101
|
Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis. Oncotarget 2018; 8:7391-7404. [PMID: 28030847 PMCID: PMC5352330 DOI: 10.18632/oncotarget.14080] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that regular physical exercise suppresses chronic inflammation. However, the potential inhibitory effects of swimming on dextran sulfate sodium (DSS)-induced chronic colitis, and its underlying mechanisms, remain unclear. In this study, rats were orally administered DSS to induce chronic colitis, and subsequently treated with or without swimming exercise. A 7-week swimming program (1 or 1.5 hours per day, 5 days per week) ameliorated DSS-caused colon shortening, colon barrier disruption, spleen enlargement, serum LDH release, and reduction of body weight gain. Swimming for 1.5 hours per day afforded greater protection than 1 hour per day. Swimming ameliorated DSS-induced decrease in crypt depth, and increases in myeloperoxidase activity, infiltration of Ly6G+ neutrophils and TNF-a- and IFN-?-expressing CD3+ T cells, as well as fecal calprotectin and lactoferrin. Swimming inhibited pro-inflammatory cytokine and chemokine production and decreased the protein expression of phosphorylated nuclear factor-?B p65 and cyclooxygenase 2, whereas it elevated interleukin-10 levels. Swimming impeded the generation of reactive oxygen species, malondialdehyde, and nitric oxide; however, it boosted glutathione levels, total antioxidant capacity, and superoxide dismutase and glutathione peroxidase activities. Additionally, swimming decreased caspase-3 activity and expression of apoptosis-inducing factor, cytochrome c, Bax, and cleaved-caspase-3, but increased Bcl-2 levels. Overall, these results suggest that swimming exerts beneficial effects on DSS-induced chronic colitis by modulating inflammation, oxidative stress, and apoptosis.
Collapse
|
102
|
Navy and black bean supplementation attenuates colitis-associated inflammation and colonic epithelial damage. J Nutr Biochem 2018; 56:215-223. [PMID: 29631142 DOI: 10.1016/j.jnutbio.2018.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
The enriched levels of nondigestible fermentable carbohydrates and phenolic compounds found in common beans can exert immunomodulatory effects within the colon that improve gut health and mitigate the severity of colitis-associated inflammatory pathology. Prior to acute colitis onset, C57Bl/6 mice were prefed isocaloric 20% cooked navy bean (NB) or black bean (BB) diets for 3 weeks and switched to control basal diet (BD) 24 h prior to colitis induction via 5-day exposure to dextran sodium sulfate (2% w/v in drinking water)+3 days of fresh water. The severity of the acute colitis phenotype was attenuated by bean prefeeding, evidenced by reduced colon tissue inflammatory transcription factor activation (NFκB, STAT3) and inflammatory mediator levels in the colon (IL-1β, IL-6, IL-18 and MCP-1) and serum (TNFα, IL-6, IL-1β, MCP-1) versus BD (P≤.05). Additionally, biomarkers of enhanced wound repair responses were increased by bean prefeeding including colon tissue protein levels of IL-22, IL-27 and activated (i.e., GTP-bound) Cdc42 and Rac1 versus BD (P≤.05). mRNA expressions of genes involved in normal colonic epithelial function and the promotion of epithelial barrier integrity, defense and/or restitution and wound closure including MUC1, RELMβ, IgA and REG3γ were all increased in NB and BB prefed mice versus BD (P≤.05). Collectively, bean supplementation prior to colitis induction (i.e., mimicking disease relapse) primes the colonic microenvironment to attenuate the severity of the colitis inflammatory phenotype and maintain aspects of epithelial barrier function.
Collapse
|
103
|
Fan W, Lv Y, Ren S, Shao M, Shen T, Huang K, Zhou J, Yan L, Song S. Zearalenone (ZEA)-induced intestinal inflammation is mediated by the NLRP3 inflammasome. CHEMOSPHERE 2018; 190:272-279. [PMID: 28992480 DOI: 10.1016/j.chemosphere.2017.09.145] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
To ascertain whether zearalenone (ZEA) could induce intestinal inflammation and investigate its possible mechanism, we investigated inflammatory cytokine release and the activation of the NLRP3 inflammasome after ZEA treatment both in vitro or in vivo. First, intestinal porcine enterocyte cell line (IPEC-J2) cells and mouse peritoneal macrophages were treated with ZEA to detect NLRP3 inflammasome activation, and the role of reactive oxygen species (ROS) in ZEA-induced inflammation was investigated. Then, Balb/c mice were fed a gavage of ZEA, and the disease activity indices (DAIs) and histological analysis were used to assess intestinal inflammation. Our study showed that the mRNA expression of NLRP3 inflammasome, pro-interleukin-1β (pro-IL-1β), and pro-interleukin-18 (pro-IL-18) was up-regulated 0.5- to 1-fold and that the release of IL-1β and IL-18 increased from 48 pg mL-1 to 55 pg mL-1 and 110 pg mL-1 to 145 pg mL-1, respectively. However, ROS inhibitor N-acetyl-l-cysteine (NAC) reduced IL-1β and IL-18 release to 45 pg mL-1 and 108 pg mL-1. Moreover, the same phenomenon was observed in intestinal tissues of ZEA-treated mice. In addition, clinical parameters of treated mice showed stools became loose and contained mucous. In addition, the presence of gross blood stool was found in the last 2 d. Histological analysis showed obvious inflammatory cell infiltration and tissue damage in the colon. These findings uncovered a possible mechanism of intestinal mucosal innate immunity in response to mycotoxin ZEA that ZEA could activate the ROS-mediated NLRP3 inflammasome and, in turn, contribute to the caspase-1-dependent activation of the inflammatory cytokines IL-1β and IL-18.
Collapse
Affiliation(s)
- Wentao Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yanan Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shuai Ren
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Manyu Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Tongtong Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Jiyong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Liping Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
104
|
Yang L, Shen L, Li Y, Li Y, Yu S, Wang S. Hyperoside attenuates dextran sulfate sodium-induced colitis in mice possibly via activation of the Nrf2 signalling pathway. JOURNAL OF INFLAMMATION-LONDON 2017; 14:25. [PMID: 29162986 PMCID: PMC5686943 DOI: 10.1186/s12950-017-0172-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Background Hyperoside (Hyp) is a flavonoid glycoside compound that has been demonstrated to have anti-inflammatory, anti-apoptotic and antioxidant effects. However, the impact of Hyp on inflammatory bowel disease (IBD) has not been previously explored. Thus, we evaluated the role of Hyp in dextran sodium sulfate (DSS)-induced acute colitis in mice. Methods We established a mouse model of experimental acute colitis by treating mice with drinking water supplemented with 3.0% DSS for 7 days. The disease activity index (DAI), colon length, histological features and colonic malondialdehyde (MDA) levels were examined using appropriate methods, and COX-2 expression was examined by immunohistochemistry. TNF-α, IL-4, IL-6, IL-10, NF-κB p65, Bcl-2, Bax, Caspase-3, nuclear factor-erythroid 2-related factor 2 (Nrf2), hemeoxygenase-1 (HO-1) and superoxide dismutase (SOD) levels in colorectal tissues were detected by RT-PCR and western blotting. Results Hyp significantly attenuated DSS-induced changes in the DAI as well as DSS-induced colonic shortening and histological changes. Hyp also inhibited inflammation, a change reflected by decreases in TNF-α, IL-6, COX-2 and NF-κB p65 expression and increases in IL-10 expression. Hyp suppressed increases in the levels of apoptosis-related proteins, such as Caspase-3 and Bax, but upregulated the level of the anti-apoptotic protein Bcl2. In addition, Hyp also exerted antioxidant effects. The MDA content was decreased, and the expression of Nrf2 and its downstream targets HO-1 and SOD were increased by Hyp. Conclusions Based on these findings, Hyp possesses the ability to attenuate colitis, possibly by mitigating colonic inflammation and apoptosis via activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Lei Yang
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Lei Shen
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Yue Li
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Yanxia Li
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Shijie Yu
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Shanshan Wang
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
105
|
Matondo A, Kim SS. Targeted-mitochondria antioxidants therapeutic implications in inflammatory bowel disease. J Drug Target 2017; 26:1-8. [DOI: 10.1080/1061186x.2017.1339196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Abel Matondo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
106
|
Melhem H, Spalinger MR, Cosin-Roger J, Atrott K, Lang S, Wojtal KA, Vavricka SR, Rogler G, Frey-Wagner I. Prdx6 Deficiency Ameliorates DSS Colitis: Relevance of Compensatory Antioxidant Mechanisms. J Crohns Colitis 2017; 11:871-884. [PMID: 28199527 DOI: 10.1093/ecco-jcc/jjx016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS An imbalance between cellular antioxidant defence system[s] and reactive oxygen species [ROS]-driven oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease. Peroxiredoxin [PRDX] 6 contributes to an appropriate redox balance by clearing ROS and reducing peroxidized membrane phospholipids. We here studied the role of PRDX6 in acute and chronic dextran sodium sulphate [DSS]-induced colitis. METHODS To investigate the impact of PRDX6 on intestinal inflammation, we used wild type [WT], Prdx6 knock-out mice [Prdx6-/-] and transgenic mice [Prdx6tg/tg], overexpressing Prdx6. Acute and chronic colitis was induced by DSS in WT, Prdx6-/- and Prdx6tg/tg mice. Colitis was evaluated by endoscopy, colon length, histopathological assessment and myeloperoxidase [MPO] activity. Changes in mRNA and protein expression of pro-inflammatory cytokines and antioxidant enzymes were evaluated by real-time quantitative polymerase chain reaction [RT-qPCR] and western blot. Total glutathione [GSH] levels in colon samples were determined. RESULTS Prdx6-/- mice exposed to acute and chronic DSS showed a significant decrease in the clinical parameters and in colonic expression of pro-inflammatory cytokines compared with WT mice. mRNA expression of antioxidant enzymes in colon samples was significantly increased in Prdx6-/- compared with WT mice exposed to acute and chronic DSS. In addition, total GSH levels were increased in Prdx6-/- mice treated with DSS in comparison with WT. Overexpression of Prdx6 did not significantly influence acute and chronic colitis. CONCLUSIONS Our data indicate that a lack of the antioxidant enzyme PRDX6 protects against the development of acute and chronic experimental colitis and is associated with increased expression and function of other antioxidant enzymes, suggesting effective compensatory mechanisms.
Collapse
Affiliation(s)
- Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Kacper A Wojtal
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology [ZIHP], University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland
| |
Collapse
|
107
|
Xu X, Sun S, Xie F, Ma J, Tang J, He S, Bai L. Advanced Oxidation Protein Products Induce Epithelial-Mesenchymal Transition of Intestinal Epithelial Cells via a PKC δ-Mediated, Redox-Dependent Signaling Pathway. Antioxid Redox Signal 2017; 27:37-56. [PMID: 27565419 DOI: 10.1089/ars.2015.6611] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Epithelial-mesenchymal transition (EMT) has been considered a fundamental mechanism in complications of Crohn's disease (CD), especially intestinal fibrosis. However, the mechanism underlying EMT regulation in intestinal fibrosis remains unclear. This study aimed to investigate the role of advanced oxidation protein products (AOPPs) in the occurrence of intestinal EMT. RESULTS AOPPs accumulated in CD tissues and were associated with EMT marker expression in fibrotic lesions from CD patients. Challenge with AOPPs induced intestinal epithelial cell (IEC) phenotype transdifferentiation, fibroblast-like phenotype acquisition, and production of extracellular matrix, both in vitro and in vivo. The effect of AOPPs was mainly mediated by a protein kinase C (PKC) δ-mediated redox-dependent pathway, including phosphorylation of PKC δ, recruitment of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, production of reactive oxygen species, and NF-κB p65 activation. Inhibition of AOPP-redox signaling activation effectively blocked AOPP-induced EMT in vitro. Studies performed in normal rats showed that chronic administration of AOPPs triggered the occurrence of EMT in rat intestinal epithelia, accompanied by disruption of intestinal integrity, and by promotion of collagen deposition. These effects could be reversed by inhibition of NADPH oxidase. Innovation and Conclusion: This is the first study to demonstrate that AOPPs triggered the occurrence of EMT in IECs in vitro and in vivo through PKC δ-mediated redox-dependent signaling. Our study identifies the role of AOPPs and, in turn, EMT in intestinal fibrosis and provides novel potential targets for the treatment of intestinal fibrotic diseases. Antioxid. Redox Signal. 27, 37-56.
Collapse
Affiliation(s)
- Xiaoping Xu
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Shibo Sun
- 2 Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Fang Xie
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Juanjuan Ma
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Jing Tang
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Shuying He
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Lan Bai
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
108
|
Mohammadi E, Qujeq D, Taheri H, Hajian-Tilaki K. Evaluation of Serum Trace Element Levels and Superoxide Dismutase Activity in Patients with Inflammatory Bowel Disease: Translating Basic Research into Clinical Application. Biol Trace Elem Res 2017; 177:235-240. [PMID: 27864666 DOI: 10.1007/s12011-016-0891-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/07/2016] [Indexed: 01/03/2023]
Abstract
The relationship of minerals and trace elements with inflammatory bowel disease (IBD) is complex. Alterations in their metabolism can be induced by the diseases and their complications. To study the role of trace elements in IBD patients' serum zinc and copper and their related enzymes, including superoxide dismutase (SOD), activity were measured in patients with IBD patients as well as in healthy subjects. In addition, the correlation between serum trace element levels, albumin, total protein, urea level, copper/zinc ratio, and disease activity (DA) was determined in these subjects. Serum samples were obtained from 35 patients (19 ulcerative colitis (UC) and 16 Crohn's disease (CD)) in the active phase of the disease and 30 healthy control subjects. Serum levels of zinc, copper, SOD activity, albumin, total protein, and urea were measured. The results were compared between the two groups using independent Student's t test in statistical analysis. Serum levels of zinc, SOD activity, albumin, and total protein were significantly lower (P < 0.05) in patients than controls, while serum urea level was significantly higher in patients compared to controls. Copper concentrations did not differ between patients with IBD (mean ± SD, 58.8 ± 20.7 μg/d) and controls (55.57 ± 12.6 μg/d). Decreased levels of zinc and SOD activity are associated with increased inflammatory processes indicating inappropriate antioxidant system in patients with IBD. Additionally, lower levels of albumin and total protein with higher level of urea reflect metabolic problems in liver system.
Collapse
Affiliation(s)
- Erfan Mohammadi
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Ganjafrooze Avenue, Babol, Mazandaran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Ganjafrooze Avenue, Babol, Mazandaran, Iran.
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Faculty of Medicine, Babol University of Medical Sciences, Ganjafrooze Avenue, P.O. Box: 47176-47745, Babol, Iran.
| | - Hassan Taheri
- Department of Internal Medicine, Gastroenterology Division, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
109
|
Packiriswamy N, Coulson KF, Holcombe SJ, Sordillo LM. Oxidative stress-induced mitochondrial dysfunction in a normal colon epithelial cell line. World J Gastroenterol 2017; 23:3427-3439. [PMID: 28596679 PMCID: PMC5442079 DOI: 10.3748/wjg.v23.i19.3427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine how a normal human colon cell line reacts to microbial challenge as a way to study oxidative stress-induced responses associated with inflammatory bowel disease.
METHODS Normal human colon epithelial cells (ATCC® CRL.1790™) were stimulated with either heat killed E. coli or heat killed murine cecal contents (HKC) and examined for several relevant biomarkers associated with inflammation and oxidative stress including cytokine production, mitochondrial autophagy and oxidant status. TNFα, IL-1β and IL-8 protein concentrations were measured within the supernatants. Fluorescent microscopy was performed to quantify the production of reactive oxygen species (ROS) using an oxidation responsive fluorogenic probe. Mitochondrial morphology and mitochondrial membrane potential was assessed by dual staining using COXIV antibody and a dye concentrating in active mitochondria. Mitochondrial ROS scavenger was used to determine the source of ROS in stimulated cells. Autophagy was detected by staining for the presence of autophagic vesicles. Positive controls for autophagy and ROS/RNS experiments were treated with rapamycin and chloroquine. Mitochondrial morphology, ROS production and autophagy microscopy experiments were analyzed using a custom acquisition and analysis microscopy software (ImageJ).
RESULTS Exposing CRL.1790 cells to microbial challenge stimulated cells to produce several relevant biomarkers associated with inflammation and oxidative stress. Heat killed cecal contents treatment induced a 10-12 fold increase in IL-8 production by CRL.1790 cells compared to unstimulated controls at 6 and 12 h (P < 0.001). Heat killed E. coli stimulation resulted in a 4-5 fold increase in IL-8 compared to the unstimulated control cells at each time point (P < 0.001). Both heat killed E. coli and HKC stimulated robust ROS production at 6 (P < 0.001), and 12 h (P < 0.01). Mitochondrial morphologic abnormalities were detected at 6 and 12 h based on reduced mitochondrial circularity and decreased mitochondrial membrane potential, P < 0.01. Microbial stimulation also induced significant autophagy at 6 and 12 h, P < 0.01. Lastly, blocking mitochondrial ROS generation using mitochondrial specific ROS scavenger reversed microbial challenge induced mitochondrial morphologic abnormalities and autophagy.
CONCLUSION The findings from this study suggest that CRL.1790 cells may be a useful alternative to other colon cancer cell lines in studying the mechanisms of oxidative stress events associated with intestinal inflammatory disorders.
Collapse
|
110
|
Mariani F, Roncucci L. Role of the Vanins-Myeloperoxidase Axis in Colorectal Carcinogenesis. Int J Mol Sci 2017; 18:918. [PMID: 28448444 PMCID: PMC5454831 DOI: 10.3390/ijms18050918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
The presence of chronic inflammation in the colonic mucosa leads to an increased risk of cancer. Among proteins involved in the regulation of mucosal inflammation and that may contribute both to structural damage of the intestinal mucosa and to intestinal carcinogenesis, there are myeloperoxidase (MPO) and vanins. The infiltration of colonic mucosa by neutrophils may promote carcinogenesis through MPO, a key enzyme contained in the lysosomes of neutrophils that regulates local inflammation and the generation of reactive oxygen species (ROS) and mutagenic species. The human vanin gene family consists of three genes: vanin-1, vanin-2 and vanin-3. All vanin molecules are pantetheinases, that hydrolyze pantetheine into pantothenic acid (vitamin B5), and cysteamine, a sulfhydryl compound. Vanin-1 loss confers an increased resistance to stress and acute intestinal inflammation, while vanin-2 regulates adhesion and transmigration of activated neutrophils. The metabolic product of these enzymes has a prominent role in the inflammation processes by affecting glutathione levels, inducing ulcers through a reduction in mucosal blood flow and oxygenation, decreasing local defense mechanisms, and in carcinogenesis by damaging DNA and regulating pathways involved in cell apoptosis, metabolism and growth, as Nrf2 and HIF-1α.
Collapse
Affiliation(s)
- Francesco Mariani
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41125 Modena, Italy.
| | - Luca Roncucci
- Department of Diagnostic and Clinical Medicine, and Public Health, University of Modena and Reggio Emilia, Via Del Pozzo 71, I-41125 Modena, Italy.
| |
Collapse
|
111
|
da Costa Gonçalves F, Grings M, Nunes NS, Pinto FO, Garcez TNA, Visioli F, Leipnitz G, Paz AH. Antioxidant properties of mesenchymal stem cells against oxidative stress in a murine model of colitis. Biotechnol Lett 2017; 39:613-622. [PMID: 28032203 DOI: 10.1007/s10529-016-2272-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the effects of oxidative stress injury in dextran sulfate sodium (DSS)-induced colitis in mice treated with mesenchymal stem cells (MSC). RESULTS Mice exposed to oral administration of 2% DSS over 7 days presented a high disease activity index and an intense colonic inflammation. Systemic infusion of MSC protected from severe colitis, reducing weight loss and diarrhea while lowering the infiltration of inflammatory cells. Moreover, toxic colitis injury increased oxidative stress. Administration of DSS decreased reduced glutathione (GSH) and superoxide dismutase (SOD) activity, and increased thiobarbituric acid-reactive substances levels in the colon. No alteration was found in catalase (CAT) and glutathione peroxidase (GPx) activity. Otherwise, MSC transplantation was able to prevent the decrease of GSH levels and SOD activity suggestive of an antioxidant property of MSC. CONCLUSION The oxidative stress is a pathomechanism underlying the pathophysiology of colitis and MSC play an important role in preventing the impairment of antioxidants defenses in inflamed colon.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil.
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil.
| | - Mateus Grings
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Natália Schneider Nunes
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Fernanda Otesbelgue Pinto
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Tuane Nerissa Alves Garcez
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2492, Porto Alegre, RS, CEP 90035-007, Brazil
| | - Guilhian Leipnitz
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Ana Helena Paz
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil
| |
Collapse
|
112
|
Fan FY, Sang LX, Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 2017; 22:E484. [PMID: 28335502 PMCID: PMC6155401 DOI: 10.3390/molecules22030484] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Catechins are natural polyphenolic phytochemicals that exist in food and medicinal plants, such as tea, legume and rubiaceae. An increasing number of studies have associated the intake of catechins-rich foods with the prevention and treatment of chronic diseases in humans, such as inflammatory bowel disease (IBD). Some studies have demonstrated that catechins could significantly inhibit the excessive oxidative stress through direct or indirect antioxidant effects and promote the activation of the antioxidative substances such as glutathione peroxidases (GPO) and glutathione (GSH), reducing the oxidative damages to the colon. In addition, catechins can also regulate the infiltration and proliferation of immune related-cells, such as neutrophils, colonic epithelial cells, macrophages, and T lymphocytes, helping reduce the inflammatory relations and provide benefits to IBD. Perhaps catechins can further inhibit the deterioration of intestinal lesions through regulating the cell gap junctions. Furthermore, catechins can exert their significant anti-inflammatory properties by regulating the activation or deactivation of inflammation-related oxidative stress-related cell signaling pathways, such as nuclear factor-kappa B (NF-κB), mitogen activated protein kinases (MAPKs), transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), signal transducer and the activator of transcription 1/3 (STAT1/3) pathways. Finally, catechins can also stabilize the structure of the gastrointestinal micro-ecological environment via promoting the proliferation of beneficial intestinal bacteria and regulating the balance of intestinal flora, so as to relieve the IBD. Furthermore, catechins may regulate the tight junctions (TJ) in the epithelium. This paper elaborates the currently known possible molecular mechanisms of catechins in favor of IBD.
Collapse
Affiliation(s)
- Fei-Yan Fan
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
| |
Collapse
|
113
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
114
|
Li R, Kim MH, Sandhu AK, Gao C, Gu L. Muscadine Grape (Vitis rotundifolia) or Wine Phytochemicals Reduce Intestinal Inflammation in Mice with Dextran Sulfate Sodium-Induced Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:769-776. [PMID: 28112913 DOI: 10.1021/acs.jafc.6b03806] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The objective of this study was to determine the anti-inflammatory effects of phytochemical extracts from muscadine grapes or wine on dextran sulfate sodium (DSS)-induced colitis in mice and to investigate cellular mechanisms. Two groups of C57BL/6J mice were gavaged with muscadine grape phytochemicals (MGP) or muscadine wine phytochemicals (MWP), respectively, for 14 days. Acute colitis was induced by 3% DSS in drinking water for 7 days. An additional two groups of mice served as healthy and disease controls. Results indicated that MGP or MWP significantly prevented weight loss, reduced disease activity index, and preserved colonic length compared to the colitis group (p ≤ 0.05). MGP or MWP significantly decreased myeloperoxidase activity as well as the levels of IL-1β, IL-6, and TNF-α in colon (p ≤ 0.05). MGP or MWP caused down-regulation of the NF-κB pathway by inhibiting the phosphorylation and degradation of IκB in a dose-dependent manner. These findings suggest that phytochemicals from muscadine grape or wine mitigate ulcerative colitis via attenuation of pro-inflammatory cytokine production and modulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Ruiqi Li
- Food Science and Human Nutrition Department and ‡Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida , Gainesville, Florida 32611, United States
| | - Min-Hyun Kim
- Food Science and Human Nutrition Department and ‡Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida , Gainesville, Florida 32611, United States
| | - Amandeep K Sandhu
- Food Science and Human Nutrition Department and ‡Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida , Gainesville, Florida 32611, United States
| | - Chi Gao
- Food Science and Human Nutrition Department and ‡Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida , Gainesville, Florida 32611, United States
| | - Liwei Gu
- Food Science and Human Nutrition Department and ‡Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida , Gainesville, Florida 32611, United States
| |
Collapse
|
115
|
Gong XP, Sun YY, Chen W, Guo X, Guan JK, Li DY, Du G. Anti-diarrheal and anti-inflammatory activities of aqueous extract of the aerial part of Rubia cordifolia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:20. [PMID: 28056930 PMCID: PMC5217154 DOI: 10.1186/s12906-016-1527-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Background In Shaanxi province, China, the aqueous extract of Rubia cordifolia’s aerial part (AERCAP) is traditionally used to manage diarrhea. However, there is no scientific evidence to verify the safety and efficacy of its use. The aim of this study was to investigate the anti-diarrheal and anti-inflammatory effects of AERCAP by using a rodent model. Methods The anti-diarrheal effects were studied by senna leaf-induced diarrheal and intestinal transit experiments in mice. The anti-inflammatory activity was investigated by trinitrobenzenesulfonic acid (TNBS)-induced colonic inflammation in rats. Results The results indicated that AERCAP delayed the onset of semi-solid feces, reduced the evacuation index (EI) in senna leaf-induced diarrheal in mice, and inhibited the propulsive movement in castor oil-induced intestinal transit but not in the normal intestinal transit test. The results were compared with the standard anti-diarrheal drug loperamide. Additionally, oral treatment with AERCAP significantly decreased the macroscopic damage area, improved the microscopic structure, and reduced the malondialdehyde (MDA) content, IL-1β and TNF-α levels in colonic tissue compared with the TNBS control group in rats. Conclusions AERCAP exhibited anti-diarrheal and anti-inflammatory activities in a rodent model. The study validated the traditional use of the plant in Chinese herbal medicine as a valuable natural remedy for the treatment of diarrhea.
Collapse
|
116
|
Yokota H, Tsuzuki A, Shimada Y, Imai A, Utsumi D, Tsukahara T, Matsumoto M, Amagase K, Iwata K, Nakamura A, Yabe-Nishimura C, Kato S. NOX1/NADPH Oxidase Expressed in Colonic Macrophages Contributes to the Pathogenesis of Colonic Inflammation in Trinitrobenzene Sulfonic Acid-Induced Murine Colitis. J Pharmacol Exp Ther 2017; 360:192-200. [PMID: 27754929 DOI: 10.1124/jpet.116.235580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/14/2016] [Indexed: 03/08/2025] Open
Abstract
NOX1/NADPH oxidase, a nonphagocytic isoform of reactive oxygen species-producing enzymes, is highly expressed in the colon, but the physiologic and pathophysiologic roles of this isoform are not fully understood. The present study investigated the role of NOX1 in the development of colonic inflammation in a trinitrobenzene sulfonic acid (TNBS)-induced murine colitis model. Intrarectal injection of TNBS caused severe colitis accompanied by body weight loss, diarrhea, and increased myeloperoxidase (MPO) activity in wild-type (WT) mice. In contrast, the severity of colitis was significantly attenuated in NOX1-deficient (NOX1KO) mice (the inhibitions of macroscopic damage score, body weight loss, diarrhea score, and MPO activity were 73.1%, 36.8%, 83.3%, and 98.4%, respectively). TNBS-induced upregulation of inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1β), chemokines (CXCL1 and CXLC2), and inducible nitric oxide synthase (iNOS) was also significantly less in NOX1KO than in WT mice (the inhibitions were 100.8%, 89.0%, 63.5%, 96.7%, and 97.1%, respectively). Expression of NOX1 mRNA was detected not only in the lamina propria but also in peritoneal macrophages isolated from WT mice. Increased expression of TNF-α, IL-1β, and iNOS in peritoneal macrophages exposed to lipopolysaccharide was significantly attenuated in macrophages isolated from NOX1KO mice (68.1%, 67.0%, and 79.3% inhibition, respectively). These findings suggest that NOX1/NADPH oxidase plays an important role in the pathogenesis of TNBS-induced colonic inflammation via upregulation of inflammatory cytokines, chemokines, and iNOS. NOX1 in colonic macrophages may become a potential target in pharmacologic intervention for inflammatory bowel disease.
Collapse
Affiliation(s)
- Haruka Yokota
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Ayaka Tsuzuki
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Yuki Shimada
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Azusa Imai
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Takuya Tsukahara
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Misaki Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Kazumi Iwata
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Akio Nakamura
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Chihiro Yabe-Nishimura
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University (H.Y., A.T., Y. S., A. I., D. U., T. T., K. A., S.K.), and Department of Pharmacology, Kyoto Prefectural University of Medicine (M.M., K.I., C.Y-N.), Kyoto, Japan, and Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan (A.N.)
| |
Collapse
|
117
|
Ciacci C, Russo I. Kiwifruit Peptides, Gastrointestinal Protection, and Oxidative Stress. GASTROINTESTINAL TISSUE 2017:305-309. [DOI: 10.1016/b978-0-12-805377-5.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
118
|
The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J Clin Med 2016; 5:jcm5120118. [PMID: 27999328 PMCID: PMC5184791 DOI: 10.3390/jcm5120118] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are characterised by aberrant immunological responses leading to chronic inflammation without tissue regeneration. These two diseases are considered distinct entities, and there is some evidence that neutrophil behaviour, above all other aspects of immunity, clearly separate them. Neutrophils are the first immune cells recruited to the site of inflammation, and their action is crucial to limit invasion by microorganisms. Furthermore, they play an essential role in proper resolution of inflammation. When these processes are not tightly regulated, they can trigger positive feedback amplification loops that promote neutrophil activation, leading to significant tissue damage and evolution toward chronic disease. Defective chemotaxis, as observed in Crohn’s disease, can also contribute to the disease through impaired microbe elimination. In addition, through NET production, neutrophils may be involved in thrombo-embolic events frequently observed in IBD patients. While the role of neutrophils has been studied in different animal models of IBD for many years, their contribution to the pathogenesis of IBD remains poorly understood, and no molecules targeting neutrophils are used and validated for the treatment of these pathologies. Therefore, it is crucial to improve our understanding of their mode of action in these particular conditions in order to provide new therapeutic avenues for IBD.
Collapse
|
119
|
Abstract
Protection of mucosal tissues of the oral cavity, intestines, respiratory tract, and urogenital tract from the constant challenge of pathogens is achieved by the combined barrier function of the lining epithelia and specialized immune cells. Recent studies have indicated that osteopontin (OPN) has a pivotal role in the development of immune responses and in the tissue destruction and the subsequent repair processes associated with inflammatory diseases. While expression of OPN is increased in immune cells—including neutrophils, macrophages, T- and B-lymphocytes—and in epithelial, endothelial, and fibroblastic cells of inflamed tissues, deciphering the specific functions of OPN has been difficult. In part, this is due to the broad range of biological activities of OPN that are mediated by multiple receptors which recognize several signaling motifs whose activities are influenced by post-translational modifications and proteolytic processing of OPN. Understanding the role of OPN in mucosal inflammation is further complicated by its contributions to the barrier function of the lining epithelia and the complexity of the specialized mucosal immune system. In an attempt to provide some insights into the involvement of OPN in mucosal diseases, this review summarizes current knowledge of the biological activities of OPN involved in the development of inflammatory responses and in wound healing, and indicates how these activities may affect the protection of mucosal tissues.
Collapse
Affiliation(s)
- J Sodek
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, ON, Canada
| | | | | |
Collapse
|
120
|
Hydroalcoholic Extract from Inflorescences of Achyrocline satureioides (Compositae) Ameliorates Dextran Sulphate Sodium-Induced Colitis in Mice by Attenuation in the Production of Inflammatory Cytokines and Oxidative Mediators. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3475356. [PMID: 27847525 PMCID: PMC5099481 DOI: 10.1155/2016/3475356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
Achyrocline satureioides is a South American herb used to treat inflammatory and gastrointestinal diseases. This study evaluated intestinal anti-inflammatory effects of the hydroalcoholic extract of inflorescences of satureioides (HEAS) in dextran sulfate sodium (DSS) induced colitis in mice. Mice were orally treated with vehicle, 5-aminosalicylic acid (100 mg/kg), or HEAS (1–100 mg/kg). Clinical signs of colitis and colonic histopathological parameters were evaluated, along with the determination of levels of reduced glutathione and lipid hydroperoxide (LOOH), the superoxide dismutase (SOD), and myeloperoxidase (MPO) activity in colon. The colonic content of cytokines (TNF, IL-4, IL-6, and IL-10) was measured. Additionally, the effects of the extract on nitric oxide (NO) release by lipopolysaccharide (LPS) stimulated macrophages and diphenylpicrylhydrazyl levels were determined. Mucin levels and SOD activity, as well as the LOOH, MPO, TNF, and IL-6 accumulation in colon tissues, were normalized by the HEAS administration. In addition, the extract elicited an increase in IL-4 and IL-10 levels in colon. NO release by macrophages was inhibited by HEAS and its scavenger activity was confirmed. Together these results suggest that preparations obtained from inflorescences from A. satureioides could be used in treatment for IBD. Besides, this work corroborates the popular use of A. satureioides in inflammatory disorders.
Collapse
|
121
|
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use.
Collapse
Affiliation(s)
- Jian Guo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Xiaojing Jiang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
122
|
Rezaeyan A, Haddadi GH, Hosseinzadeh M, Moradi M, Najafi M. Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue. J Med Phys 2016; 41:182-91. [PMID: 27651565 PMCID: PMC5019037 DOI: 10.4103/0971-6203.189482] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was carried out to evaluate radioprotective effects of hesperidin (HES) administration before the irradiation on the cardiac oxidative stress and histopathological changes in an experimental rat model. The cardiovascular complications of radiation exposure cause morbidity and mortality in patients who received radiotherapy. HES, an antioxidant flavonoid found in citrus fruits, suggests the protection against the tissue damage. Fifty-eight rats were divided into four groups: Group 1 received phosphate buffered saline (PBS) and sham radiation; Group 2, HES and sham radiation; Group 3, PBS and radiation; and Group 4, HES and radiation. The rats were exposed to single dose of 18 Gy of 6 MV X-ray. One hundred milligrams per kilogram doses of HES was administered for 7 days before irradiation. The estimation of superoxide dismutase (SOD), malondialdehyde (MDA), and histopathological analyses was performed at 24 h and 8 weeks after radiation exposure. The irradiation of chest area resulted in an elevated MDA level and decreased SOD activity. Moreover, long-term pathological lesions of radiation were inflammation, fibrosis, the increased number of mast cells and macrophages, and development of plaque, vascular leakage, myocardial degeneration, and myocyte necrosis. Although the administration of HES decreases inflammation, fibrosis, mast cell and macrophage numbers, and myocyte necrosis, it did not result in reduced thrombus, myocardium degeneration, and vascular leakage. In conclusion, these results suggest that HES can perform a radioprotection action. The protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties.
Collapse
Affiliation(s)
- Abolhasan Rezaeyan
- Department of Medical Physics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholam Hassan Haddadi
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massood Hosseinzadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moradi
- Food and Drug Organization, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoud Najafi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
123
|
Hisamatsu KI, Inoue H, Makiyama K, Homma M. Nitrotyrosine in Otitis Media with Effusion. Ann Otol Rhinol Laryngol 2016; 114:804-8. [PMID: 16285272 DOI: 10.1177/000348940511401011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: Our purpose was to investigate mucosal cell injury due to the nitric oxide (NO)-superoxide system in otitis media with effusion. Methods: We determined the levels of nitrotyrosine (NT) and NO and the activities of superoxide dismutase (SOD) and lactic dehydrogenase (LDH) in 90 middle ear fluid samples. Results: The NT concentration was significantly higher in group A (<16 years old) than in group C (>50 years old; p <.05), and significantly higher in the acute group than in the chronic group (p <.05). The NO concentration did not show a significant difference among the groups. The activity of SOD showed significant correlations with the concentrations of NT and NO and with LDH activity (p <.05). The LDH activity was significantly greater in group A than in group C (p <.05). Conclusions: Our results indicate involvement of the NO-superoxide system in the pathogenesis of otitis media with effusion, showing evidence of protein and/or cell injury in the middle ear.
Collapse
Affiliation(s)
- Ken-ichi Hisamatsu
- Department of Otorhinolaryngology, Nihon University Surugadai Hospital, Tokyo, Japan
| | | | | | | |
Collapse
|
124
|
Parihar AKS, Srivastava S, Patel S, Singh MR, Singh D. Novel catalase loaded nanocores for the treatment of inflammatory bowel diseases. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:981-989. [PMID: 27322626 DOI: 10.1080/21691401.2016.1198363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Arun K. S. Parihar
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | - Shikha Srivastava
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | - Satish Patel
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | - Manju R. Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
125
|
DiGuilio KM, Mercogliano CM, Born J, Ferraro B, To J, Mixson B, Smith A, Valenzano MC, Mullin JM. Sieving characteristics of cytokine- and peroxide-induced epithelial barrier leak: Inhibition by berberine. World J Gastrointest Pathophysiol 2016; 7:223-234. [PMID: 27190695 PMCID: PMC4867402 DOI: 10.4291/wjgp.v7.i2.223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To study whether the inflammatory bowel disease (IBD) colon which exhibits varying severity and cytokine levels across its mucosa create varying types of transepithelial leak.
METHODS: We examined the effects of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1-β (IL1β) and hydrogen peroxide (H2O2) - singly and in combinations - on barrier function of CACO-2 cell layers. Our focus was on the type (not simply the magnitude) of transepithelial leak generated by these agents as measured by transepithelial electrical resistance (TER) and transepithelial flux of 14C-D-mannitol, 3H-Lactulose and 14C-Polyethylene glycol as radiolabeled probe molecules. The isoquinoline alkaloid, berberine, was then examined for its ability to reduce specific types of transepithelial leak.
RESULTS: Exposure to TNF-α alone (200 ng/mL; 48 h) induced a 50% decrease in TER, i.e., increased leak of Na+ and Cl- - with only a marginal but statistically significant increase in transepithelial leak of 14C-mannitol (Jm). Exposure to TNF-α + IFN-γ (200 ng/mL; 48 h) + IL1β (50 ng/mL; 48 h) did not increase the TER change (from TNF-α alone), but there was now a 100% increase in Jm. There however was no increase in transepithelial leak of two larger probe molecules, 3H-lactulose and 14C-polyethylene glycol (PEG). However, exposure to TNF-α + IFN-γ + IL1β followed by a 5 h exposure to 2 mmol/L H2O2 resulted in a 500% increase in 14C-PEG leak as well as leak to the luminal mitogen, epidermal growth factor.
CONCLUSION: This model of graded transepithelial leak is useful in evaluating therapeutic agents reducing IBD morbidity by reducing barrier leak to various luminal substances.
Collapse
|
126
|
Teixeira D, Fernandes R, Prudêncio C, Vieira M. 3-Nitrotyrosine quantification methods: Current concepts and future challenges. Biochimie 2016; 125:1-11. [PMID: 26921794 DOI: 10.1016/j.biochi.2016.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Measurement of 3-nitrotyrosine (3-NT) in biological samples can be used as a biomarker of nitrosative stress, since it is very stable and suitable for analysis. Increased 3-NT levels in biological samples have been associated with several physiological and pathological conditions. Different methods have been described for the detection and quantification of this molecule, such as (i) immunological methods; (ii) liquid chromatography, namely high-pressure liquid chromatography (HPLC)-based methods that use ultraviolet-visible (UV/VIS) absorption, electrochemical (ECD) and diode array (DAD) detection, liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS); (iii) gas chromatography, such as gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). METHODS A literature review on nitrosative stress, protein nitration, as well as 3-NT quantification methods was carried out. RESULTS This review covers the different methods for analysis of 3-NT that have been developed during the last years as well as the latest advances in this field. Overall, all methods present positive and negative aspects, although it is clear that chromatography-based methods present good sensitivity and specificity. Regarding this, GC-based methods exhibit the highest sensibility in the quantification of 3-NT, although it requires a prior time consuming derivatization step. Conversely, HPLC does not require such derivatization step, despite being not as accurate as GC. CONCLUSION It becomes clear that all the methods described during this literature review, although accurate for 3-NT quantification, need to be improved regarding both sensitivity and specificity. Moreover, optimization of the protocols that have been described is clearly needed.
Collapse
Affiliation(s)
- Dulce Teixeira
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | - Rúben Fernandes
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Cristina Prudêncio
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Centro de Investigação em Saúde e Ambiente, Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.
| |
Collapse
|
127
|
Fostering Inflammatory Bowel Disease: Sphingolipid Strategies to Join Forces. Mediators Inflamm 2016; 2016:3827684. [PMID: 26880864 PMCID: PMC4736332 DOI: 10.1155/2016/3827684] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 12/18/2022] Open
Abstract
Complex sphingolipids are essential structural components of intestinal membranes, providing protection and integrity to the intestinal mucosa and regulating intestinal absorption processes. The role of sphingolipid signaling has been established in numerous cellular events, including intestinal cell survival, growth, differentiation, and apoptosis. A significant body of knowledge demonstrates that intestinal sphingolipids play a crucial role, as such and through their signaling pathways, in immunity and inflammatory disorders. In this review, we report on and discuss the current knowledge on the metabolism, signaling, and functional implications of sphingolipids in inflammatory bowel disease (IBD), focusing on the different aspects of sphingolipid actions on inflammatory responses and on the potential of sphingolipid-targeted molecules as anti-IBD therapeutic agents.
Collapse
|
128
|
Balmus IM, Ciobica A, Trifan A, Stanciu C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi J Gastroenterol 2016; 22:3-17. [PMID: 26831601 PMCID: PMC4763525 DOI: 10.4103/1319-3767.173753] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder characterized by alternating phases of clinical relapse and remission. The etiology of IBD remains largely unknown, although a combination of patient's immune response, genetics, microbiome, and environment plays an important role in disturbing intestinal homeostasis, leading to development and perpetuation of the inflammatory cascade in IBD. As chronic intestinal inflammation is associated with the formation of reactive oxygen and reactive nitrogen species (ROS and RNS), oxidative and nitrosative stress has been proposed as one of the major contributing factor in the IBD development. Substantial evidence suggests that IBD is associated with an imbalance between increased ROS and decreased antioxidant activity, which may explain, at least in part, many of the clinical pathophysiological features of both CD and UC patients. Hereby, we review the presently known oxidant and antioxidant mechanisms involved in IBD-specific events, the animal models used to determine these specific features, and also the antioxidant therapies proposed in IBD patients.
Collapse
Affiliation(s)
- Ioana Miruna Balmus
- Department of Biology, Alexandru Ioan Cuza University, Bulevardul Carol, Iaşi, Romania
| | - Alin Ciobica
- Department of Biology, Alexandru Ioan Cuza University, Bulevardul Carol, Iaşi, Romania
- Department of Animal Physiology, Center of Biomedical Research of the Romanian Academy, Iaşi, Romania
| | - Anca Trifan
- Department of Gastroenterology, “Gr. T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Carol Stanciu
- Department of Animal Physiology, Center of Biomedical Research of the Romanian Academy, Iaşi, Romania
| |
Collapse
|
129
|
Possible Biomarkers in Blood for Crohn's Disease: Oxidative Stress and MicroRNAs-Current Evidences and Further Aspects to Unravel. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:2325162. [PMID: 26823944 PMCID: PMC4707323 DOI: 10.1155/2016/2325162] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
Crohn's disease (CD) is an inflammatory disorder characterised by a transmural inflammation of the intestinal wall. Although the physiopathology of the disease is not yet fully understood, it is clear that the immune response plays an important role in it. This hyperreactive immune system is accompanied by the presence of unregulated reactive oxygen species (ROS). These elements are modulated in normal conditions by different elements, including enzymes that function as antioxidant defences preventing the harmful effects of ROS. However, in CD there is an imbalance between ROS production and these antioxidant elements, resulting in oxidative stress (OxS) phenomena. In fact, now OxS is being considered more a potential etiological factor for Crohn's disease rather than a concomitant effect in the disease. The persistence of the OxS can also be influencing the evolution of the disease. Furthermore, the epigenetic mechanisms, above all microRNAs, are being considered key elements in the pathogenesis of CD. These elements and the presence of OxS have also been linked to several diseases. We, therefore, describe in this review the most significant findings related to oxidative stress and microRNAs profiles in the peripheral blood of CD patients.
Collapse
|
130
|
Monk JM, Lepp D, Zhang CP, Wu W, Zarepoor L, Lu JT, Pauls KP, Tsao R, Wood GA, Robinson LE, Power KA. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J Nutr Biochem 2015; 28:129-39. [PMID: 26878790 DOI: 10.1016/j.jnutbio.2015.10.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/23/2015] [Accepted: 10/16/2015] [Indexed: 12/19/2022]
Abstract
Common beans are rich in phenolic compounds and nondigestible fermentable components, which may help alleviate intestinal diseases. We assessed the gut health priming effect of a 20% cranberry bean flour diet from two bean varieties with differing profiles of phenolic compounds [darkening (DC) and nondarkening (NDC) cranberry beans vs. basal diet control (BD)] on critical aspects of gut health in unchallenged mice, and during dextran sodium sulfate (DSS)-induced colitis (2% DSS wt/vol, 7 days). In unchallenged mice, NDC and DC increased (i) cecal short-chain fatty acids, (ii) colon crypt height, (iii) crypt goblet cell number and mucus content and (iv) Muc1, Klf4, Relmβ and Reg3γ gene expression vs. BD, indicative of enhanced microbial activity and gut barrier function. Fecal 16S rRNA sequencing determined that beans reduced abundance of the Lactobacillaceae (Ruminococcus gnavus), Clostridiaceae (Clostridium perfringens), Peptococcaceae, Peptostreptococcaceae, Rikenellaceae and Pophyromonadaceae families, and increased abundance of S24-7 and Prevotellaceae. During colitis, beans reduced (i) disease severity and colonic histological damage, (ii) increased gene expression of barrier function promoting genes (Muc1-3, Relmβ, and Reg3γ) and (iii) reduced colonic and circulating inflammatory cytokines (IL-1β, IL-6, IFNγ and TNFα). Therefore, prior to disease induction, bean supplementation enhanced multiple concurrent gut health promoting parameters that translated into reduced colitis severity. Moreover, both bean diets exerted similar effects, indicating that differing phenolic content did not influence the endpoints assessed. These data demonstrate a proof-of-concept regarding the gut-priming potential of beans in colitis, which could be extended to mitigate the severity of other gut barrier-associated pathologies.
Collapse
Affiliation(s)
- Jennifer M Monk
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Dion Lepp
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9
| | - Claire P Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Wenqing Wu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9
| | - Leila Zarepoor
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jenifer T Lu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - K Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Krista A Power
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
131
|
Abstract
This review will focus on published human studies on oxidative stress and DNA damage in inflammatory bowel disease (IBD), both ulcerative colitis and Crohn's disease, assessing their role in the pathophysiology of these diseases. Search was performed over PubMed and ScienceDirect databases to identify relevant bibliography, using keywords including "oxidative stress," "DNA damage," "IBD," and "oxidative DNA damage." Whether as cause or effect, mechanisms underlying oxidative stress have the potential to condition the course of various pathologies, particularly those driven by inflammatory scenarios. IBDs are chronic inflammatory relapsing conditions. Oxidative stress has been associated with some of the characteristic clinical features exhibited in IBD, namely tissue injury and fibrosis, and also to the ulcerative colitis-associated colorectal cancer. The possible influence of oxidative stress over therapeutic behavior and response, as well as their contribution to the oxidative burden and consequences, is also addressed. Due to the high prevalence and incidence of IBD worldwide, and also to its associated morbidity, complications, and disease and treatment costs, it is of paramount importance to better understand the pathophysiology of these diseases.
Collapse
|
132
|
Koh SJ, Kim JW, Kim BG, Lee KL, Kim JS. Restraint stress induces and exacerbates intestinal inflammation in interleukin-10 deficient mice. World J Gastroenterol 2015; 21:8580-8587. [PMID: 26229400 PMCID: PMC4515839 DOI: 10.3748/wjg.v21.i28.8580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of restraint stress on chronic colitis in interleukin (IL)-10 deficient (IL-10-/-) mice.
METHODS: The first experiment compared the effect of restraint stress on the development of intestinal inflammation in wild-type and IL-10-/- mice. Both wild-type and IL-10-/- mice were physically restrained in a well-ventilated, 50 cm3 conical polypropylene tube for 2 h per day for three consecutive days. The second experiment was performed to assess the effect of restraint stress on exacerbation of colitis induced by piroxicam in IL-10-/- mice. The IL-10-/- mice were exposed to restraint stress for 2 h per day for 3 consecutive days, and then treated with piroxicam for 4 d at a dose of 200 ppm administered in the rodent chow.
RESULTS: In the first experiment, none of the wild-type mice with or without restraint stress showed clinical and histopathological abnormality in the gut. However, IL-10-/- mice exposed to restraint stress exhibited histologically significant intestinal inflammation as compared to those without restraint stress. In the second experiment, restraint stress significantly reduced body weight and increased the severity of intestinal inflammation assessed by histopathologic grading in IL-10-/- mice. Colonic IL12p40 mRNA expression was strongly increased in mice exposed to restraint stress.
CONCLUSION: This novel animal model could be useful in future study of psychological stress in the pathogenesis of inflammatory bowel disease.
Collapse
MESH Headings
- Animals
- Chronic Disease
- Colitis/etiology
- Colitis/genetics
- Colitis/metabolism
- Colitis/pathology
- Colitis/prevention & control
- Colitis/psychology
- Colon/metabolism
- Colon/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Interleukin-10/deficiency
- Interleukin-10/genetics
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Piroxicam
- RNA, Messenger/metabolism
- Receptors, Interleukin-12/genetics
- Receptors, Interleukin-12/metabolism
- Restraint, Physical
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Time Factors
Collapse
|
133
|
Yeom Y, Kim Y. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression. J Cancer Prev 2015; 20:136-46. [PMID: 26151047 PMCID: PMC4492358 DOI: 10.15430/jcp.2015.20.2.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 06/20/2015] [Accepted: 06/20/2015] [Indexed: 12/30/2022] Open
Abstract
Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes.
Collapse
Affiliation(s)
- Yiseul Yeom
- Department of Nutritional Science and Food Management, College of Health Sciences, Ewha Womans University, Seoul, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, College of Health Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
134
|
Sodagari HR, Farzaei MH, Bahramsoltani R, Abdolghaffari AH, Mahmoudi M, Rezaei N. Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2015; 9:807-20. [PMID: 25586636 DOI: 10.1586/17474124.2015.1002086] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is thought to result from a chronic or relapsing activation of the immune system in the GI tract. A growing body of evidence confirms the health benefits of dietary anthocyanins as plant-derived natural agents. The aim of this review is to provide an overview of several natural products rich in anthocyanins used worldwide for the treatment of IBD. Anthocyanins possess both protective and therapeutic functions in the management of IBD by alleviating oxidative stress processes, cytoprotective functions, downregulation of inflammatory cytokines and suppressing cellular signaling pathways of inflammatory processes. In conclusion, the consumption of anthocyanin-rich natural formulations must be promoted on the basis of their possible function in the prevention and treatment of gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | | | | | | | | |
Collapse
|
135
|
Kuo B, Bhasin M, Jacquart J, Scult MA, Slipp L, Riklin EIK, Lepoutre V, Comosa N, Norton BA, Dassatti A, Rosenblum J, Thurler AH, Surjanhata BC, Hasheminejad NN, Kagan L, Slawsby E, Rao SR, Macklin EA, Fricchione GL, Benson H, Libermann TA, Korzenik J, Denninger JW. Genomic and clinical effects associated with a relaxation response mind-body intervention in patients with irritable bowel syndrome and inflammatory bowel disease. PLoS One 2015; 10:e0123861. [PMID: 25927528 PMCID: PMC4415769 DOI: 10.1371/journal.pone.0123861] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD) can profoundly affect quality of life and are influenced by stress and resiliency. The impact of mind-body interventions (MBIs) on IBS and IBD patients has not previously been examined. Methods Nineteen IBS and 29 IBD patients were enrolled in a 9-week relaxation response based mind-body group intervention (RR-MBI), focusing on elicitation of the RR and cognitive skill building. Symptom questionnaires and inflammatory markers were assessed pre- and post-intervention, and at short-term follow-up. Peripheral blood transcriptome analysis was performed to identify genomic correlates of the RR-MBI. Results Pain Catastrophizing Scale scores improved significantly post-intervention for IBD and at short-term follow-up for IBS and IBD. Trait Anxiety scores, IBS Quality of Life, IBS Symptom Severity Index, and IBD Questionnaire scores improved significantly post-intervention and at short-term follow-up for IBS and IBD, respectively. RR-MBI altered expression of more genes in IBD (1059 genes) than in IBS (119 genes). In IBD, reduced expression of RR-MBI response genes was most significantly linked to inflammatory response, cell growth, proliferation, and oxidative stress-related pathways. In IBS, cell cycle regulation and DNA damage related gene sets were significantly upregulated after RR-MBI. Interactive network analysis of RR-affected pathways identified TNF, AKT and NF-κB as top focus molecules in IBS, while in IBD kinases (e.g. MAPK, P38 MAPK), inflammation (e.g. VEGF-C, NF-κB) and cell cycle and proliferation (e.g. UBC, APP) related genes emerged as top focus molecules. Conclusions In this uncontrolled pilot study, participation in an RR-MBI was associated with improvements in disease-specific measures, trait anxiety, and pain catastrophizing in IBS and IBD patients. Moreover, observed gene expression changes suggest that NF-κB is a target focus molecule in both IBS and IBD—and that its regulation may contribute to counteracting the harmful effects of stress in both diseases. Larger, controlled studies are needed to confirm this preliminary finding. Trial Registration ClinicalTrials.Gov NCT02136745
Collapse
Affiliation(s)
- Braden Kuo
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine & Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jolene Jacquart
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Matthew A. Scult
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lauren Slipp
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eric Isaac Kagan Riklin
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Veronique Lepoutre
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nicole Comosa
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Beth-Ann Norton
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Allison Dassatti
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jessica Rosenblum
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Andrea H. Thurler
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian C. Surjanhata
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nicole N. Hasheminejad
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Leslee Kagan
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ellen Slawsby
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sowmya R. Rao
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Center for Healthcare Organization and Implementation Research (CHOIR), Bedford VA Medical Center, Bedford, Massachusetts, United States of America
| | - Eric A. Macklin
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory L. Fricchione
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Herbert Benson
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine & Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joshua Korzenik
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - John W. Denninger
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
136
|
Nirmal SA, Dhikale RS, Girme AS, Pal SC, Mandal SC. Potential of the plant Thespesia populnea in the treatment of ulcerative colitis. PHARMACEUTICAL BIOLOGY 2015; 53:1379-1385. [PMID: 25858438 DOI: 10.3109/13880209.2014.982302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Thespesia populnea Sol. ex Correa (Malvaceae), an indigenous tree species in India, is of interest to researchers because traditionally its heartwood is used in the treatment of ulcer and colic pain. OBJECTIVE To validate its folk use in the treatment of ulcerative colitis (UC). MATERIALS AND METHODS Mice were administered intrarectal DNBS and then treated with different plant extracts (100 and 200 mg/kg), 30 min before and 24 and 48 h after DNBS infusion. Colonic mucosal injury was assessed by macroscopic and histological examination. Furthermore, malondialdehyde (MDA), myeloperoxidase (MPO), protease, and hemoglobin (Hb) contents were measured in tissue and blood samples. RESULTS Administration of various extracts ameliorated macroscopic and microscopic scores which were altered due to DNBS treatment in mice. Hb concentration in blood was restored significantly by the aqueous extract to 17.20 ± 0.5, which was reduced to 13.80 ± 0.5 after treatment with DNBS. MDA level was increased to 10.82 nm/mg and 10.25 nm/ml in tissue and blood, respectively, due to DNBS treatment which was reduced to 2.69 nm/mg and 3.59 nm/ml in tissue and blood, respectively, by aqueous extract treatment. Similarly, MPO level was increased to 412 U/mg and 404 U/ml in tissue and blood, respectively, which was significantly reduced to 205 U/mg and 219 U/ml in tissue and blood, respectively, by aqueous extract treatment. Aqueous extract significantly reduced protease activity which was markedly increased in DNBS-treated animals. DISCUSSION AND CONCLUSION Aqueous extract of heartwood of T. populnea is effective in the treatment of UC.
Collapse
Affiliation(s)
- S A Nirmal
- Department of Pharmacognosy, Pravara Rural College of Pharmacy , Loni, Maharashtra , India
| | | | | | | | | |
Collapse
|
137
|
Monk JM, Zhang CP, Wu W, Zarepoor L, Lu JT, Liu R, Pauls KP, Wood GA, Tsao R, Robinson LE, Power KA. White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate. J Nutr Biochem 2015; 26:752-60. [PMID: 25841250 DOI: 10.1016/j.jnutbio.2015.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/17/2014] [Accepted: 02/06/2015] [Indexed: 02/08/2023]
Abstract
Common beans are a rich source of nondigestible fermentable components and phenolic compounds that have anti-inflammatory effects. We assessed the gut-health-promoting potential of kidney beans in healthy mice and their ability to attenuate colonic inflammation following dextran sodium sulphate (DSS) exposure (via drinking water, 2% DSS w/v, 7 days). C57BL/6 mice were fed one of three isocaloric diets: basal diet control (BD), or BD supplemented with 20% cooked white (WK) or dark red kidney (DK) bean flour for 3 weeks. In healthy mice, anti-inflammatory microbial-derived cecal short chain fatty acid (SCFA) levels (acetate, butyrate and propionate), colon crypt height and colonic Mucin 1 (MUC1) and Resistin-like Molecule beta (Relmβ) mRNA expression all increased in WK- and DK-fed mice compared to BD, indicative of enhanced microbial activity, gut barrier integrity and antimicrobial defense response. During colitis, both bean diets reduced (a) disease severity, (b) colonic histological damage and (c) increased mRNA expression of antimicrobial and barrier integrity-promoting genes (Toll-like Receptor 4 (TLR4), MUC1-3, Relmβ and Trefoil Factor 3 (TFF3)) and reduced proinflammatory mediator expression [interleukin (IL)-1β, IL-6, interferon (IFN)γ, tumor necrosis factor (TNF)α and monocyte chemoattractant protein-1], which correlated with reduced colon tissue protein levels. Further, bean diets exerted a systemic anti-inflammatory effect during colitis by reducing serum levels of IL-17A, IFNγ, TNFα, IL-1β and IL-6. In conclusion, both WK and DK bean-supplemented diets enhanced microbial-derived SCFA metabolite production, gut barrier integrity and the microbial defensive response in the healthy colon, which supported an anti-inflammatory phenotype during colitis. Collectively, these data demonstrate a beneficial colon-function priming effect of bean consumption that mitigates colitis severity.
Collapse
Affiliation(s)
- Jennifer M Monk
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph ON, Canada, N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Claire P Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph ON, Canada, N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Wenqing Wu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph ON, Canada, N1G 5C9
| | - Leila Zarepoor
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph ON, Canada, N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Jenifer T Lu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph ON, Canada, N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Ronghua Liu
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph ON, Canada, N1G 5C9
| | - K Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph ON, Canada, N1G 5C9
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1
| | - Krista A Power
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph ON, Canada, N1G 5C9; Department of Human Health and Nutritional Sciences, University of Guelph, Guelph ON, Canada, N1G 2W1.
| |
Collapse
|
138
|
Soares-Mota M, Silva TA, Gomes LM, Pinto MAS, Mendonça LMC, Farias MLF, Nunes T, Ramalho A, Zaltman C. High prevalence of vitamin A deficiency in Crohn's disease patients according to serum retinol levels and the relative dose-response test. World J Gastroenterol 2015; 21:1614-1620. [PMID: 25663781 PMCID: PMC4316104 DOI: 10.3748/wjg.v21.i5.1614] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/01/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the vitamin A status of patients with Crohn's disease (CD) by evaluating serum retinol levels and the relative dose response (RDR) test (liver retinol stores). METHODS Vitamin A nutritional status was measured by serum retinol obtained by high performance liquid chromatography and the RDR test for evaluation of the hepatic stores. Body composition was performed by densitometry by dual-energy X-ray absorptiometry. Vitamin A dietary intake was assessed from a semi-quantitative food frequency questionnaire. RESULTS This study included 38 CD patients and 33 controls. Low serum retinol concentrations were detected in 29% of CD patients vs 15% in controls (P < 0.005). The RDR test was positive in 37% of CD patients vs 12% in controls, which indicated inadequate hepatic vitamin A stores (P < 0.005). Individuals with hypovitaminosis A had lower BMI and body fat compared with those without this deficiency. There was no association between vitamin A deficiency and its dietary intake, ileal location, presence of disease activity and prior bowel resections. CONCLUSION Patients with CD have higher prevalence of vitamin A deficiency, as assessed by two independent methods.
Collapse
|
139
|
Breganó JW, Barbosa DS, El Kadri MZ, Rodrigues MA, Cecchini R, Dichi I. Comparison of selective and non selective cyclo-oxygenase 2 inhibitors in experimental colitis exacerbation: role of leukotriene B4 and superoxide dismutase. ARQUIVOS DE GASTROENTEROLOGIA 2015; 51:226-34. [PMID: 25296084 DOI: 10.1590/s0004-28032014000300012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/17/2014] [Indexed: 12/25/2022]
Abstract
CONTEXT Nonsteroidal anti-inflammatory drugs are considered one of the most important causes of reactivation of inflammatory bowel disease. With regard to selective cyclo-oxygenase 2 inhibitors, the results are controversial in experimental colitis as well as in human studies. OBJECTIVES The aim this study is to compare nonsteroidal anti-inflammatory drugs effects, selective and non selective cyclo-oxygenase 2 inhibitors, in experimental colitis and contribute to the understanding of the mechanisms which nonsteroidal anti-inflammatory drugs provoke colitis exacerbation. METHODS Six groups of rats: without colitis, with colitis, and colitis treated with celecoxib, ketoprofen, indometacin or diclofenac. Survival rates, hemoglobin, plasmatic albumin, colonic tissue of interleukin-1ß, interleukin-6, tumor necrosis factor alpha, prostaglandin E2, catalase, superoxide dismutase, thiobarbituric acid-reactive substances, chemiluminescence induced by tert-butil hydroperoxides, and tissue and plasmatic leukotriene B4 were determined. RESULTS The groups treated with diclofenac or indometacin presented lower survival rates, hemoglobin and albumin, higher tissue and plasmatic leukotriene B4 and tissue superoxide dismutase than the group treated with celecoxib. Ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib, concerning to survival rate and albumin. The groups without colitis, with colitis and with colitis treated with celecoxib showed leukotriene B4 and superoxide dismutase lower levels than the groups treated with nonselective cyclo-oxygenase 2 inhibitors. CONCLUSIONS Diclofenac and indometacin presented the highest degree of induced colitis exacerbation with nonsteroidal anti-inflammatory drugs, celecoxib did not show colitis exacerbation, and ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib. These results suggest that leukotriene B4 and superoxide dismutase can be involved in the exacerbation of experimental colitis by nonselective nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- José Wander Breganó
- Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade de Londrina, Londrina, PR, Brasil
| | - Décio Sabbatini Barbosa
- Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade de Londrina, Londrina, PR, Brasil
| | | | - Maria Aparecida Rodrigues
- Departamento de Patologia, Faculdade de Medicina, Universidade Estadual de São Paulo, Botucatu, SP, Brasil
| | - Rubens Cecchini
- Laboratorio de Fisiopatologia de Radicais Livres, Universidade de Londrina, Londrina, PR, Brasil
| | - Isaias Dichi
- Departamento de Medicina Interna, Universidade de Londrina, Londrina, PR, Brasil
| |
Collapse
|
140
|
Ajayi BO, Adedara IA, Farombi EO. Pharmacological Activity of 6-Gingerol in Dextran Sulphate Sodium-induced Ulcerative Colitis in BALB/c Mice. Phytother Res 2015; 29:566-72. [DOI: 10.1002/ptr.5286] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Babajide O. Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine; University of Ibadan; Ibadan Nigeria
| | - Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine; University of Ibadan; Ibadan Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine; University of Ibadan; Ibadan Nigeria
| |
Collapse
|
141
|
Abdel-Daim MM, Farouk SM, Madkour FF, Azab SS. Anti-inflammatory and immunomodulatory effects ofSpirulina platensisin comparison toDunaliella salinain acetic acid-induced rat experimental colitis. Immunopharmacol Immunotoxicol 2015; 37:126-39. [DOI: 10.3109/08923973.2014.998368] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
142
|
Azuma K, Osaki T, Tsuka T, Imagawa T, Okamoto Y, Minami S. Effects of fish scale collagen peptide on an experimental ulcerative colitis mouse model. PHARMANUTRITION 2014. [DOI: 10.1016/j.phanu.2014.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
143
|
Zemljic M, Pejkovic B, Krajnc I, Lipovsek S. Biological pathways involved in the development of inflammatory bowel disease. Wien Klin Wochenschr 2014; 126:626-33. [PMID: 25256178 DOI: 10.1007/s00508-014-0592-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/09/2014] [Indexed: 02/07/2023]
Abstract
Apoptosis, autophagy and necrosis are three distinct functional types of the mammalian cell death network. All of them are characterized by a number of cell's morphological changes. The inappropriate induction of cell death is involved in the pathogenesis of a number of diseases.Pathogenesis of inflammatory bowel diseases (ulcerative colitis, Crohn's disease) includes an abnormal immunological response to disturbed intestinal microflora. One of the most important reason in pathogenesis of chronic inflammatory disease and subsequent multiple organ pathology is a barrier function of the gut, regulating cellular viability. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD).This review focuses on the regulation of biological pathways in development and homeostasis in IBD. Better understanding of the physiological functions of biological pathways and their influence on inflammation, immunity, and barrier function will simplify our expertice of homeostasis in the gastrointestinal tract and in upgrading diagnosis and treatment.
Collapse
Affiliation(s)
- Mateja Zemljic
- Institute of Anatomy, Histology and Embryology, Faculty of Medicine, University of Maribor, Ljubljanska 5, 2000, Maribor, Slovenia,
| | | | | | | |
Collapse
|
144
|
Azuma K, Osaki T, Kurozumi S, Kiyose M, Tsuka T, Murahata Y, Imagawa T, Itoh N, Minami S, Sato K, Okamoto Y. Anti-inflammatory effects of orally administered glucosamine oligomer in an experimental model of inflammatory bowel disease. Carbohydr Polym 2014; 115:448-56. [PMID: 25439918 DOI: 10.1016/j.carbpol.2014.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 01/12/2023]
Abstract
Anti-inflammatory effects of oral administration of the glucosamine oligomers (chito-oligosaccharides: COS) were evaluated in an experimental model of inflammatory bowel disease (IBD). Oral administration of COS improved shortening of colon length and tissue injury (as assessed by histology) in mice. Oral administration of COS inhibited inflammation in the colonic mucosa by suppression of myeloperoxidase activation in inflammatory cells, as well as activation of nuclear factor-kappa B, cyclooxygenase-2, and inducible nitric oxide synthase. Oral administration of COS also reduced serum levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-6). Moreover, it prolonged survival time in mice. These data suggest that COS have anti-inflammatory effects in an experimental model of IBD, and could be new functional foods for IBD patients.
Collapse
Affiliation(s)
- Kazuo Azuma
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Seiji Kurozumi
- Koyo Chemical Co. Ltd., 3-11-15 Iidabashi, Chiyodaku, Tokyo 102-0072, Japan
| | - Masatoshi Kiyose
- Koyo Chemical Co. Ltd., 3-11-15 Iidabashi, Chiyodaku, Tokyo 102-0072, Japan
| | - Takeshi Tsuka
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Yusuke Murahata
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Tomohiro Imagawa
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Norihiko Itoh
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Saburo Minami
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan
| | - Kimihiko Sato
- Koyo Chemical Co. Ltd., 3-11-15 Iidabashi, Chiyodaku, Tokyo 102-0072, Japan
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, 4-101 Koyama-minami, Tottori 680-8553, Japan.
| |
Collapse
|
145
|
Tumor necrosis factor-α-induced colitis increases NADPH oxidase 1 expression, oxidative stress, and neutrophil recruitment in the colon: preventive effect of apocynin. Mediators Inflamm 2014; 2014:312484. [PMID: 25276054 PMCID: PMC4167951 DOI: 10.1155/2014/312484] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species- (ROS-) mediated injury has been implicated in several inflammatory disorders, including inflammatory bowel disease (IBD). NADPH oxidases (NOXs) are the major source of endogenous ROS. Here, we investigated the role of NOXs derived-ROS in a mouse model of colitis induced by the proinflammatory cytokine, tumor necrosis factor-α (TNF-α). Intraperitoneal injection of TNFα (10 μg · kg−1) induced an acute inflammation of the colon and a marked increase in expression of NADPH oxidase 1 (NOX1), a colon specific NADPH oxidase isoform. TNFα-induced colitis was also characterized by high production of keratinocyte-derived chemokine (KC) and mucosal infiltration of neutrophils, NOX2-expressing cells. Concomitantly, ROS production and lipid peroxidation were significantly enhanced while catalase activity and glutathione level were reduced indicating a redox imbalance in the colon. Furthermore, the redox-sensitive MAP kinases, ERK1/2 and p38 MAPK, were activated during TNFα-induced colitis. Pretreatment of mice with apocynin, an NADPH oxidase inhibitor with antioxidant properties, before TNFα challenge, prevented all these events. These data suggest that ROS derived from NADPH oxidases (mainly NOX1 and NOX2) and MAP kinase pathways could contribute to the induction and expansion of oxidative lesions characteristics of IBD and that apocynin could potentially be beneficial in IBD treatment.
Collapse
|
146
|
Wen H, Feng L, Jiang W, Liu Y, Jiang J, Li S, Tang L, Zhang Y, Kuang S, Zhou X. Dietary tryptophan modulates intestinal immune response, barrier function, antioxidant status and gene expression of TOR and Nrf2 in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2014; 40:275-287. [PMID: 25047359 DOI: 10.1016/j.fsi.2014.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
The present research evaluated the effects of dietary tryptophan (Trp) on growth performance, intestinal mucosal immune, barrier function and antioxidant capacity and gene expression of young grass carp (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of Trp at 0.7(control), 1.7, 3.1, 4.0, 5.2 and 6.1 g kg(-1) diet for 8 weeks. The results showed that Trp supplementation significantly enhanced the percent weight gain (PWG), feed intake and feed efficiency (P < 0.05), and decreased the plasma ammonia content (PAC) (P < 0.05). After the 8-week feeding trail, an environmental copper exposure trail was conducted for 4 days. Results from the copper exposure trail showed that dietary Trp enhanced the lysozyme, acid phosphatase activities and complement 3 contents in the intestine of young grass carp (P < 0.05). In addition, Trp supplementation increased the copper/zinc superoxide dismutase (SOD1), glutathione peroxidase (GPx) activities and glutathione contents (P < 0.05), and decreased the protein carbonyl and malondialdehyde contents (P < 0.05). Furthermore, the relative gene expression levels of interleukin 10, transforming growth factor-β1, occludin, zonula occludens 1, claudin-b, -c, and -3, SOD1, GPx and NF-E2-related factor 2 in the intestine were significantly up-regulated with increasing of dietary Trp up to a certain level (P < 0.05). Conversely, the mRNA levels of tumor necrosis factor α, interleukin 8, target of rapamycin, Kelch-like-ECH-associated protein 1, claudin-12 and -15a in the intestine were significantly down-regulated by Trp (P < 0.05). Collectively, appropriate dietary Trp level improves fish growth, intestinal immune response, barrier function and antioxidant status, and regulated the mRNA levels of related signal molecules of young grass carp. Based on the quadratic regression analysis of the PWG and PAC, the dietary Trp requirement of young grass carp (287-699 g) was estimated to be 3.81 g kg(-1) diet (12.7 g kg(-1) protein) and 3.89 g kg(-1) diet (13.0 g kg(-1) protein), respectively.
Collapse
Affiliation(s)
- Hailang Wen
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Shuhong Li
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shengyao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
147
|
Myers JN, Schäffer MW, Korolkova OY, Williams AD, Gangula PR, M’Koma AE. Implications of the colonic deposition of free hemoglobin-α chain: a previously unknown tissue by-product in inflammatory bowel disease. Inflamm Bowel Dis 2014; 20:1530-1547. [PMID: 25078150 PMCID: PMC4134710 DOI: 10.1097/mib.0000000000000144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND We analyzed inflamed mucosal/submucosal layers of ulcerative colitis (UC = 63) and Crohn's colitis (CC = 50), and unexpectedly, we unveiled a pool of free hemoglobin alpha (Hb-α) chain. Patients with colitides have increased reactive oxidative stress (ROS), DNA oxidation products, free iron in mucosa, in preneoplastic, and in colitis-cancers and increased risks of developing colorectal cancer. All inflammatory bowel disease-related colorectal cancer lesions are found in segments with colitis. Linking this information, we investigated whether free Hb-α is key transformational stepping that increases colitis-related colorectal cancer vulnerability. METHODS UC/CC samples were profiled using matrix-assisted laser desorption/ionization mass spectrometry; protein identification was made by liquid chromatography. Diverticulitis was used as control (Ctrl). The presence of Hb(n) (n = α, β, or hemin)/Hb was validated by Western blotting and immunohistochemistry. We tested for DNA damage (DNAD) by exposing normal colonic epithelial cell line, NCM460, to 10 μM and 100 μM of Hb(n)/Hb, individually for 2, 6, and 12 hours. Quantification of Hb-α staining was done by Nikon Elements Advance Research Analysis software. ROS was measured by the production of 8-OHdG. DNAD was assessed by Comet assay. Colonic tissue homogenate antioxidants Nrf2-, CAT-, SOD-, and GPx-expressions were analyzed densitometrically/normalized by β-actin. RESULTS Immunohistochemistry of CC/UC mucosal/submucosal compartments stained strongly positive for Hb-α and significantly higher versus Ctrl. NCM460 exposed to Hb(n)/Hb exhibited steadily increasing ROS and subsequent DNAD. DNAD was higher in 10 μM than 100 μM in Hb-β/hemin the first 2 hours then plateaued followed by DNAD repair. This may be likely due to apoptosis in the later concentration. Nrf2 enzyme activities among UC, CC, and ulcerative colitis-associated colon cancer (UCAC) were observed impaired in all inflammatory bowel disease subjects. Decreased levels of Nrf2 among patients with UC versus patients with CC with active disease were insignificant as well as versus Ctrls but significantly lower in UCAC versus Ctrl. SOD was decreased in UC and UCAC and GPx in CC but statistically not significant. Comparing CC versus UC, SOD was significantly lower in CC (P < 0.05). CAT was observed increased among patients with CC/UC/UCAC and GPx in UC and UCAC versus Ctrl, respectively, and significantly increased in CC versus Ctrl (P < 0.01). CONCLUSIONS In the colitides, mucosal/submucosal tissue microenvironments demonstrated pool of free Hb-α chain. In vitro exposure of NCM460 cells to Hb(n)/Hb induced ROS and DNAD. Toxic effect of free Hb-α, in colonic epithelial cells, is therefore through production of ROS formation modulated by impairment of antioxidant effects. Targeting reduction-oxidation-sensitive pathways and transcription factors may offer options for inflammatory bowel disease-management and colitis-related cancer prevention.
Collapse
Affiliation(s)
- Jeremy N. Myers
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, Nashville, Tennessee
| | - Michael W. Schäffer
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, Nashville, Tennessee
| | - Olga Y. Korolkova
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, Nashville, Tennessee
| | - Amanda D. Williams
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, Nashville, Tennessee
| | - Pandu R. Gangula
- Department of Physiology, Meharry Medical College School of Medicine, Nashville, Tennessee
| | - Amosy E. M’Koma
- Department of Biochemistry and Cancer Biology, Meharry Medical College School of Medicine, Nashville, Tennessee
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
148
|
Kimoto-Nira H, Moriya N, Ohmori H, Suzuki C. Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain. J Food Prot 2014; 77:1161-7. [PMID: 24988023 DOI: 10.4315/0362-028x.jfp-13-475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive oxygen species, such as superoxide, can damage cellular components, such as proteins, lipids, and DNA. Superoxide dismutase (SOD) enzymes catalyze the conversion of superoxide anions to hydrogen peroxide and dioxygen. SOD is present in most lactococcal bacteria, which are commonly used as starters for manufacturing fermented dairy products and may have health benefits when taken orally. We assessed the effects of carbohydrate use on SOD activity in lactococci. In Lactococcus lactis ssp. lactis G50, the SOD activity of cells grown on lactose and galactose was higher than that on glucose; in Lactococcus lactis ssp. cremoris H61, SOD activity was independent of the type of carbohydrate used. We also investigated the activity of NADH oxidase, which is related to the production of superoxide in strains G50 and H61. Activity was highest in G50 cells grown on lactose, lower on galactose, and lowest on glucose, whereas activity in H61 cells did not differ with the carbohydrate source used. The SOD and NADH oxidase activities of strain G50 in three carbohydrates were linked. Strain G50 fermented lactose and galactose to lactate, acetate, formate, and ethanol (mixed-acid fermentation) and fermented glucose to mainly lactate (homolactic fermentation). Strain H61 fermented glucose, lactose, and galactose to mainly lactate (homolactic fermentation). In strain G50, when growth efficiency was reduced by adding a metabolic inhibitor to the growth medium, SOD activity was higher than in the control; however, the metabolism was homofermentative. Aerobic conditions, but not glucose-limited conditions, increased SOD activity, and mixed-acid fermentation occurred. We conclude that the effect of carbohydrate on SOD activity in lactococci is strain dependent and that the activity of commercial lactococci can be enhanced through carbohydrate selection for mixed-acid fermentation or by changing the energy distribution, thus enhancing the value of the starter and the resulting dairy products.
Collapse
Affiliation(s)
- H Kimoto-Nira
- NARO Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.
| | - N Moriya
- NARO Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan
| | - H Ohmori
- NARO Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan
| | - C Suzuki
- NARO Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
149
|
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94:329-54. [PMID: 24692350 DOI: 10.1152/physrev.00040.2012] [Citation(s) in RCA: 1538] [Impact Index Per Article: 139.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Collapse
|
150
|
Kaledaite R, Bernatoniene J, Dvořáčková K, Gajdziok J, Muselík J, Pečiūra R, Masteikova R. The development andin vitroevaluation of herbal pellets coated with Eudragit FS 30. Pharm Dev Technol 2014; 20:769-774. [DOI: 10.3109/10837450.2014.920355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|