101
|
Hu C, Gu F, Gong C, Xia Q, Gao Y, Gao S. Co-delivery of the autophagy inhibitor si-Beclin1 and the doxorubicin nano-delivery system for advanced prostate cancer treatment. J Biomater Appl 2021; 36:1317-1331. [PMID: 34856824 DOI: 10.1177/08853282211060252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Resistance to apoptosis is a key mechanism underlying how cancer cells evade tumor therapy. Autophagy can prevent anticancer drug-induced apoptosis and promote tumor resistance. The purpose of this study was to improve the sensitivity and efficacy of chemotherapeutic drugs through the inhibition of autophagy. Hydrophobic doxorubicin-hydrazone-caproyl-maleimide (DOX-EMCH) and autophagy-inhibiting si-Beclin1 were simultaneously delivered via the amphiphilic peptide micelle system (Co-PMs) using poly(L-arginine)-poly(L-histidine)-DOX-EMCH as the copolymer building unit. The constructed micelle system promoted the escape of si-Beclin1 from endosomes and the release of DOX into the nucleus. The Co-PMs exhibited 2.7-fold higher cytotoxicity and proapoptotic ability in PC3 cells than DOX treatment alone, demonstrating that si-Beclin1 could inhibit the autophagic activity of prostate cancer (PCa) cells by targeting the type III PI3K pathway and enhance the sensitivity of the cells to the chemotherapeutic drug DOX. In addition, the peptide micelles successfully passively targeted DOX and si-Beclin1 to the tumor tissue. Compared with DOX or si-Beclin1 treatment alone, the Co-PMs showed a 3.4-fold greater tumor inhibitory potential in vivo, indicative of a significant antiproliferative effect. Our results suggested that the Co-PMs developed in this study have the potential to combine autophagy inhibition and chemotherapy in cancer treatment, especially for PCa.
Collapse
Affiliation(s)
- Chuling Hu
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Fenfen Gu
- 91603Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | - Yuan Gao
- 12478Fudan University, Shanghai, China
| | - Shen Gao
- 12520Changhai Hospital, Shanghai, China
| |
Collapse
|
102
|
Jiao N, Wang L, Wang Y, Xu D, Zhang X, Yin J. Cysteine exerts an essential role in maintaining intestinal integrity and function independent of glutathione. Mol Nutr Food Res 2021; 66:e2100728. [PMID: 34787361 DOI: 10.1002/mnfr.202100728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/02/2021] [Indexed: 11/11/2022]
Abstract
SCOPE Enteral feeding is a primary source of cysteine for intestinal mucosa given negligible transsulfuration activity in enterocytes and furthermore very few cysteine uptake from arterial blood. This study aims to explore the role of cysteine in maintaining intestinal integrity and function. METHODS AND RESULTS The intestinal porcine enterocytes (IPEC-J2) were cultured in a cysteine-deprived medium with or without glutathione supplementation upon the inhibitions of glutathione synthesis or degradation. As a result, cysteine deprivation impaired mitochondrial function, suppressed mechanistic target of rapamycin (mTOR) signaling and activated general control nonderepressible 2 (GCN2) signaling, and might lead to resultant ferroptosis. Glutathione supplementation could restore the impairment through degradating into cysteine, while glutathione synthesis inhibition did not disturb the role of cysteine in keeping the intestinal epithelial cells. Furthermore, piglets were fed with cysteine-deficient, -adequate and -surplus diet for 28 d as a porcine model. We evidenced that intestinal integrity and individual growth benefit from adequate dietary cysteine. CONCLUSION Adequate dietary cysteine supply is essential for intestinal mucosal integrity, epithelial cell turnover and amino acid sensing as well as optimal individual growth. Cysteine exerts its role independent of glutathione and glutathione restores the impairment of cysteine-deprivation on intestinal mucosal through degrading into cysteine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ning Jiao
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubo Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Doudou Xu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
103
|
Ma K, Diao E, Zhang H, Qian S, Xie P, Mao R, Song H, Zhang L. Factors influencing the removal of patulin by cysteine. Toxicon 2021; 203:51-57. [PMID: 34626597 DOI: 10.1016/j.toxicon.2021.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
The removal of patulin in phosphoric acid buffer solution by cysteine was investigated. Cysteine could effectively decrease the patulin concentration at high acidic condition (pH 3.0-5.0) with the help of high temperature greater than 90 °C. Three removal mechanisms of patulin by cysteine under high acidic and high temperature conditions were deduced. Reaction temperature, pH of reactive media, molar ratio between cysteine and patulin, and reaction time were all the obvious factors influencing the removal efficiency of patulin, and the increase of any one factor could significantly improve the removal efficiency of patulin. The removal process of patulin could be simulated by the zero-order kinetic model, logarithmic model, and pseudo-first-order kinetic model, respectively, and the corresponding correlation coefficients (R2) were all greater than 0.90. Presently, this method can only be applied for the removal of patulin in contaminated water from washing fruits in juice processing industry due to the high treatment temperature more than 120 °C and the long detoxification time greater than 1 h.
Collapse
Affiliation(s)
- Kun Ma
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; College of Food Science & Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China.
| | - Hui Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Shiquan Qian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Huwei Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Liming Zhang
- Research & Development Center of National Vegetable Processing Technology, Jiangsu Liming Food Group Co., Ltd., Pizhou, 221354, PR China
| |
Collapse
|
104
|
Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 2021; 8:731-745. [PMID: 34522704 PMCID: PMC8427322 DOI: 10.1016/j.gendis.2020.11.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
Cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11; also known as xCT) plays a key role in antioxidant defense by mediating cystine uptake, promoting glutathione synthesis, and maintaining cell survival under oxidative stress conditions. Recent studies showed that, to prevent toxic buildup of highly insoluble cystine inside cells, cancer cells with high expression of SLC7A11 (SLC7A11high) are forced to quickly reduce cystine to more soluble cysteine, which requires substantial NADPH supply from the glucose-pentose phosphate pathway (PPP) route, thereby inducing glucose- and PPP-dependency in SLC7A11high cancer cells. Limiting glucose supply to SLC7A11high cancer cells results in significant NADPH “debt”, redox “bankruptcy”, and subsequent cell death. This review summarizes our current understanding of NADPH-generating and -consuming pathways, discusses the opposing role of SLC7A11 in protecting cells from oxidative stress–induced cell death such as ferroptosis but promoting glucose starvation–induced cell death, and proposes the concept that SLC7A11-mediated cystine uptake acts as a double-edged sword in cellular redox regulation. A detailed understanding of SLC7A11 in redox biology may identify metabolic vulnerabilities in SLC7A11high cancer for therapeutic targeting.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
105
|
Diao E, Ma K, Zhang H, Xie P, Qian S, Song H, Mao R, Zhang L. Thermal Stability and Degradation Kinetics of Patulin in Highly Acidic Conditions: Impact of Cysteine. Toxins (Basel) 2021; 13:662. [PMID: 34564666 PMCID: PMC8471958 DOI: 10.3390/toxins13090662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
The thermal stability and degradation kinetics of patulin (PAT, 10 μmol/L) in pH 3.5 of phosphoric-citric acid buffer solutions in the absence and presence of cysteine (CYS, 30 μmol/L) were investigated at temperatures ranging from 90 to 150 °C. The zero-, first-, and second-order models and the Weibull model were used to fit the degradation process of patulin. Both the first-order kinetic model and Weibull model better described the degradation of patulin in the presence of cysteine while it was complexed to simulate them in the absence of cysteine with various models at different temperatures based on the correlation coefficients (R2 > 0.90). At the same reaction time, cysteine and temperature significantly affected the degradation efficiency of patulin in highly acidic conditions (p < 0.01). The rate constants (kT) for patulin degradation with cysteine (0.0036-0.3200 μg/L·min) were far more than those of treatments without cysteine (0.0012-0.1614 μg/L·min), and the activation energy (Ea = 43.89 kJ/mol) was far less than that of treatment without cysteine (61.74 kJ/mol). Increasing temperature could obviously improve the degradation efficiency of patulin, regardless of the presence of cysteine. Thus, both cysteine and high temperature decreased the stability of patulin in highly acidic conditions and improved its degradation efficiency, which could be applied to guide the detoxification of patulin by cysteine in the juice processing industry.
Collapse
Affiliation(s)
- Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, College of Life Science, Huaiyin Normal University, Huai’an 223300, China; (K.M.); (P.X.); (S.Q.); (H.S.); (R.M.)
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, College of Life Science, Huaiyin Normal University, Huai’an 223300, China
| | - Kun Ma
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, College of Life Science, Huaiyin Normal University, Huai’an 223300, China; (K.M.); (P.X.); (S.Q.); (H.S.); (R.M.)
- Department of Food Science, College of Food Science & Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Hui Zhang
- Department of Food Science, College of Food Science & Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, College of Life Science, Huaiyin Normal University, Huai’an 223300, China; (K.M.); (P.X.); (S.Q.); (H.S.); (R.M.)
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, College of Life Science, Huaiyin Normal University, Huai’an 223300, China
| | - Shiquan Qian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, College of Life Science, Huaiyin Normal University, Huai’an 223300, China; (K.M.); (P.X.); (S.Q.); (H.S.); (R.M.)
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, College of Life Science, Huaiyin Normal University, Huai’an 223300, China
| | - Huwei Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, College of Life Science, Huaiyin Normal University, Huai’an 223300, China; (K.M.); (P.X.); (S.Q.); (H.S.); (R.M.)
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, College of Life Science, Huaiyin Normal University, Huai’an 223300, China
| | - Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, College of Life Science, Huaiyin Normal University, Huai’an 223300, China; (K.M.); (P.X.); (S.Q.); (H.S.); (R.M.)
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, College of Life Science, Huaiyin Normal University, Huai’an 223300, China
| | - Liming Zhang
- Research & Development Center of National Vegetable Processing Technology, Jiangsu Liming Food Group Co., Ltd., Pizhou 221354, China;
| |
Collapse
|
106
|
Anti-inflammatory effect of L-cysteine (a semi-essential amino acid) on 5-FU-induced oral mucositis in hamsters. Amino Acids 2021; 53:1415-1430. [PMID: 34410507 DOI: 10.1007/s00726-021-03062-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023]
Abstract
Oral mucositis is an inflammation of the oral mucosa mainly resulting from the cytotoxic effect of 5-fluorouracil (5-FU). The literature shows anti-inflammatory action of L-cysteine (L-cys) involving hydrogen sulfide (H2S). In view of these properties, we investigate the effect of L-cys in oral mucositis induced by 5-FU in hamsters. The animals were divided into the following groups: saline 0.9%, mechanical trauma, 5-FU 60-40 mg/kg, L-cys 10/40 mg and NaHS 27 µg/kg. 5-FU was administered on days 1st to 2nd; 4th day excoriations were made on the mucosa; 5th-6th received L-cys and NaHS. For data analysis, histological analyses, mast cell count, inflammatory and antioxidants markers, and immunohistochemistry (cyclooxygenase-2(COX-2)/inducible nitric oxide synthase (iNOs)/H2S) were performed. Results showed that L-cys decreased levels of inflammatory markers, mast cells, levels of COX-2, iNOS and increased levels of antioxidants markers and H2S when compared to the group 5-FU (p < 0.005). It is suggested that L-cys increases the H2S production with anti-inflammatory action in the 5-FU lesion.
Collapse
|
107
|
Huang S, Wu Z, Huang Z, Hao X, Zhang L, Hu C, Wei J, Deng J, Tan C. Maternal supply of cysteamine alleviates oxidative stress and enhances angiogenesis in porcine placenta. J Anim Sci Biotechnol 2021; 12:91. [PMID: 34372937 PMCID: PMC8353810 DOI: 10.1186/s40104-021-00609-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress in placenta is associated with the occurrence of adverse pregnancy outcomes in sow, but there are few satisfactory treatment strategies for these conditions. This study investigated the potential of cysteamine (CS) as an antioxidant protectant for regulating the reproductive performance, redox status, and placental angiogenesis of sows. METHODS The placental oxidative stress status and vascular density of piglets with different birth weights: < 1.0 kg (low birth weight, LBW) and 1.4-1.6 kg (normal birth weight, NBW) were evaluated, followed by allotting 84 sows to four treatments (n = 21) and feeding them with a basal diet supplemented with 0, 100, 300, or 500 mg/kg of CS from d 85 of gestation to d 21 of lactation, respectively. Placenta, serum, and colostrum samples of sows or piglets were collected, and the characteristics of sows and piglets were recorded. Furthermore, the in vivo results were validated using porcine vascular endothelial cells (PVECs). RESULTS Compared with the NBW placentae, the LBW placentae showed increased oxidative damage and were vulnerable to angiogenesis impairment. Particularly, H2O2-induced oxidative stress prompted intracellular reactive oxygen species generation and inhibited the tube formation and migration of PVECs as well as the expression of vascular endothelial growth factor-A (VEGF-A) in vitro. However, dietary CS supplementation can alleviate oxidative stress and improve the reproductive performance of sows. Specifically, compared with the control group, dietary 100 mg/kg CS could (1) decrease the stillbirth and invalid rates, and increase both the piglet birth weight in the low yield sows and the placental efficiency; (2) increase glutathione and reduce malondialdehyde in both the serum and the colostrum of sows; (3) increase the levels of total antioxidant capacity and glutathione in LBW placentae; (4) increase the vascular density, the mRNA level of VEGF-A, and the immune-staining intensity of platelet endothelial cell adhesion molecule-1 in the LBW placentae. Furthermore, the in vitro experiment indicated that CS pre-treatment could significantly reverse the NADPH oxidase 2-ROS-mediated inactivation of signal transducer and activator of transcription-3 (Stat3) signaling pathway induced by H2O2 inhibition of the proliferation, tube formation, and migration of PVECs. Meanwhile, inhibition of Stat3 significantly decreased the cell viability, tube formation and the VEGF-A protein level in CS pretreated with H2O2-cultured PVECs. CONCLUSIONS The results indicated that oxidative stress and impaired angiogenesis might contribute to the occurrence of LBW piglets during pregnancy, but CS supplementation at 100 mg/kg during late gestation and lactation of sows could alleviate oxidative stress and enhance angiogenesis in placenta, thereby increasing birth weight in low yield sows and reducing stillbirth rate. The in vitro data showed that the underlying mechanism for the positive effects of CS might be related to the activation of Stat3 in PVECs.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zifang Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Chengjun Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jianfu Wei
- Guangzhou DaBeiNong Agri-animal Huabandry Science and Technology Co., Ltd., Guangzhou, 510642, Guangdong, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
108
|
Kieft K, Breister AM, Huss P, Linz AM, Zanetakos E, Zhou Z, Rahlff J, Esser SP, Probst AJ, Raman S, Roux S, Anantharaman K. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep 2021; 36:109471. [PMID: 34348151 DOI: 10.1016/j.celrep.2021.109471] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/07/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023] Open
Abstract
Viruses influence the fate of nutrients and human health by killing microorganisms and altering metabolic processes. Organosulfur metabolism and biologically derived hydrogen sulfide play dynamic roles in manifestation of diseases, infrastructure degradation, and essential biological processes. Although microbial organosulfur metabolism is well studied, the role of viruses in organosulfur metabolism is unknown. Here, we report the discovery of 39 gene families involved in organosulfur metabolism encoded by 3,749 viruses from diverse ecosystems, including human microbiomes. The viruses infect organisms from all three domains of life. Six gene families encode for enzymes that degrade organosulfur compounds into sulfide, whereas others manipulate organosulfur compounds and may influence sulfide production. We show that viral metabolic genes encode key enzymatic domains, are translated into protein, and are maintained after recombination, and sulfide provides a fitness advantage to viruses. Our results reveal viruses as drivers of organosulfur metabolism with important implications for human and environmental health.
Collapse
Affiliation(s)
- Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam M Breister
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Phil Huss
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandra M Linz
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Zanetakos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Janina Rahlff
- Department of Chemistry, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Sarah P Esser
- Department of Chemistry, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Srivatsan Raman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
109
|
Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021; 50:7436-7495. [PMID: 34075930 PMCID: PMC8763210 DOI: 10.1039/d0cs01096k] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.
Collapse
Affiliation(s)
- Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
110
|
Zhou X, Zhai S, Zhao Y, Liu D, Wang Q, Ji M. Rapid recovery of inhibited denitrification with cascade Cr(VI) exposure by bio-accelerant: Characterization of chromium distributions, EPS compositions and denitrifying communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125087. [PMID: 33476908 DOI: 10.1016/j.jhazmat.2021.125087] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr(VI)) may inhibit denitrification in biological wastewater treatment systems, and the inhibited denitrification process is difficult to recover in a short time. This study explored Cr(VI) cascade impact (20-125 mg L-1) on denitrification and developed one nontoxic biological accelerant (combination of L-cysteine, flavin adenine dinucleotide, biotin and cytokinin) for denitrification recovery. The results showed that NO3--N removal efficiency decreased from 75.7% to 21.5% when Cr(VI) concentration increased from 80 to 125 mg L-1. Addition of accelerant could effectively promote the removal of NO3--N, and observably reduce the recovery time (42 T) compared with natural recovery (63 T). Furthermore, the main site of Cr(VI) reduction and Cr(III) immobilization was located in the intercellular compartment of the biofilm. Microbes produced more tightly bound extracellular polymeric substances (TB-EPS) to protect them from toxicity under the low Cr(VI) concentrations, while low EPS was secreted when Cr(VI) concentration was higher than 60 mg L-1. Compared to natural recovery system, bio-accelerant addition was beneficial to the recovery of denitrifiers activities, especially for the bacteria containing nirS gene. The results facilitated an understanding of Cr(VI) impact on denitrification, and the proposed bio-accelerant can be potentially applied to heavy metal shock-loading emergency situations.
Collapse
Affiliation(s)
- Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Duo Liu
- The Ninth Waterworks of Beijing Waterworks Group Co., Ltd, Beijing 100012, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
111
|
Nutraceuticals as Potential Targets for the Development of a Functional Beverage for Improving Sleep Quality. BEVERAGES 2021. [DOI: 10.3390/beverages7020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functional beverages can be a valuable component of the human diet with the ability to not only provide essential hydration but to deliver important bioactive compounds that can contribute to chronic disease treatment and prevention. One area of the functional beverage market that has seen an increase in demand in recent years are beverages that promote relaxation and sleep. Sleep is an essential biological process, with optimal sleep being defined as one of adequate duration, quality and timing. It is regulated by a number of neurotransmitters which are, in turn, regulated by dietary intake of essential bioactive compounds. This narrative review aimed to evaluate the latest evidence of the sleep promoting properties of a selection of bioactive compounds (such as L-theanine and L-tryptophan) for the development of a functional beverage to improve sleep quality; and the effectiveness of traditional sleep promoting beverages (such as milk and chamomile). Overall, the bioactive compounds identified in this review, play essential roles in the synthesis and regulation of important neurotransmitters involved in the sleep-wake cycle. There is also significant potential for their inclusion in a number of functional beverages as the main ingredient on their own or in combination. Future studies should consider dosage; interactions with the beverage matrix, medications and other nutraceuticals; bioavailability during storage and following ingestion; as well as the sensory profile of the developed beverages, among others, when determining their effectiveness in a functional beverage to improve sleep quality.
Collapse
|
112
|
Maternal cysteine intake influenced oxidative status and lipid-related gut microbiota and plasma metabolomics in male suckling piglets. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
113
|
Azad MAK, Wang H, Yang H, Tan B, Zhou S, Guan G. Effects of dietary carboxymethyl pachyman on oxidative stress and inflammation in weaned piglets challenged with diquat. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
114
|
Yang CP, Wu Q, Jiang ZW, Wang X, Huang CZ, Li YF. Cu vacancies enhanced photoelectrochemical activity of metal-organic gel-derived CuO for the detection of l-cysteine. Talanta 2021; 228:122261. [PMID: 33773715 DOI: 10.1016/j.talanta.2021.122261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Defect engineering in the photoelectrochemical (PEC) process of photoelectrodes has been extensively studied. But insufficient attention has been received about the impact of metal vacancies (VM) in PEC process. Herein, the influence of Cu vacancies (VCu) on PEC performance of copper oxide (CuO) derived from Cu-based metal-organic gel (Cu-MOG) precursor was reported. It can be found that the presence of more VCu can improve the PEC activity of CuO photocathode by facilitating the charge separation and transfer. Moreover, the as-prepared CuO was presented as a new PEC sensor to detect l-cysteine (L-Cys) on the basis of the excellent PEC performance, which showed high sensitivity and selectivity. Good linear response of L-Cys within the range of 0.1-6 μM was performed with a detection limit of 0.04 μM. This work not only provides insights into the role of VM in the PEC process of photocathodes, but also proved the high potential applicability of CuO as a PEC device for biomolecule detection.
Collapse
Affiliation(s)
- Chang Ping Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Qing Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xue Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
115
|
Allouche M, Nasri A, Harrath AH, Mansour L, Alwasel S, Beyrem H, Plăvan G, Rohal-Lupher M, Boufahja F. Meiobenthic nematode Oncholaimus campylocercoides as a model in laboratory studies: selection, culture, and fluorescence microscopy after exposure to phenanthrene and chrysene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29484-29497. [PMID: 33560507 DOI: 10.1007/s11356-021-12688-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Numerous studies have focused on the response of meiofauna after exposure to polycyclic aromatic hydrocarbons (PAHs), but none has been devoted to their uptake into nematode body compartments. The present study monitored PAH uptake by Oncholaimus campylocercoides which was selected after 40 days in the laboratory through original protocols from natural sediments collected in the Old Harbor of Bizerte, Tunisia. To achieve the mono-species level, a grain size magnification was applied by gradually adding a biosubstrate made from either the crushed shells of Mytilus galloprovincialis or minced leaves of Posidonia oceanica. After selection, O. campylocercoides was cultured and fed with earthworm powder (560 mg.l-1). Thereafter, it was exposed for 3 weeks to phenanthrene and chrysene (38, 116, and 348 ppb). Fluorescence microscopy revealed higher intensities of PAHs at the spicules, mouths, and pharynges compared with the other organs considered. Moreover, the buccal fluorescence showed a significant correlation with that measured in the biosubstrate made with shells of M. galloprovincialis.
Collapse
Affiliation(s)
- Mohamed Allouche
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Ahmed Nasri
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Gabriel Plăvan
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Melissa Rohal-Lupher
- Texas Water Development Board, 1700 North Congress Avenue, Austin, TX, 78701, USA
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
116
|
Wu J, Yeung SCJ, Liu S, Qdaisat A, Jiang D, Liu W, Cheng Z, Liu W, Wang H, Li L, Zhou Z, Liu R, Yang C, Chen C, Yang R. Cyst(e)ine in nutrition formulation promotes colon cancer growth and chemoresistance by activating mTORC1 and scavenging ROS. Signal Transduct Target Ther 2021; 6:188. [PMID: 34045438 PMCID: PMC8160199 DOI: 10.1038/s41392-021-00581-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
Weight loss and cachexia are common problems in colorectal cancer patients; thus, parenteral and enteral nutrition support play important roles in cancer care. However, the impact of nonessential amino acid components of nutritional intake on cancer progression has not been fully studied. In this study, we discovered that gastrointestinal cancer patients who received cysteine as part of the parenteral nutrition had shorter overall survival (P < 0.001) than those who did not. Cystine indeed robustly promotes colon cancer cell growth in vitro and in immunodeficient mice, predominately by inhibiting SESN2 transcription via the GCN2-ATF4 axis, resulting in mTORC1 activation. mTORC1 inhibitors Rapamycin and Everolimus block cystine-induced cancer cell proliferation. In addition, cystine confers resistance to oxaliplatin and irinotecan chemotherapy by quenching chemotherapy-induced reactive oxygen species via synthesizing glutathione. We demonstrated that dietary deprivation of cystine suppressed colon cancer xenograft growth without weight loss in mice and boosted the antitumor effect of oxaliplatin. These findings indicate that cyst(e)ine, as part of supplemental nutrition, plays an important role in colorectal cancer and manipulation of cyst(e)ine content in nutritional formulations may optimize colorectal cancer patient survival.
Collapse
Affiliation(s)
- Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sicheng Liu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Aiham Qdaisat
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenli Liu
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenjing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Haixia Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lu Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Institute of Translation Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Runxiang Yang
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
117
|
Hasegawa T, Mizugaki A, Inoue Y, Kato H, Murakami H. Cystine reduces tight junction permeability and intestinal inflammation induced by oxidative stress in Caco-2 cells. Amino Acids 2021; 53:1021-1032. [PMID: 33991253 PMCID: PMC8241805 DOI: 10.1007/s00726-021-03001-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Intestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.
Collapse
Affiliation(s)
- Tatsuya Hasegawa
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Ami Mizugaki
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Yoshiko Inoue
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Hiroyuki Kato
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan.
| | - Hitoshi Murakami
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| |
Collapse
|
118
|
Sinha S, Gautam CS, Sehgal R. L-cysteine whether a nutritional booster or a radical scavenger for Plasmodium. Trop Parasitol 2021; 11:19-24. [PMID: 34195056 PMCID: PMC8213117 DOI: 10.4103/tp.tp_20_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Plasmodium falciparum is the most noxious species among other Plasmodium species that cause malaria. Attention is required to understand more about the pathophysiology and parasite biology to obscure this disease. The fact is, very little is known about the nutritional requirement in sense of carbohydrate, lipid, nucleic acid, and amino acid metabolism that regulate the growth of parasite and out of this, studies related to the metabolism of amino acid are exceptionally limited. Out of several amino acids, L-cysteine is essential for the continuous erythrocytic growth of Plasmodium. However, the exact role of L-cysteine in regulating the growth of Plasmodium is unknown. Here, we tried to investigate how does L-cysteine affects the growth of Plasmodium in in vitro culture, and also the study was aimed to find whether there is a synergism with chloroquine on the Plasmodium growth in vitro. Materials and Methods: Parasite inhibition assay based on schizont maturation inhibition following WHO protocol on P. falciparum chloroquine-sensitive strain (MRC-2) was employed to determine IC50 value and drug interaction pattern was shown through fractional inhibitory concentration index. Results: Inhibitory effect of L-cysteine hydrochloride on Plasmodium growth was depicted with IC50 1.152 ± 0.287 μg/mL and the most synergistic pattern of interaction was shown with chloroquine. Conclusions: The present study anticipates two important findings, firstly inconsistent results from previous findings and secondly, synergistic effect with chloroquine suggests its potency that may be used as an add-on therapy along with chloroquine. However, further study is needed to validate the above findings in vivo models.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - C S Gautam
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
119
|
Gaston B, Baby SM, May WJ, Young AP, Grossfield A, Bates JN, Seckler JM, Wilson CG, Lewis SJ. D-Cystine di(m)ethyl ester reverses the deleterious effects of morphine on ventilation and arterial blood gas chemistry while promoting antinociception. Sci Rep 2021; 11:10038. [PMID: 33976311 PMCID: PMC8113454 DOI: 10.1038/s41598-021-89455-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
We have identified thiolesters that reverse the negative effects of opioids on breathing without compromising antinociception. Here we report the effects of D-cystine diethyl ester (D-cystine diEE) or D-cystine dimethyl ester (D-cystine diME) on morphine-induced changes in ventilation, arterial-blood gas chemistry, A-a gradient (index of gas-exchange in the lungs) and antinociception in freely moving rats. Injection of morphine (10 mg/kg, IV) elicited negative effects on breathing (e.g., depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive). Subsequent injection of D-cystine diEE (500 μmol/kg, IV) elicited an immediate and sustained reversal of these effects of morphine. Injection of morphine (10 mg/kg, IV) also elicited pronounced decreases in arterial blood pH, pO2 and sO2 accompanied by pronounced increases in pCO2 (all indicative of a decrease in ventilatory drive) and A-a gradient (mismatch in ventilation-perfusion in the lungs). These effects of morphine were reversed in an immediate and sustained fashion by D-cystine diME (500 μmol/kg, IV). Finally, the duration of morphine (5 and 10 mg/kg, IV) antinociception was augmented by D-cystine diEE. D-cystine diEE and D-cystine diME may be clinically useful agents that can effectively reverse the negative effects of morphine on breathing and gas-exchange in the lungs while promoting antinociception. Our study suggests that the D-cystine thiolesters are able to differentially modulate the intracellular signaling cascades that mediate morphine-induced ventilatory depression as opposed to those that mediate morphine-induced antinociception and sedation.
Collapse
Affiliation(s)
- Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Santhosh M Baby
- Translational Sciences Treatment Discovery, Galvani Bioelectronics, Inc., 1250 S Collegeville Rd., Collegeville, PA, 1r9426, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher G Wilson
- Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Stephen J Lewis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Division of Pulmonology, Allergy and Immunology, Departments of Pediatrics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4984, USA.
| |
Collapse
|
120
|
Bauer T, Imschweiler J, Muhl C, Weber B, Barz M. Secondary Structure-Driven Self-Assembly of Thiol-Reactive Polypept(o)ides. Biomacromolecules 2021; 22:2171-2180. [PMID: 33830742 PMCID: PMC8154267 DOI: 10.1021/acs.biomac.1c00253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Indexed: 01/06/2023]
Abstract
Secondary structure formation differentiates polypeptides from most of the other synthetic polymers, and the transitions from random coils to rod-like α-helices or β-sheets represent an additional parameter to direct self-assembly and the morphology of nanostructures. We investigated the influence of distinct secondary structures on the self-assembly of reactive amphiphilic polypept(o)ides. The individual morphologies can be preserved by core cross-linking via chemoselective disulfide bond formation. A series of thiol-responsive copolymers of racemic polysarcosine-block-poly(S-ethylsulfonyl-dl-cysteine) (pSar-b-p(dl)Cys), enantiopure polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) (pSar-b-p(l)Cys), and polysarcosine-block-poly(S-ethylsulfonyl-l-homocysteine) (pSar-b-p(l)Hcy) was prepared by N-carboxyanhydride polymerization. The secondary structure of the peptide segment varies from α-helices (pSar-b-p(l)Hcy) to antiparallel β-sheets (pSar-b-p(l)Cys) and disrupted β-sheets (pSar-b-p(dl)Cys). When subjected to nanoprecipitation, copolymers with antiparallel β-sheets display the strongest tendency to self-assemble, whereas disrupted β-sheets hardly induce aggregation. This translates to worm-like micelles, solely spherical micelles, or ellipsoidal structures, as analyzed by atomic force microscopy and cryogenic transmission electron microscopy, which underlines the potential of secondary structure-driven self-assembly of synthetic polypeptides.
Collapse
Affiliation(s)
- Tobias
A. Bauer
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jan Imschweiler
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christian Muhl
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Benjamin Weber
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Matthias Barz
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
121
|
Gumeni S, Vantaggiato C, Montopoli M, Orso G. Hereditary Spastic Paraplegia and Future Therapeutic Directions: Beneficial Effects of Small Compounds Acting on Cellular Stress. Front Neurosci 2021; 15:660714. [PMID: 34025345 PMCID: PMC8134669 DOI: 10.3389/fnins.2021.660714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of inherited neurodegenerative conditions that share a characteristic feature of degeneration of the longest axons within the corticospinal tract, which leads to progressive spasticity and weakness of the lower limbs. Mutations of over 70 genes produce defects in various biological pathways: axonal transport, lipid metabolism, endoplasmic reticulum (ER) shaping, mitochondrial function, and endosomal trafficking. HSPs suffer from an adequate therapeutic plan. Currently the treatments foreseen for patients affected by this pathology are physiotherapy, to maintain the outgoing tone, and muscle relaxant therapies for spasticity. Very few clinical studies have been conducted, and it's urgent to implement preclinical animal studies devoted to pharmacological test and screening, to expand the rose of compounds potentially attractive for clinical trials. Small animal models, such as Drosophila melanogaster and zebrafish, have been generated, analyzed, and used as preclinical model for screening of compounds and their effects. In this work, we briefly described the role of HSP-linked proteins in the organization of ER endomembrane system and in the regulation of ER homeostasis and stress as a common pathological mechanism for these HSP forms. We then focused our attention on the pharmacodynamic and pharmacokinetic features of some recently identified molecules with antioxidant property, such as salubrinal, guanabenz, N-acetyl cysteine, methylene blue, rapamycin, and naringenin, and on their potential use in future clinical studies. Expanding the models and the pharmacological screening for HSP disease is necessary to give an opportunity to patients and clinicians to test new molecules.
Collapse
Affiliation(s)
- Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
122
|
Murinzi TW, Watkins GM, Shumba M, Nyokong T. Electrocatalytic detection of l-cysteine using molybdenum POM doped-HKUST-1 metal organic frameworks. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1907573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tafadzwa W. Murinzi
- Chemistry Department, Rhodes University, Grahamstown, South Africa
- Chemical Technology Department, Midlands State University, Gweru, Zimbabwe
| | | | - Munyaradzi Shumba
- Chemical Technology Department, Midlands State University, Gweru, Zimbabwe
- Nanotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Tebello Nyokong
- Nanotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
123
|
Duperray J, Sergheraert R, Chalothorn K, Tachalerdmanee P, Perin F. The effects of the oral supplementation of L-Cystine associated with reduced L-Glutathione-GSH on human skin pigmentation: a randomized, double-blinded, benchmark- and placebo-controlled clinical trial. J Cosmet Dermatol 2021; 21:802-813. [PMID: 33834608 DOI: 10.1111/jocd.14137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Glutathione has become a potential skin-lightening ingredient after the discovery of its anti-melanogenic properties. Various mechanisms of action have been considered to explain this property, one of them being the skewing of the melanin synthesis pathway toward the production of lighter pheomelanin instead of darker eumelanin, consequently producing a lightening effect. AIMS To evaluate the skin lightening and anti-dark spot effects of oral supplementation with L-Cystine associated with L-Glutathione as compared to placebo and benchmark. METHODS Effects of this L-Cystine-L-Glutathione oral combination were investigated in a 12-week randomized, double-blind, parallel-group, benchmark- and placebo-controlled trial involving 124 Asian female subjects. Women were randomly allocated into 4 equal groups (500 mg L-Cystine and 250 mg L-Glutathione, 250 mg reduced L-Glutathione, 500 mg L-Cystine, or a placebo, daily). Skin color was measured at baseline, after 6 and 12 weeks by spectrophotometry. Size and color of facial dark spots were determined from digital photographs. RESULTS A significant skin lightening was observed after 12 weeks of oral supplementation with L-Cystine associated with L-Glutathione. This combination also induced a significant reduction in the size of facial dark spots after 6 and 12 weeks. It is noteworthy that the observed effects were not only significantly better than those obtained with placebo, but also with L-Cystine alone or L-Glutathione alone. CONCLUSION The daily oral administration of 500 mg L-Cystine and 250 mg L-Glutathione during 12 weeks was a safe treatment to effectively lighten the skin and reduce the size of facial dark spots of Asian women.
Collapse
|
124
|
Li SS, Niu M, Jing J, Huang Y, Zhang ZT, Chen SS, Shi GZ, He X, Zhang HZ, Xiao XH, Zou ZS, Yu YC, Wang JB. Metabolomic Signatures of Autoimmune Hepatitis in the Development of Cirrhosis. Front Med (Lausanne) 2021; 8:644376. [PMID: 33777984 PMCID: PMC7994277 DOI: 10.3389/fmed.2021.644376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: Autoimmune hepatitis (AIH) can progress into severe outcomes, i.e., decompensated cirrhosis, from remarkable and persistent inflammation in the liver. Considering the energy-expending nature of inflammation, we tried to define the metabolomics signatures of AIH to uncover the underlying mechanisms of cirrhosis development and its metabolic biomarkers. Methods: Untargeted metabolomics analysis was performed on sera samples from 79 AIH patients at the stages (phenotypes) of non-cirrhosis (n = 27), compensated cirrhosis (n = 22), and decompensated cirrhosis (n = 30). Pattern recognition was used to find unique metabolite fingerprints of cirrhosis with or without decompensation. Results: Out of the 294 annotated metabolites identified, 2 metabolic fingerprints were found associated with the development of cirrhosis (independent of the decompensated state, 42 metabolites) and the evolution of decompensated cirrhosis (out of 47 metabolites), respectively. The cirrhosis-associated fingerprints (eigenmetabolite) showed better capability to differentiate cirrhosis from non-cirrhosis patients than the aminotransferase-to-platelet ratio index. From the metabolic fingerprints, we found two pairs of metabolites (Mesobilirubinogen/6-Hydroxynicotinic acid and LysoPA(8:0/0:0)/7alpha-Hydroxycholesterol) calculated as ratio of intensities, which revealed robust abilities to identify cirrhosis or predict decompensated patients, respectively. These phenotype-related fingerprint metabolites featured fundamental energy supply disturbance along with the development of AIH cirrhosis and progression to decompensation, which was characterized as increased lipolysis, enhanced proteolysis, and increased glycolysis. Conclusions: Remodeling of metabolism to meet the liver inflammation-related energy supply is one of the key signatures of AIH in the development of cirrhosis and decompensation. Therefore, drug regulation metabolism has great potential in the treatment of AIH.
Collapse
Affiliation(s)
- Shan-shan Li
- School of Pharmacy and Chemistry, Dali University, Dali, China
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Poisoning Treatment, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Jing
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Huang
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zi-teng Zhang
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuai-shuai Chen
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ge-zi Shi
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xian He
- School of Pharmacy and Chemistry, Dali University, Dali, China
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hai-zhu Zhang
- School of Pharmacy and Chemistry, Dali University, Dali, China
| | - Xiao-he Xiao
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng-sheng Zou
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yue-cheng Yu
- Liver Diseases Center of General Hospital of PLA Eastern Theater Command, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-bo Wang
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
125
|
The Impact of Diet on Urinary Risk Factors for Cystine Stone Formation. Nutrients 2021; 13:nu13020528. [PMID: 33561968 PMCID: PMC7915598 DOI: 10.3390/nu13020528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Despite the importance of dietary management of cystinuria, data on the contribution of diet to urinary risk factors for cystine stone formation are limited. Studies on the physiological effects of diet on urinary cystine and cysteine excretion are lacking. Accordingly, 10 healthy men received three standardized diets for a period of five days each and collected daily 24 h urine. The Western-type diet (WD; 95 g/day protein) corresponded to usual dietary habits, whereas the mixed diet (MD; 65 g/day protein) and lacto-ovo-vegetarian diet (VD; 65 g/day protein) were calculated according to dietary reference intakes. With intake of the VD, urinary cystine and cysteine excretion decreased by 22 and 15%, respectively, compared to the WD, although the differences were not statistically significant. Urine pH was significantly highest on the VD. Regression analysis showed that urinary phosphate was significantly associated with cystine excretion, while urinary sulfate was a predictor of cysteine excretion. Neither urinary cystine nor cysteine excretion was affected by dietary sodium intake. A lacto-ovo-vegetarian diet is particularly suitable for the dietary treatment of cystinuria, since the additional alkali load may reduce the amount of required alkalizing agents.
Collapse
|
126
|
Identification of amino acid residues important for recognition of O-phospho-l-serine substrates by cysteine synthase. J Biosci Bioeng 2021; 131:483-490. [PMID: 33563496 DOI: 10.1016/j.jbiosc.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 01/18/2023]
Abstract
Pyridoxal-5'-phosphate-dependent cysteine synthases synthesize l-cysteine from their primary substrates, O-acetyl-l-serine (OAS) and O-phospho-l-serine (OPS), and their secondary substrate, sulfide. The mechanism by which cysteine synthases recognize OPS remains unclear; hence, we investigated the OPS recognition mechanism of the OPS sulfhydrylase obtained from Aeropyrum pernix K1 (ApOPSS) and the OAS sulfhydrylase-B obtained from Escherichia coli (EcOASS-B), using protein engineering methods. From the amino acid sequence alignment data, we found that some OPS sulfhydrylases (OPSSs) had a Tyr corresponding to the Phe225 and Phe141 residues in ApOPSS and EcOASS-B, respectively, and that the Tyr residue could facilitate OPS recognition. The enzymatic activity of the ApOPSS F225Y mutant toward OPS decreased compared with that of the wild-type; the kcat value decreased 2.3-fold during cysteine synthesis. X-ray crystallography results of the complex of ApOPSS F225Y and F225Y/R297A mutants bound to OPS and l-cysteine showed that kcat might have decreased because of the stronger interactions of the reaction product phosphate with Tyr225, Thr203, and Arg297, and that of the l-cysteine with Tyr225. The specific activity of the EcOASS-B F141Y mutant toward OPS increased by 50-fold compared with that of the wild-type. Thus, a Tyr within a cysteine synthase corresponding to the Phe225 in ApOPSS and Phe141 in EcOASS-B could act as a key residue for classifying an unknown cysteine synthase as an OPSS. The elucidation of the substrate recognition system of cysteine synthases would enable us to effectively classify cysteine synthases and develop pathogen-specific drug targets, as OPSS is absent in mammalian hosts.
Collapse
|
127
|
|
128
|
Liu H, Ding P, Tong Y, He X, Yin Y, Zhang H, Song Z. Metabolomic analysis of the egg yolk during the embryonic development of broilers. Poult Sci 2021; 100:101014. [PMID: 33676096 PMCID: PMC7933800 DOI: 10.1016/j.psj.2021.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
The chicken egg yolk, which is abundant with lipids, proteins, and minerals, is the major nutrient resource for the embryonic development. In fact, the magnitude and type of yolk nutrients are dynamically changed during the chicken embryogenesis to meet the developmental and nutritional requests at different stages. The yolk nutrients are metabolized and absorbed by the yolk sac membrane and then used by the embryo or other extraembryonic tissues. Thus, understanding the metabolites in the yolk helps to unveil the developmental nutritional requirements for the chicken embryo. In this study, we performed ultra high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) analysis to investigate the change of metabolites in the egg yolk at embryonic (E) 07, E09, E11, E15, E17, and E19. The results showed that 1) the egg yolk metabolites at E07 and E09 were approximately similar, but E09, E11, E15, E17, and E19 were different from each other, indicating the developmental and metabolic change of the egg yolk; and 2) most of the metabolites were annotated in amino acid metabolism pathways from E11 to E15 and E17 to E19. Especially, arginine, lysine, cysteine, and histidine were continuously increased during the embryonic development, probably because of their effects on the growth promotion and oxidative stress amelioration of the embryo. Interestingly, the ferroptosis was found as one of major processes occurred from E15 to E17 and E17 to E19. Owing to the upregulated expression of acyl-CoA synthetase long-chain family member 4 detected in the yolk sac, we assumed that the ferroptosis of the yolk sac was perhaps caused by the accumulation of reactive oxygen species, which was induced by the large amount of polyunsaturated fatty acids and influx of iron in the yolk. Our findings might offer a novel understanding of embryonic nutrition of broilers according to the developmental changes of metabolites in the egg yolk and may provide new ideas to improve the health and nutrition for prehatch broiler chickens.
Collapse
Affiliation(s)
- Huichao Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ding
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yueyue Tong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, Hunan, China; Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China; Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| |
Collapse
|
129
|
Deng Q, Wang Y, Wang X, Wang Q, Yi Z, Xia J, Hu Y, Zhang Y, Wang J, Wang L, Jiang S, Li R, Wan D, Yang H, Yin Y. Effects of dietary iron level on growth performance, hematological status, and intestinal function in growing-finishing pigs. J Anim Sci 2021; 99:skab002. [PMID: 33515478 PMCID: PMC7846194 DOI: 10.1093/jas/skab002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigated the different addition levels of iron (Fe) in growing-finishing pigs and the effect of different Fe levels on growth performance, hematological status, intestinal barrier function, and intestinal digestion. A total of 1,200 barrows and gilts ([Large White × Landrace] × Duroc) with average initial body weight (BW; 27.74 ± 0.28 kg) were housed in 40 pens of 30 pigs per pen (gilts and barrows in half), blocked by BW and gender, and fed five experimental diets (eight replicate pens per diet). The five experimental diets were control diet (basal diet with no FeSO4 supplementation), and the basal diet being supplemented with 150, 300, 450, or 600 mg/kg Fe as FeSO4 diets. The trial lasted for 100 d and was divided into the growing phase (27 to 60 kg of BW) for the first 50 d and the finishing phase (61 to 100 kg of BW) for the last 50 d. The basal diet was formulated with an Fe-free trace mineral premix and contained 203.36 mg/kg total dietary Fe in the growing phase and 216.71 mg/kg in the finishing phase based on ingredient contributions. And at the end of the experiment, eight pigs (four barrows and four gilts) were randomly selected from each treatment (selected one pig per pen) for digesta, blood, and intestinal samples collection. The results showed that the average daily feed intake (P = 0.025), average daily gain (P = 0.020), and BW (P = 0.019) increased linearly in the finishing phase of pigs fed with the diets containing Fe. On the other hand, supplementation with different Fe levels in the diet significantly increased serum iron and transferrin saturation concentrations (P < 0.05), goblet cell numbers of duodenal villous (P < 0.001), and MUC4 mRNA expression (P < 0.05). The apparent ileal digestibility (AID) of amino acids (AA) for pigs in the 450 and 600 mg/kg Fe groups was greater (P < 0.05) than for pigs in the control group. In conclusion, dietary supplementation with 450 to 600 mg/kg Fe improved the growth performance of pigs by changing hematological status and by enhancing intestinal goblet cell differentiation and AID of AA.
Collapse
Affiliation(s)
- Qingqing Deng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yancan Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhenfeng Yi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jun Xia
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yuyao Hu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yiming Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jingjing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Lei Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shuzhong Jiang
- Hunan Jiuding Technology (Group) Co., Ltd. Yueyang, Hunan, China
| | - Rong Li
- Hunan Longhua Agriculture and Animal Husbandry Development Co., Ltd., TRS Group, Zhuzhou, Hunan, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
130
|
Yan H, Huo F, Yue Y, Chao J, Yin C. Rapid Reaction, Slow Dissociation Aggregation, and Synergetic Multicolor Emission for Imaging the Restriction and Regulation of Biosynthesis of Cys and GSH. J Am Chem Soc 2020; 143:318-325. [PMID: 33356184 DOI: 10.1021/jacs.0c10840] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biosynthesis is a necessary process to maintain life. In recent years, research has fully shown that three kinds of biothiols (Cys, Hcy, GSH) mainly play the role in oxidative stress and maintaining cell homeostasis in cells, and that abnormal concentrations will lead to the occurrence of cardiovascular diseases, cancers, etc. Various fluorescent probes have shown unprecedented advantages in detecting their concentrations and studying their biological functions. As a matter of fact, these three kinds of biothiols are generated in the process of biosynthesis in vivo. It is of great significance to understand their biosynthetic pathways and elucidate their synthetic relationships. In this work, to α,β-unsaturated ketones conjugated ethylenediamine coumarin and pyrandione was introduced boron fluoride and, through its strong electron deficiency effect, afforded a molecule having near-infrared emission and regulated the rigidity of molecules. At the same time, the conjugated double bond is used to respond to molecular rigidity. The rapid response of the probe to biothiols and the slow dissociation aggregation of the probe itself through the response environment could monitor the absence of biothiols in cells. In addition, based on the difference in sensitivity of response of Cys and GSH to the probe, this work studied the interaction between biosynthetic pathways of Cys and GSH in cells through enzyme inhibition for the first time. The relationship of restriction and regulation of biosynthesis in vivo was revealed.
Collapse
Affiliation(s)
- Huming Yan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Jianbin Chao
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
131
|
Wolfram T, Schwarz M, Reuß M, Lossow K, Ost M, Klaus S, Schwerdtle T, Kipp AP. N-Acetylcysteine as Modulator of the Essential Trace Elements Copper and Zinc. Antioxidants (Basel) 2020; 9:antiox9111117. [PMID: 33198336 PMCID: PMC7696987 DOI: 10.3390/antiox9111117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
N-acetylcysteine (NAC) is a frequently prescribed drug and known for its metal chelating capability. However, to date it is not well characterized whether NAC intake affects the homeostasis of essential trace elements. As a precursor of glutathione (GSH), NAC also has the potential to modulate the cellular redox homeostasis. Thus, we aimed to analyze effects of acute and chronic NAC treatment on the homeostasis of copper (Cu) and zinc (Zn) and on the activity of the redox-sensitive transcription factor Nrf2. Cells were exposed to 1 mM NAC and were co-treated with 50 μM Cu or Zn. We showed that NAC treatment reduced the cellular concentration of Zn and Cu. In addition, NAC inhibited the Zn-induced Nrf2 activation and limited the concomitant upregulation of cellular GSH concentrations. In contrast, mice chronically received NAC via drinking water (1 g NAC/100 mL). Cu and Zn concentrations were decreased in liver and spleen. In the duodenum, NQO1, TXNRD, and SOD activities were upregulated by NAC. All of them can be induced by Nrf2, thus indicating a putative Nrf2 activation. Overall, NAC modulates the homeostasis of Cu and Zn both in vitro and in vivo and accordingly affects the cellular redox balance.
Collapse
Affiliation(s)
- Theresa Wolfram
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena-Wuppertal, Germany;
| | - Michaela Reuß
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena-Wuppertal, Germany;
| | - Mario Ost
- German Institute of Human Nutrition, 14558 Nuthetal, Germany; (M.O.); (S.K.)
| | - Susanne Klaus
- German Institute of Human Nutrition, 14558 Nuthetal, Germany; (M.O.); (S.K.)
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena-Wuppertal, Germany;
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (T.W.); (M.S.); (M.R.); (K.L.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, D-13353 Potsdam-Berlin-Jena-Wuppertal, Germany;
- Correspondence: ; Tel.: +49-3641-949609
| |
Collapse
|
132
|
Ractopamine as a novel reagent for the fabrication of gold nanoparticles: Colorimetric sensing of cysteine and Hg2+ ion with different spectral characteristics. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
133
|
Margaritelis NV, Chatzinikolaou PN, Bousiou FV, Malliou VJ, Papadopoulou SK, Potsaki P, Theodorou AA, Kyparos A, Geladas ND, Nikolaidis MG, Paschalis V. Dietary Cysteine Intake is Associated with Blood Glutathione Levels and Isometric Strength. Int J Sports Med 2020; 42:441-447. [PMID: 33124012 DOI: 10.1055/a-1255-2863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glutathione is the most abundant cellular antioxidant and regulates redox homeostasis. Healthy individuals with certain antioxidant inadequacies/deficiencies exhibit impairments in physiological functions. The aim was to investigate whether low levels of dietary cysteine intake are associated with a) lower erythrocyte glutathione, b) increased plasma F2-isoprostanes, and c) impaired muscle function. Towards this aim, we recorded the dietary intake of the three amino acids that synthesize glutathione (i. e., glutamic acid, cysteine, and glycine) in forty-one healthy individuals, and subsequently measured erythrocyte glutathione levels. Maximal isometric strength and fatigue index were also assessed using an electronic handgrip dynamometer. Our findings indicate that dietary cysteine intake was positively correlated with glutathione levels (r=0.765, p<0.001). In addition, glutathione levels were negatively correlated with F2-isoprostanes (r=- 0.311, p=0.048). An interesting finding was that glutathione levels and cysteine intake were positively correlated with maximal handgrip strength (r=0.416, p=0.007 and r=0.343, p=0.028, respectively). In conclusion, glutathione concentration is associated with cysteine intake, while adequate cysteine levels were important for optimal redox status and muscle function. This highlights the importance of proper nutritional intake and biochemical screening with the goal of personalized nutrition.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Greece
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Greece.,Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Flora V Bousiou
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki J Malliou
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Sousana K Papadopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Panagiota Potsaki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | | | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Greece
| | - Nikos D Geladas
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
134
|
Antioxidant Function and Metabolomics Study in Mice after Dietary Supplementation with Methionine. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9494528. [PMID: 33145362 PMCID: PMC7596454 DOI: 10.1155/2020/9494528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 01/11/2023]
Abstract
The antioxidant function and metabolic profiles in mice after dietary supplementation with methionine were investigated. The results showed that methionine supplementation enhanced liver GSH-Px activity and upregulated Gpx1 expression in the liver and SOD1 and Gpx4 expressions in the jejunum. Nrf2/Keap1 is involved in oxidative stress, and the western blotting data exhibited that dietary methionine markedly increased Keap1 abundance, while failed to influence the Nrf2 signal. Metabolomics investigation showed that methionine administration increased 2-hydroxypyridine, salicin, and asparagine and reduced D-Talose, maltose, aminoisobutyric acid, and inosine 5'-monophosphate in the liver, which are widely reported to involve in oxidative stress, lipid metabolism, and nucleotides generation. In conclusion, our study provides insights into antioxidant function and liver metabolic profiles in response to dietary supplementation with methionine.
Collapse
|
135
|
Goerner-Hu X, Scott EL, Seeger T, Schneider O, Bitter JH. Reaction Stages of Feather Hydrolysis: Factors That Influence Availability for Enzymatic Hydrolysis and Cystine Conservation during Thermal Pressure Hydrolysis. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
136
|
Corkey BE, Deeney JT. The Redox Communication Network as a Regulator of Metabolism. Front Physiol 2020; 11:567796. [PMID: 33178037 PMCID: PMC7593883 DOI: 10.3389/fphys.2020.567796] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Key tissues are dysfunctional in obesity, diabetes, cardiovascular disease, fatty liver and other metabolic diseases. Focus has centered on individual organs as though each was isolated. Attention has been paid to insulin resistance as the key relevant pathosis, particularly insulin receptor signaling. However, many tissues play important roles in synergistically regulating metabolic homeostasis and should be considered part of a network. Our approach identifies redox as an acute regulator of the greater metabolic network. Redox reactions involve the transfer of electrons between two molecules and in this work refer to commonly shared molecules, reflective of energy state, that can readily lose electrons to increase or gain electrons to decrease the oxidation state of molecules including NAD(P), NAD(P)H, and thiols. Metabolism alters such redox molecules to impact metabolic function in many tissues, thus, responding to anabolic and catabolic stimuli appropriately and synergistically. It is also important to consider environmental factors that have arisen or increased in recent decades as putative modifiers of redox and reactive oxygen species (ROS) and thus metabolic state. ROS are highly reactive, controlled by the thiol redox state and influence the function of thousands of proteins. Lactate (L) and pyruvate (P) in cells are present in a ratio of about 10 reflective of the cytosolic NADH to NAD ratio. Equilibrium is maintained in cells because lactate dehydrogenase is highly expressed and near equilibrium. The major source of circulating lactate and pyruvate is muscle, although other tissues also contribute. Acetoacetate (A) is produced primarily by liver mitochondria where β-hydroxybutyrate dehydrogenase is highly expressed, and maintains a ratio of β-hydroxybutyrate (β) to A of about 2, reflective of the mitochondrial NADH to NAD ratio. All four metabolites as well as the thiols, cysteine and glutathione, are transported into and out of cells, due to high expression of relevant transporters. Our model supports regulation of all collaborating metabolic organs through changes in circulating redox metabolites, regardless of whether change was initiated exogenously or by a single organ. Validation of these predictions suggests novel ways to understand function by monitoring and impacting redox state.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
137
|
Free and bound amino acids, minerals and trace elements in matcha (Camellia sinensis L.): A nutritional evaluation. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
138
|
Friederich MW, Elias AF, Kuster A, Laugwitz L, Larson AA, Landry AP, Ellwood‐Digel L, Mirsky DM, Dimmock D, Haven J, Jiang H, MacLean KN, Styren K, Schoof J, Goujon L, Lefrancois T, Friederich M, Coughlin CR, Banerjee R, Haack TB, Van Hove JLK. Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease. J Inherit Metab Dis 2020; 43:1024-1036. [PMID: 32160317 PMCID: PMC7484123 DOI: 10.1002/jimd.12232] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.
Collapse
Affiliation(s)
- Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColorado
| | - Abdallah F. Elias
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Alice Kuster
- Department of NeurometabolismUniversity Hospital of NantesNantesFrance
- INRAE, UMR1280, PhAN, Nantes UniversitéNantesFrance
| | - Lucia Laugwitz
- Institut für Medizinische Genetik und Angewandte GenomikUniversitätsklinikum, University of TübingenTübingenGermany
| | - Austin A. Larson
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Aaron P. Landry
- Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Logan Ellwood‐Digel
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - David M. Mirsky
- Department of RadiologyUniversity of Colorado, and Children's Hospital ColoradoAuroraColorado
| | - David Dimmock
- Rady Children's Institute for Genomic MedicineSan DiegoCalifornia
| | - Jaclyn Haven
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Hua Jiang
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Kenneth N. MacLean
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Katie Styren
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Jonathan Schoof
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Louise Goujon
- Department of NeurometabolismUniversity Hospital of NantesNantesFrance
- Service de Génétique CliniqueUniversity Hospital of RennesRennesFrance
| | | | - Maike Friederich
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Curtis R. Coughlin
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Ruma Banerjee
- Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Tobias B. Haack
- INRAE, UMR1280, PhAN, Nantes UniversitéNantesFrance
- Centre for Rare DiseasesUniversity of TübingenTübingenGermany
| | - Johan L. K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColorado
| |
Collapse
|
139
|
Rehman T, Shabbir MA, Inam‐Ur‐Raheem M, Manzoor MF, Ahmad N, Liu Z, Ahmad MH, Siddeeg A, Abid M, Aadil RM. Cysteine and homocysteine as biomarker of various diseases. Food Sci Nutr 2020; 8:4696-4707. [PMID: 32994931 PMCID: PMC7500767 DOI: 10.1002/fsn3.1818] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine and homocysteine (Hcy), both sulfur-containing amino acids (AAs), produced from methionine another sulfur-containing amino acid, which is converted to Hcy and further converted to cysteine. This article aims to highlight the link between cysteine and Hcy, and their mechanisms, important functions, play in the body and their role as a biomarker for various types of diseases. So that using cysteine and Hcy as a biomarker, we can prevent and diagnose many diseases. This review concluded that hyperhomocysteinemia (elevated levels of homocysteine) is considered as toxic for cells and is associated with different health problems. Hyperhomocysteinemia and low levels of cysteine associated with various diseases like cardiovascular diseases (CVD), ischemic stroke, neurological disorders, diabetes, cancer like lung and colorectal cancer, renal dysfunction-linked conditions, and vitiligo.
Collapse
Affiliation(s)
- Tahniat Rehman
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Nazir Ahmad
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Zhi‐Wei Liu
- College of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
| | | | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity GeziraWad MedaniSudan
| | - Muhammad Abid
- Institute of Food and Nutritional SciencesPir Mehr Ali Shah Arid Agriculture UniversityRawalpindiPakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
140
|
Coleman DN, Lopreiato V, Alharthi A, Loor JJ. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J Anim Sci 2020; 98:S175-S193. [PMID: 32810243 PMCID: PMC7433927 DOI: 10.1093/jas/skaa138] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Vincenzo Lopreiato
- Department of Health Science, Interdepartmental Services Centre of Veterinary for Human and Animal Health, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Abdulrahman Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
141
|
Meng Y, Du Z, Li Y, Gao P, Song J, Lu Y, Tu P, Jiang Y, Guo X. The synergistic mechanism of total saponins and flavonoids in Notoginseng-Safflower pair against myocardial ischemia uncovered by an integrated metabolomics strategy. Biomed Pharmacother 2020; 130:110574. [PMID: 32739736 DOI: 10.1016/j.biopha.2020.110574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023] Open
Abstract
The Notoginseng-Safflower pair composed of Panax notoginseng (Burk.) F. H. Chen and Carthamus tinctorius L. has remarkable clinical efficacy for preventing and treating cardiovascular diseases in China. Notoginseng total saponins (NS) and Safflower total flavonoids (SF) are the major effective ingredients in Notoginseng and Safflower, respectively. Though our previous study showed that the combination of NS and SF (NS-SF) exhibits significant cardioprotective effects for myocardial ischemia (MI), there might be difference in their action mechanisms. However, the anti-MI characteristics of individual NS and SF remains unclear. Herein, an integrated metabolomics strategy coupled with multiple biological methods were employed to investigate the cardioprotective effects of NS and SF alone or in combination against isoproterenol (ISO)-induced MI and to further explore the synergistic relationship between NS and SF. Our results demonstrated that pretreatments with NS, SF, and NS-SF all showed cardioprotective effects against MI injury and NS-SF exhibited to be the best. Interestingly, the results demonstrated that NS and SF exhibited differentiated metabolic targets and mediators in the glycerophospholipid metabolism. Furthermore, administration of NS alone exhibited greater effects on reversing the elevated the proinflammatory metabolites and mediators in MI rats compared to SF alone. However, individual SF showed greater amelioration of MI-disturbed antioxidant and prooxidative metabolites and better inhibition of the oxidative stress than NS alone. Collectively, our study demonstrated that the capability of NS-SF to regulate both metabolic targets of NS and SF might be the basis of NS-SF to produce a cooperative effect greater than their individual effects that enhance the anti-MI efficacy and provided valuable information for the clinical application of Notoginseng-Safflower pair.
Collapse
Affiliation(s)
- Yuqing Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhiyong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jinyang Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
142
|
Flückger S, Igareta NV, Seebeck FP. Convergent Evolution of Fungal Cysteine Dioxygenases. Chembiochem 2020; 21:3082-3086. [PMID: 32543095 DOI: 10.1002/cbic.202000317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Cupin-type cysteine dioxygenases (CDOs) are non-heme iron enzymes that occur in animals, plants, bacteria and in filamentous fungi. In this report, we show that agaricomycetes contain an entirely unrelated type of CDO that emerged by convergent evolution from enzymes involved in the biosynthesis of ergothioneine. The activity of this CDO type is dependent on the ergothioneine precursor N-α-trimethylhistidine. The metabolic link between ergothioneine production and cysteine oxidation suggests that the two processes might be part of the same chemical response in fungi, for example against oxidative stress.
Collapse
Affiliation(s)
- Sebastian Flückger
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Nico V Igareta
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| | - Florian P Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
| |
Collapse
|
143
|
Khan SA, Choudhury R, Majumdar M, Nandi NB, Roy S, Misra TK. Gluconate‐Stabilized Silver Nanoparticles as pH Dependent Dual‐Nanosensor for Quantitative Evaluation of Methionine and Cysteine. ChemistrySelect 2020. [DOI: 10.1002/slct.202001654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shamim Ahmed Khan
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Rupasree Choudhury
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Moumita Majumdar
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | | | - Shaktibrata Roy
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| | - Tarun Kumar Misra
- Department of ChemistryNational Institute of Technology Agartala Agartala Tripura 799046 India
| |
Collapse
|
144
|
Sabetghadam M, Mazdeh M, Abolfathi P, Mohammadi Y, Mehrpooya M. Evidence for a Beneficial Effect of Oral N-acetylcysteine on Functional Outcomes and Inflammatory Biomarkers in Patients with Acute Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:1265-1278. [PMID: 32547030 PMCID: PMC7244239 DOI: 10.2147/ndt.s241497] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/01/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Numerous preclinical studies have demonstrated the potential neuroprotective effects of N-acetylcysteine (NAC) in the treatment of brain ischemia. Accordingly, the present study aimed to assess the potential therapeutic effects of oral NAC in patients with acute ischemic stroke. PATIENTS AND METHODS In a randomized, double-blind, placebo-controlled trial study, 68 patients with acute ischemic stroke with the onset of symptoms less than 24 hours were randomly assigned to either the NAC-treated group or placebo-treated group. NAC and matched placebo were administrated by a 72-hour oral protocol (initially 4 grams loading dose and after on, 4 g in 4 equal divided doses for more 2 days). The primary outcomes were quantification of any neurologic deficit by the use of the National Institute of Health Stroke Scale (NIHSS) score and functional disability by the use of the modified Rankin scale (mRS) at 90 days after stroke. Additionally, serum levels of markers of oxidative stress and inflammation as a main mechanism of its action were assessed at baseline and the end of 3-day treatment protocol. RESULTS NAC-treated patients in comparison with placebo-treated patients showed a significantly lower mean NIHSS scores at day 90 after stroke. A favorable functional outcome which was defined as an mRS score of 0 or 1, also in favor of NAC compared to placebo was noted on day 90 after stroke (57.6% in the NAC-treated group compared with 28.6% in the placebo-treated group). Further, compared to the placebo, NAC treatment significantly decreased serum levels of proinflammatory biomarkers such as interleukin 6 (IL-6), soluble intercellular cell adhesion molecule-1 (sICAM-1), nitric oxide (NO), malondialdehyde (MDA), and neuron-specific enolase (NSE) and significantly increased serum levels of anti-oxidant biomarkers such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and total thiol groups (TTG). CONCLUSION The pattern of results suggests that oral NAC administration early after an acute ischemic stroke is associated with a better outcome profile in terms of acute neurological deficit and disability grade compared to placebo. NAC may improve neurological outcomes of patients with stroke at least in part by its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Maryam Sabetghadam
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parnaz Abolfathi
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
145
|
Rohilla D, Chaudhary S, Kaur N, Shanavas A. Dopamine functionalized CuO nanoparticles: A high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110724. [DOI: 10.1016/j.msec.2020.110724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
|
146
|
Segers K, Zhang W, Aourz N, Bongaerts J, Declerck S, Mangelings D, Hankemeier T, De Bundel D, Vander Heyden Y, Smolders I, Ramautar R, Van Eeckhaut A. CE-MS metabolic profiling of volume-restricted plasma samples from an acute mouse model for epileptic seizures to discover potentially involved metabolomic features. Talanta 2020; 217:121107. [PMID: 32498853 DOI: 10.1016/j.talanta.2020.121107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/07/2023]
Abstract
Currently, a high variety of analytical techniques to perform metabolomics is available. One of these techniques is capillary electrophoresis coupled to mass spectrometry (CE-MS), which has emerged as a rather strong analytical technique for profiling polar and charged compounds. This work aims to discover with CE-MS potential metabolic consequences of evoked seizures in plasma by using a 6Hz acute corneal seizure mouse model. CE-MS is an appealing technique because of its capability to handle very small sample volumes, such as the 10 μL plasma samples obtained using capillary microsampling in this study. After liquid-liquid extraction, the samples were analyzed with CE-MS using low-pH separation conditions, followed by data analysis and biomarker identification. Both electrically induced seizures showed decreased values of methionine, lysine, glycine, phenylalanine, citrulline, 3-methyladenine and histidine in mice plasma. However, a second provoked seizure, 13 days later, showed a less pronounced decrease of the mean concentrations of these plasma metabolites, demonstrated by higher fold change ratios. Other obtained markers that can be related to seizure activities based on literature data, are isoleucine, serine, proline, tryptophan, alanine, arginine, valine and asparagine. Most amino acids showed relatively stable plasma concentrations between the basal levels (Time point 1) and after the 13-day wash-out period (Time point 3), which suggests its effectiveness. Overall, this work clearly demonstrated the possibility of profiling metabolite consequences related to seizure activities of an intrinsically low amount of body fluid using CE-MS. It would be useful to investigate and validate, in the future, the known and unknown metabolites in different animal models as well as in humans.
Collapse
Affiliation(s)
- Karen Segers
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Wei Zhang
- Biomedical Microscale Analytics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| | - Najat Aourz
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Jana Bongaerts
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sven Declerck
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Debby Mangelings
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Thomas Hankemeier
- Biomedical Microscale Analytics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Rawi Ramautar
- Biomedical Microscale Analytics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
147
|
Yin Z, Jiang K, Shi L, Fei J, Zheng J, Ou S, Ou J. Formation of di-cysteine acrolein adduct decreases cytotoxicity of acrolein by ROS alleviation and apoptosis intervention. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121686. [PMID: 31780296 DOI: 10.1016/j.jhazmat.2019.121686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Acrolein (ACR) is a toxic contaminant for humans. Our previous research indicated that l-cysteine (Cys) decreased the cytotoxicity of acrolein possibly via adduct formation, but which adduct contributed to the toxicity-lowering effect remains unknown. In this work, we identified a di-cysteine acrolein adduct (ACR-di-Cys) and investigated its toxicity against human bronchial epithelial cell line HBE and colon cancer cell line Caco-2. ACR-di-Cys tremendously decreased acrolein-induced cytotoxicity via alleviating ROS and apoptosis intervention. In the condition of no presence of free cysteine, however, this adduct can convert to mono-ACR-Cys in PBS solution by losing a molecule of cysteine conjugated at CC bond. ACR-mono-Cys showed much higher toxicity than ACR-di-Cys, and even higher than acrolein after 48 h exposure. This study indicated that cysteine can react with acrolein to form adducts with different acrolein-detoxifying capacity, and a sufficient intake of cysteine or cysteine-containing proteins can maximize the detoxifying effect for acrolein via the formation of a highly detoxifying agent, ACR-di-Cys.
Collapse
Affiliation(s)
- Zhao Yin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Jia Fei
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
148
|
Yang S, Zhao N, Sun B, Yang Y, Hu Y, Zhao R. Grandmaternal betaine supplementation enhances hepatic IGF2 expression in F2 rat offspring through modification of promoter DNA methylation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1486-1494. [PMID: 31756772 DOI: 10.1002/jsfa.10156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/07/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND We reported previously that maternal betaine promotes hepatic insulin-like growth factor (IGF2) expression in F1 offspring rats through hypermethylation of the IGF2/H19 imprinting control region (ICR). It remains unknown whether this acquired trait can be transmitted to the F2 generation. This study aimed to determine whether dietary betaine supplementation to grand dams affects the hepatic IGF2 expression in F2 rat offspring and how it is related to alterations in DNA methylation. F2 rat offspring derived from grand dams fed basal or betaine-supplemented diet (10 g kg-1 ) were examined at weaning. Serum IGF2 concentration was measured with enzyme-linked immunosorbent assay (ELISA). Hepatic expression of IGF2, together with other proliferation and apoptosis markers, was determined by using quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemistry. The methylation status of the IGF2/H19 ICR and the promoters of IGF2 gene were detected by methylated DNA immunoprecipitation quantitative polymerase chain reaction (MeDIP-qPCR). RESULTS The maternal betaine-induced up-regulation of hepatic IGF2 expression in F1 rat offspring was transmitted to the F2 generation. The F2 rats from the betaine group demonstrated enhanced hepatic IGF2 expression at both mRNA and protein levels, in association with higher serum IGF2 concentration. No alterations were observed in the ICR methylation of the IGF2/H19 locus, and hypomethylation was detected in promoters of IGF2 gene in betaine group. CONCLUSION These results indicate that maternal betaine enhances hepatic IGF2 expression in F2 rat offspring through modification of DNA methylation on IGF2 promoters. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Bo Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
149
|
Tao Z, Yang Q, Yao F, Huang X, Wu Y, Du M, Chen S, Liu X, Li X, Wang D. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. BIORESOURCE TECHNOLOGY 2020; 297:122428. [PMID: 31786038 DOI: 10.1016/j.biortech.2019.122428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Thiosulfinate, a nature antibiotic, existed in all parts of Allium thereby accumulating in kitchen waste vastly. However, few literatures were available related to its influence on volatile fatty acids (VFA) and hydrogen production when kitchen waste digestion technology was applied. This study aimed to explore the inhibitory effect and the relevant mechanism. Experimental results showed that the hydrogen accumulation decreased from 23.2 ± 0.8 to 8.2 ± 0.1 mL/g VSS (volatile suspended solid) and maximal total VFA yield decreased from 765.7 ± 21.2 to 376.4 ± 21.7 mg COD (chemical oxygen demand)/g VSS when the dosage of thiosulfinate increased from 0 to 12.5 µg/g VSS. The mechanism study indicated, compared with control group, that the butyric acid decreased from 59% to 20.1% of total VFA yield when reactor in present of 12.5 µg/g VSS thiosulfinate. Moreover, the relative activities of functional enzymes were inhibited 73.4% (butyryl-CoA) and 72.7% (NADH), respectively.
Collapse
Affiliation(s)
- Ziletao Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoding Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - You Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
150
|
Tabassum R, Jeong NY, Jung J. Protective effect of hydrogen sulfide on oxidative stress-induced neurodegenerative diseases. Neural Regen Res 2020; 15:232-241. [PMID: 31552888 PMCID: PMC6905340 DOI: 10.4103/1673-5374.265543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide is an antioxidant molecule that has a wide range of biological effects against oxidative stress. Balanced oxidative stress is also vital for maintaining cellular function in biological system, where reactive oxygen species are the main source of oxidative stress. When the normal redox balance is disturbed, deoxyribonucleic acid, lipid, and protein molecules are oxidized under pathological conditions, like diabetes mellitus that leads to diabetic peripheral neuropathy. In diabetes mellitus-induced diabetic peripheral neuropathy, due to hyperglycemia, pancreatic beta cell (β cell) shows resistance to insulin secretion. As a consequence, glucose metabolism is disturbed in neuronal cells which are distracted from providing proper cell signaling pathway. Not only diabetic peripheral neuropathy but also other central damages occur in brain neuropathy. Neurological studies regarding type 1 diabetes mellitus patients with Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have shown changes in the central nervous system because high blood glucose levels (HbA1c) appeared with poor cognitive function. Oxidative stress plays a role in inhibiting insulin signaling that is necessary for brain function. Hydrogen sulfide exhibits antioxidant effects against oxidative stress, where cystathionine β synthase, cystathionine γ lyase, and 3-mercaptopyruvate sulfurtransferase are the endogenous sources of hydrogen sulfide. This review is to explore the pathogenesis of diabetes mellitus-induced diabetic peripheral neuropathy and other neurological comorbid disorders under the oxidative stress condition and the anti-oxidative effects of hydrogen sulfide.
Collapse
Affiliation(s)
- Rubaiya Tabassum
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan, Korea
- Department of Medicine, Graduate School, Dong-A University, Seo-gu, Busan, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan, Korea
- Department of Medicine, Graduate School, Dong-A University, Seo-gu, Busan, Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|