101
|
Zhang Y, Keerthisinghe TP, Han Y, Liu M, Wanjaya ER, Fang M. "Cocktail" of Xenobiotics at Human Relevant Levels Reshapes the Gut Bacterial Metabolome in a Species-Specific Manner. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11402-11410. [PMID: 30153011 DOI: 10.1021/acs.est.8b02629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The human gut microbiome experiences long-term exposure to numerous organic contaminants (e.g., xenobiotics) in the digestive tract, and the possible consequences have rarely been characterized. To date, very few studies have investigated the metabolic variation from different species of gut bacteria in response to xenobiotic mixtures. In this study, we applied liquid chromatography mass spectrometry-based global metabolomics, coupled with targeted metabolomics, to characterize the model gut bacterial responses toward the xenobiotic mixture, covering diverse classes of compounds at human relevant concentrations. The xenobiotic "cocktail" will not likely affect the growth or morphological properties of model bacteria at human relevant concentrations. However, the metabolic results were distinct between four model bacteria and dose levels, showing species-specific and dose-dependent responsive patterns among different commensal gut bacteria. The key metabolites responsive to xenobiotic exposure are mainly involved in amino acid metabolism and central carbon metabolism, including sulfur-containing amino acids, aromatic amino acids, amino sugars, neurotransmitters, and energy-related metabolic pathways. Many of those metabolites also play an important role in the host's health. In summary, our results show that the gut microbiome can be significantly perturbed by exposure to xenobiotic mixtures at human relevant levels, providing key information on susceptibilities of individuals with diverse gut microbial structures.
Collapse
Affiliation(s)
- Yingdan Zhang
- School of Civil and Environmental Engineering , Nanyang Technological University , Singapore 639798
| | - Tharushi Prabha Keerthisinghe
- School of Civil and Environmental Engineering , Nanyang Technological University , Singapore 639798
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute , Nanyang Technological University , Singapore 63714
| | - Yuan Han
- Analytical Cluster, Nanyang Environment & Water Research Institute , Nanyang Technological University , Singapore 637141
| | - Min Liu
- School of Civil and Environmental Engineering , Nanyang Technological University , Singapore 639798
| | - Elvy Riani Wanjaya
- Analytical Cluster, Nanyang Environment & Water Research Institute , Nanyang Technological University , Singapore 637141
| | - Mingliang Fang
- School of Civil and Environmental Engineering , Nanyang Technological University , Singapore 639798
- Analytical Cluster, Nanyang Environment & Water Research Institute , Nanyang Technological University , Singapore 637141
| |
Collapse
|
102
|
Chen X, Luo Y, Jia G, Liu G, Zhao H, Huang Z. The effect of arginine on the Wnt/β-catenin signaling pathway during porcine intramuscular preadipocyte differentiation. Food Funct 2018; 8:381-386. [PMID: 28067368 DOI: 10.1039/c6fo01452f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary l-arginine supplementation decreases backfat thickness and increases intramuscular fat content in growing-finishing pigs, but the underlying mechanisms are unknown. In this study, the effect of arginine on differentiation of porcine intramuscular preadipocytes was investigated in vitro. We showed that the mRNA and protein expressions of the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α were upregulated by arginine supplementation. Furthermore, the intracellular triglyceride level was increased by arginine supplementation. We also showed that activation of the Wnt/β-catenin signal pathway by using lithium chloride (LiCl) significantly attenuated arginine-induced upregulation of PPARγ and increased the phospho-β-catenin level. These findings suggested that arginine promotes porcine intramuscular preadipocyte differentiation, which might be via repressing the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Yanliu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
| |
Collapse
|
103
|
Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, Wang X, Hardwidge PR, Ren W, Zhu G. Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Front Cell Infect Microbiol 2018; 8:314. [PMID: 30276161 PMCID: PMC6152485 DOI: 10.3389/fcimb.2018.00314] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal metabolites participate in various physiological processes, including energy metabolism, cell-to-cell communication, and host immunity. These metabolites mainly originate from gut microbiota and hosts. Although many host metabolites are dominant in intestines, such as free fatty acids, amino acids and vitamins, the metabolites derived from gut microbiota are also essential for intestinal homeostasis. In addition, some metabolites are only generated and released by gut microbiota, such as bacteriocins, short-chain fatty acids, and quorum-sensing autoinducers. In this review, we summarize recent studies regarding the crosstalk between pathogens and metabolites from different sources, including the influence on bacterial development and the activation/inhibition of immune responses of hosts. All of these functions would affect the colonization of and infection by pathogens. This review provides clear ideas and directions for further exploring the regulatory mechanisms and effects of metabolites on pathogens.
Collapse
Affiliation(s)
- Zhendong Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Guomei Quan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xinyi Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Yang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xueyan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Dong Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Xiuqing Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University Manhattan, KS, United States
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine Yangzhou University, Yangzhou, China
| |
Collapse
|
104
|
l-Threonine improves intestinal mucin synthesis and immune function of intrauterine growth-retarded weanling piglets. Nutrition 2018; 59:182-187. [PMID: 30504005 DOI: 10.1016/j.nut.2018.07.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of dietary l-threonine supplementation on the growth performance, intestinal immune function, mucin synthesis, and goblet cell differentiation in weanling piglets with intrauterine growth retardation (IUGR). METHODS Eighteen litters of newborn piglets were selected at birth, with one normal birthweight (NBW) and two IUGR piglets in each litter. At weaning, the NBW piglet and one of the IUGR piglets were assigned to groups fed a basal diet (i.e., the NBW-CON and IUGR-CON groups). The other IUGR piglet was assigned to a group fed the basal diet supplemented with 2 g l-threonine per kg of diet (i.e., IUGR-Thr group). Therefore, all piglets were distributed across three groups for a 3-wk feeding trial. RESULTS Compared with NBW, IUGR decreased growth performance, increased ileal proinflammatory cytokine levels, and reduced ileal mucin 2 (Muc2) content and goblet cell density of weanling piglets. Supplementation of l-threonine increased the feed efficiency of the IUGR-Thr group compared with the IUGR-CON group. The l-threonine-supplemented diet attenuated ileal inflammatory responses of the IUGR-Thr piglets and increased production of Muc2 and secretory immunoglobulin A and density of goblet cells. In addition, L-threonine supplementation downregulated δ-like 1 and hes family bHLH transcription factor 1, whereas growth factor independence 1 and Kruppel-like factor 4 expression levels were upregulated. CONCLUSION Dietary l-threonine supplementation attenuates inflammatory responses, facilitates Muc2 synthesis, and promotes goblet cell differentiation in the ileum of IUGR piglets.
Collapse
|
105
|
Zhou J, Tang L, Shen CL, Wang JS. Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats. J Nutr Biochem 2018; 61:68-81. [PMID: 30189365 DOI: 10.1016/j.jnutbio.2018.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/09/2018] [Accepted: 07/25/2018] [Indexed: 12/26/2022]
Abstract
Our recent metagenomics analysis has uncovered remarkable modifying effects of green tea polyphenols (GTP) on gut-microbiota community structure and energy conversion related gene orthologs in rats. How these genomic changes could further influence host health is still unclear. In this work, the alterations of gut-microbiota dependent metabolites were studied in the GTP-treated rats. Six groups of female SD rats (n=12/group) were administered drinking water containing 0%, 0.5%, and 1.5% GTP (wt/vol). Their gut contents were collected at 3 and 6 months and were analyzed via high performance liquid chromatography (HPLC) and gas chromatography (GC)-mass spectrometry (MS). GC-MS based metabolomics analysis captured 2668 feature, and 57 metabolites were imputatively from top 200 differential features identified via NIST fragmentation database. A group of key metabolites were quantitated using standard calibration methods. Compared with control, the elevated components in the GTP-treated groups include niacin (8.61-fold), 3-phenyllactic acid (2.20-fold), galactose (3.13-fold), mannose (2.05-fold), pentadecanoic acid (2.15-fold), lactic acid (2.70-fold), and proline (2.15-fold); the reduced components include cholesterol (0.29-fold), cholic acid (0.62-fold), deoxycholic acid (0.41-fold), trehalose (0.14-fold), glucose (0.46-fold), fructose (0.12-fold), and alanine (0.61-fold). These results were in line with the genomic alterations of gut-microbiome previously discovered by metagenomics analysis. The alterations of these metabolites suggested the reduction of calorific carbohydrates, elevation of vitamin production, decreases of bile constituents, and modified metabolic pattern of amino acids in the GTP-treated animals. Changes in gut-microbiota associated metabolism may be a major contributor to the anti-obesity function of GTP.
Collapse
Affiliation(s)
- Jun Zhou
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| | - Chwan-Li Shen
- Department of Pathology, Texas Technology University Health Sciences Center, Lubbock, TX 79430.
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
106
|
Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: results of a randomised placebo-controlled pilot study. Amino Acids 2018; 50:1451-1460. [PMID: 30043079 PMCID: PMC6153951 DOI: 10.1007/s00726-018-2622-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
The circulating amino acid (AAs) concentrations are indicators of dietary protein intake and metabolic status. In celiac disease (CD), the AA imbalance is frequently observed. Prebiotics are found to alleviate nutrient deficiencies. Therefore, the aim of this study was to analyse the impact of oligrofructose-enriched inulin (Synergy 1), administered for 3 months as a gluten-free diet (GFD) supplement to children with CD, on the plasma and urine concentrations of AAs. CD children (N = 34) were randomised into two groups, receiving Synergy 1 (10 g/day) or placebo (maltodextrin) for 3 months. The AA profile and concentration was determined in plasma and urine before and after the dietary intervention by gas chromatography. 22 and 28 AAs were determined in plasma and urine samples, respectively. After the intervention, the plasma concentrations of several AAs (Ala, Pro, Asn, Glu, Tyr, Lys, His, Orn) increased significantly in both experimental groups, while Gln increased only in the Synergy 1 group. The urinary excretion of Asn, Lys and Aaa increased significantly in the Synergy 1 group, and the excretion of Asp and Met decreased (p < 0.05) in the placebo group. The Gln:Glu ratio in urine increased in both groups after the intervention. An increased urinary excretion of AAs observed in Synergy 1 group with a simultaneous increase in the content of circulating AAs could be attributed to higher absorption or intensified metabolism of AAs, and on the other hand further healing of the intestinal mucosa being the result of continuous treatment with GFD. Moreover, the observed changes in Glu concentration suggest that oligofructose-enriched inulin could improve the intestinal condition and permeability. To conclude, a prebiotic-supplemented GFD influences beneficially the overall AAs metabolism in CD children; however, further prospective cohort studies are needed to confirm the results obtained.
Collapse
|
107
|
Sigolo S, Zohrabi Z, Gallo A, Seidavi A, Prandini A. Effect of a low crude protein diet supplemented with different levels of threonine on growth performance, carcass traits, blood parameters, and immune responses of growing broilers. Poult Sci 2018; 96:2751-2760. [PMID: 28419334 DOI: 10.3382/ps/pex086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
A study was conducted to evaluate growth performance, carcass traits, blood serum parameters, and immune responses of Ross 308 male broilers fed diets containing 2 different crude protein (CP) levels (97.5 and 100%) and 4 threonine (Thr) levels (100, 110, 120, and 130% of Ross recommendations for starter and grower periods). A completely randomized block design was adopted and main effects (CP and Thr) were arranged in a 2 × 4 factorial approach. Optimum growth performance was achieved when broiler requirements for CP and Thr were 100% satisfied. The 110% Thr inclusion in 97.5% CP diet increased ADG, ADFI, energy intake, and protein intake (Thr, P < 0.01; quadratic, P = 0.01). The G:F (linear, P = 0.05) and energy efficiency (linear, P = 0.04) tended to decreased (Thr, P = 0.09) by increasing Thr supplementation level, whereas protein efficiency tended to increase (CP, P = 0.06) by reducing CP level. The 110% Thr inclusion in 97.5% CP diet increased eviscerated carcass weight (CP × Thr, P = 0.03) and carcass yield (Thr, P = 0.08; quadratic, P = 0.05). The reduction of CP content promoted fat abdominal deposition (CP, P = 0.05). Incremental Thr raised abdominal fat (Thr, P = 0.01; linear, P = 0.01). The 97.5% CP diets resulted in higher serum concentrations of uric acid (CP, P = 0.02), total and high- and low-density lipoprotein-linked cholesterol (CP, P≤ 0.01), and alanine aminotransferase (CP, P = 0.05) and lower (CP, P = 0.01) concentrations of triglycerides and very low density lipoproteins compared with the 100% CP diets. However, the Thr inclusion improved serum lipid profile. Irrespective of CP content, incremental Thr levels up to 120% increased (Thr, P = 0.01) broiler immune responses against Newcastle disease virus and sheep red blood cells. In order to reduce dietary CP content, strategies to increase synthetic amino acid availability, such as the use of encapsulated amino acids, should be taken into account.
Collapse
Affiliation(s)
- Samantha Sigolo
- Feed and Food Science and Nutrition Institute, Università Cattolica Sacro Cuore, 29122 Piacenza, Italy
| | - Zahra Zohrabi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Antonio Gallo
- Feed and Food Science and Nutrition Institute, Università Cattolica Sacro Cuore, 29122 Piacenza, Italy
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Aldo Prandini
- Feed and Food Science and Nutrition Institute, Università Cattolica Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
108
|
Zhang H, Zhao F, Peng A, Dong L, Wang M, Yu L, Loor JJ, Wang H. Effects of Dietary l-Arginine and N-Carbamylglutamate Supplementation on Intestinal Integrity, Immune Function, and Oxidative Status in Intrauterine-Growth-Retarded Suckling Lambs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4145-4154. [PMID: 29595256 DOI: 10.1021/acs.jafc.8b00726] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigated the effects of dietary l-arginine (Arg) and N-carbamylglutamate (NCG) supplementation on intestinal integrity, immune function, and oxidative status in intrauterine-growth-retarded (IUGR) suckling lambs. A total of 48 newborn Hu lambs of normal birth weight (CON) and IUGR were allocated randomly into four groups of 12 animals each: CON, IUGR, IUGR + 1% Arg, or IUGR + 0.1% NCG. All lambs were raised for a period of 21 days from 7 to 28 days after birth. The Arg or NCG group exhibited improved ( p < 0.05) final body weights compared to that of the IUGR group. In comparison to the IUGR lambs, the apoptotic percentage was lower ( p < 0.05) in the ileum of IUGR lambs supplemented with Arg and NCG. In addition, in comparison to IUGR, the concentrations of protein carbonyl and malondialdehyde were lower ( p < 0.05) and the reduced glutathione (GSH) concentration and ratio of GSH/oxidized glutathione were greater ( p < 0.05) in the jejunum, duodenum, and ileum of IUGR + 1% Arg or 0.1% NCG lambs. In comparison to the IUGR group, the mRNA abundance of myeloid differentiation factor 88, toll-like receptor 9, toll-like receptor 4, interleukin 6, and fuclear factor-κB was lower ( p < 0.05) and the mRNA abundance of superoxide dismutase 1, B-cell lymphoma/leukaemia 2, zonula occludens-1 (ZO-1), and occludin was greater in the ileum of the IUGR lambs supplemented with Arg or NCG. Furthermore, the protein abundance of ZO-1 and claudin-1 in the ileum was greater ( p < 0.05) in the IUGR + 1% Arg or 0.1% NCG lambs. The results show that Arg or NCG supplementation improves the growth, intestinal integrity, immune function, and oxidative status in IUGR Hu suckling lambs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences , University of Illinois , Urbana , Illinois 61801 , United States
| | | |
Collapse
|
109
|
Hussain M, Mahmud A, Hussain J, Qaisrani SN. Effect of Dietary Lysine Regimens on Growth Performance and Meat Composition in Aseel Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Hussain
- University of Veterinary and Animal Sciences, Pakistan
| | - A Mahmud
- University of Veterinary and Animal Sciences, Pakistan
| | - J Hussain
- University of Veterinary and Animal Sciences, Pakistan
| | - SN Qaisrani
- University of Veterinary and Animal Sciences, Pakistan
| |
Collapse
|
110
|
Jeong SY, Im YN, Youm JY, Lee HK, Im SY. l-Glutamine Attenuates DSS-Induced Colitis via Induction of MAPK Phosphatase-1. Nutrients 2018; 10:nu10030288. [PMID: 29494494 PMCID: PMC5872706 DOI: 10.3390/nu10030288] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis and Crohn’s disease, is a multifactorial inflammatory disease of the small intestine and colon. Many investigators have reported that l-glutamine (Gln) therapy improves outcomes of experimental colitis models, although the mechanism is not fully understood. Regarding the anti-inflammatory properties of Gln, we have shown that Gln can effectively deactivate cytosolic phospholipase A2 (cPLA2) by rapid induction of MAPK phosphatase (MKP)-1. In this study, we explore the possibility that Gln ameliorates dextran sulfate sodium (DSS)-induced colitis via MKP-1 induction, resulting in inhibition of cPLA2, which has been reported to play a key role in the pathogenesis of IBD. Oral Gln intake attenuated DSS-induced colitis. Gln inhibited cPLA2 phosphorylation, as well as colonic levels of TNF-α and leukotriene (LT)B4. Gln administration resulted in early and enhanced MKP-1 induction. Importantly, MKP-1 small interfering RNA (siRNA), but not control siRNA, significantly abrogated the Gln-mediated (1) induction of MKP-1; (2) attenuation of colitis (colon length, histological abnormality, and inflammation; and (3) inhibition of cPLA2 phosphorylation and colonic levels of TNF-α and LTB4. These data indicated that Gln ameliorated DSS-induced colitis via MKP-1 induction.
Collapse
Affiliation(s)
- Soo-Yeon Jeong
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Korea.
| | - Yoo Na Im
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| | - Ji Young Youm
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Korea.
| | - Hern-Ku Lee
- Department of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| | - Suhn-Young Im
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
111
|
Zhou H, Yu B, Gao J, Htoo JK, Chen D. Regulation of intestinal health by branched-chain amino acids. Anim Sci J 2017; 89:3-11. [PMID: 29164733 DOI: 10.1111/asj.12937] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022]
Abstract
Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched-chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans.
Collapse
Affiliation(s)
- Hua Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
112
|
Okekunle AP, Li Y, Liu L, Du S, Wu X, Chen Y, Li Y, Qi J, Sun C, Feng R. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res Clin Pract 2017; 132:45-58. [PMID: 28783532 DOI: 10.1016/j.diabres.2017.07.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/02/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023]
Abstract
AIM To evaluate circulating amino acids (AA) profiles in obesity, type 2 diabetes (T2D) and metabolic syndrome (MetS). METHODS Serum AA were profiled among 200; healthy, obese, T2D and MetS subjects matched by sex, age and BMI using ultra-high performance liquid chromatography tandem quadruple mass spectrometry (UPLC-TQ-MS). A meta-analysis, including 47 case-control studies (including the current study) on serum AA in obesity, T2D and MetS searched through October 2016 was conducted to explore the AA differences in obesity, T2D and MetS. RESULTS In comparison with healthy controls, 14 AA (10 increased and 4 decreased) were significantly altered (P<0.05) in all non-healthy subjects. Also, mean differences of valine (obese: 34.13 [27.70, 40.56]µmol/L, P<0.001, T2D: 19.49 [3.31, 35.68]µmol/L, P<0.05, MetS: 29.18 [16.04, 42.33]µmol/L, P<0.001), glutamic acid (obese: 18.62 [11.64, 25.61]µmol/L, P<0.001, T2D: 19.94 [0.28, 39.61]µmol/L, P<0.05, MetS: 12.45 [3.98, 20.91]µmol/L, P<0.001), proline (obese: 16.72 [6.20, 27.24]µmol/L, P<0.001, T2D: 20.72 [15.82, 25.61]µmol/L, P<0.001, MetS: 29.95 [25.18, 34.71]µmol/L, P<0.001) and isoleucine (obese: 11.39 [8.54, 14.24]µmol/L, P<0.001, T2D: 7.37 [1.52, 13.22]µmol/L, P<0.05, MetS: 10.40 [4.90, 15.89]µmol/L, P<0.001) were significantly higher compared to healthy controls. Similarly, mean differences of glycine (obese: -30.99 [-39.69, -22.29]µmol/L, P<0.001, T2D: -30.37 [-41.80, -18.94]µmol/L, P<0.001 and MetS: -35.24 [-39.28, -31.21]µmol/L, P<0.001) were significantly lower compared to healthy controls. CONCLUSION In both the case-control study and meta-analysis, obesity was related to the most circulating AA changes, followed by MetS and T2D. Valine, isoleucine, glutamic acid and proline increased, while Glycine decreased in all metabolic disorders.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Shanshan Du
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Yang Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Yanchuan Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Jiayue Qi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang Province 150081, People's Republic of China.
| |
Collapse
|
113
|
Su W, Zhang H, Ying Z, Li Y, Zhou L, Wang F, Zhang L, Wang T. Effects of dietary l-methionine supplementation on intestinal integrity and oxidative status in intrauterine growth-retarded weanling piglets. Eur J Nutr 2017; 57:2735-2745. [DOI: 10.1007/s00394-017-1539-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/18/2017] [Indexed: 01/12/2023]
|
114
|
Effect of essential amino acids on enteroids: Methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells. Biochem Biophys Res Commun 2017; 488:171-176. [PMID: 28483523 DOI: 10.1016/j.bbrc.2017.05.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 11/22/2022]
Abstract
We investigated the effects of essential amino acids on intestinal stem cell proliferation and differentiation using murine small intestinal organoids (enteroids) from the jejunum. By selectively removing individual essential amino acids from culture medium, we found that 24 h of methionine (Met) deprivation markedly suppressed cell proliferation in enteroids. This effect was rescued when enteroids cultured in Met deprivation media for 12 h were transferred to complete medium, suggesting that Met plays an important role in enteroid cell proliferation. In addition, mRNA levels of the stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) decreased in enteroids grown in Met deprivation conditions. Consistent with this observation, Met deprivation also attenuated Lgr5-EGFP fluorescence intensity in enteroids. In contrast, Met deprivation enhanced mRNA levels of the enteroendocrine cell marker chromogranin A (ChgA) and markers of K cells, enterochromaffin cells, goblet cells, and Paneth cells. Immunofluorescence experiments demonstrated that Met deprivation led to an increase in the number of ChgA-positive cells. These results suggest that Met deprivation suppresses stem cell proliferation, thereby promoting differentiation. In conclusion, Met is an important nutrient in the maintenance of intestinal stem cells and Met deprivation potentially affects cell differentiation.
Collapse
|
115
|
Dietary Protein and Amino Acid Supplementation in Inflammatory Bowel Disease Course: What Impact on the Colonic Mucosa? Nutrients 2017; 9:nu9030310. [PMID: 28335546 PMCID: PMC5372973 DOI: 10.3390/nu9030310] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD), after disease onset, typically progress in two cyclically repeated phases, namely inflammatory flare and remission, with possible nutritional status impairment. Some evidence, either from epidemiological, clinical, and experimental studies indicate that the quantity and the quality of dietary protein consumption and amino acid supplementation may differently influence the IBD course according to the disease phases. For instance, although the dietary protein needs for mucosal healing after an inflammatory episode remain undetermined, there is evidence that amino acids derived from dietary proteins display beneficial effects on this process, serving as building blocks for macromolecule synthesis in the wounded mucosal area, energy substrates, and/or precursors of bioactive metabolites. However, an excessive amount of dietary proteins may result in an increased intestinal production of potentially deleterious bacterial metabolites. This could possibly affect epithelial repair as several of these bacterial metabolites are known to inhibit colonic epithelial cell respiration, cell proliferation, and/or to affect barrier function. In this review, we present the available evidence about the impact of the amount of dietary proteins and supplementary amino acids on IBD onset and progression, with a focus on the effects reported in the colon.
Collapse
|
116
|
Roles of Dietary Amino Acids and Their Metabolites in Pathogenesis of Inflammatory Bowel Disease. Mediators Inflamm 2017; 2017:6869259. [PMID: 28392631 PMCID: PMC5368367 DOI: 10.1155/2017/6869259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a kind of chronic inflammation, which has increasing incidence and prevalence in recent years. IBD mainly divides into Crohn's disease (CD) and ulcerative colitis (UC). It is hard to cure IBD completely, and novel therapies are urgently needed. Amino acids (AAs) and their metabolites are regarded as important nutrients for humans and animals and also play an important role in IBD amelioration. In the present study, the potential protective effects of AAs and their metabolites on IBD had been summarized with the objective to provide insights into IBD moderating using dietary AAs and their metabolites as a potential adjuvant therapy.
Collapse
|
117
|
Stewart AS, Pratt-Phillips S, Gonzalez LM. Alterations in Intestinal Permeability: The Role of the "Leaky Gut" in Health and Disease. J Equine Vet Sci 2017; 52:10-22. [PMID: 31000910 DOI: 10.1016/j.jevs.2017.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All species, including horses, suffer from alterations that increase intestinal permeability. These alterations, also known as "leaky gut," may lead to severe disease as the normal intestinal barrier becomes compromised and can no longer protect against harmful luminal contents including microbial toxins and pathogens. Leaky gut results from a variety of conditions including physical stressors, decreased blood flow to the intestine, inflammatory disease, and pathogenic infections, among others. Several testing methods exist to diagnose these alterations in both a clinical and research setting. To date, most research has focused on regulation of the host immune response due to the wide variety of factors that can potentially influence the intestinal barrier. This article serves to review the normal intestinal barrier, measurement of barrier permeability, pathogenesis and main causes of altered permeability, and highlight potential alternative therapies of leaky gut in horses while relating what has been studied in other species. Conditions resulting in barrier dysfunction and leaky gut can be a major cause of decreased performance and also death in horses. A better understanding of the intestinal barrier in disease and ways to optimize the function of this barrier is vital to the long-term health and maintenance of these animals.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | - Liara M Gonzalez
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Center for Gastrointestinal Biology and Disease, Large Animal Models Core, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
118
|
Lee J, Koehler J, Yusta B, Bahrami J, Matthews D, Rafii M, Pencharz PB, Drucker DJ. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport. Mol Metab 2017; 6:245-255. [PMID: 28271031 PMCID: PMC5324020 DOI: 10.1016/j.molmet.2017.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/28/2022] Open
Abstract
Objective Glucagon-like peptide-2 (GLP-2) is co-secreted with GLP-1 from gut endocrine cells, and both peptides act as growth factors to expand the surface area of the mucosal epithelium. Notably, GLP-2 also enhances glucose and lipid transport in enterocytes; however, its actions on control of amino acid (AA) transport remain unclear. Here we examined the mechanisms linking gain and loss of GLP-2 receptor (GLP-2R) signaling to control of intestinal amino acid absorption in mice. Methods Absorption, transport, and clearance of essential AAs, specifically lysine, were measured in vivo by Liquid Chromatography triple quadrupole Mass Spectrometry (LC-MS/MS) and ex vivo with Ussing chambers using intestinal preparations from Glp2r+/+ and Glp2r−/− mice. Immunoblotting determined jejunal levels of protein components of signaling pathways (PI3K-AKT, and mTORC1-pS6-p4E-BP1) following administration of GLP-2, protein gavage, and rapamycin to fasted Glp2r+/+ and Glp2r−/− mice. Expression of AA transporters from full thickness jejunum and 4F2hc from brush border membrane vesicles (BBMVs) was measured by real-time PCR and immunoblotting, respectively. Results Acute administration of GLP-2 increased basal AA absorption in vivo and augmented basal lysine transport ex vivo. GLP-2-stimulated lysine transport was attenuated by co-incubation with wortmannin, rapamycin, or tetrodotoxin ex vivo. Phosphorylation of mTORC1 effector proteins S6 and 4E-BP1 was significantly increased in wild-type mice in response to GLP-2 alone, or when co-administered with protein gavage, and abolished following oral gavage of rapamycin. In contrast, activation of GLP-1R signaling did not enhance S6 phosphorylation. Disruption of GLP-2 action in Glp2r−/− mice reduced lysine transport ex vivo and attenuated the phosphorylation of S6 and 4E-BP1 in response to oral protein. Moreover, the expression of cationic AA transporter slc7a9 in response to refeeding, and the abundance of 4F2hc in BBMVs following protein gavage, was significantly attenuated in Glp2r−/− mice. Conclusions These findings reveal an important role for GLP-2R signaling in the physiological and pharmacological control of enteral amino acid sensing and assimilation, defining an enteroendocrine cell-enterocyte axis for optimal energy absorption. GLP-2 promotes intestinal amino acid absorption in vivo. Intestinal amino acid absorption is reduced in Glp2r−/− mice. GLP-2 stimulates amino acid transport independently of blood flow. GLP-2, but not GLP-1, activates the mTORC1 signaling pathway. Amino acid transport by GLP-2 requires the enteric nervous system and mTORC1.
Collapse
Key Words
- 4E-BP1, eukaryotic translation initiation factor 4E (eIF4e)-binding protein 1
- AA, amino acid
- Amino acid absorption
- BBMV, brush border membrane vesicles
- EAA, essential amino acid
- EECs, enteroendocrine cells
- ENS, enteric nervous system
- GLP-1
- GLP-1, Glucagon-like peptide-1
- GLP-2
- GLP-2, glucagon-like peptide-2
- GLP-2R, GLP-2 receptor
- Gut peptides
- LC-MS/MS, liquid chromatography triple quadrupole mass spectrometry
- PGDP, proglucagon-derived peptides
- Rapamycin
- S6K1, 70 kDa ribosomal protein S6 kinase 1
- mTORC1, mechanistic target of rapamycin complex 1
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jacqueline Koehler
- Department of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Bernardo Yusta
- Department of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jasmine Bahrami
- Department of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Dianne Matthews
- Department of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mahroukh Rafii
- Department of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Paul B Pencharz
- Department of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Department of Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
119
|
Chen R, Wang J, Liao C, Ma N, Zhang L, Wang X. 1H NMR studies on serum metabonomic changes over time in a kidney-Yang deficiency syndrome model. RSC Adv 2017. [DOI: 10.1039/c7ra04057a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The central aim of this study was to investigate metabolite changes in metabolic pathwaysviametabonomic approaches in rats suffering from Kidney-Yang Deficiency Syndrome (KYDS) induced by hydrocortisone.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Jia Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Chengbin Liao
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Na Ma
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Lei Zhang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Xiufeng Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
120
|
Mastrototaro L, Sponder G, Saremi B, Aschenbach JR. Gastrointestinal methionine shuttle: Priority handling of precious goods. IUBMB Life 2016; 68:924-934. [PMID: 27753190 DOI: 10.1002/iub.1571] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Lucia Mastrototaro
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| | - Behnam Saremi
- Evonik Nutrition & Care GmbH; Animal Nutrition-Animal Nutrition Services; Hanau Germany
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Free University of Berlin; Berlin Germany
| |
Collapse
|
121
|
Sun RP, Xi QY, Sun JJ, Cheng X, Zhu YL, Ye DZ, Chen T, Wei LM, Ye RS, Jiang QY, Zhang YL. In low protein diets, microRNA-19b regulates urea synthesis by targeting SIRT5. Sci Rep 2016; 6:33291. [PMID: 27686746 PMCID: PMC5043173 DOI: 10.1038/srep33291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022] Open
Abstract
Ammonia detoxification, which takes place via the hepatic urea cycle, is essential for nitrogen homeostasis and physiological well-being. It has been reported that a reduction in dietary protein reduces urea nitrogen. MicroRNAs (miRNAs) are major regulatory non-coding RNAs that have significant effects on several metabolic pathways; however, little is known on whether miRNAs regulate hepatic urea synthesis. The objective of this study was to assess the miRNA expression profile in a low protein diet and identify miRNAs involved in the regulation of the hepatic urea cycle using a porcine model. Weaned 28-days old piglets were fed a corn-soybean normal protein diet (NP) or a corn-soybean low protein diet (LP) for 30 d. Hepatic and blood samples were collected, and the miRNA expression profile was assessed by sequencing and qRT-PCR. Furthermore, we evaluated the possible role of miR-19b in urea synthesis regulation. There were 25 differentially expressed miRNAs between the NP and LP groups. Six of these miRNAs were predicted to be involved in urea cycle metabolism. MiR-19b negatively regulated urea synthesis by targeting SIRT5, which is a positive regulator of CPS1, the rate limiting enzyme in the urea cycle. Our study presented a novel explanation of ureagenesis regulation by miRNAs.
Collapse
Affiliation(s)
- Rui-Ping Sun
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Qian-Yun Xi
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jia-Jie Sun
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Xiao Cheng
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yan-Ling Zhu
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ding-Ze Ye
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Li-Min Wei
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Rui-Song Ye
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qing-Yan Jiang
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yong-Liang Zhang
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
122
|
Lai CH, Lee CH, Hung CY, Lo HC. Oral Citrulline Mitigates Inflammation and Jejunal Damage via the Inactivation of Neuronal Nitric Oxide Synthase and Nuclear Factor-κB in Intestinal Ischemia and Reperfusion. JPEN J Parenter Enteral Nutr 2016; 41:422-435. [PMID: 26129897 DOI: 10.1177/0148607115590661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) is a life-threatening emergency accompanied by inflammation and organ damage. We compared the mechanisms and the effects of arginine, citrulline, and glutamine on inflammation and intestinal damage. MATERIALS AND METHODS Male Wistar rats underwent 60 minutes of superior mesenteric artery occlusion and either 3 (I/R3) or 24 (I/R24) hours of reperfusion and were orally administered vehicle, arginine, citrulline, or glutamine 15 minutes before reperfusion and at 3, 9, and 21 hours of reperfusion. RESULTS I/R3 rats experienced jejunal damage and apoptosis, and I/R24 rats had liver dysfunction compared with normal rats (one-way ANOVA, P < .05). Arginine and citrulline administrations improved jejunal morphology, and citrulline and glutamine administrations alleviated the loss of jejunal mass in I/R3 rats. I/R3-increased circulating nitrate/nitrite (NOx), tumor necrosis factor-α, and interleukin-6 were significantly decreased by citrulline, glutamine and citrulline, and arginine, glutamine, and citrulline, respectively. These amino acids decreased plasma NOx and interferon-γ in I/R24, decreased jejunal neuronal nitric oxide synthase (NOS) protein in I/R3 rats, and alleviated jejunal apoptosis in I/R3 and I/R24 rats. In addition, the jejunal phosphorylated to total nuclear factor-κB (NF-κB) ratio was decreased by arginine and citrulline in I/R24 rats. CONCLUSION Oral administration of arginine, citrulline, and glutamine may alleviate systemic inflammation, jejunal apoptosis, and neuronal NOS in intestinal I/R. Citrulline may further attenuate jejunal damage by preserving jejunal mass, partially via the inactivation of NOS and the NF-κB pathway. In conclusion, oral citrulline may have more benefits than arginine and glutamine in mitigating intestinal ischemia and reperfusion-induced adverse effects.
Collapse
Affiliation(s)
- Chun-Hong Lai
- 1 Department of Nutrition, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chien-Hsing Lee
- 2 Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan.,3 Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Ching-Yi Hung
- 2 Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
| | - Hui-Chen Lo
- 4 Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
123
|
Chen S, Liu Y, Wang X, Wang H, Li S, Shi H, Zhu H, Zhang J, Pi D, Hu CAA, Lin X, Odle J. Asparagine improves intestinal integrity, inhibits TLR4 and NOD signaling, and differently regulates p38 and ERK1/2 signaling in weanling piglets after LPS challenge. Innate Immun 2016; 22:577-587. [PMID: 27554055 DOI: 10.1177/1753425916664124] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Asparagine (Asn), an activator of ornithine decarboxylase (ODC), stimulates cell proliferation in intestinal epithelial cells. We hypothesized that Asn can mitigate LPS-induced injury of intestinal structure and barrier function by regulating inflammatory signaling pathways. We executed the following experiment using weanling pigs for each of the groups: (1) non-challenged control; (2) LPS-challenged control; (3) LPS + 0.5% Asn; (4) LPS + 1.0% Asn. After 21-d feeding, pigs received an i.p. injection of either saline or LPS. Four h after injection, the mid-jejunum and mid-ileum samples were collected. We found that Asn restored ODC expression that was decreased by LPS treatment. Asn also restored intestinal morphology and barrier function that were impaired by LPS treatment. In addition, Asn down-regulated intestinal caspase-3 protein expression and TNF-α concentration, and decreased the mRNA expression of intestinal TLR4, TLR4 downstream signals (myeloid differentiation factor 88, IL-1 receptor-associated kinase 1 and TNF-α receptor-associated factor 6 and NOD1, NOD2 and their adaptor molecule (receptor-interacting serine/threonine-protein kinase 2). Moreover, Asn decreased p38 phosphorylation but increased ERK1/2 phosphorylation. Our results suggest that Asn improves intestinal integrity during an inflammatory insult, which appears to be related to the decrease of intestinal pro-inflammatory cytokine (via TLR4, NODs and p38) and of enterocyte apoptosis (via p38 and ERK1/2).
Collapse
Affiliation(s)
- Shaokui Chen
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Yulan Liu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Xiuying Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Haibo Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Shuang Li
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Haifeng Shi
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Huiling Zhu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Jing Zhang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Dingan Pi
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Chien-An Andy Hu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People's Republic of China.,2 Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Xi Lin
- 3 Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Jack Odle
- 3 Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
124
|
Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine. PLoS One 2016; 11:e0162475. [PMID: 27611307 PMCID: PMC5017764 DOI: 10.1371/journal.pone.0162475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/23/2016] [Indexed: 01/10/2023] Open
Abstract
Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption.
Collapse
|
125
|
Vitari F, Barea R, Lara L, Aguilera JF, Nieto R. Effect of increasing dietary lysine at constant protein concentration on small intestine structure of postweaned Iberian piglets1. J Anim Sci 2016. [DOI: 10.2527/jas.2015-9657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
126
|
Wu P, Li Y, Cheng J, Chen L, Zeng M, Wu Y, Wang J, Zhang J, Chu W. Transcriptome Analysis and Postprandial Expression of Amino Acid Transporter Genes in the Fast Muscles and Gut of Chinese Perch (Siniperca chuatsi). PLoS One 2016; 11:e0159533. [PMID: 27463683 PMCID: PMC4963124 DOI: 10.1371/journal.pone.0159533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/04/2016] [Indexed: 01/09/2023] Open
Abstract
The characterization of the expression and regulation of growth-related genes in the muscles of Chinese perch is of great interest to aquaculturists because of the commercial value of the species. The transcriptome annotation of the skeletal muscles is a crucial step in muscle growth-related gene analysis. In this study, we generated 52 504 230 reads of mRNA sequence data from the fast muscles of the Chinese perch by using Solexa/Illumina RNA-seq. Twenty-one amino acid transporter genes were annotated by searching protein and gene ontology databases, and postprandial changes in their transcript abundance were assayed after administering a single satiating meal to Chinese perch juveniles (body mass, approximately 100 g), following fasting for 1 week. The gut content of the Chinese perch increased significantly after 1 h and remained high for 6 h following the meal and emptied within 48-96 h. Expression of eight amino acid transporter genes was assayed in the fast muscles through quantitative real-time polymerase chain reaction at 0, 1, 3, 6, 12, 24, 48, and 96 h. Among the genes, five transporter transcripts were markedly up-regulated within 1 h of refeeding, indicating that they may be potential candidate genes involved in the rapid-response signaling system regulating fish myotomal muscle growth. These genes display coordinated regulation favoring the resumption of myogenesis responding to feeding.
Collapse
Affiliation(s)
- Ping Wu
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China
| | - Yulong Li
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Jia Cheng
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Lin Chen
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Ming Zeng
- Institute of Hunan Aquaculture and Fishes, Changsha, 410005, China
| | - Yuanan Wu
- Institute of Hunan Aquaculture and Fishes, Changsha, 410005, China
| | - Jianhua Wang
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Jianshe Zhang
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China
- * E-mail: (JSZ); (WYC)
| | - Wuying Chu
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China
- * E-mail: (JSZ); (WYC)
| |
Collapse
|
127
|
Li YH, Li FN, Wu L, Liu YY, Wei HK, Li TJ, Tan BE, Kong XF, Wu F, Duan YH, Oladele OA, Yin YL. Reduced dietary protein level influences the free amino acid and gene expression profiles of selected amino acid transceptors in skeletal muscle of growing pigs. J Anim Physiol Anim Nutr (Berl) 2016; 101:96-104. [PMID: 27045856 DOI: 10.1111/jpn.12514] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/12/2016] [Indexed: 12/22/2022]
Abstract
This study was conducted to evaluate the effect of reduced dietary protein level on growth performance, muscle mass weight, free amino acids (FAA) and gene expression profile of selected amino acid transceptors in different fibre type of skeletal muscle tissues (longissimus dorsi, psoas major, biceps femoris) of growing pigs. A total of 18 cross-bred growing pigs (Large White × Landrace × Duroc) with initial body weight (9.57 ± 0.67 kg) were assigned into three dietary treatments: 20% crude protein (CP) diet (normal recommended, NP), 17% CP diet (low protein, LP) and 14% CP diet (very low protein, VLP). The results indicated improved feed-to-gain ratio was obtained for pigs fed LP and NP diets (p < 0.01), while the pigs fed VLP diet showed the worst growth performance (p < 0.01). There was no significant difference in the weights of longissimus dorsi and psoas major muscle between LP and NP groups (p > 0.05). Majority of the determined FAA concentration of LP group were greater than or equal to those of NP group in both longissimus dorsi and psoas major muscle (p < 0.01). Further, the mRNA expression levels of sodium-coupled neutral amino acid transceptor 2, L-type amino acid transceptor 1 and proton-assisted amino acid transceptors 2 were higher in skeletal muscle tissue in LP group compared to those of the pigs fed NP or VLP diet. These results suggested that reduced dietary protein level (3 points of percentage less than recommended level) would upregulate the mRNA expression of amino acid transceptors to enhance the absorption of FAA in skeletal muscle of growing pigs. There seems to be a relationship between response of AA transceptors to the dietary protein level in skeletal muscle tissue of different fibre type. To illustrate the underlying mechanisms will be beneficial to animal nutrition.
Collapse
Affiliation(s)
- Y H Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - F N Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, China
| | - L Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Y Y Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - H K Wei
- College of Animal Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - T J Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - B E Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - X F Kong
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - F Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Y H Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - O A Oladele
- Animal Nutrition Department, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Y L Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
128
|
Shen YB, Ferket P, Park I, Malheiros RD, Kim SW. Effects of feed grade L-methionine on intestinal redox status, intestinal development, and growth performance of young chickens compared with conventional DL-methionine. J Anim Sci 2016; 93:2977-86. [PMID: 26115284 DOI: 10.2527/jas.2015-8898] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study was conducted to test the effects of supplemental L-Met on redox status, gut development, and growth performance of young broiler chickens compared with DL-Met. A total of 888 (half male and half female) 1-d-old Ross 308 chickens were weighed and randomly allotted to 7 treatments in a randomized complete block design for 21 d, including a basal diet (BD), the BD + 0.095% L-Met or DL-Met, the BD + 0.190% L-Met or DL-Met, and the BD + 0.285% L-Met or DL-Met (representing 60, 70, 80, and 90% of the Met + Cys requirement). Feed disappearance and BW were recorded every 7 d. Liver and duodenum samples were collected on d 0, 7, and 21 to measure redox status and intestine morphology. On d 7, chicks fed a diet supplemented with either 0.285% L-Met or 0.285% DL-Met had increased (P < 0.05) concentrations of glutathione (GSH) and reduced (P < 0.05) protein carbonyl (PC) and malonedialdehyde contents in duodenum mucosa compared with chicks fed the BD. Chicks fed a diet supplemented with 0.285% L-Met had greater (P < 0.05) villus width compared with chicks fed a diet supplemented with 0.285% DL-Met. Chicks fed a diet supplemented with 0.285% L-Met had lower (P < 0.05) crypt depth and greater (P < 0.05) villus height:crypt depth ratio compared with chicks fed a diet supplemented with 0.285% DL-Met or the BD. On d 21, chicks fed a diet supplemented with 0.285% L-Met had increased (P < 0.01) concentrations of GSH and total antioxidant capacity (TAC) but reduced (P < 0.05) PC content in duodenum mucosa compared with chicks fed a diet supplemented with 0.285% DL-Met and the BD. Chicks fed a diet supplemented with 0.285% L-Met had greater (P < 0.05) villus height compared with chicks fed the BD. During the entire 21-d supplementation of either L-Met or DL-Met, ADG and G:F were enhanced (P < 0.01) compared with chicks fed the BD. Chicks fed diets supplemented with L-Met had greater (P < 0.05) ADG and G:F than chicks fed diets supplemented with DL-Met. The relative bioavailability of L-Met to DL-Met for ADG and G:F was 138.2 and 140.7%, respectively. Overall, supplementation of either L-Met or DL-Met has beneficial effects on villus development in association with increased GSH production and levels of TAC and reduced protein oxidation in duodenum. Supplementation of L-Met served a better function on redox status and development of the gut of chicks compared with DL-Met. Chicks fed diets with L-Met had better growth response than chicks fed diets with DL-Met.
Collapse
|
129
|
Viana Veloso GG, Franco OH, Ruiter R, de Keyser CE, Hofman A, Stricker BC, Kiefte-de Jong JC. Baseline dietary glutamic acid intake and the risk of colorectal cancer: The Rotterdam study. Cancer 2015; 122:899-907. [DOI: 10.1002/cncr.29862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 01/28/2023]
Affiliation(s)
| | - Oscar H. Franco
- Department of Epidemiology; Erasmus Medical Center; Rotterdam the Netherlands
| | - Rikje Ruiter
- Department of Epidemiology; Erasmus Medical Center; Rotterdam the Netherlands
- Department of Internal Medicine; Groene Hart Hospital; Gouda the Netherlands
| | | | - Albert Hofman
- Department of Epidemiology; Erasmus Medical Center; Rotterdam the Netherlands
| | - Bruno C. Stricker
- Department of Epidemiology; Erasmus Medical Center; Rotterdam the Netherlands
- Health Care Inspectorate; the Hague the Netherlands
- Department of Internal Medicine; Erasmus Medical Center; Rotterdam the Netherlands
| | - Jessica C. Kiefte-de Jong
- Department of Epidemiology; Erasmus Medical Center; Rotterdam the Netherlands
- Leiden University College; the Hague the Netherlands
| |
Collapse
|
130
|
Lopes R, Grützner N, Berghoff N, Lidbury JA, Suchodolski JS, Steiner JM. Analytic validation of a gas chromatography–mass spectrometry method for quantification of six amino acids in canine serum samples. Am J Vet Res 2015; 76:1014-21. [DOI: 10.2460/ajvr.76.12.1014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
131
|
The role of immunomodulators on intestinal barrier homeostasis in experimental models. Clin Nutr 2015; 34:1080-7. [DOI: 10.1016/j.clnu.2015.01.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/05/2015] [Accepted: 01/11/2015] [Indexed: 02/06/2023]
|
132
|
Li J, Hou Y, Yi D, Zhang J, Wang L, Qiu H, Ding B, Gong J. Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1784-93. [PMID: 26580447 PMCID: PMC4647088 DOI: 10.5713/ajas.15.0286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/09/2015] [Accepted: 05/27/2015] [Indexed: 11/27/2022]
Abstract
This study was carried out to investigate the effects of tributyrin (TB) on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS). A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a 2×2 factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg) and LPS challenge (0 or 500 μg/kg body weight [BW]). On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of 500 μg/kg BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin-1β (in the jejunum and ileum), interleukin-6 (in the duodenum and jejunum), and prostaglandin E2 (in the duodenum) of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum) and inducible nitric oxide synthase (in the jejunum) were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers.
Collapse
Affiliation(s)
- Jiaolong Li
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dan Yi
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jun Zhang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyi Qiu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Binying Ding
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China ; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Joshua Gong
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
133
|
Asparagine attenuates intestinal injury, improves energy status and inhibits AMP-activated protein kinase signalling pathways in weaned piglets challenged with Escherichia coli lipopolysaccharide. Br J Nutr 2015; 114:553-65. [PMID: 26277838 DOI: 10.1017/s0007114515001877] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestine requires a high amount of energy to maintain its health and function; thus, energy deficits in intestinal mucosa may lead to intestinal damage. Asparagine (Asn) is a precursor for many other amino acids such as aspartate, glutamine and glutamate, which can be used to supply energy to enterocytes. In the present study, we hypothesise that dietary supplementation of Asn could alleviate bacterial lipopolysaccharide (LPS)-induced intestinal injury via improvement of intestinal energy status. A total of twenty-four weaned piglets were assigned to one of four treatments: (1) non-challenged control; (2) LPS+0 % Asn; (3) LPS+0·5 % Asn; (4) LPS+1·0 % Asn. On day 19, piglets were injected with LPS or saline. At 24 h post-injection, piglets were slaughtered and intestinal samples were collected. Asn supplementation improved intestinal morphology, indicated by higher villus height and villus height:crypt depth ratio, and lower crypt depth. Asn supplementation also increased the ratios of RNA:DNA and protein:DNA as well as disaccharidase activities in intestinal mucosa. In addition, Asn supplementation attenuated bacterial LPS-induced intestinal energy deficits, indicated by increased ATP and adenylate energy charge levels, and decreased AMP:ATP ratio. Moreover, Asn administration increased the activities of key enzymes involved in the tricarboxylic acid cycle, including citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase complex. Finally, Asn administration decreased the mRNA abundance of intestinal AMP-activated protein kinase-α1 (AMPKα1), AMPKα2, silent information regulator 1 (SIRT1) and PPARγ coactivator-1α (PGC1α), and reduced intestinal AMPKα phosphorylation. Collectively, these results indicate that Asn supplementation alleviates bacterial LPS-induced intestinal injury by modulating the AMPK signalling pathway and improving energy status.
Collapse
|
134
|
Jiao N, Wu Z, Ji Y, Wang B, Dai Z, Wu G. L-Glutamate Enhances Barrier and Antioxidative Functions in Intestinal Porcine Epithelial Cells. J Nutr 2015; 145:2258-64. [PMID: 26338884 DOI: 10.3945/jn.115.217661] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND L-Glutamate (Glu) is a major amino acid in milk and postweaning diets for mammals (including pigs and human infants). However, effects of Glu on intestinal mucosal barrier and antioxidative functions are unknown. OBJECTIVE This study tested the hypothesis that Glu may enhance the barrier function of intestinal porcine epithelial cell line 1 (IPEC-1) cells by upregulating the expression of tight junction proteins. METHODS IPEC-1 cells were cultured with or without Glu in the presence or absence of 1 mmol/L diquat (an oxidant) for indicated time points. Cell numbers, transepithelial electrical resistance (TEER), mRNA, and protein abundance of glutamate transporter, the release of lactate dehydrogenase (LDH), and the abundance of tight junction proteins were determined. RESULTS Compared with 0 mmol/L Glu, 0.5-, 1-, and 2 mmol/L Glu stimulated (P < 0.05) cell growth by 13-37% at 24 h and 12-34% at 48 h, respectively. In addition, 0.5 mmol/L Glu increased (P < 0.05) TEER (by 58% at 24 h and by 98% at 48 h, respectively). These effects of Glu were associated with increased mRNA abundance of Glu transporter solute carrier family 1 member 1 (SLC1A1) by 30-130% and protein abundance of excitatory amino acid transporter 3 (encoded by SLC1A1) by 19-34%, respectively. In a cell model of oxidative stress induced by 1 mmol/L diquat, 0.5 mmol/L Glu enhanced cell viability, TEER, and membrane integrity (as indicated by the reduced release of LDH) in IPEC-1 cells by increasing the abundance of the tight junction proteins occludin, claudin-3, zonula occludens (ZO)-2, and ZO-3. CONCLUSION These findings indicate that Glu plays an important role in mucosal barrier function by enhancing cell growth and maintaining membrane integrity in response to oxidative stress.
Collapse
Affiliation(s)
- Ning Jiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Bin Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
135
|
Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr Res 2015; 77:148-55. [PMID: 25314585 PMCID: PMC4291511 DOI: 10.1038/pr.2014.171] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/30/2014] [Indexed: 01/08/2023]
Abstract
The impact of nutrition on brain development in preterm infants has been increasingly appreciated. Early postnatal growth and nutrient intake have been demonstrated to influence brain growth and maturation with subsequent effects on neurodevelopment that persist into childhood and adolescence. Nutrition could also potentially protect against injury. Inflammation and perinatal infection play a crucial role in the pathogenesis of white matter injury, the most common pattern of brain injury in preterm infants. Therefore, nutritional components with immunomodulatory and/or anti-inflammatory effects may serve as neuroprotective agents. Moreover, growing evidence supports the existence of a microbiome-gut-brain axis. The microbiome is thought to interact with the brain through immunological, endocrine, and neural pathways. Consequently, nutritional components that may influence gut microbiota may also exert beneficial effects on the developing brain. Based on these properties, probiotics, prebiotic oligosaccharides, and certain amino acids are potential candidates for neuroprotection. In addition, the amino acid glutamine has been associated with a decrease in infectious morbidity in preterm infants. In conclusion, early postnatal nutrition is of major importance for brain growth and maturation. Additionally, certain nutritional components might play a neuroprotective role against white matter injury, through modulation of inflammation and infection, and may influence the microbiome-gut-brain axis.
Collapse
|
136
|
Sakamoto MI, Faria DE, Nakagi VS, Murakami AE. Sources of trophic action on performance and intestinal morphometry of broiler chickens vaccinated against coccidiosis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2014. [DOI: 10.1590/1516-635x1604389-396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - DE Faria
- Universidade de São Paulo, Brasil
| | | | - AE Murakami
- Universidade Estadual de Maringá (UEM), Brasil
| |
Collapse
|
137
|
Abstract
The intestinal mucosa harbors the largest population of antibody (Ab)-secreting plasma cells (PC) in the human body, producing daily several grams of immunoglobulin A (IgA). IgA has many functions, serving as a first-line barrier that protects the mucosal epithelium from pathogens, toxins and food antigens (Ag), shaping the intestinal microbiota, and regulating host-commensal homeostasis. Signals induced by commensal colonization are central for regulating IgA induction, maintenance, positioning and function and the number of IgA(+) PC is dramatically reduced in neonates and germ-free (GF) animals. Recent evidence demonstrates that the innate immune effector molecules tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) are required for IgA(+) PC homeostasis during the steady state and infection. Moreover, new functions ascribed to PC independent of Ab secretion continue to emerge, suggesting that PC, including IgA(+) PC, should be re-examined in the context of inflammation and infection. Here, we outline mechanisms of IgA(+) PC generation and survival, reviewing their functions in health and disease.
Collapse
Key Words
- AID, activation-induced deaminase
- APC, antigen-presenting cell
- APRIL, a proliferation-inducing ligand
- Ab, antibody
- Ag, antigen
- Arg, arginase
- Atg, autophagy-related gene
- B cell
- BAFF, B-cell activating factor
- BCMA, B-cell maturation antigen
- BM, bone marrow
- Blimp, B-lymphocyte-induced maturation protein
- CCL, CC chemokine ligand
- CCR, CC chemokine receptor
- CD, cluster of differentiation
- CSR, class-switch recombination
- CXCL, CXC chemokine ligand
- DC, dendritic cell
- ER, endoplasmic reticulum
- FDC, follicular dendritic cells
- FcαR, Fc fragment of IgA receptor
- GALT, gut-associated lymphoid tissues
- GC, germinal center
- GF, germ-free
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- GRP, glucose-regulated proteins
- HIV, human immunodeficiency virus
- IEC, intestinal epithelial cells
- IFN, interferon
- IL, interleukin
- ILC, innate lymphoid cells
- ILF, isolated lymphoid follicles
- IRE, inositol-requiring enzyme
- IRF, interferon regulatory factor
- Id, inhibitor of DNA binding
- IgA, immunoglobulin A
- IgAD, selective IgA deficiency
- L-Arg, L-Arginine
- L-Cit, L-citrulline
- L-Glu, L-Glutamate
- L-Orn, L-Ornithine
- L-Pro, L-Proline
- LIGHT, homologous to lymphotoxin, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes
- LP, lamina propria
- LT, lymphotoxinLTβR, LTβ-receptor
- LTi, lymphoid tissue-inducer
- LTo, lymphoid tissue organizing
- Ly, lymphocyte antigen
- MHC, major histocompatibility complex
- MLN, mesenteric lymph nodes
- NO, nitric oxide
- PC, plasma cells
- PP, Peyer's patch
- Pax, paired box
- ROR, Retionic acid receptor (RAR)- or retinoid-related orphan receptor
- SC, stromal cells
- SHM, somatic hypermutation
- SIGNR, specific intercellular adhesion molecule-3-grabbing non-integrin-related
- SIgAsecretory IgA
- TACI, transmembrane activator and calcium-modulator and cyclophilin ligand interactor
- TD, T-dependent
- TFH, T-follicular helper cells
- TGFβR, transforming growth factor β receptor
- TI, T-independent
- TLR, Toll-like receptor
- TNFR, TNF receptor
- TNFα, tumor necrosis factor α
- Th, T helper cell
- Treg, T-regulatory cell
- UPR, unfolded protein response
- XBP, X-box binding protein
- bcl, B-cell lymphoma
- cGMP, cyclic guanosine monophosphate
- iNOS, inducible nitric oxide synthase
- immunoglobulin A (IgA)
- inducible nitric oxide synthase (iNOS)
- innate immune recognition
- intestinal microbiota
- mucosa
- pIgA, polymeric IgA
- pIgR, polymeric Ig receptor
- plasma cell
Collapse
Affiliation(s)
| | - Olga L Rojas
- Department of Immunology; University of Toronto; Toronto, ON Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology; Department of Physiology; Complex Traits Group; McGill University; Montreal, QC Canada,Correspondence to: Jörg H Fritz;
| |
Collapse
|
138
|
Metabolomic analysis of amino acid and fat metabolism in rats with l-tryptophan supplementation. Amino Acids 2014; 46:2681-91. [DOI: 10.1007/s00726-014-1823-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
|
139
|
|
140
|
Yang YX, Dai ZL, Zhu WY. Important impacts of intestinal bacteria on utilization of dietary amino acids in pigs. Amino Acids 2014; 46:2489-501. [PMID: 25063203 DOI: 10.1007/s00726-014-1807-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/05/2014] [Indexed: 12/30/2022]
Abstract
Bacteria in pig intestine can actively metabolize amino acids (AA). However, little research has focused on the variation in AA metabolism by bacteria from different niches. This study compared the metabolism of AA by microorganisms derived from the lumen and epithelial wall of the pig small intestine, aiming to test the hypothesis that the metabolic profile of AA by gut microbes was niche specific. Samples from the digesta, gut wall washes and gut wall of the jejunum and ileum were used as inocula. Anaerobic media containing single AA were used and cultured for 24 h. The 24-h culture served as inocula for the subsequent 30 times of subcultures. Results showed that for the luminal bacteria, all AA concentrations except phenylalanine in the ileum decreased during the 24-h in vitro incubation with a increase of ammonia concentration, while 4 AA (glutamate, glutamine, arginine and lysine) in the jejunum decreased, with the disappearance rate at 60-95 %. For tightly attached bacteria, all AA concentrations were generally increased during the first 12 h and then decreased coupled with first a decrease and then an increase of ammonia concentration, suggesting a synthesis first and then a catabolism pattern. Among them, glutamate in both segments, histidine in the jejunum and lysine in the ileum increased significantly during the first 12 h and then decreased at 24 h. The concentrations of glutamine and arginine did not change during the first 12 h, but significantly decreased at 24 h. Jejunal lysine and ileal threonine were increased for the first 6 or 12 h. For the loosely attached bacteria, there was no clear pattern for the entire AA metabolism. However, glutamate, methionine and lysine in the jejunum decreased after 24 h of cultivation, while glutamine and threonine in the jejunum and glutamine and lysine in the ileum increased in the first 12 h. During subculture, AA metabolism, either utilization or synthesis, was generally decreased with disappearance rate around 20-40 % for most of AA and negligible for branch chained AA (BCAA). However, the disappearance rate of lysine in each group was around 90 % throughout the subculture, suggesting a high utilization of lysine by bacteria from all three compartments. Analysis of the microbial community during the 24-h in vitro cultivation revealed that bacteria composition in most AA cultures varied between different niches (lumen and wall-adherent fractions) in the jejunum, while being relatively similar in the ileum. However, for isoleucine and leucine cultures, bacteria diversity was similar between the luminal fraction and tightly attached fraction, but significantly higher than in the loosely attached fraction. For glutamine and valine cultures, bacteria diversity was similar between the luminal and loosely attached fractions, but lower than that of tightly attached bacteria. After 30 subcultures, bacteria diversity in arginine, valine, glutamine, and leucine cultures varied between niches in the jejunum while being relatively stable in the ileum, consistent with those in the 24-h in vitro cultures. The findings may suggest that luminal bacteria tended to utilize free AA, while tightly attached adherent bacteria seemed in favor of AA synthesis, and that small intestinal microbes contributed little to BCAA metabolism.
Collapse
Affiliation(s)
- Yu-Xiang Yang
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | |
Collapse
|
141
|
De Vos M, Huygelen V, Van Raemdonck G, Willemen S, Fransen E, Van Ostade X, Casteleyn C, Van Cruchten S, Van Ginneken C. Supplementing formula-fed piglets with a low molecular weight fraction of bovine colostrum whey results in an improved intestinal barrier. J Anim Sci 2014; 92:3491-501. [PMID: 25012977 DOI: 10.2527/jas.2013-6437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To test the hypothesis that a low molecular weight fraction of colostral whey could affect the morphology and barrier function of the small intestine, 30 3-d-old piglets (normal or low birth weight) were suckled (n = 5), artificially fed with milk formula (n = 5), or artificially fed with milk formula with a low molecular weight fraction of colostral whey (n = 5) until 10 d of age. The small intestine was sampled for histology (haematoxylin and eosin stain; anti-KI67 immunohistochemistry) and enzyme activities (aminopeptidase A, aminopeptidase N, dipeptidylpeptidase IV, lactase, maltase, and sucrase). In addition, intestinal permeability was evaluated via a dual sugar absorption test and via the measurement of occludin abundance. Artificially feeding of piglets reduced final BW (P < 0.001), villus height (P < 0.001), lactase (P < 0.001), and dipeptidylpeptidase IV activities (P < 0.07), whereas crypt depth (P < 0.001) was increased. No difference was observed with regard to the permeability measurements when comparing artificially fed with naturally suckling piglets. Supplementing piglets with the colostral whey fraction did not affect BW, enzyme activities, or the outcome of the dual sugar absorption test. On the contrary, the small intestines of supplemented piglets had even shorter villi (P = 0.001) than unsupplemented piglets and contained more occludin (P = 0.002). In conclusion, at 10 d of age, no differences regarding intestinal morphology and permeability measurements were observed between the 2 BW categories. In both weight categories, the colostral whey fraction affected the morphology of the small intestine but did not improve the growth performances or the in vivo permeability. These findings should be acknowledged when developing formulated milk for neonatal animals with the aim of improving the performance of low birth weight piglets.
Collapse
Affiliation(s)
- M De Vos
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - V Huygelen
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - G Van Raemdonck
- Laboratory Protein Science, Proteomics, and Epigenetic Signaling, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - S Willemen
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - E Fransen
- StatUa Center for Statistics, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
| | - X Van Ostade
- Laboratory Protein Science, Proteomics, and Epigenetic Signaling, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - C Casteleyn
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - S Van Cruchten
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - C Van Ginneken
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
142
|
Scrimgeour AG, Condlin ML. Nutritional Treatment for Traumatic Brain Injury. J Neurotrauma 2014; 31:989-99. [DOI: 10.1089/neu.2013.3234] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Angus G. Scrimgeour
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Michelle L. Condlin
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
143
|
Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 2014; 46:2037-45. [PMID: 24858859 DOI: 10.1007/s00726-014-1758-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 04/25/2014] [Indexed: 01/01/2023]
Abstract
Analysis of amino acids in milk protein reveals a relatively low content of glycine. This study was conducted with young pigs to test the hypothesis that milk-fed neonates require dietary glycine supplementation for maximal growth. Fourteen-day-old piglets were allotted randomly into one of four treatments (15 piglets/treatment), representing supplementation with 0, 0.5, 1 or 2% glycine (dry matter basis) to a liquid milk replacer. Food was provided to piglets every 8 h (3 times/day) for 2 weeks. Milk intake (32.0-32.5 g dry matter/kg body weight per day) did not differ between control and glycine-supplemented piglets. Compared with control piglets, dietary supplementation with 0.5, 1 and 2% glycine increased (P < 0.05) plasma concentrations of glycine and serine, daily weight gain, and body weight without affecting body composition, while reducing plasma concentrations of ammonia, urea, and glutamine, in a dose-dependent manner. Dietary supplementation with 0.5, 1 and 2% glycine enhanced (P < 0.05) small-intestinal villus height, glycine transport (measured using Ussing chambers), mRNA levels for GLYT1, and anti-oxidative capacity (indicated by increased concentrations of reduced glutathione and a decreased ratio of oxidized glutathione to reduced glutathione). These novel results indicate, for the first time, that glycine is a nutritionally essential amino acid for maximal protein accretion in milk-fed piglets. The findings not only enhance understanding of protein nutrition, but also have important implications for designing improved formulas to feed human infants, particularly low birth weight and preterm infants.
Collapse
|
144
|
Su L, Li N, Wu K, Wang X, Zhang M. Clinical significance of quantitative detection of serum tryptophan in patients with ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2014; 22:1322-1327. [DOI: 10.11569/wcjd.v22.i9.1322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinical significance of serum tryptophan in patients with ulcerative colitis (UC).
METHODS: Serum samples were obtained from 20 UC patients and 20 healthy volunteers. For each patient, serum samples were collected when the disease was active and inactive. The diagnosis for each patient was based on clinical symptoms, endoscopic, radiographic, and histological findings. The Montreal Classification was used for disease phenotyping. Disease activity was assessed by the modified Mayo score. Tryptophan in serum was measured by liquid chromatography tandem mass spectrometry (LC-MS/MS). Differences between different groups and the relationship between serum tryptophan and ESR/CRP in patients with active UC were analyzed.
RESULTS: Compared with patients with active UC, serum levels of tryptophan in patients with inactive UC and healthy volunteers were significantly lower (P < 0.05 for both), but there was no significant difference between patients with inactive UC and healthy volunteers. Serum tryptophan in active UC patients was inversely related to ESR (r = -0.502, P = 0.024) and CRP (r = -0.530, P = 0.016). After conventional treatment, the levels of serum tryptophan were significantly elevated (P < 0.05).
CONCLUSION: Tryptophan may play a key role in the occurrence and development of UC.
Collapse
|
145
|
Ribeiro CT, Milhomem R, De Souza DB, Costa WS, Sampaio FJB, Pereira-Sampaio MA. Effect of antioxidants on outcome of testicular torsion in rats of different ages. J Urol 2014; 191:1578-84. [PMID: 24679870 DOI: 10.1016/j.juro.2013.09.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/29/2022]
Abstract
PURPOSE We assessed reproductive and testicular function in adult rats after testicular torsion created before, during and after puberty, and with vs without resveratrol or arginine treatment. MATERIALS AND METHODS Age matched rats were divided into groups, including simulated surgery without testicular torsion, 720-degree testicular torsion for 4 hours, testicular torsion with resveratrol treatment and testicular torsion with arginine treatment. To study reproductive function at age 12 weeks each rat mated with 3 females. The males were sacrificed at age 14 weeks. Spermatozoids were collected from the epididymal tail and evaluated for concentration, motility and viability. Testicular samples were collected for morphological analysis. RESULTS Reproductive function was not altered by testicular torsion but antioxidants improved potency. Compared to sham operated and contralateral samples all spermatozoid parameters from testicular torsion samples were inferior. Resveratrol and arginine did not improve spermatozoid quality or quantity in torsed testes but contralateral samples were improved by each drug. The seminiferous epithelium of rats submitted to testicular torsion during puberty was least affected. Each antioxidant partially to totally prevented the morphological alterations found in rats with untreated testicular torsion. Rats submitted to testicular torsion before puberty that were treated with antioxidants showed the fewest changes. CONCLUSIONS Testicular morphology was altered less in rats when torsion occurred earlier in life, that is during puberty. Treatment with antioxidants improved contralateral spermatozoid production and some fertility parameters. Each antioxidant also prevented testicular morphology alterations after testicular torsion. Prepubertal rats benefited most from antioxidant treatment.
Collapse
Affiliation(s)
- Carina T Ribeiro
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Milhomem
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B De Souza
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Waldemar S Costa
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J B Sampaio
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco A Pereira-Sampaio
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Morphology, Fluminense Federal University, Niteroi, Brazil
| |
Collapse
|
146
|
Costa KA, Soares ADN, Wanner SP, Santos RDGCD, Fernandes SOA, Martins FDS, Nicoli JR, Coimbra CC, Cardoso VN. L-arginine supplementation prevents increases in intestinal permeability and bacterial translocation in male Swiss mice subjected to physical exercise under environmental heat stress. J Nutr 2014; 144:218-23. [PMID: 24259555 DOI: 10.3945/jn.113.183186] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary supplementation with l-arginine has been shown to improve the intestinal barrier in many experimental models. This study investigated the effects of arginine supplementation on the intestinal permeability and bacterial translocation (BT) induced by prolonged physical exercise under heat stress. Under anesthesia, male Swiss mice (5-wk-old) were implanted with an abdominal sensor to record their core body temperature (T(core)). After recovering from surgery, the mice were divided into 3 groups: a non-supplemented group that was fed the standard diet formulated by the American Institute of Nutrition (AIN-93G; control), a non-supplemented group that was fed the AIN-93G diet and subjected to exertional hyperthermia (H-NS), and a group supplemented with l-arginine at 2% and subjected to exertional hyperthermia (H-Arg). After 7 d of treatment, the H-NS and H-Arg mice were forced to run on a treadmill (60 min, 8 m/min) in a warm environment (34°C). The control mice remained at 24°C. Thirty min before the exercise or control trials, the mice received a diethylenetriamine pentaacetic acid (DTPA) solution labeled with technetium-99m ((99m)Tc-DTPA) or (99m)Tc-Escherichia coli by gavage to assess intestinal permeability and BT, respectively. The H-NS mice terminated the exercise with T(core) values of ∼40°C, and, 4 h later, presented a 12-fold increase in the blood uptake of (99m)Tc-DTPA and higher bacterial contents in the blood and liver than the control mice. Although supplementation with arginine did not change the exercise-induced increase in T(core), it prevented the increases in intestinal permeability and BT caused by exertional hyperthermia. Our results indicate that dietary l-arginine supplementation preserves the integrity of the intestinal epithelium during exercise under heat stress, acting through mechanisms that are independent of T(core) regulation.
Collapse
|
147
|
Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu Rev Anim Biosci 2014; 2:387-417. [DOI: 10.1146/annurev-animal-022513-114113] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843; (G. Wu), (Z. Wu)
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843; (G. Wu), (Z. Wu)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| |
Collapse
|
148
|
l-Methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Amino Acids 2014; 46:1131-42. [DOI: 10.1007/s00726-014-1675-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 01/15/2014] [Indexed: 11/27/2022]
|
149
|
Zhang S, Qiao S, Ren M, Zeng X, Ma X, Wu Z, Thacker P, Wu G. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids 2013; 45:1191-205. [DOI: 10.1007/s00726-013-1577-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 02/04/2023]
|
150
|
Ferraro V, Ferreira Jorge R, Cruz IB, Antunes F, Sarmento B, Castro PML, Pintado ME. In vitrointestinal absorption of amino acid mixtures extracted from codfish (Gadus morhuaL.) salting wastewater. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Vincenza Ferraro
- CBQF - Centro de Biotecnologia e Química Fina; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
- WeDoTech - Companhia de Ideias e Tecnologias, Lda./CiDEB; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| | - Ruben Ferreira Jorge
- WeDoTech - Companhia de Ideias e Tecnologias, Lda./CiDEB; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| | - Isabel B. Cruz
- CBQF - Centro de Biotecnologia e Química Fina; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
- WeDoTech - Companhia de Ideias e Tecnologias, Lda./CiDEB; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| | - Filipa Antunes
- INEB-Instituto de Engenharia Biomédica; NEWTherapiesGroup; Universidade do Porto; Rua do Campo Alegre 823 Porto 4050-048 Portugal
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica; NEWTherapiesGroup; Universidade do Porto; Rua do Campo Alegre 823 Porto 4050-048 Portugal
- CICS; HealthSciences Research Center; Instituto Superior de Ciências da Saúde Norte; Rua Central de Gandra 1317 4585-116 Gandra Portugal
| | - Paula M. L. Castro
- CBQF - Centro de Biotecnologia e Química Fina; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| | - Manuela E. Pintado
- CBQF - Centro de Biotecnologia e Química Fina; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| |
Collapse
|