101
|
Anderson LC, Petrovich GD. Distinct recruitment of the hippocampal, thalamic, and amygdalar neurons projecting to the prelimbic cortex in male and female rats during context-mediated renewal of responding to food cues. Neurobiol Learn Mem 2018; 150:25-35. [PMID: 29496643 DOI: 10.1016/j.nlm.2018.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/02/2018] [Accepted: 02/15/2018] [Indexed: 01/10/2023]
Abstract
Persistent responding to food cues may underlie the difficulty to resist palatable foods and to maintain healthy eating habits. Renewal of responding after extinction is a model of persistent food seeking that can be used to study the underlying neural mechanisms. In context-mediated renewal, a return to the context in which the initial cue-food learning occurred induces robust responding to the cues that were extinguished elsewhere. Previous work found sex differences in context-mediated renewal and in the recruitment of the ventromedial prefrontal cortex (vmPFC) during that behavior. Males exhibited renewal of responding to food cues and had higher Fos induction in the prelimbic area (PL) of the vmPFC, while females failed to exhibit renewal of responding and had lower Fos induction in the PL. The main aim of the current study was to determine key components of the PL circuitry mediating renewal. The focus was on inputs from three areas important in appetitive associative learning and contextual processing: the amygdala, ventral hippocampal formation, and the paraventricular nucleus of the thalamus. The goal was to determine whether neurons from these areas that send direct projections to the PL (identified with a retrograde tracer) are selectively activated (Fos induction) during renewal and whether they are differently recruited in males and females. The Fos induction patterns demonstrated that the PL-projecting neurons in each of these areas were recruited in a sex-specific way that corresponded to the behavioral differences between males and females. These pathways were selectively activated in the male experimental group-the only group that showed renewal behavior. The findings suggest the pathways from the ventral hippocampal formation, paraventricular nucleus of the thalamus, and basolateral amygdala to the PL mediate renewal in males. The lack of recruitment in females suggests that under activation of these pathways may underlie their lack of renewal.
Collapse
Affiliation(s)
- Lauren C Anderson
- Department of Psychology, Boston College, Chestnut Hill, MA, United States; Department of Neurology, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, United States
| | - Gorica D Petrovich
- Department of Psychology, Boston College, Chestnut Hill, MA, United States.
| |
Collapse
|
102
|
Interaction between hippocampal-prefrontal plasticity and thalamic-prefrontal activity. Sci Rep 2018; 8:1382. [PMID: 29358657 PMCID: PMC5778003 DOI: 10.1038/s41598-018-19540-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 11/08/2022] Open
Abstract
The prefrontal cortex integrates a variety of cognition-related inputs, either unidirectional, e.g., from the hippocampal formation, or bidirectional, e.g., with the limbic thalamus. While the former is usually implicated in synaptic plasticity, the latter is better known for regulating ongoing activity. Interactions between these processes via prefrontal neurons are possibly important for linking mnemonic and executive functions. Our work further elucidates such dynamics using in vivo electrophysiology in rats. First, we report that electrical pulses into CA1/subiculum trigger late-onset (>400 ms) firing responses in the medial prefrontal cortex, which are increased after induction of long-term potentiation. Then, we show these responses to be attenuated by optogenetic control of the paraventricular/mediodorsal thalamic area. This suggests that recruitment and plasticity of the hippocampal-prefrontal pathway is partially related to the thalamic-prefrontal loop. When dysfunctional, this interaction may contribute to cognitive deficits, psychotic symptoms, and seizure generalization, which should motivate future studies combining behavioural paradigms and long-range circuit assessment.
Collapse
|
103
|
Sociability trait and regional cerebral oxidative metabolism in rats: Predominantly nonlinear relations. Behav Brain Res 2018; 337:186-192. [DOI: 10.1016/j.bbr.2017.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
|
104
|
Boosting of Thalamic D2 Dopaminergic Transmission: A Potential Strategy for Drug-Seeking Attenuation. eNeuro 2017; 4:eN-COM-0378-17. [PMID: 29279859 PMCID: PMC5738865 DOI: 10.1523/eneuro.0378-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/30/2023] Open
Abstract
This commentary focuses on novel findings by Clark et al. (2017) published in eNeuro, which show that dopamine D2 receptors (D2Rs) in the paraventricular nucleus of the thalamus (PVT) are involved in cocaine sensitization. We extend the discussion on how their findings contribute to our understanding of the role of the PVT in drug seeking by providing new insight on the role of the PVT in the regulation of food-seeking and fear responses. We also consider the significance of the neuroanatomical findings reported by Clark et al., that the PVT is reciprocally connected with areas of the brain involved in addiction and discuss the implications associated with the source and type of dopaminergic fibers innervating this area of the thalamus.
Collapse
|
105
|
Choudhary AG, Somalwar AR, Sagarkar S, Rale A, Sakharkar A, Subhedar NK, Kokare DM. CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior. Brain Struct Funct 2017; 223:1313-1328. [PMID: 29116427 DOI: 10.1007/s00429-017-1544-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/19/2017] [Indexed: 01/21/2023]
Abstract
Paraventricular thalamic nucleus (PVT) serves as a transit node processing food and drug-associated reward information, but its afferents and efferents have not been fully defined. We test the hypothesis that the CART neurons in the lateral hypothalamus (LH) project to the PVT neurons, which in turn communicate via the glutamatergic fibers with the nucleus accumbens shell (AcbSh), the canonical site for reward. Rats conditioned to self-stimulate via an electrode in the right LH-medial forebrain bundle were used. Intra-PVT administration of CART (55-102) dose-dependently (10-50 ng/rat) lowered intracranial self-stimulation (ICSS) threshold and increased lever press activity, suggesting reward-promoting action of the peptide. However, treatment with CART antibody (intra-PVT) or MK-801 (NMDA antagonist, intra-AcbSh) produced opposite effects. A combination of sub-effective dose of MK-801 (0.01 µg/rat, intra-AcbSh) and effective dose of CART (25 ng/rat, intra-PVT) attenuated CART's rewarding action. Further, we screened the LH-PVT-AcbSh circuit for neuroadaptive changes induced by conditioning experience. A more than twofold increase was noticed in the CART mRNA expression in the LH on the side ipsilateral to the implanted electrode for ICSS. In addition, the PVT of conditioned rats showed a distinct increase in the (a) c-Fos expressing cells and CART fiber terminals, and (b) CART and vesicular glutamate transporter 2 immunostained elements. Concomitantly, the AcbSh showed a striking increase in expression of NMDA receptor subunit NR1. We suggest that CART in LH-PVT and glutamate in PVT-AcbSh circuit might support food-seeking behavior under natural conditions and also store reward memory.
Collapse
Affiliation(s)
- Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amita R Somalwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Abhishek Rale
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Amul Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India.
| |
Collapse
|
106
|
Clark AM, Leroy F, Martyniuk KM, Feng W, McManus E, Bailey MR, Javitch JA, Balsam PD, Kellendonk C. Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization. eNeuro 2017; 4:ENEURO.0227-17.2017. [PMID: 29071300 PMCID: PMC5654238 DOI: 10.1523/eneuro.0227-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Alterations in thalamic dopamine (DA) or DA D2 receptors (D2Rs) have been measured in drug addiction and schizophrenia, but the relevance of thalamic D2Rs for behavior is largely unknown. Using in situ hybridization and mice expressing green fluorescent protein (GFP) under the Drd2 promoter, we found that D2R expression within the thalamus is enriched in the paraventricular nucleus (PVT) as well as in more ventral midline thalamic nuclei. Within the PVT, D2Rs are inhibitory as their activation inhibits neuronal action potentials in brain slices. Using Cre-dependent anterograde and retrograde viral tracers, we further determined that PVT neurons are reciprocally interconnected with multiple areas of the limbic system including the amygdala and the nucleus accumbens (NAc). Based on these anatomical findings, we analyzed the role of D2Rs in the PVT in behaviors that are supported by these areas and that also have relevance for schizophrenia and drug addiction. Male and female mice with selective overexpression of D2Rs in the PVT showed attenuated cocaine locomotor sensitization, whereas anxiety levels, fear conditioning, sensorimotor gating, and food-motivated behaviors were not affected. These findings suggest the importance of PVT inhibition by D2Rs in modulating the sensitivity to cocaine, a finding that may have novel implications for human drug use.
Collapse
Affiliation(s)
- Abigail M. Clark
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Felix Leroy
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Kelly M. Martyniuk
- Graduate Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Wendy Feng
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Erika McManus
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Matthew R. Bailey
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| | - Peter D. Balsam
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Psychology, Barnard College Columbia University, New York, NY 10027
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
107
|
Wunsch AM, Yager LM, Donckels EA, Le CT, Neumaier JF, Ferguson SM. Chemogenetic inhibition reveals midline thalamic nuclei and thalamo-accumbens projections mediate cocaine-seeking in rats. Eur J Neurosci 2017; 46:1850-1862. [PMID: 28664636 DOI: 10.1111/ejn.13631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 01/11/2023]
Abstract
Drug addiction is a chronic disease that is shaped by alterations in neuronal function within the cortical-basal ganglia-thalamic circuit. However, our understanding of how this circuit regulates drug-seeking remains incomplete, and relapse rates remain high. The midline thalamic nuclei are an integral component of the cortical-basal ganglia-thalamic circuit and are poised to mediate addiction behaviors, including relapse. It is surprising that little research has examined the contribution of midline thalamic nuclei and their efferent projections in relapse. To address this, we expressed inhibitory, Gi/o -coupled DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) in a subset of the midline thalamic nuclei or in midline thalamic nuclei neurons projecting to either the nucleus accumbens or the amygdala. We examined the effect of transiently decreasing activity of these neuronal populations on cue-induced and cocaine-primed reinstatement of cocaine-seeking. Reducing activity of midline thalamic nuclei neurons attenuated both cue-induced and cocaine-primed reinstatement, but had no effect on cue-induced reinstatement of sucrose-seeking or locomotor activity. Interestingly, attenuating activity of efferent projections from the anterior portion of midline thalamic nuclei to the nucleus accumbens blocked cocaine-primed reinstatement but enhanced cue-induced reinstatement. Decreasing activity of efferent projections from either the posterior midline thalamic nuclei to the nucleus accumbens or the midline thalamic nuclei to amygdala had no effect. These results reveal a novel contribution of subsets of midline thalamic nuclei neurons in drug-seeking behaviors and suggest that modulation of midline thalamic nuclei activity may be a promising therapeutic target for preventing relapse.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Lindsay M Yager
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA
| | - Elizabeth A Donckels
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA
| | - Calvin T Le
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA
| | - John F Neumaier
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Susan M Ferguson
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
108
|
Zhang X, van den Pol AN. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science 2017; 356:853-859. [PMID: 28546212 PMCID: PMC6602535 DOI: 10.1126/science.aam7100] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022]
Abstract
The neuronal substrate for binge eating, which can at times lead to obesity, is not clear. We find that optogenetic stimulation of mouse zona incerta (ZI) γ-aminobutyric acid (GABA) neurons or their axonal projections to paraventricular thalamus (PVT) excitatory neurons immediately (in 2 to 3 seconds) evoked binge-like eating. Minimal intermittent stimulation led to body weight gain; ZI GABA neuron ablation reduced weight. ZI stimulation generated 35% of normal 24-hour food intake in just 10 minutes. The ZI cells were excited by food deprivation and the gut hunger signal ghrelin. In contrast, stimulation of excitatory axons from the parasubthalamic nucleus to PVT or direct stimulation of PVT glutamate neurons reduced food intake. These data suggest an unexpected robust orexigenic potential for the ZI GABA neurons.
Collapse
Affiliation(s)
- Xiaobing Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
109
|
Do-Monte FH, Minier-Toribio A, Quiñones-Laracuente K, Medina-Colón EM, Quirk GJ. Thalamic Regulation of Sucrose Seeking during Unexpected Reward Omission. Neuron 2017; 94:388-400.e4. [PMID: 28426970 PMCID: PMC5484638 DOI: 10.1016/j.neuron.2017.03.036] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/02/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) is thought to regulate behavioral responses under emotionally arousing conditions. Reward-associated cues activate PVT neurons; however, the specific PVT efferents regulating reward seeking remain elusive. Using a cued sucrose-seeking task, we manipulated PVT activity under two emotionally distinct conditions: (1) when reward was available during the cue as expected or (2) when reward was unexpectedly omitted during the cue. Pharmacological inactivation of the anterior PVT (aPVT), but not the posterior PVT, increased sucrose seeking only when reward was omitted. Consistent with this, photoactivation of aPVT neurons abolished sucrose seeking, and the firing of aPVT neurons differentiated reward availability. Photoinhibition of aPVT projections to the nucleus accumbens or to the amygdala increased or decreased, respectively, sucrose seeking only when reward was omitted. Our findings suggest that PVT bidirectionally modulates sucrose seeking under the negative (frustrative) conditions of reward omission.
Collapse
Affiliation(s)
- Fabricio H Do-Monte
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico.
| | - Angélica Minier-Toribio
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Kelvin Quiñones-Laracuente
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Estefanía M Medina-Colón
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| |
Collapse
|
110
|
Choi EA, McNally GP. Paraventricular Thalamus Balances Danger and Reward. J Neurosci 2017; 37:3018-3029. [PMID: 28193686 PMCID: PMC6596734 DOI: 10.1523/jneurosci.3320-16.2017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/21/2022] Open
Abstract
Foraging animals balance the need to seek food and energy against the accompanying dangers of injury and predation. To do so, they rely on learning systems encoding reward and danger. Whereas much is known about these separate learning systems, little is known about how they interact to shape and guide behavior. Here we show a key role for the rat paraventricular nucleus of the thalamus (PVT), a nucleus of the dorsal midline thalamus, in this interaction. First, we show behavioral competition between reward and danger: the opportunity to seek food reward negatively modulates expression of species-typical defensive behavior. Then, using a chemogenetic approach expressing the inhibitory hM4Di designer receptor exclusively activated by a designer drug in PVT neurons, we show that the PVT is central to this behavioral competition. Chemogenetic PVT silencing biases behavior toward either defense or reward depending on the experimental conditions, but does not consistently favor expression of one over the other. This bias could not be attributed to changes in fear memory retrieval, learned safety, or memory interference. Rather, our results demonstrate that the PVT is essential for balancing conflicting behavioral tendencies toward danger and reward, enabling adaptive responding under this basic selection pressure.SIGNIFICANCE STATEMENT Among the most basic survival problems faced by animals is balancing the need to seek food and energy against the accompanying dangers of injury and predation. Although much is known about the brain mechanisms that underpin learning about reward and danger, little is known about how these interact to solve basic survival problems. Here we show competition between defensive (to avoid predatory detection) and approach (to obtain food) behavior. We show that the paraventricular thalamus, a nucleus of the dorsal midline thalamus, is integral to this behavioral competition. The paraventricular thalamus balances the competing behavioral demands of danger and reward, enabling adaptive responding under this selection pressure.
Collapse
Affiliation(s)
- Eun A Choi
- School of Psychology, University of New South Wales, Sydney, New South Wales, 2052 Australia
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, New South Wales, 2052 Australia
| |
Collapse
|
111
|
Haight JL, Fuller ZL, Fraser KM, Flagel SB. A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus. Neuroscience 2017; 340:135-152. [PMID: 27793779 PMCID: PMC5154807 DOI: 10.1016/j.neuroscience.2016.10.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) has been implicated in behavioral responses to reward-associated cues. However, the precise role of the PVT in these behaviors has been difficult to ascertain since Pavlovian-conditioned cues can act as both predictive and incentive stimuli. The "sign-tracker/goal-tracker" rat model has allowed us to further elucidate the role of the PVT in cue-motivated behaviors, identifying this structure as a critical component of the neural circuitry underlying individual variation in the propensity to attribute incentive salience to reward cues. The current study assessed differences in the engagement of specific PVT afferents and efferents in response to presentation of a food-cue that had been attributed with only predictive value or with both predictive and incentive value. The retrograde tracer fluorogold (FG) was injected into the PVT or the nucleus accumbens (NAc) of rats, and cue-induced c-Fos in FG-labeled cells was quantified. Presentation of a predictive stimulus that had been attributed with incentive value elicited c-Fos in PVT afferents from the lateral hypothalamus, medial amygdala (MeA), and the prelimbic cortex (PrL), as well as posterior PVT efferents to the NAc. PVT afferents from the PrL also showed elevated c-Fos levels following presentation of a predictive stimulus alone. Thus, presentation of an incentive stimulus results in engagement of subcortical brain regions; supporting a role for the hypothalamic-thalamic-striatal axis, as well as the MeA, in mediating responses to incentive stimuli; whereas activity in the PrL to PVT pathway appears to play a role in processing the predictive qualities of reward-paired stimuli.
Collapse
Affiliation(s)
- Joshua L Haight
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, United States
| | - Zachary L Fuller
- Undergraduate Program in Neuroscience, The University of Michigan, Ann Arbor, MI, United States
| | - Kurt M Fraser
- Undergraduate Program in Neuroscience, The University of Michigan, Ann Arbor, MI, United States
| | - Shelly B Flagel
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, United States; Undergraduate Program in Neuroscience, The University of Michigan, Ann Arbor, MI, United States; Department of Psychiatry, The University of Michigan, Ann Arbor, MI, United States; Molecular and Behavioral Neuroscience Institute, The University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
112
|
Millan EZ, Ong Z, McNally GP. Paraventricular thalamus: Gateway to feeding, appetitive motivation, and drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:113-137. [DOI: 10.1016/bs.pbr.2017.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
113
|
Optimizing laboratory animal stress paradigms: The H-H* experimental design. Psychoneuroendocrinology 2017; 75:5-14. [PMID: 27768983 DOI: 10.1016/j.psyneuen.2016.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023]
Abstract
Major advances in behavioral neuroscience have been facilitated by the development of consistent and highly reproducible experimental paradigms that have been widely adopted. In contrast, many different experimental approaches have been employed to expose laboratory mice and rats to acute versus chronic intermittent stress. An argument is advanced in this review that more consistent approaches to the design of chronic intermittent stress experiments would provide greater reproducibility of results across laboratories and greater reliability relating to various neural, endocrine, immune, genetic, and behavioral adaptations. As an example, the H-H* experimental design incorporates control, homotypic (H), and heterotypic (H*) groups and allows for comparisons across groups, where each animal is exposed to the same stressor, but that stressor has vastly different biological and behavioral effects depending upon each animal's prior stress history. Implementation of the H-H* experimental paradigm makes possible a delineation of transcriptional changes and neural, endocrine, and immune pathways that are activated in precisely defined stressor contexts.
Collapse
|
114
|
Matzeu A, Cauvi G, Kerr TM, Weiss F, Martin-Fardon R. The paraventricular nucleus of the thalamus is differentially recruited by stimuli conditioned to the availability of cocaine versus palatable food. Addict Biol 2017; 22:70-77. [PMID: 26096647 PMCID: PMC4788574 DOI: 10.1111/adb.12280] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) is not traditionally considered part of the brain addiction neurocircuitry but has received growing attention with regard to a role in the modulation of drug-seeking behavior. This study sought to establish the pattern of neural activation induced by a response-reinstating discriminative stimulus (SD ) conditioned to either cocaine (COC) or a conventional reinforcer using a palatable food substance, sweetened condensed milk (SCM). Male Wistar rats were trained to associate one SD (S+ ; COC or SCM availability) and a distinctly different SD (S- ; non-reward; i.e. the availability of saline or the absence of SCM). Following extinction of COC- and SCM-reinforced responding, rats were presented with the respective S+ or S- alone and tested for the reinstatement of reward seeking. The COC S+ and SCM S+ elicited identical reinstatement, whereas the non-reward S- was behaviorally ineffective. PVT sections were obtained following completion of the reinstatement tests and labeled for Fos. The number of Fos+ neurons was compared among rats that were presented with the COC S+ , SCM S+ or S- . Rats that were presented with the COC S+ exhibited a significant increase in Fos expression compared with rats that were presented with the S- . Moreover, Fos expression was significantly correlated with the number of reinstatement responses that were induced by the COC S+ . In contrast, the SCM S+ and S- produced identical increases in Fos expression, without behaviorally relevant correlations. The findings implicate the PVT as an important site that is selectively recruited during COC-seeking behavior.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabrielle Cauvi
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Tony M. Kerr
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
115
|
Anderson LC, Petrovich GD. Sex specific recruitment of a medial prefrontal cortex-hippocampal-thalamic system during context-dependent renewal of responding to food cues in rats. Neurobiol Learn Mem 2016; 139:11-21. [PMID: 27940080 DOI: 10.1016/j.nlm.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/10/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022]
Abstract
Renewal, or reinstatement, of responding to food cues after extinction may explain the inability to resist palatable foods and change maladaptive eating habits. Previously, we found sex differences in context-dependent renewal of extinguished Pavlovian conditioned responding to food cues. Context-induced renewal involves cue-food conditioning and extinction in different contexts and the renewal of conditioned behavior is induced by return to the conditioning context (ABA renewal). Male rats showed renewal of responding while females did not. In the current study we sought to identify recruitment of key neural systems underlying context-mediated renewal and sex differences. We examined Fos induction within the ventromedial prefrontal cortex (vmPFC), hippocampal formation, thalamus and amygdala in male and female rats during the test for renewal. We found sex differences in vmPFC recruitment during renewal. Male rats in the experimental condition showed renewal of responding and had more Fos induction within the infralimbic and prelimbic vmPFC areas compared to controls that remained in the same context throughout training and testing. Females in the experimental condition did not show renewal or an increase in Fos induction. Additionally, Fos expression differed between experimental and control groups and between the sexes in the hippocampal formation, thalamus and amygdala. Within the ventral subiculum, the experimental groups of both sexes had more Fos compared to control groups. Within the dorsal CA1 and the anterior region of the paraventricular nucleus of the thalamus, in males, the experimental group had higher Fos induction, while both females groups had similar number of Fos-positive neurons. Within the capsular part of the central amygdalar nucleus, females in the experimental group had higher Fos induction, while males groups had similar amounts. The differential recruitment corresponded to the behavioral differences between males and females and suggests the medial prefrontal cortex-hippocampal-thalamic system is a critical site of sex differences during renewal of appetitive Pavlovian responding to food cues. These findings provide evidence for novel neural mechanisms underlying sex differences in food motivation and contextual processing in associative learning and memory. The results should also inform future molecular and translational work investigating sex differences and maladaptive eating habits.
Collapse
Affiliation(s)
- Lauren C Anderson
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - Gorica D Petrovich
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
| |
Collapse
|
116
|
Joffe ME, Grueter BA. Cocaine Experience Enhances Thalamo-Accumbens N-Methyl-D-Aspartate Receptor Function. Biol Psychiatry 2016; 80:671-681. [PMID: 27209241 PMCID: PMC5050082 DOI: 10.1016/j.biopsych.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/17/2016] [Accepted: 04/01/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Excitatory synaptic transmission in the nucleus accumbens (NAc) is a key biological substrate underlying behavioral responses to psychostimulants and susceptibility to relapse. Studies have demonstrated that cocaine induces changes in glutamatergic signaling at distinct inputs to the NAc. However, consequences of cocaine experience on synaptic transmission from the midline nuclei of the thalamus (mThal) to the NAc have yet to be reported. METHODS To examine synapses from specific NAc core inputs, we recorded light-evoked excitatory postsynaptic currents following viral-mediated expression of channelrhodopsin-2 in the mThal, prefrontal cortex (PFC), or basolateral amygdala from acute brain slices. To identify NAc medium spiny neuron subtypes, we used mice expressing tdTomato driven by the promoter for dopamine receptor subtype 1 (D1). We recorded N-methyl-D-aspartate receptor (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) properties to evaluate synaptic adaptations induced by cocaine experience, a 5-day cocaine exposure followed by 2 weeks of abstinence. RESULTS Excitatory inputs to the NAc core displayed differential NMDAR properties, and cocaine experience uniquely altered AMPAR and NMDAR properties at mThal-D1(+), mThal-D1(-), and PFC-D1(+) synapses, but not at PFC-D1(-) synapses. Finally, at mThal-D1(+) synapses, cocaine enhanced GluN2C/D function and NMDAR-dependent synaptic plasticity. CONCLUSIONS Our results identify contrasting cocaine-induced AMPAR and NMDAR modifications at mThal-NAc and PFC-NAc core synapses. These changes include an enhancement of NMDAR function and plasticity at mThal-D1(+) synapses. Incorporation of GluN2C/D-containing NMDARs most likely underlies these phenomena and represents a potential therapeutic target for psychostimulant use disorders.
Collapse
Affiliation(s)
- Max E Joffe
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department ofAnesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; Department ofPsychiatry, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
117
|
Gökdeniz E, Özgür A, Canbeyli R. Automated Neuroanatomical Relation Extraction: A Linguistically Motivated Approach with a PVT Connectivity Graph Case Study. Front Neuroinform 2016; 10:39. [PMID: 27708573 PMCID: PMC5030238 DOI: 10.3389/fninf.2016.00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Identifying the relations among different regions of the brain is vital for a better understanding of how the brain functions. While a large number of studies have investigated the neuroanatomical and neurochemical connections among brain structures, their specific findings are found in publications scattered over a large number of years and different types of publications. Text mining techniques have provided the means to extract specific types of information from a large number of publications with the aim of presenting a larger, if not necessarily an exhaustive picture. By using natural language processing techniques, the present paper aims to identify connectivity relations among brain regions in general and relations relevant to the paraventricular nucleus of the thalamus (PVT) in particular. We introduce a linguistically motivated approach based on patterns defined over the constituency and dependency parse trees of sentences. Besides the presence of a relation between a pair of brain regions, the proposed method also identifies the directionality of the relation, which enables the creation and analysis of a directional brain region connectivity graph. The approach is evaluated over the manually annotated data sets of the WhiteText Project. In addition, as a case study, the method is applied to extract and analyze the connectivity graph of PVT, which is an important brain region that is considered to influence many functions ranging from arousal, motivation, and drug-seeking behavior to attention. The results of the PVT connectivity graph show that PVT may be a new target of research in mood assessment.
Collapse
Affiliation(s)
- Erinç Gökdeniz
- Department of Computer Engineering, Boğaziçi University İstanbul, Turkey
| | - Arzucan Özgür
- Department of Computer Engineering, Boğaziçi University İstanbul, Turkey
| | - Reşit Canbeyli
- Department of Psychology, Boğaziçi University İstanbul, Turkey
| |
Collapse
|
118
|
Keifer OP, Hurt RC, Ressler KJ, Marvar PJ. The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning. Physiology (Bethesda) 2016; 30:389-401. [PMID: 26328883 DOI: 10.1152/physiol.00058.2014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Robert C Hurt
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kerry J Ressler
- Department of Psychiatry and Behavioural Sciences, Emory University School of Medicine, Atlanta, Georgia; Howard Hughes Medical Institute, Bethesda, Maryland; and Yerkes National Primate Research Center, Atlanta, Georgia
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C.;
| |
Collapse
|
119
|
Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception. Pain 2016; 156:2479-2491. [PMID: 26262826 DOI: 10.1097/j.pain.0000000000000318] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.
Collapse
|
120
|
Abstract
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Richard McCarty
- a Department of Psychology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
121
|
Do Monte FH, Quirk GJ, Li B, Penzo MA. Retrieving fear memories, as time goes by…. Mol Psychiatry 2016; 21:1027-36. [PMID: 27217148 PMCID: PMC4956525 DOI: 10.1038/mp.2016.78] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
Abstract
Research in fear conditioning has provided a comprehensive picture of the neuronal circuit underlying the formation of fear memories. In contrast, our understanding of the retrieval of fear memories is much more limited. This disparity may stem from the fact that fear memories are not rigid, but reorganize over time. To bring some clarity and raise awareness about the time-dependent dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in fear memory retrieval at both early and late time points following auditory fear conditioning. We focus on the temporal recruitment of the paraventricular nucleus of the thalamus (PVT) for the retrieval and maintenance of fear memories. Finally, we speculate as to why retrieval circuits change with time, and consider the functional strategy of recruiting structures not previously considered as part of the retrieval circuit.
Collapse
Affiliation(s)
- Fabricio H. Do Monte
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Gregory J. Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Mario A. Penzo
- National Institute of Mental Health, 35 Convent Drive, Bldg. 35A Room 2E621, Bethesda, MD 20850
| |
Collapse
|
122
|
Nagalski A, Puelles L, Dabrowski M, Wegierski T, Kuznicki J, Wisniewska MB. Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct Funct 2016; 221:2493-510. [PMID: 25963709 PMCID: PMC4884203 DOI: 10.1007/s00429-015-1052-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/27/2015] [Indexed: 01/19/2023]
Abstract
Thalamocortical loops have been implicated in the control of higher-order cognitive functions, but advances in our understanding of the molecular underpinnings of neocortical organization have not been accompanied by similar analyses in the thalamus. Using expression-based correlation maps and the manual mapping of mouse and human datasets available in the Allen Brain Atlas, we identified a few individual regions and several sets of molecularly related nuclei that partially overlap with the classic grouping that is based on topographical localization and thalamocortical connections. These new molecular divisions of the adult thalamic complex are defined by the combinatorial expression of Tcf7l2, Lef1, Gbx2, Prox1, Pou4f1, Esrrg, and Six3 transcription factor genes. Further in silico and experimental analyses provided the evidence that TCF7L2 might be a pan-thalamic specifier. These results provide substantial insights into the "molecular logic" that underlies organization of the thalamic complex.
Collapse
Affiliation(s)
- Andrzej Nagalski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, 00-927, Poland
| | - Luis Puelles
- Department of Human Anatomy, University of Murcia and IMIB, Murcia, 30071, Spain
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Center of Neurobiology, Nencki Institute of Experimental Biology, Warsaw, 02-093, Poland
| | - Tomasz Wegierski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Marta B Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, 00-927, Poland.
| |
Collapse
|
123
|
Lee EY, Lee HS. Dual projections of single orexin- or CART-immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study. Brain Res 2016; 1634:104-118. [DOI: 10.1016/j.brainres.2015.12.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
|
124
|
Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus. Sci Rep 2015; 5:16143. [PMID: 26536818 PMCID: PMC4633617 DOI: 10.1038/srep16143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/07/2015] [Indexed: 12/31/2022] Open
Abstract
The orexin/hypocretin system is important for reward-seeking behaviors, however less is known about its function in non-homeostatic feeding. Environmental influences, particularly cues for food can stimulate feeding in the absence of hunger and lead to maladaptive overeating behavior. The key components of the neural network that mediates this cue-induced overeating in sated rats include lateral hypothalamus, amygdala, and medial prefrontal cortex (mPFC), yet the neuropharmacological mechanisms within this network remain unknown. The current study investigated a causal role for orexin in cue-driven feeding, and examined the neural substrates through which orexin mediates this effect. Systemic administration of the orexin-1 receptor (OX1R) antagonist SB-334867 had no effect on baseline eating, but significantly reduced cue-driven consumption in sated rats. Complementary neural analysis revealed that decreased cue-induced feeding under SB-334867 increased Fos expression in mPFC and paraventricular thalamus. These results demonstrate that OX1R signaling critically regulates cue-induced feeding, and suggest orexin is acting through prefrontal cortical and thalamic sites to drive eating in the absence of hunger. These findings inform our understanding of how food-associated cues override signals from the body to promote overeating, and indicate OX1R antagonism as a potential pharmacologic target for treatment of disordered eating in humans.
Collapse
|
125
|
Barson JR, Leibowitz SF. GABA-induced inactivation of dorsal midline thalamic subregions has distinct effects on emotional behaviors. Neurosci Lett 2015; 609:92-6. [PMID: 26475506 DOI: 10.1016/j.neulet.2015.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 01/12/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) is a key node integrating information about emotion and relaying output to other limbic structures influencing motor behavior. With recent studies showing the anterior (aPVT) and posterior (pPVT) subregions of this nucleus to have different anatomical connections and functions in ingestive behavior, the present study investigated whether they also make different contributions to emotional behaviors. Rats were microinjected in the aPVT or pPVT with saline vehicle or the GABAB+GABAA agonists, baclofen+muscimol (bac+mus; 0.3+0.03nmol), to inhibit neural activity and were then tested between-subject for differences in emotional behavior. In a novel activity chamber, bac+mus significantly reduced locomotor activity, with this change somewhat larger after injection in the pPVT than the aPVT. In a familiar activity chamber, bac+mus again reduced locomotor activity but induced similar changes after injection in the aPVT and pPVT. In an elevated plus maze, bac+mus significantly decreased open arm time and entries, although this was observed only after injection in the pPVT. Thus, while both PVT subregions are necessary for general locomotor activity, the pPVT appears to have a greater function in both novelty-induced activity and anxiety-like behavior, indicating that this subregion makes a greater contribution than the aPVT to reactions to stressful stimuli.
Collapse
Affiliation(s)
- Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA; Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065 USA.
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
126
|
Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev 2015; 56:315-29. [DOI: 10.1016/j.neubiorev.2015.08.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
127
|
Haight JL, Fraser KM, Akil H, Flagel SB. Lesions of the paraventricular nucleus of the thalamus differentially affect sign- and goal-tracking conditioned responses. Eur J Neurosci 2015; 42:2478-88. [PMID: 26228683 DOI: 10.1111/ejn.13031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/27/2015] [Indexed: 01/03/2023]
Abstract
Recently, evidence has emerged suggesting a role for the paraventricular nucleus of the thalamus (PVT) in the processing of reward-associated cues. However, the specific role of the PVT in these processes has yet to be elucidated. Here we use an animal model that captures individual variation in response to discrete reward-associated cues to further assess the role of the PVT in stimulus-reward learning. When rats are exposed to a Pavlovian conditioning paradigm, wherein a discrete cue predicts food reward, two distinct conditioned responses emerge. Some rats, termed sign-trackers, approach and manipulate the cue, whereas others, termed goal-trackers, approach the location of reward delivery upon cue presentation. For both sign- and goal-trackers the cue is a predictor, but only for sign-trackers is it also an incentive stimulus. We investigated the role of the PVT in the acquisition and expression of these conditioned responses using an excitotoxic lesion. Results indicate that PVT lesions prior to acquisition amplify the differences between phenotypes - increasing sign-tracking and attenuating goal-tracking behavior. Lesions of the PVT after rats had acquired their respective conditioned responses also attenuated the expression of the goal-tracking response, and increased the sign-tracking response, but did so selectively in goal-trackers. These results suggest that the PVT acts to suppress the attribution of incentive salience to reward cues, as disruption of the functional activity within this structure enhances the tendency to sign-track.
Collapse
Affiliation(s)
- Joshua L Haight
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kurt M Fraser
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109-5720, USA
| | - Shelly B Flagel
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109-5720, USA
| |
Collapse
|
128
|
Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 2015; 130:29-70. [PMID: 25857550 PMCID: PMC4687907 DOI: 10.1016/j.pneurobio.2015.03.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 03/19/2015] [Accepted: 03/29/2015] [Indexed: 12/17/2022]
Abstract
The ventral pallidum (VP) plays a critical role in the processing and execution of motivated behaviors. Yet this brain region is often overlooked in published discussions of the neurobiology of mental health (e.g., addiction, depression). This contributes to a gap in understanding the neurobiological mechanisms of psychiatric disorders. This review is presented to help bridge the gap by providing a resource for current knowledge of VP anatomy, projection patterns and subregional circuits, and how this organization relates to the function of VP neurons and ultimately behavior. For example, ventromedial (VPvm) and dorsolateral (VPdl) VP subregions receive projections from nucleus accumbens shell and core, respectively. Inhibitory GABAergic neurons of the VPvm project to mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area, and this VP subregion helps discriminate the appropriate conditions to acquire natural rewards or drugs of abuse, consume preferred foods, and perform working memory tasks. GABAergic neurons of the VPdl project to subthalamic nucleus and substantia nigra pars reticulata, and this VP subregion is modulated by, and is necessary for, drug-seeking behavior. Additional circuits arise from nonGABAergic neuronal phenotypes that are likely to excite rather than inhibit their targets. These subregional and neuronal phenotypic circuits place the VP in a unique position to process motivationally relevant stimuli and coherent adaptive behaviors.
Collapse
Affiliation(s)
- David H Root
- Department of Psychology, Rutgers University, 152 Frelinghuysen Road, New Brunswick, NJ 08854, United States.
| | - Roberto I Melendez
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, United States.
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, United States.
| | - T Celeste Napier
- Departments of Pharmacology and Psychiatry, Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
129
|
Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev 2015; 54:89-107. [PMID: 25616182 PMCID: PMC4976455 DOI: 10.1016/j.neubiorev.2015.01.014] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Walter B Hoover
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, United States
| |
Collapse
|
130
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
131
|
Radley JJ, Sawchenko PE. Evidence for involvement of a limbic paraventricular hypothalamic inhibitory network in hypothalamic-pituitary-adrenal axis adaptations to repeated stress. J Comp Neurol 2015; 523:2769-87. [PMID: 26010947 DOI: 10.1002/cne.23815] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Abstract
Emotional stressors activate a stereotyped set of limbic forebrain cell groups implicated in constraining stress-induced hypothalamic-pituitary-adrenal (HPA) axis activation by inhibiting hypophysiotropic neurons in the paraventricular hypothalamic nucleus (PVH). We previously identified a circumscribed, anterior part of the bed nuclei of the stria terminalis (aBST) that houses stress-sensitive, PVH-projecting, γ-aminobutyric acid (GABA)-ergic neurons as representing a site of convergence of stress-inhibitory influences originating from medial prefrontal and hippocampal cortices. Here we investigate whether exaggerated HPA axis responses associated with chronic variable stress (CVS; daily exposure to different stressors at unpredictable times over 14 days, followed by restraint stress on day 15) and diminished HPA output seen following repeated (14 days) restraint-stress exposure are associated with differential engagement of the limbic modulatory network. Relative to acutely restrained rats, animals subjected to CVS showed the expected increase (sensitization) in HPA responses and diminished levels of activation (Fos) of GABAergic neurons and glutamic acid decarboxylase (GAD) mRNA expression in the aBST. By contrast, repeated restraint stress produced habituation in HPA responses, maintained levels of activation of GABAergic neurons, and increased GAD expression in the aBST. aBST-projecting neurons in limbic sites implicated in HPA axis inhibition tended to show diminished activational responses in both repeated-stress paradigms, with the exception of the paraventricular thalamic nucleus, in which responsiveness was maintained in repeatedly restrained animals. The results are consistent with the view that differential engagement of HPA inhibitory mechanisms in the aBST may contribute to alterations in HPA axis responses to emotional stress in sensitization and habituation paradigms.
Collapse
Affiliation(s)
- Jason J Radley
- Department of Psychological and Brain Sciences and Neuroscience Program, University of Iowa, Iowa City, Iowa, 52242
| | - Paul E Sawchenko
- Laboratory of Neuronal Structure and Function and The Clayton Medical Research Foundation, The Salk Institute for Biological Studies, La Jolla, California, 92037
| |
Collapse
|
132
|
Do-Monte FH, Quinones-Laracuente K, Quirk GJ. A temporal shift in the circuits mediating retrieval of fear memory. Nature 2015; 519:460-3. [PMID: 25600268 PMCID: PMC4376623 DOI: 10.1038/nature14030] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
Fear memories allow animals to avoid danger, thereby increasing their chances of survival. Fear memories can be retrieved long after learning, but little is known about how retrieval circuits change with time. Here we show that the dorsal midline thalamus of rats is required for the retrieval of auditory conditioned fear at late (24 hours, 7 days, 28 days), but not early (0.5 hours, 6 hours) time points after learning. Consistent with this, the paraventricular nucleus of the thalamus (PVT), a subregion of the dorsal midline thalamus, showed increased c-Fos expression only at late time points, indicating that the PVT is gradually recruited for fear retrieval. Accordingly, the conditioned tone responses of PVT neurons increased with time after training. The prelimbic (PL) prefrontal cortex, which is necessary for fear retrieval, sends dense projections to the PVT. Retrieval at late time points activated PL neurons projecting to the PVT, and optogenetic silencing of these projections impaired retrieval at late, but not early, time points. In contrast, silencing of PL inputs to the basolateral amygdala impaired retrieval at early, but not late, time points, indicating a time-dependent shift in retrieval circuits. Retrieval at late time points also activated PVT neurons projecting to the central nucleus of the amygdala, and silencing these projections at late, but not early, time points induced a persistent attenuation of fear. Thus, the PVT may act as a crucial thalamic node recruited into cortico-amygdalar networks for retrieval and maintenance of long-term fear memories.
Collapse
Affiliation(s)
- Fabricio H. Do-Monte
- Corresponding Author: Fabricio H. Do-Monte, DVM, PhD., Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, Puerto Rico, 00936, Phone 787-999-3057,
| | | | | |
Collapse
|
133
|
Urstadt KR, Stanley BG. Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake. Front Syst Neurosci 2015; 9:8. [PMID: 25741246 PMCID: PMC4327307 DOI: 10.3389/fnsys.2015.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Due in part to the increasing incidence of obesity in developed nations, recent research aims to elucidate neural circuits that motivate humans to overeat. Earlier research has described how the nucleus accumbens shell (AcbSh) motivates organisms to feed by activating neuronal populations in the lateral hypothalamus (LH). However, more recent research suggests that the LH may in turn communicate with the AcbSh, both directly and indirectly, to re-tune the motivation to consume foods with homeostatic and food-related sensory signals. Here, we discuss the functional and anatomical evidence for an LH to AcbSh connection and its role in eating behaviors. The LH appears to modulate Acb activity directly, using neurotransmitters such as hypocretin/orexin or melanin concentrating hormone (MCH). The LH also indirectly regulates AcbSh activity through certain subcortical "relay" regions, such as the lateral septum (LS), ventral pallidum (VP), and paraventricular thalamus, using a variety of neurotransmitters. This review aims to summarize studies on these topics and outline a model by which LH circuits processing energy balance can modulate AcbSh neural activity to regulate feeding behavior.
Collapse
Affiliation(s)
- Kevin R Urstadt
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - B Glenn Stanley
- Departments of Psychology and Cell Biology and Neuroscience, University of California - Riverside Riverside, CA, USA
| |
Collapse
|
134
|
Cole S, Hobin MP, Petrovich GD. Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions. Neuroscience 2015; 286:187-202. [PMID: 25463526 PMCID: PMC4298477 DOI: 10.1016/j.neuroscience.2014.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 11/16/2014] [Indexed: 12/30/2022]
Abstract
The amygdala, prefrontal cortex, striatum and other connected forebrain areas are important for reward-associated learning and subsequent behaviors. How these structurally and functionally dissociable regions are recruited during initial learning, however, is unclear. Recently, we showed amygdalar nuclei were differentially recruited across different stages of cue-food associations in a Pavlovian conditioning paradigm. Here, we systematically examined Fos induction in the forebrain, including areas associated with the amygdala, during early (day 1) and late (day 10) training sessions of cue-food conditioning. During training, rats in the conditioned group received tone-food pairings, while controls received presentations of the tone alone in the conditioning chamber followed by food delivery in their home cage. We found that a small subset of telencephalic and hypothalamic regions were differentially recruited during the early and late stages of training, suggesting evidence of learning-induced plasticity. Initial tone-food pairings recruited solely the amygdala, while late tone-food pairings came to induce Fos in distinct areas within the medial and lateral prefrontal cortex, the dorsal striatum, and the hypothalamus (lateral hypothalamus and paraventricular nucleus). Furthermore, within the perifornical lateral hypothalamus, tone-food pairings selectively recruited neurons that produce the orexigenic neuropeptide orexin/hypocretin. These data show a functional map of the forebrain areas recruited by appetitive associative learning and dependent on experience. These selectively activated regions include interconnected prefrontal, striatal, and hypothalamic regions that form a discrete but distributed network that is well placed to simultaneously inform cortical (cognitive) processing and behavioral (motivational) control during cue-food learning.
Collapse
Affiliation(s)
- S Cole
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - M P Hobin
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - G D Petrovich
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
| |
Collapse
|
135
|
Li S, Shi Y, Kirouac GJ. The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat. Front Neuroanat 2014; 8:136. [PMID: 25477789 PMCID: PMC4238322 DOI: 10.3389/fnana.2014.00136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 11/16/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the nucleus accumbens. This area of the striatum plays a key role in motivation and recent experimental evidence indicates that the PVT may have a similar function. It is well known that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) fibers have also been localized in the PVT but the source of these fibers in the rat has not been unequivocally identified. The present study was done to re-examine this question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the periaqueductal gray). In contrast, double-labeled neurons were absent in the retrorubral field (A8), substantia nigra (A9) and VTA (A10) of the midbrain. We conclude that DA fibers in the PVT do not originate from VTA but from a heterogeneous population of DA neurons located in the hypothalamus and periaqueductal gray.
Collapse
Affiliation(s)
- Sa Li
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China ; Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University Shenyang, China
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada ; Department of Psychiatry, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
136
|
Yeoh JW, James MH, Graham BA, Dayas CV. Electrophysiological characteristics of paraventricular thalamic (PVT) neurons in response to cocaine and cocaine- and amphetamine-regulated transcript (CART). Front Behav Neurosci 2014; 8:280. [PMID: 25309361 PMCID: PMC4162416 DOI: 10.3389/fnbeh.2014.00280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/30/2014] [Indexed: 01/01/2023] Open
Abstract
Recent work has established that the paraventricular thalamus (PVT) is a central node in the brain reward-seeking pathway. This role is mediated in part through projections from hypothalamic peptide transmitter systems such as cocaine- and amphetamine-regulated transcript (CART). Consistent with this proposition, we previously found that inactivation of the PVT or infusions of CART into the PVT suppressed drug-seeking behavior in an animal model of contingent cocaine self-administration. Despite this work, few studies have assessed how the basic physiological properties of PVT neurons are influenced by exposure to drugs such as cocaine. Further, our previous work did not assess how infusions of CART, which we found to decrease cocaine-seeking, altered the activity of PVT neurons. In the current study we address these issues by recording from anterior PVT (aPVT) neurons in acutely prepared brain slices from cocaine-treated (15 mg/ml, n = 8) and saline-treated (control) animals (n = 8). The excitability of aPVT neurons was assessed by injecting a series of depolarizing and hyperpolarizing current steps and characterizing the resulting action potential (AP) discharge properties. This analysis indicated that the majority of aPVT neurons exhibit tonic firing (TF), and initial bursting (IB) consistent with previous studies. However, we also identified PVT neurons that exhibited delayed firing (DF), single spiking (SS) and reluctant firing (RF) patterns. Interestingly, cocaine exposure significantly increased the proportion of aPVT neurons that exhibited TF. We then investigated the effects of CART on excitatory synaptic inputs to aPVT neurons. Application of CART significantly suppressed excitatory synaptic drive to PVT neurons in both cocaine-treated and control recordings. This finding is consistent with our previous behavioral data, which showed that CART signaling in the PVT negatively regulates drug-seeking behavior. Together, these studies suggest that cocaine exposure shifts aPVT neurons to a more excitable state (TF). We propose that the capacity of CART to reduce excitatory drive to this population balances the enhanced aPVT excitability to restore the net output of this region in the reward-seeking pathway. This is in line with previous anatomical evidence that the PVT can integrate reward-relevant information and provides a putative mechanism through which drugs of abuse can dysregulate this system in addiction.
Collapse
Affiliation(s)
- Jiann Wei Yeoh
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, and The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Morgan H James
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, and The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Brett A Graham
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, and The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Christopher V Dayas
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, and The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| |
Collapse
|
137
|
Novel coupling between TRPC-like and KNa channels modulates low threshold spike-induced afterpotentials in rat thalamic midline neurons. Neuropharmacology 2014; 86:88-96. [PMID: 25014020 DOI: 10.1016/j.neuropharm.2014.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/17/2014] [Accepted: 06/21/2014] [Indexed: 11/22/2022]
Abstract
Neurons in thalamic midline and paraventricular nuclei (PVT) display a unique slow afterhyperpolarizing potential (sAHP) following the low threshold spike (LTS) generated by activation of their low voltage Ca(2+) channels. We evaluated the conductances underlying this sAHP using whole-cell patch-clamp recordings in rat brain slice preparations. Initial observations recorded in the presence of TTX revealed a marked dependency of the LTS-induced sAHP on extracellular Na(+): replacing Na(+) with TRIS(+) in the external medium eliminated the LTS-induced sAHP; substitution of Na(+) with either Li(+) or choline(+) in the external medium resulted in a gradual loss of the sAHP and its replacement with a prolonged slow afterdepolarizing potential (sADP). The LTS-induced sAHP was reduced by quinidine and potentiated by loxapine, suggesting involvement of KNa-like channels. Canonical transient receptor potential (TRPC) channels were considered the source for Na(+) based on observations that the sAHP was suppressed by nonselective TRPC channel blockers (2-APB, flufenamic acid and ML204) but unchanged in the presence of TRPV1 channel blocker (SB-366791). In addition, after replacement of Na(+) with Li(+), the isolated LTS-induced sADP was significantly suppressed in the presence of 2-APB or ML204, after replacement of extracellular Ca(2+) with Sr(2+), and by intracellular Ca(2+) chelation with EGTA, data that collectively suggest involvement of Ca(2+)-activated TRPC-like conductances containing TRPC4/5 subunits. The isolated LTS-induced sADP also exhibited a strong voltage dependency, decreasing at hyperpolarizing potentials, further support for involvement of TRPC4/5 subunits. This sADP exhibited neurotransmitter receptor sensitivity, with suppression by 5-CT, a 5-HT7 receptor agonist, and enhancement by the neuropeptide orexin A. These data suggest that LTS-induced slow afterpotentials reflect a simultaneous interplay between KNa and TRPC-like conductances, novel for midline thalamic neurons.
Collapse
|
138
|
Kolaj M, Zhang L, Hermes MLHJ, Renaud LP. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons. Front Behav Neurosci 2014; 8:132. [PMID: 24860449 PMCID: PMC4029024 DOI: 10.3389/fnbeh.2014.00132] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 04/01/2014] [Indexed: 01/01/2023] Open
Abstract
Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT), derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH) that exhibit significant diurnal change. Their resting membrane potential (RMP) is maintained by various ionic conductances that include inward rectifier (Kir), hyperpolarization-activated nonselective cation (HCN) and TWIK-related acid sensitive (TASK) K+ channels. Firing patterns are regulated by high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ conductances. Moreover, transient receptor potential (TRP)-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa) contribute to unique slow afterhyperpolarizing potentials (sAHPs) that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. The excitability of PVT neurons is also modulated by activation of neurotransmitter receptors associated with afferent pathways to PVT and other thalamic midline nuclei. We report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins). This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS) physiology and in CNS disorders that involve the dorsomedial thalamus.
Collapse
Affiliation(s)
- Miloslav Kolaj
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Li Zhang
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Michael L H J Hermes
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| | - Leo P Renaud
- Neuroscience Program and Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
139
|
A mesoscale connectome of the mouse brain. Nature 2014; 508:207-14. [PMID: 24695228 DOI: 10.1038/nature13186] [Citation(s) in RCA: 1692] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
Collapse
|
140
|
Li Y, Dong X, Li S, Kirouac GJ. Lesions of the posterior paraventricular nucleus of the thalamus attenuate fear expression. Front Behav Neurosci 2014; 8:94. [PMID: 24688461 PMCID: PMC3960725 DOI: 10.3389/fnbeh.2014.00094] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/06/2014] [Indexed: 11/13/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has generated interest because of its strong projections to areas of the brain associated with the regulation of emotional behaviors. The posterior aspect of the PVT (pPVT) is notable for its projection to the central nucleus of the amygdala which is essential for the expression of a conditioned fear response. The present study was done to determine if the pPVT is involved in the expression of fear by examining the effect of post-conditioning lesions of the pPVT. Male rats were trained to bar press for food pellets on a variable ratio schedule. Fear conditioning was done using auditory tones (30 s) that co-terminate with footschocks (0.65 mA, 1.0 s). Rats were anesthetized 24 h later and small bilateral electrolytic lesions of the pPVT were made. Fear expression to the tone was assessed using suppression of bar-pressing and freezing after one week of recovery from the surgical procedure. Small bilateral lesions of the pPVT increased bar-pressing for food and decreased freezing during the presentation of the conditioned tone. Lesions of the pPVT had no effect on fear extinction, fear conditioning to a novel tone, or the motivation for food as assessed using a progressive ratio (PR) schedule. The results of the experiment support a role for the pPVT in fear expression. In contrast, the pPVT does not appear to be involved in fear learning or extinction nor does it appear to play a role in the motivation of rats to bar press for food.
Collapse
Affiliation(s)
- Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Xinwen Dong
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Sa Li
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada
| | - Gilbert J Kirouac
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba Winnipeg, MB, Canada ; Department of Psychiatry, Faculty of Medicine, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
141
|
Haight JL, Flagel SB. A potential role for the paraventricular nucleus of the thalamus in mediating individual variation in Pavlovian conditioned responses. Front Behav Neurosci 2014; 8:79. [PMID: 24672443 PMCID: PMC3953953 DOI: 10.3389/fnbeh.2014.00079] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/24/2014] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence to suggest that the paraventricular nucleus of the thalamus (PVT) mediates cue-reward learning, especially as it relates to drug-seeking behavior. However, its exact role in these complex processes remains unknown. Here we will present and discuss data from our own laboratory which suggests that the PVT plays a role in multiple forms of stimulus-reward learning, and does so via distinct neurobiological systems. Using an animal model that captures individual variation in response to reward-associated cues, we are able to parse the incentive from the predictive properties of reward cues and to elucidate the neural circuitry underlying these different forms of cue-reward learning. When rats are exposed to a classical Pavlovian conditioning paradigm, wherein a cue predicts food reward, some rats, termed sign-trackers, approach and manipulate the cue upon its presentation. This behavior is indicative of attributing incentive salience to the cue. That is, the cue gains excessive control over behavior for sign-trackers. In contrast, other rats, termed goal-trackers, treat the cue as a mere predictor, and upon its presentation go to the location of reward delivery. Based on our own data utilizing this model, we hypothesize that the PVT represents a common node, but differentially regulates the sign- vs. goal-tracking response. We postulate that the PVT regulates sign-tracking behavior, or the attribution of incentive salience, via subcortical, dopamine-dependent mechanisms. In contrast, we propose that goal-tracking behavior, or the attribution of predictive value, is the product of “top-down” glutamatergic processing between the prelimbic cortex (PrL) and the PVT. Together, data from our laboratory and others support a role for the PVT in cue-motivated behaviors and suggest that it may be an important locus within the neural circuitry that goes awry in addiction and related disorders.
Collapse
Affiliation(s)
- Joshua L Haight
- Neuroscience Graduate Program, University of Michigan Ann Arbor, MI, USA
| | - Shelly B Flagel
- Neuroscience Graduate Program, University of Michigan Ann Arbor, MI, USA ; Department of Psychiatry, University of Michigan Ann Arbor, MI, USA ; Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
142
|
Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci 2014; 8:73. [PMID: 24653686 PMCID: PMC3949320 DOI: 10.3389/fnbeh.2014.00073] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to describe how the function and connections of the paraventricular thalamic nucleus (Pa) may play a role in the regulation of stress and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is heavily innervated by serotonin, norepinephrine, dopamine (DA), corticotropin-releasing hormone, and orexins (ORX), and is the only thalamic nucleus connected to the group of structures comprising the amygdala, bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAcc), and infralimbic/subgenual anterior cingulate cortex (sgACC). These neurotransmitter systems and structures are involved in regulating motivation and mood, and display abnormal functioning in several psychiatric disorders including anxiety, substance use, and major depressive disorders (MDD). Furthermore, rodent studies show that the Pa is consistently and potently activated following a variety of stressors and has a unique role in regulating responses to chronic stressors. These observations provide a compelling rationale for investigating the Pa in the link between stress and negative emotional behavior, and for including the Pa in the neural pathways of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- David T Hsu
- Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Gilbert J Kirouac
- Departments of Oral Biology and Psychiatry, Faculties of Dentistry and Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Jon-Kar Zubieta
- Department of Psychiatry and the Molecular and Behavioral Neuroscience Institute, University of Michigan Ann Arbor, MI, USA
| | - Seema Bhatnagar
- Department of Anesthesiology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|
143
|
Browning JR, Jansen HT, Sorg BA. Inactivation of the paraventricular thalamus abolishes the expression of cocaine conditioned place preference in rats. Drug Alcohol Depend 2014; 134:387-390. [PMID: 24139547 PMCID: PMC3910376 DOI: 10.1016/j.drugalcdep.2013.09.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND The paraventricular thalamus (PVT) is rapidly becoming recognized as part of the addiction circuitry. In addition to its strong anatomical connection to most of the brain regions underlying addiction, such as the nucleus accumbens, prefrontal cortex, amygdala, and hippocampus, the PVT has recently been shown to contribute to cocaine sensitization and reinstatement. In the present study, we examined the role of the PVT in the expression of cocaine conditioned place preference (CPP). METHODS We tested the impact of PVT inactivation by baclofen/muscimol (bac-mus) microinjection on the expression of cocaine-induced CPP in rats. Rats were implanted with guide cannulae into the PVT. Bac-mus (GABAB-GABAA agonists) or saline was injected into the PVT prior to CPP testing. RESULTS Inactivation of the PVT by bac-mus prevented the expression of CPP, while placements outside the PVT did not affect CPP. Intra-PVT injections of bac-mus did not affect locomotor activity during the session. CONCLUSIONS In the present study, we contribute to the growing body of research supporting a role for the PVT in addiction by demonstrating that the PVT is necessary for the expression of cocaine CPP.
Collapse
|
144
|
Hsu DT, Sanford BJ, Meyers KK, Love TM, Hazlett KE, Wang H, Ni L, Walker SJ, Mickey BJ, Korycinski ST, Koeppe RA, Crocker JK, Langenecker SA, Zubieta JK. Response of the μ-opioid system to social rejection and acceptance. Mol Psychiatry 2013; 18:1211-7. [PMID: 23958960 PMCID: PMC3814222 DOI: 10.1038/mp.2013.96] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 06/03/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022]
Abstract
The endogenous opioid system, which alleviates physical pain, is also known to regulate social distress and reward in animal models. To test this hypothesis in humans (n=18), we used an μ-opioid receptor (MOR) radiotracer to measure changes in MOR availability in vivo with positron emission tomography during social rejection (not being liked by others) and acceptance (being liked by others). Social rejection significantly activated the MOR system (i.e., reduced receptor availability relative to baseline) in the ventral striatum, amygdala, midline thalamus and periaqueductal gray (PAG). This pattern of activation is consistent with the hypothesis that the endogenous opioids have a role in reducing the experience of social pain. Greater trait resiliency was positively correlated with MOR activation during rejection in the amygdala, PAG and subgenual anterior cingulate cortex (sgACC), suggesting that MOR activation in these areas is protective or adaptive. In addition, MOR activation in the pregenual ACC was correlated with reduced negative affect during rejection. In contrast, social acceptance resulted in MOR activation in the amygdala and anterior insula, and MOR deactivation in the midline thalamus and sgACC. In the left ventral striatum, MOR activation during acceptance predicted a greater desire for social interaction, suggesting a role for the MOR system in social reward. The ventral striatum, amygdala, midline thalamus, PAG, anterior insula and ACC are rich in MORs and comprise a pathway by which social cues may influence mood and motivation. MOR regulation of this pathway may preserve and promote emotional well being in the social environment.
Collapse
Affiliation(s)
- David T Hsu
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin J Sanford
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Kortni K Meyers
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Tiffany M Love
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | | | - Heng Wang
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Lisong Ni
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sara J Walker
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239
| | - Brian J Mickey
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Steven T Korycinski
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | | | - Scott A Langenecker
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jon-Kar Zubieta
- Department of Psychiatry, The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109,Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
145
|
Motofei IG, Rowland DL. The ventral-hypothalamic input route: a common neural network for abstract cognition and sexuality. BJU Int 2013; 113:296-303. [PMID: 24053436 DOI: 10.1111/bju.12399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Classically, external receptors of the body transmit information from the environment to the cerebral cortex via the thalamus. This review explains and argues that only concrete external information is transmitted from peripheral receptors to the cortex via a thalamic route, while abstract and sexual external information are actually transmitted from peripheral receptors to the cortex through a cognitive hypothalamic route. Sexual function typically implies participation of two distinct partners, ensuring reproduction in many species including humans. Human sexual response involves participation of multiple (environmental, biological, psychological) kinds of stimuli and processing, so the understanding of sexual control and response supposes integration between the classical physiological mechanisms with the more complex processes of our 'mind'. Cognition and sexuality are two relational functions, which are dependent on concrete (colours, sounds, etc.) and/or abstract (gestures, facial expression, how you move, the way you say something seemingly trivial, etc.) environmental cues. Abstract cues are encoded independent of the specific object features of the stimuli, suggesting that such cues should be transmitted and interpreted within the brain through a system different than the classical thalamo-cortical network that operates on concrete (material) information. Indeed, data show that the cerebral cortex is capable of interpreting two distinct (concrete and abstract) formats of information via distinct and non-compatible brain areas. We expand upon this abstract-concrete dichotomy of the brain, positing that the two distinct cortical networks should be uploaded with distinct information from the environment via two distinct informational input routes. These two routes would be represented by the two distinct routes of the ascending reticular activating system (ARAS), namely the classical/dorsal thalamic input route for concrete information and the ventral hypothalamic input route for abstract cognition and sexuality. Physiologically, the hypothalamic (dual-autonomic) route of the ARAS that processes abstract and sexual information is incompatible with the thalamic (somatic) route of the ARAS that processes concrete information, such that the two distinct routes would be needed to support the mind processes (awareness, consciousness, sexuality) through their own informational inputs from the environment. Informationally, the concrete external data are differentiated from abstract and sexual external data, so that they should be transmitted to cortex through distinct input routes. Pathologically, the hardware and/or software impairments of the hypothalamic default-mode network generate disturbed messages within the brain (related to information transmitted on this route), laying at the basis of mental and sexual disorders. The novel conceptualisations presented in the present paper help address issues surrounding the mind-brain dichotomy and, in doing so, suggest new possible avenues for exploration in the treatment and interventions for cognitive and sexual problems.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery and Urology, St. Pantelimon Hospital and Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | |
Collapse
|
146
|
León-Domínguez U, Vela-Bueno A, Froufé-Torres M, León-Carrión J. A chronometric functional sub-network in the thalamo-cortical system regulates the flow of neural information necessary for conscious cognitive processes. Neuropsychologia 2013; 51:1336-49. [DOI: 10.1016/j.neuropsychologia.2013.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/13/2013] [Accepted: 03/21/2013] [Indexed: 01/28/2023]
|
147
|
Zhang L, Kolaj M, Renaud LP. GIRK-like and TRPC-like conductances mediate thyrotropin-releasing hormone-induced increases in excitability in thalamic paraventricular nucleus neurons. Neuropharmacology 2013; 72:106-15. [PMID: 23632082 DOI: 10.1016/j.neuropharm.2013.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
The thalamic paraventricular nucleus (PVT), reported to participate in arousal and motivated behaviors, contains abundant receptors for thyrotropin-releasing hormone (TRH), a neuropeptide also known to modulate arousal and mood. To test the hypothesis that TRH could influence the excitability of PVT neurons, whole cell patch-clamp recordings obtained in rat brain slice preparations were evaluated during bath applied TRH. In the majority of neurons tested, TRH induced reversible TTX-resistant membrane depolarization. Under voltage-clamp, TRH induced a concentration-dependent G protein- mediated inward current. The mean net TRH-induced current exhibited a decrease in membrane conductance. Further analyses identified two concurrent conductances contributing to the TRH-induced response. One conductance featured a Na(+)-independent and K(+)-dependent net current that displayed rectification and was suppressed by micromolar concentrations of Ba(2+) and two GIRK antagonists, tertiapin Q and SCH 23390. The second conductance featured a Na(+)-dependent net inward current with an I-V relationship that exhibited double rectification with a negative slope conductance below -40 mV. This conductance was suppressed by nonselective TRPC channel blockers 2-APB, flufenamic acid and ML204, enhanced by La(3+) in a subpopulation of cells, and unchanged by the TRPV1 antagonist capsazepine or a Na(+)/Ca(2+) exchanger blocker KB-R7943. TRH also enhanced hyperpolarization-activated low threshold spikes, a feature that was sensitive to pretreatment with either 2-APB or ML204. Collectively, the data imply that TRH enhances excitability in PVT neurons via concurrently decreasing a G-protein-gated inwardly rectifying K(+) conductance and activating a cationic conductance with characteristics reminiscent of TRPC-like channels, possibly involving TRPC4/C5 subunits.
Collapse
Affiliation(s)
- Li Zhang
- Ottawa Hospital Research Institute, Neuroscience Program and University of Ottawa, Department of Medicine, 725 Parkdale Ave., K1Y 4E9 Ottawa, Ontario, Canada
| | | | | |
Collapse
|
148
|
Brown RM, Lawrence AJ. Ascending orexinergic pathways and alcohol-seeking. Curr Opin Neurobiol 2013; 23:467-72. [PMID: 23537903 DOI: 10.1016/j.conb.2013.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/28/2022]
Abstract
Orexin (hypocretin) containing neurons reside in discrete regions of the lateral hypothalamus from where they innervate the entire neuroaxis. Via actions upon orexin receptors (OX1 and OX2), the orexin peptides (orexin A and orexin B) are thought to play a role in ethanol consumption and seeking. While a role for OX1 receptors in these behaviours is established, the case for OX2 receptors is less clear at present, although recent data certainly support an involvement of OX2 receptors in ethanol consumption. In terms of circuitry, orexin receptors the ventral tegmental area appear to contribute to ethanol consumption. Other loci remain to be characterised, and we suggest prefrontal cortical orexin receptors deserve attention in this respect.
Collapse
Affiliation(s)
- Robyn Mary Brown
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
149
|
Abbott SBG, DePuy SD, Nguyen T, Coates MB, Stornetta RL, Guyenet PG. Selective optogenetic activation of rostral ventrolateral medullary catecholaminergic neurons produces cardiorespiratory stimulation in conscious mice. J Neurosci 2013; 33:3164-77. [PMID: 23407970 PMCID: PMC3596815 DOI: 10.1523/jneurosci.1046-12.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023] Open
Abstract
Activation of rostral ventrolateral medullary catecholaminergic (RVLM-CA) neurons e.g., by hypoxia is thought to increase sympathetic outflow thereby raising blood pressure (BP). Here we test whether these neurons also regulate breathing and cardiovascular variables other than BP. Selective expression of ChR2-mCherry by RVLM-CA neurons was achieved by injecting Cre-dependent vector AAV2-EF1α-DIO-ChR2-mCherry unilaterally into the brainstem of dopamine-β-hydroxylase(Cre/0) mice. Photostimulation of RVLM-CA neurons increased breathing in anesthetized and conscious mice. In conscious mice, photostimulation primarily increased breathing frequency and this effect was fully occluded by hypoxia (10% O(2)). In contrast, the effects of photostimulation were largely unaffected by hypercapnia (3 and 6% CO(2)). The associated cardiovascular effects were complex (slight bradycardia and hypotension) and, using selective autonomic blockers, could be explained by coactivation of the sympathetic and cardiovagal outflows. ChR2-positive RVLM-CA neurons expressed VGLUT2 and their projections were mapped. Their complex cardiorespiratory effects are presumably mediated by their extensive projections to supraspinal sites such as the ventrolateral medulla, the dorsal vagal complex, the dorsolateral pons, and selected hypothalamic nuclei (dorsomedial, lateral, and paraventricular nuclei). In sum, selective optogenetic activation of RVLM-CA neurons in conscious mice revealed two important novel functions of these neurons, namely breathing stimulation and cardiovagal outflow control, effects that are attenuated or absent under anesthesia and are presumably mediated by the numerous supraspinal projections of these neurons. The results also suggest that RVLM-CA neurons may underlie some of the acute respiratory response elicited by carotid body stimulation but contribute little to the central respiratory chemoreflex.
Collapse
Affiliation(s)
| | - Seth D. DePuy
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Thanh Nguyen
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Melissa B. Coates
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
150
|
Martin-Fardon R, Boutrel B. Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? Front Behav Neurosci 2012; 6:75. [PMID: 23162448 PMCID: PMC3494007 DOI: 10.3389/fnbeh.2012.00075] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/19/2012] [Indexed: 11/17/2022] Open
Abstract
The orexin/hypocretin (Orx/Hcrt) system has long been considered to regulate a wide range of physiological processes, including feeding, energy metabolism, and arousal. More recently, concordant observations have demonstrated an important role for these peptides in the reinforcing properties of most drugs of abuse. Orx/Hcrt neurons arise in the lateral hypothalamus (LH) and project to all brain structures implicated in the regulation of arousal, stress, and reward. Although Orx/Hcrt neurons have been shown to massively project to the paraventricular nucleus of the thalamus (PVT), only recent evidence suggested that the PVT may be a key relay of Orx/Hcrt-coded reward-related communication between the LH and both the ventral and dorsal striatum. While this thalamic region was not thought to be part of the “drug addiction circuitry,” an increasing amount of evidence demonstrated that the PVT—particularly PVT Orx/Hcrt transmission—was implicated in the modulation of reward function in general and several aspects of drug-directed behaviors in particular. The present review discusses recent findings that suggest that maladaptive recruitment of PVT Orx/Hcrt signaling by drugs of abuse may promote persistent compulsive drug-seeking behavior following a period of protracted abstinence and as such may represent a relevant target for understanding the long-term vulnerability to drug relapse after withdrawal.
Collapse
Affiliation(s)
- Rémi Martin-Fardon
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|