forwood
- Nuclear Signaling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City, Australia
| | | | | |
Collapse
|
118
|
Kurisaki A, Kose S, Yoneda Y, Heldin CH, Moustakas A. Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol Biol Cell 2001; 12:1079-91. [PMID: 11294908 PMCID: PMC32288 DOI: 10.1091/mbc.12.4.1079] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Smad proteins are cytoplasmic signaling effectors of transforming growth factor-beta (TGF-beta) family cytokines and regulate gene transcription in the nucleus. Receptor-activated Smads (R-Smads) become phosphorylated by the TGF-beta type I receptor. Rapid and precise transport of R-Smads to the nucleus is of crucial importance for signal transduction. By focusing on the R-Smad Smad3 we demonstrate that 1) only activated Smad3 efficiently enters the nucleus of permeabilized cells in an energy- and cytosol-dependent manner. 2) Smad3, via its N-terminal domain, interacts specifically with importin-beta1 and only after activation by receptor. In contrast, the unique insert of exon3 in the N-terminal domain of Smad2 prevents its association with importin-beta1. 3) Nuclear import of Smad3 in vivo requires the action of the Ran GTPase, which mediates release of Smad3 from the complex with importin-beta1. 4) Importin-beta1, Ran, and p10/NTF2 are sufficient to mediate import of activated Smad3. The data describe a pathway whereby Smad3 phosphorylation by the TGF-beta receptor leads to enhanced interaction with importin-beta1 and Ran-dependent import and release into the nucleus. The import mechanism of Smad3 shows distinct features from that of the related Smad2 and the structural basis for this difference maps to the divergent sequences of their N-terminal domains.
Collapse
Affiliation(s)
- A Kurisaki
- Ludwig Institute for Cancer Research, SE-751 24 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
119
|
Jiang CJ, Shoji K, Matsuki R, Baba A, Inagaki N, Ban H, Iwasaki T, Imamoto N, Yoneda Y, Deng XW, Yamamoto N. Molecular cloning of a novel importin alpha homologue from rice, by which constitutive photomorphogenic 1 (COP1) nuclear localization signal (NLS)-protein is preferentially nuclear imported. J Biol Chem 2001; 276:9322-9. [PMID: 11124253 DOI: 10.1074/jbc.m006430200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear import of proteins that contain classical nuclear localization signals (NLS) is initiated by importin alpha, a protein that recognizes and binds to the NLS in the cytoplasm. In this paper, we have cloned a cDNA for a novel importin alpha homologue from rice which is in addition to our previously isolated rice importin alpha1a and alpha2, and we have named it rice importin alpha1b. In vitro binding and nuclear import assays using recombinant importin alpha1b protein demonstrate that rice importin alpha1b functions as a component of the NLS-receptor in plant cells. Analysis of the transcript levels for all three rice importin alpha genes revealed that the genes were not only differentially expressed but that they also responded to dark-adaptation in green leaves. Furthermore, we also show that the COP1 protein bears a bipartite-type NLS and its nuclear import is mediated preferentially by the rice importin alpha1b. These data suggest that each of the different rice importin alpha proteins carry distinct groups of nuclear proteins, such that multiple isoforms of importin alpha contribute to the regulation of plant nuclear protein transport.
Collapse
Affiliation(s)
- C J Jiang
- National Institute of Agrobiological Resources, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 2001; 152:237-50. [PMID: 11266442 PMCID: PMC2199613 DOI: 10.1083/jcb.152.2.237] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Through direct interaction with the voltage-dependent anion channel (VDAC), proapoptotic members of the Bcl-2 family such as Bax and Bak induce apoptogenic cytochrome c release in isolated mitochondria, whereas BH3-only proteins such as Bid and Bik do not directly target the VDAC to induce cytochrome c release. To investigate the biological significance of the VDAC for apoptosis in mammalian cells, we produced two kinds of anti-VDAC antibodies that inhibited VDAC activity. In isolated mitochondria, these antibodies prevented Bax-induced cytochrome c release and loss of the mitochondrial membrane potential (Deltapsi), but not Bid-induced cytochrome c release. When microinjected into cells, these anti-VDAC antibodies, but not control antibodies, also prevented Bax-induced cytochrome c release and apoptosis, whereas the antibodies did not prevent Bid-induced apoptosis, indicating that the VDAC is essential for Bax-induced, but not Bid-induced, apoptogenic mitochondrial changes and apoptotic cell death. In addition, microinjection of these anti-VDAC antibodies significantly inhibited etoposide-, paclitaxel-, and staurosporine-induced apoptosis. Furthermore, we used these antibodies to show that Bax- and Bak-induced lysis of red blood cells was also mediated by the VDAC on plasma membrane. Taken together, our data provide evidence that the VDAC plays an essential role in apoptogenic cytochrome c release and apoptosis in mammalian cells.
Collapse
Affiliation(s)
- Shigeomi Shimizu
- Osaka University Graduate School of Medicine, Biomedical Research Center, Department of Medical Genetics, Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology of Japan Science and Technology Corp., Osaka 565-0871, Japan
| | - Yosuke Matsuoka
- Department of Cell Biology and Neuroscience, Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology of Japan Science and Technology Corp., Osaka 565-0871, Japan
| | - Yasuo Shinohara
- University of Tokushima, Faculty of Pharmaceutical Sciences, Tokushima 770-8505, Japan
| | - Yoshihiro Yoneda
- Department of Cell Biology and Neuroscience, Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology of Japan Science and Technology Corp., Osaka 565-0871, Japan
| | - Yoshihide Tsujimoto
- Osaka University Graduate School of Medicine, Biomedical Research Center, Department of Medical Genetics, Osaka 565-0871, Japan
- Core Research for Evolutional Science and Technology of Japan Science and Technology Corp., Osaka 565-0871, Japan
| |
Collapse
|
121
|
Briggs LJ, Johnstone RW, Elliot RM, Xiao CY, Dawson M, Trapani JA, Jans DA. Novel properties of the protein kinase CK2-site-regulated nuclear- localization sequence of the interferon-induced nuclear factor IFI 16. Biochem J 2001; 353:69-77. [PMID: 11115400 PMCID: PMC1221544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Members of the interferon-induced class of nuclear factors possess a putative CcN motif, comparable with that within proteins such as the simian virus 40 large tumour antigen (T-ag), which confers phosphorylation-mediated regulation of nuclear-localization sequence (NLS)-dependent nuclear import. Here we examine the functionality of the interferon-induced factor 16 (IFI 16) CcN motif, demonstrating its ability to target a heterologous protein to the nucleus, and to be phosphorylated specifically by the CcN-motif-phosphorylating protein kinase CK2 (CK2). The IFI 16 NLS, however, has novel properties, conferring ATP-dependent nuclear import completely independent of cytosolic factors, as well as binding to nuclear components. The IFI 16 NLS is not recognized with high affinity by the NLS-binding importin heterodimer, and transport mediated by it is insensitive to non-hydrolysable GTP analogues. The IFI 16 NLS thus mediates nuclear import through a pathway completely distinct from that of conventional NLSs, such as that of T-ag, but intriguingly resembling that of the NLS of the HIV-1 transactivator protein Tat. Since the IFI 16 CK2 site enhances nuclear import through facilitating binding to nuclear components, this represents a novel mechanism by which the site regulates nuclear-protein import, and constitutes a difference between the IFI 16 and Tat NLSs that may be of importance in the immune response.
Collapse
Affiliation(s)
- L J Briggs
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra City, A.C.T. 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
122
|
Chan CK, Jans DA. Enhancement of MSH receptor- and GAL4-mediated gene transfer by switching the nuclear import pathway. Gene Ther 2001; 8:166-71. [PMID: 11313786 DOI: 10.1038/sj.gt.3301366] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Accepted: 10/10/2000] [Indexed: 11/09/2022]
Abstract
Efficient nuclear delivery of plasmid DNA represents a major barrier in nonviral gene transfer. One approach has been to use DNA-binding proteins such as GAL4 from yeast as DNA carriers with nuclear targeting properties. We recently showed, however, that GAL4 is inefficient in targeting DNA to the nucleus because its DNA-binding and nuclear targeting activities are mutually exclusive, which relates to the fact that GAL4 nuclear import occurs via a novel pathway. Here, we 'switch' this pathway to a more conventional one by adding a modified poly-lysine to which an optimized nuclear targeting signal, based on that of the SV40 large T-antigen, is linked. We also use a chimeric GAL4-alpha-melanocyte stimulating hormone (MSH) fusion protein to enable gene transfer to cells expressing the MSH receptor. Switching the nuclear import pathway of the transfecting complex significantly enhances receptor-mediated gene transfer through enabling interaction with desired components of the cellular nuclear import machinery. The present study represents the first demonstration that nuclear targeting signals can enhance receptor-mediated gene delivery, the approaches having important relevance to research and clinical applications, such as in generating transgenic or knock-out animals, or in gene therapy.
Collapse
Affiliation(s)
- C K Chan
- Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
123
|
Abstract
In eukaryotic cells, cell functions are maintained in an orderly manner through the continuous traffic of various proteins between the cell nucleus and the cytoplasm. The nuclear import and export of proteins occurs through nuclear pore complexes and typically requires specific signals: the nuclear localization signal and nuclear export signal, respectively. The transport pathways have been found to be highly divergent, but are known to be largely mediated by importin beta-like transport receptor family molecules. These receptor molecules bind to and carry their cargoes directly or via adapter molecules. A small GTPase Ran ensures the directionality of nuclear transport by regulating the interaction between the receptors and their cargoes through its GTP/GDP cycle. Moreover, it has been recently elucidated how the transport system is involved in various functions of cell physiology, such as cell cycle control.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Japan.
| |
Collapse
|
124
|
Lee SJ, Imamoto N, Sakai H, Nakagawa A, Kose S, Koike M, Yamamoto M, Kumasaka T, Yoneda Y, Tsukihara T. The adoption of a twisted structure of importin-beta is essential for the protein-protein interaction required for nuclear transport. J Mol Biol 2000; 302:251-64. [PMID: 10964573 DOI: 10.1006/jmbi.2000.4055] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Importin-beta is a nuclear transport factor which mediates the nuclear import of various nuclear proteins. The N-terminal 1-449 residue fragment of mouse importin-beta (impbeta449) possesses the ability to bidirectionally translocate through the nuclear pore complex (NPC), and to bind RanGTP. The structure of the uncomplexed form of impbeta449 has been solved at a 2.6 A resolution by X-ray crystallography. It consists of ten copies of the tandemly arrayed HEAT repeat and exhibits conformational flexibility which is involved in protein-protein interaction for nuclear transport. The overall conformation of the HEAT repeats shows that a twisted motion produces a significantly varied superhelical architecture from the previously reported structure of RanGTP-bound importin-beta. These conformational changes appear to be the sum of small conformational changes throughout the polypeptide. Such a flexibility, which resides in the stacked HEAT repeats, is essential for interaction with RanGTP or with NPCs. Furthermore, it was found that impbeta449 has a structural similarity with another nuclear migrating protein, namely beta-catenin, which is composed of another type of helix-repeated structure of ARM repeat. Interestingly, the essential regions for NPC translocation for both importin-beta and beta-catenin are spatially well overlapped with one another. This strongly indicates the importance of helix stacking of the HEAT or ARM repeats for NPC-passage.
Collapse
Affiliation(s)
- S J Lee
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Osaka, Suita, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Significant progress has been made toward our understanding of the basic principle of nucleocytoplasmic transport, and the structure of transport factors, as well as the diversity of nucleocytoplasmic transport pathways. This review outlines the current knowledge of transport, and discusses the problems that remain as to how eukaryotic cells acquire additional levels for the regulation of gene expression from a diversity of nucleocytoplasmic transport pathways.
Collapse
Affiliation(s)
- N Imamoto
- Gene Network Laboratory, Structural Biology Center, National Institute of Genetics, Yata, Shizuoka, Japan.
| |
Collapse
|
126
|
Hood JK, Silver PA. Diverse nuclear transport pathways regulate cell proliferation and oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1471:M31-41. [PMID: 10967423 DOI: 10.1016/s0304-419x(00)00018-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J K Hood
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and the Dana-Farber Cancer Institute, 44 Binney Street, 02115, Boston, MA, USA
| | | |
Collapse
|
127
|
Hara T, Arai K, Koike K. Form of human p53 protein during nuclear transport in Xenopus laevis embryos. Exp Cell Res 2000; 258:152-61. [PMID: 10912797 DOI: 10.1006/excr.2000.4926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The p53 protein binds DNA as a tetramer inside the nucleus, but a form of the p53 protein during nuclear transport has not been fully elucidated. To verify whether the human p53 protein passes through the nuclear pore as a monomer or oligomer, two different p53 mutants N1 and C1NLS- with or without a nuclear localization signal (NLS), respectively, were expressed in Xenopus laevis embryos. By the whole-mount immunostaining method, their intracellular distributions were observed to exist in an NLS-dependent manner. In a immunoprecipitation assay system, NLS-defective mutants formed oligomer in the cytoplasm. When coexpressed with NLS-containing N1, C1NLS- still stayed in the cytoplasm and did not inhibit N1 transport into the nucleus. Furthermore, when oligomerization-defective p53 mutant was expressed in Xenopus embryos, efficiency of its nuclear transport was demonstrated to be unchanged compared to that of the wild type. Assuming that NLS-defective p53 mutants have no dominant-negative effect on wild-type p53 in the nucleus of p53 heterozygous cells, we investigated the dominant-negative effect by CAT activity assay using human cell line Saos-2 and NLS-defective mutants. It was found that the NLS-defective p53 mutant did not have a dominant-negative effect on the function of wild-type p53 protein in the nucleus. Data indicate that each monomeric p53 protein independently passes through the nuclear pore; however, the possibility of homooligomeric p53 protein transport into the nucleus is not completely excluded.
Collapse
Affiliation(s)
- T Hara
- Department of Gene Research, The Cancer Institute, JFCR, Tokyo, Japan
| | | | | |
Collapse
|
128
|
Sobolev AS, Jans DA, Rosenkranz AA. Targeted intracellular delivery of photosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2000; 73:51-90. [PMID: 10781829 DOI: 10.1016/s0079-6107(00)00002-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A S Sobolev
- Department of Biophysics, Biological Faculty, Moscow State University, 119899, Moscow, Russia.
| | | | | |
Collapse
|
129
|
Plafker K, Macara IG. Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1. Mol Cell Biol 2000; 20:3510-21. [PMID: 10779340 PMCID: PMC85643 DOI: 10.1128/mcb.20.10.3510-3521.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 02/21/2000] [Indexed: 12/19/2022] Open
Abstract
The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)-RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin beta. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.
Collapse
Affiliation(s)
- K Plafker
- Markey Center for Cell Signaling and Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
130
|
Connolly MD, Park SB, Reedy BM, Standaert RF. A simple, solid-phase binding assay for the nuclear import receptor karyopherin alpha. Part 1: direct binding. Bioorg Med Chem Lett 2000; 10:951-4. [PMID: 10853666 DOI: 10.1016/s0960-894x(00)00134-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nuclear import receptor karyopherin alpha recognizes nuclear localization signals (NLSs), peptides that direct the transport of proteins into the nucleus. A simple, colorimetric assay has been developed to facilitate the identification and comparison of karyopherin ligands by direct and competitive binding using NLSs immobilized on the solid phase (TentaGel resin).
Collapse
Affiliation(s)
- M D Connolly
- Department of Chemistry, Texas A&M University, College Station 77842-3012, USA
| | | | | | | |
Collapse
|
131
|
Park SB, Reedy BM, Standaert RF. A simple, solid-phase binding assay for the nuclear import receptor karyopherin alpha. Part 2: competitive binding. Bioorg Med Chem Lett 2000; 10:955-6. [PMID: 10853667 DOI: 10.1016/s0960-894x(00)00135-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A qualitative assay for the evaluation of soluble ligands of the nuclear import receptor karyopherin alpha has been developed. The assay relies on competition with an immobilized ligand, the nuclear localization signal (NLS) from nucleoplasmin, for binding to the receptor, which is detected by an enzyme-linked colorimetric method.
Collapse
Affiliation(s)
- S B Park
- Department of Chemistry, Texas A&M University, College Station 77842-3012, USA
| | | | | |
Collapse
|
132
|
Iwadate H, Kawamata K, Kudo M, Kizuki K. Biochemical and immunohistochemical demonstration of tissue kallikrein in the neuronal nuclei of the developing rat brains. Brain Res 2000; 863:87-93. [PMID: 10773196 DOI: 10.1016/s0006-8993(00)02118-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Kallikrein content and cellular localization in the prenatal, newborn and adult rat brains were determined by the enzyme-linked immunosorbent assay and immunohistochemistry. The content was the highest in the prenatal rats and highly predominant in the neuronal nuclei during the prenatal to newborn periods, whereas the immunoreactive kallikrein was mainly located around neuronal cell bodies and their processes in the adult rats. The preferential nuclear localization in the prenatal rat brains was further confirmed by the immunoblotting technique after the SDS-polyacrylamide gel electrophoresis of the lysate of the nuclei fractionated from the prenatal rat brains. The meaning(s) of this kallikrein localization in the neuronal nuclei at the prenatal and newborn stages is unknown. However, we would like to conclude that this enzyme plays an important role in the morphogenesis of brain by acting on the substance(s) in the neuronal nuclei at the developing stage.
Collapse
Affiliation(s)
- H Iwadate
- Department of Materials Science and Engineering, Faculty of Science and Engineering, Science University of Tokyo in Yamaguchi, Daigakudori, Onoda-shi, Yamaguchi, Japan.
| | | | | | | |
Collapse
|
133
|
Jans DA, Jans P, Jülich T, Briggs LJ, Xiao CY, Piller SC. Intranuclear binding by the HIV-1 regulatory protein VPR is dependent on cytosolic factors. Biochem Biophys Res Commun 2000; 270:1055-62. [PMID: 10772949 DOI: 10.1006/bbrc.2000.2559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulatory protein Vpr of the human immunodeficiency virus HIV-1 performs multiple functions during the HIV replicative cycle. It is involved in the transport of the viral preintegration complex into the nucleus, and has the ability to interact with nuclear proteins such as transcription factors and cyclin-dependent kinases. In this study we examine for the first time the kinetics of intranuclear binding and accumulation at the nuclear envelope of fluorescently labelled full-length Vpr in vitro. We show that intranuclear binding is strongly dependent on the presence of cytosolic factors; in the absence of cytosol, Vpr associates predominantly with the nuclear envelope. Specific regulation of the interactions of Vpr with cytosolic factors, as well as with sites at the nuclear envelope and within the nucleus, is thus implicated, but conventional nuclear transport factors such as importin alpha/beta do not appear to be involved.
Collapse
Affiliation(s)
- D A Jans
- Nuclear Signaling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, ACT, 2601, Australia.
| | | | | | | | | | | |
Collapse
|
134
|
Hood JK, Casolari JM, Silver PA. Nup2p is located on the nuclear side of the nuclear pore complex and coordinates Srp1p/importin-alpha export. J Cell Sci 2000; 113 ( Pt 8):1471-80. [PMID: 10725229 DOI: 10.1242/jcs.113.8.1471] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins bearing canonical nuclear localization sequences are imported into the nucleus by the importin/karyopherin-alpha/beta heterodimer. Recycling of the importin-alpha subunit to the cytoplasm requires the action of Cas, a member of the importin-beta superfamily. In the yeast Saccharomyces ceresivisiae, the essential gene CSE1 encodes a Cas homologue that exports the yeast importin-alpha protein Srp1p/Kap60p from the nucleus. In this report, we describe a role for the FXFG nucleoporin Nup2p, and possibly the related Nup1p, in the Cse1p-mediated nuclear export pathway. Yeast cells lacking Nup2p or containing a particular temperature-sensitive mutation in NUP1 accumulate Srp1p in the nucleus. Similarly, Cse1p is displaced from the nuclear rim to the nuclear interior in deltanup2 cells. We do not observe any biochemical interaction between Cse1p and Nup2p. Instead, we find that Nup2p binds directly to Srp1p. We have localized Nup2p to the interior face of the nuclear pore complex, and have shown that its N terminus is sufficient for targeting Nup2p to the pore, as well as for binding to Srp1p. Taken together, these data suggest that Nup2p is an important NPC docking site in the Srp1p export pathway.
Collapse
Affiliation(s)
- J K Hood
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and The Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
135
|
Talcott B, Moore MS. The nuclear import of RCC1 requires a specific nuclear localization sequence receptor, karyopherin alpha3/Qip. J Biol Chem 2000; 275:10099-104. [PMID: 10744690 DOI: 10.1074/jbc.275.14.10099] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RCC1 is the only known guanine nucleotide exchange factor for the small GTPase Ran and is normally found inside the nucleus bound to chromatin. In order to analyze in more detail the nuclear import of RCC1, we created a fusion construct in which four IgG binding domains of protein A were fused to the amino terminus of human RCC1 (pA-RCC1). Surprisingly, we found that neither Xenopus ovarian cytosol nor a mixture of recombinant import factors (karyopherin alpha2, karyopherin beta1, Ran, and p10/NTF2) were able to support the import of pA-RCC1 into the nuclei of digitonin-permeabilized cells. Both, in contrast, were capable of supporting the import of a construct containing another classical nuclear localization sequence (NLS), glutathione S-transferase-green fluorescent protein-NLS. Subsequently, we found that only one of the NLS receptors, karyopherin alpha3 (Kapalpha3/Qip), would support significant nuclear import of pA-RCC1 in permeabilized cells, while members of the other two main classes, Kapalpha1 and Kapalpha2, would not. Accordingly, in vitro binding studies revealed that only Kapalpha3 showed significant binding to RCC1 (unlike Kapalpha1 and Kapalpha2) and that this binding was dependent on the basic amino acids present in the RCC1 NLS. In addition to Kapalpha3, we found that the nuclear import of pA-RCC1 also required both karyopherin beta1 and Ran.
Collapse
Affiliation(s)
- B Talcott
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
136
|
Tachibana T, Hieda M, Miyamoto Y, Kose S, Imamoto N, Yoneda Y. Recycling of importin alpha from the nucleus is suppressed by loss of RCC1 function in living mammalian cells. Cell Struct Funct 2000; 25:115-23. [PMID: 10885581 DOI: 10.1247/csf.25.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously reported that the nuclear import of substrates containing SV40 T antigen nuclear localization signal (NLS) was suppressed in a temperature-sensitive RCC1 mutant cell line, tsBN2, at nonpermissive temperature. Moreover, it was shown that import into wild type BHK21 cell-derived nuclei gradually decreased in heterokaryons between the tsBN2 and BHK21 cells, although the BHK21 nuclei retained wild type RCC1 and should contain RanGTP (Tachibana et al., 1994). In this study, it was found that in the heterokaryons cultured at non-permissive temperature, endogenous importin alpha was not detected immunocytochemically in the cytoplasm or BHK21 nuclei but only in the tsBN2 nuclei, suggesting that importin alpha cannot be exported from the RCC1-depleted nuclei. In fact, importin alpha microinjected into the nucleus of tsBN2 cells at non-permissive temperature remained in the nucleus. These results strongly support the hypothesis that the recycling of importin alpha from the nucleus requires nuclear RanGTP. Moreover, it was found that cytoplasmic injection of importin alpha restored the import of SV40 T-NLS substrates in the BHK21 nuclei but not the tsBN2 nuclei in the heterokaryons. This indicates that the decrease of importin alpha from the cytoplasm in the heterokaryons leads to a suppression of the efficiency of nuclear import of the T-NLS substrate and provides support for the view that nuclear RanGTP is essential for the nuclear entry of the substrates.
Collapse
Affiliation(s)
- T Tachibana
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
137
|
Padma AS, Thampan RV. Interdependence between a 55 kDa protein (p55) and a 12 kDa protein (p12) in facilitating the nuclear entry of goat uterine estrogen receptor under cell-free conditions. Biol Chem 2000; 381:285-94. [PMID: 10839456 DOI: 10.1515/bc.2000.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A 55 kDa nuclear localization signal binding protein (p55) is involved in the transport of the goat uterine estrogen receptor from the cytoplasm to the nuclear pore complex (NPC). p55 forms a complex with a 12 kDa protein (p12) which in turn becomes 'docked' at the NPC. The present study reports on the purification and functional characterization of p12. Both p55 and p12 are Mg2+-dependent ATPases. The protein-protein interactions that take place between these two molecules at the NPC cause an enhancement in the net ATPase activity associated with the protein complex. Presumably, this enhanced ATPase function helps in the final nuclear entry of the estrogen receptor; p55 remains associated with p12 at the nuclear entry site under these conditions.
Collapse
Affiliation(s)
- A S Padma
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Kerala, India
| | | |
Collapse
|
138
|
Steggerda SM, Black BE, Paschal BM. Monoclonal antibodies to NTF2 inhibit nuclear protein import by preventing nuclear translocation of the GTPase Ran. Mol Biol Cell 2000; 11:703-19. [PMID: 10679025 PMCID: PMC14804 DOI: 10.1091/mbc.11.2.703] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear transport factor 2 (NTF2) is a soluble transport protein originally identified by its ability to stimulate nuclear localization signal (NLS)-dependent protein import in digitonin-permeabilized cells. NTF2 has been shown to bind nuclear pore complex proteins and the GDP form of Ran in vitro. Recently, it has been reported that NTF2 can stimulate the accumulation of Ran in digitonin-permeabilized cells. Evidence that NTF2 directly mediates Ran import or that NTF2 is required to maintain the nuclear concentration of Ran in living cells has not been obtained. Here we show that cytoplasmic injection of anti-NTF2 mAbs resulted in a dramatic relocalization of Ran to the cytoplasm. This provides the first evidence that NTF2 regulates the distribution of Ran in vivo. Moreover, anti-NTF2 mAbs inhibited nuclear import of both Ran and NLS-containing protein in vitro, suggesting that NTF2 stimulates NLS-dependent protein import by driving the nuclear accumulation of Ran. We also show that biotinylated NTF2-streptavidin microinjected into the cytoplasm accumulated at the nuclear envelope, indicating that NTF2 can target a binding partner to the nuclear pore complex. Taken together, our data show that NTF2 is an essential regulator of the Ran distribution in living cells and that NTF2-mediated Ran nuclear import is required for NLS-dependent protein import.
Collapse
Affiliation(s)
- S M Steggerda
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, and Cell and Molecular Biology Program, University of Virginia Health Sciences Center, Charlottesville, Virginia, 22908, USA
| | | | | |
Collapse
|
139
|
Abstract
The compartmentation of eukaryotic cells requires all nuclear proteins to be imported from the cytoplasm, whereas, for example, transfer RNAs, messenger RNAs, and ribosomes are made in the nucleus and need to be exported to the cytoplasm. Nuclear import and export proceed through nuclear pore complexes and can occur along a great number of distinct pathways, many of which are mediated by importin beta-related nuclear transport receptors. These receptors shuttle between nucleus and cytoplasm, and they bind transport substrates either directly or via adapter molecules. They all cooperate with the RanGTPase system to regulate the interactions with their cargoes. Another focus of our review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin beta-related factors. We discuss mechanistic aspects and the energetics of transport receptor function and describe a number of pathways in detail.
Collapse
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany.
| | | |
Collapse
|
140
|
Koike M, Ikuta T, Miyasaka T, Shiomi T. Ku80 can translocate to the nucleus independent of the translocation of Ku70 using its own nuclear localization signal. Oncogene 1999; 18:7495-505. [PMID: 10602508 DOI: 10.1038/sj.onc.1203247] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ku antigen is a complex of Ku70 and Ku80 subunits and plays an important role in not only DNA double-strand breaks (DSB) repair and V(D)J recombination, but also in growth regulation. Ku is generally believed to always form and function as heterodimers on the basis of in vitro observations. Here we demonstrate that the localization of Ku80 does not completely coincide with that of Ku70. Ku70 and Ku80 were colocalized in the nucleus in the interphase but not in the late telophase/early G1 phase of the cell cycle. Since the in vivo function of Ku might be partially regulated by the control of its transport, we attempted to investigate the molecular mechanisms underlying the nuclear translocation of Ku. The nuclear translocation of Ku80 started during the late telophase/early G1 phase after the nuclear envelope was formed and this was preceded by the nuclear translocation of Ku70. Furthermore, we found that the Ku80 protein was transported to the nucleus without heterodimerization with Ku70. To understand in detail the mechanism of transport of Ku80, we attempted to identify the nuclear localization signal (NLS) of Ku80 and defined to a region spanning nine amino acid residues (positions 561 - 569). The Ku80 NLS was demonstrated to be mediated to the nuclear rim by two components of PTAC58 and PTAC97. All these findings support the idea that Ku80 can translocate to the nucleus using its own NLS independent of the translocation of Ku70.
Collapse
Affiliation(s)
- M Koike
- Genome Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | |
Collapse
|
141
|
Yoneda Y, Hieda M, Nagoshi E, Miyamoto Y. Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct 1999; 24:425-33. [PMID: 10698256 DOI: 10.1247/csf.24.425] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
142
|
Chan CK, Jans DA. Synergy of importin alpha recognition and DNA binding by the yeast transcriptional activator GAL4. FEBS Lett 1999; 462:221-4. [PMID: 10580123 DOI: 10.1016/s0014-5793(99)01515-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The N-terminus of the yeast transcriptional activator GAL4 contains partially overlapping nuclear targeting and DNA binding functions. We have previously shown that GAL4 is recognised with high affinity by importin beta and not by the conventional nuclear localisation sequence binding importin alpha subunit of the importin alpha/beta heterodimer. The present study uses ELISA-based binding and electrophoretic mobility shift assays to show that recognition of GAL4 by importin alpha can occur, but only when GAL4 is bound to its specific DNA recognition sequence. Intriguingly, binding by importin alpha enhances DNA binding on the part of GAL4, implying a synergistic co-operation between these two functions. The results implicate a possible role for importin alpha in the nucleus additional to its established role in nuclear transport, as well as having implications for the use of GAL4 as a DNA carrier in gene therapy applications.
Collapse
Affiliation(s)
- C K Chan
- Nuclear Signalling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, 0200, Canberra, A.C.T., Australia
| | | |
Collapse
|
143
|
Claussen M, Rudt F, Pieler T. Functional modules in ribosomal protein L5 for ribonucleoprotein complex formation and nucleocytoplasmic transport. J Biol Chem 1999; 274:33951-8. [PMID: 10567357 DOI: 10.1074/jbc.274.48.33951] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ribosomal protein L5 forms a small, extraribosomal complex with 5 S ribosomal RNA, referred to as the 5 S ribonucleoprotein complex, which shuttles between nucleus and cytoplasm in Xenopus oocytes. Mapping elements in L5 that mediate nuclear protein import defines three separate such activities (L5-nuclear localization sequence (NLS)-1, -2, and -3), which are functional in both oocytes and somatic cells. RNA binding activity involves N-terminal as well as C-terminal elements of L5. In contrast to the full-length protein, none of the individual NLSs carrying L5 fragments are able to allow for the predominating accumulation in the nucleoli that is observed with the full-length protein. The separate L5-NLSs differ in respect to two activities. Firstly, only L5-NLS-1 and -3, not L5-NLS-2, are capable of promoting the nuclear transfer of a heterologous, covalently attached ribonucleoprotein complex. Secondly, only L5-NLS-1 is able to bind strongly to a variety of different import receptors; those that recognize L5-NLS-2 and -3 have yet to be identified.
Collapse
Affiliation(s)
- M Claussen
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
144
|
Köhler M, Speck C, Christiansen M, Bischoff FR, Prehn S, Haller H, Görlich D, Hartmann E. Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. Mol Cell Biol 1999; 19:7782-91. [PMID: 10523667 PMCID: PMC84838 DOI: 10.1128/mcb.19.11.7782] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Importin alpha plays a pivotal role in the classical nuclear protein import pathway. Importin alpha shuttles between nucleus and cytoplasm, binds nuclear localization signal-bearing proteins, and functions as an adapter to access the importin beta-dependent import pathway. In contrast to what is found for importin beta, several isoforms of importin alpha, which can be grouped into three subfamilies, exist in higher eucaryotes. We describe here a novel member of the human family, importin alpha7. To analyze specific functions of the distinct importin alpha proteins, we recombinantly expressed and purified five human importin alpha's along with importin alpha from Xenopus and Saccharomyces cerevisiae. Binding affinity studies showed that all importin alpha proteins from humans or Xenopus bind their import receptor (importin beta) and their export receptor (CAS) with only marginal differences. Using an in vitro import assay based on permeabilized HeLa cells, we compared the import substrate specificities of the various importin alpha proteins. When the substrates were tested singly, only the import of RCC1 showed a strong preference for one family member, importin alpha3, whereas most of the other substrates were imported by all importin alpha proteins with similar efficiencies. However, strikingly different substrate preferences of the various importin alpha proteins were revealed when two substrates were offered simultaneously.
Collapse
Affiliation(s)
- M Köhler
- Charité, Franz-Volhard-Klinik, Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Mayr J, Wang HR, Nederlof P, Baumeister W. The import pathway of human and Thermoplasma 20S proteasomes into HeLa cell nuclei is different from that of classical NLS-bearing proteins. Biol Chem 1999; 380:1183-92. [PMID: 10595581 DOI: 10.1515/bc.1999.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wild-type proteasomes of human erythrocytes and the archaeon Thermoplasma acidophilum compete with each other for transport into nuclei of digitonin-permeabilized HeLa cells in the presence of an energy-regenerating system and rabbit reticulocyte lysate. 'NLS'-mutated Thermoplasma proteasomes were also able to compete with human proteasomes in the same assay, although with lower efficiency. Furthermore, in contrast to the other archaeal and bacterial cell lysates tested, the Thermoplasma cytosol efficiently supported nuclear import of human and Thermoplasma proteasomes. However, the same lysate could barely direct the nuclear transport of BSA-NLSsv40 peptide conjugates or the classical NLS-bearing protein, nucleoplasmin. Finally, additional importin alpha/beta significantly decreased the import efficiency of both human and Thermoplasma proteasomes. Taken together, these results suggest that nuclear import of proteasomes may use a novel pathway that is different from that of classical NLS-bearing proteins.
Collapse
Affiliation(s)
- J Mayr
- Max Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
146
|
Fujii G, Tsuchiya R, Ezoe E, Hirohashi S. Analysis of nuclear localization signals using a green fluorescent protein-fusion protein library. Exp Cell Res 1999; 251:299-306. [PMID: 10471315 DOI: 10.1006/excr.1999.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe here an efficient method for identifying intracellular localization signals in proteins with stereospecific intracellular localizations in culture cells. The method involves rapid fluorescence screening of cells transfected with a cDNA library in which cDNAs are fused to the gene encoding the Aequorea victoria green fluorescent protein (GFP). We analyzed nuclear localization and nuclear localization signals (NLSs) in a model application of this method. As a result, we identified classical NLSs in 75% of nuclear localized proteins. We identified some novel NLS candidates among the classical NLS-negative sequences whose nuclear localization was also identified in another cell line and with other molecular tag sequences. This method will be useful for identifying intracellular localization signals and for more detailed analysis of intracellular architecture.
Collapse
Affiliation(s)
- G Fujii
- ERATO, JST, Ibaraki, Tsukuba, 300-2635, Japan
| | | | | | | |
Collapse
|
147
|
Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 1999; 401:168-73. [PMID: 10490026 DOI: 10.1038/43678] [Citation(s) in RCA: 322] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apoptosis is defined by several unique morphological nuclear changes, such as chromatin condensation and nuclear fragmentation. These changes are triggered by the activation of a family of cysteine proteases called caspases, and caspase-activated DNase (CAD/DFF40) and lamin protease (caspase-6) have been implicated in some of these changes. CAD/DFF40 induces chromatin condensation in purified nuclei, but distinct caspase-activated factor(s) may be responsible for chromatin condensation. Here we use an in vitro system to identify a new nuclear factor, designated Acinus, which induces apoptotic chromatin condensation after cleavage by caspase-3 without inducing DNA fragmentation. Immunodepletion experiments showed that Acinus is essential for apoptotic chromatin condensation in vitro, and an antisense study revealed that Acinus is also important in the induction of apoptotic chromatin condensation in cells.
Collapse
Affiliation(s)
- S Sahara
- Department of Medical Genetics, Biomedical Research Center, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
Light exerts a great influence on gene expression, physiology and development pattern in higher plants. Protein factors involved in these processes, such as the photoreceptor, phytochrome B, a key regulatory protein, COP1, and some bZIP transcription factors have been identified and their light-regulated movement between the cytoplasm and the nucleus has been demonstrated. These findings imply that nucleocytoplasmic transport plays a crucial role in light regulation in higher plants. This review summarizes recent investigations into plant nuclear transport systems and specific cases where nucleocytoplasmic transport is subject to light regulation.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | | |
Collapse
|
149
|
Hübner S, Smith HM, Hu W, Chan CK, Rihs HP, Paschal BM, Raikhel NV, Jans DA. Plant importin alpha binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin beta. J Biol Chem 1999; 274:22610-7. [PMID: 10428841 DOI: 10.1074/jbc.274.32.22610] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear import of conventional nuclear localization sequence (NLS)-containing proteins initially involves recognition by the importin (IMP) alpha/beta heterodimer, where IMPalpha binds the NLS and IMPbeta targets the IMPalpha/NLS-containing protein complex to the nuclear pore. Here we examine IMPalpha from the plant Arabidopsis thaliana (At-IMPalpha), which exhibits nuclear envelope localization typical of IMPbeta rather than IMPalpha in other eukaryotic cell systems. We show that At-IMPalpha recognizes conventional NLSs of two different types with high affinity (K(d) of 5-10 nM), in contrast to mouse IMPalpha (m-IMPalpha), which exhibits much lower affinity (K(d) of 50-70 nM) and only achieves high affinity in the presence of m-IMPbeta. Unlike m-IMPalpha, At-IMPalpha is thus a high affinity NLS receptor in the absence of IMPbeta. Interestingly, At-IMPalpha was also able to bind with high affinity to NLSs recognized specifically by m-IMPbeta and not m-IMPalpha, including that of the maize transcription factor Opaque-2. Reconstitution of nuclear import in vitro indicated that in the absence of exogenous IMPbeta subunit but dependent on RanGDP and NTF2, At-IMPalpha was able to mediate nuclear accumulation to levels comparable with those mediated by m-IMPalpha/beta. Neither m-IMPalpha nor -beta was able to mediate nuclear import in the absence of the other subunit. At-IMPalpha's novel NLS recognition and nuclear transport properties imply that plants may possess an IMPalpha-mediated nuclear import pathway independent of IMPbeta in addition to that mediated by IMPalpha/beta.
Collapse
Affiliation(s)
- S Hübner
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Koike M, Ikuta T, Miyasaka T, Shiomi T. The nuclear localization signal of the human Ku70 is a variant bipartite type recognized by the two components of nuclear pore-targeting complex. Exp Cell Res 1999; 250:401-13. [PMID: 10413594 DOI: 10.1006/excr.1999.4507] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ku protein is a complex of two subunits, Ku70 and Ku80. Ku is suspected to participate in both DNA double-strand break repair and transcription. Since both of these processes take place in the cell nucleus, we have been investigating the subcellular localization and nuclear transport of Ku proteins. In the present study, we analyzed the subcellular localization and nuclear localization signal (NLS) of Ku70. Fusion proteins of Ku70 and green fluorescent protein (GFP) transiently expressed in cells were clearly localized in the nuclei of interphase cells. Ku70 staining was distributed throughout both the nucleus and the cytoplasm in late telophase to early G1 phase cells. The NLS of Ku70 was located at the region composed of 18 amino acid residues (positions 539 to 556). This region overlapped with the Ku80-independent DNA-binding domain reported previously. The Ku70 NLS consisted of two basic subregions and a nonbasic intervening region. All the subregions were necessary for complete NLS activity. The amino acids in the nonbasic intervening region of Ku70 might be important for full NLS activity not only to provide sufficient length between the two separated clusters of basic amino acids but also to have an adequate amino acid sequence. All of the basic amino acid residues in the basic subregions were conserved among mammalian and avian homologues, confirming their importance in the nuclear translocation of Ku70. The structure of the Ku70 NLS resembled the consensus of a bipartite-type NLS. The Ku70 NLS was mediated to target to the nuclear rim by two components of the nuclear pore-targeting complex, PTAC58 and PTAC97.
Collapse
Affiliation(s)
- M Koike
- Genome Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | | | | | | |
Collapse
|