101
|
Corrigall D, Walther RF, Rodriguez L, Fichelson P, Pichaud F. Hedgehog Signaling Is a Principal Inducer of Myosin-II-Driven Cell Ingression in Drosophila Epithelia. Dev Cell 2007; 13:730-742. [DOI: 10.1016/j.devcel.2007.09.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/17/2007] [Accepted: 09/25/2007] [Indexed: 11/29/2022]
|
102
|
Chan CC, Zhang S, Cagatay T, Wharton KA. Cell-autonomous, myristyl-independent activity of the Drosophila Wnt/Wingless antagonist Naked cuticle (Nkd). Dev Biol 2007; 311:538-53. [PMID: 17942091 DOI: 10.1016/j.ydbio.2007.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/29/2007] [Accepted: 09/04/2007] [Indexed: 12/31/2022]
Abstract
Robust animal development, tissue homeostasis, and stem cell renewal requires precise control of the Wnt/beta-catenin signaling axis. In the embryo of the fruit fly Drosophila melanogaster, the naked cuticle (nkd) gene attenuates signaling by the Wnt ligand Wingless (Wg) during segmentation. nkd mutants have been reported to exhibit abnormalities in wg transcription, Wg protein distribution and/or transport, and the intracellular response to Wg, but the relationship between each alteration and the molecular mechanism of Nkd action remains unclear. In addition, whether Nkd acts in a cell-autonomous or nonautonomous fashion in the embryo is not known. Mammalian Nkd homologs have N-terminal consensus sequences that direct the post-translational addition of a lipophilic myristoyl moiety, but fly and mosquito Nkd, while sharing N-terminal sequence homology, lack a myristoylation consensus sequence. Here we provide evidence that fly Nkd acts cell-autonomously in the embryo, with its N-terminus able to confer unique functional properties and membrane association that cannot be mimicked in vivo by heterologous myristoylation consensus sequences. In conjunction with our recent observation that Nkd requires nuclear localization for function, our data suggest that Nkd acts at more than one subcellular location within signal-receiving cells to attenuate Wg signaling.
Collapse
Affiliation(s)
- Chih-Chiang Chan
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | | | | | |
Collapse
|
103
|
Nieuwenhuis E, Barnfield PC, Makino S, Hui CC. Epidermal hyperplasia and expansion of the interfollicular stem cell compartment in mutant mice with a C-terminal truncation of Patched1. Dev Biol 2007; 308:547-60. [PMID: 17631878 DOI: 10.1016/j.ydbio.2007.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 06/07/2007] [Accepted: 06/20/2007] [Indexed: 12/31/2022]
Abstract
Hedgehog (Hh) signaling is conserved from flies to humans and is indispensable in embryogenesis and adulthood. Patched (Ptc) encodes a receptor for Hh ligands and functions as a tumor suppressor. PTCH1 mutations in humans are found in basal cell carcinoma (BCC) and irradiated Ptc1(+/-) mice recapitulate this phenotype. However, due to embryonic lethality associated with the Ptc1 null mutation, its normal function in embryonic and adult skin remains unknown. Here we describe the epidermal phenotypes of a spontaneous and viable allele of Ptc1, Ptc1(mes), in which the C-terminal domain (CTD) is truncated. Ptc1(mes/mes) embryos display normal epidermal and hair follicle development. Postnatal Ptc1(mes/mes) skin displays severe basal cell layer hyperplasia and increased proliferation, while stratification of the suprabasal layers is mostly normal. Interestingly, truncation of the Ptc1 CTD did not result in skin tumors. However, long term labeling studies revealed a greater than three-fold increase in label-retaining cells in the interfollicular epidermis of Ptc1(mes/mes) adults, indicating possible expansion of the epidermal stem cell compartment. Increased expression of regulators of epidermal homeostasis, c-Myc and p63, was also observed in Ptc1(mes/mes) adult skin. These results suggest that the CTD of Ptc1 is involved in regulating epidermal homeostasis in mature skin.
Collapse
Affiliation(s)
- Erica Nieuwenhuis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, University of Toronto, Toronto Medical Discovery Towers, 101 College Street, Toronto, Ontario, Canada M5G1L7
| | | | | | | |
Collapse
|
104
|
Ruiz-Gómez A, Molnar C, Holguín H, Mayor F, de Celis JF. The cell biology of Smo signalling and its relationships with GPCRs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:901-12. [PMID: 17094938 DOI: 10.1016/j.bbamem.2006.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 12/11/2022]
Abstract
The Smoothened (Smo) signalling pathway participates in many developmental processes, contributing to the regulation of gene expression by controlling the activity of transcription factors belonging to the Gli family. The key elements of the pathway were identified by means of genetic screens carried out in Drosophila, and subsequent analysis in other model organisms revealed a high degree of conservation in both the proteins involved and in their molecular interactions. Recent analysis of the pathway, using a combination of biochemical and cell biological approaches, is uncovering the intricacies of Smo signalling, placing its elements in particular cellular compartments and qualifying the molecular processes involved. These include the synthesis, secretion and diffusion of the ligand, the activation of the receptor and the modifications in the activity of nuclear effectors. In this review we discuss recent advances in understanding biochemical and cellular aspects of Smo signalling, with particular focus in the similarities in the mechanism of signal transduction between Smo and other transmembrane proteins belonging to the G-Protein coupled receptors superfamily (GPCR).
Collapse
Affiliation(s)
- Ana Ruiz-Gómez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
105
|
Ha YS, Yun SJ, Kim YJ, Lee SC, Kim WJ. Utility of Smo as a Prognostic Marker for Human Bladder Tumors. Korean J Urol 2007. [DOI: 10.4111/kju.2007.48.10.997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yun-Sok Ha
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Seok-Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Yong-June Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Cheol Lee
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
106
|
Nieuwenhuis E, Motoyama J, Barnfield PC, Yoshikawa Y, Zhang X, Mo R, Crackower MA, Hui CC. Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol 2006; 26:6609-22. [PMID: 16914743 PMCID: PMC1592833 DOI: 10.1128/mcb.00295-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hedgehog (Hh) signaling plays pivotal roles in tissue patterning and development in Drosophila melanogaster and vertebrates. The Patched1 (Ptc1) gene, encoding the Hh receptor, is mutated in nevoid basal cell carcinoma syndrome, a human genetic disorder associated with developmental abnormalities and increased incidences of basal cell carcinoma (BCC) and medulloblastoma (MB). Ptc1 mutations also occur in sporadic forms of BCC and MB. Mutational studies with mice have verified that Ptc1 is a tumor suppressor. We previously identified a second mammalian Patched gene, Ptc2, and demonstrated its distinct expression pattern during embryogenesis, suggesting a unique role in development. Most notably, Ptc2 is expressed in an overlapping pattern with Shh in the epidermal compartment of developing hair follicles and is highly expressed in the developing limb bud, cerebellum, and testis. Here, we describe the generation and phenotypic analysis of Ptc2(tm1/tm1) mice. Our molecular analysis suggests that Ptc2(tm1) likely represents a hypomorphic allele. Despite the dynamic expression of Ptc2 during embryogenesis, Ptc2(tm1/tm1) mice are viable, fertile, and apparently normal. Interestingly, adult Ptc2(tm1/tm1) male animals develop skin lesions consisting of alopecia, ulceration, and epidermal hyperplasia. While functional compensation by Ptc1 might account for the lack of a strong mutant phenotype in Ptc2-deficient mice, our results suggest that normal Ptc2 function is required for adult skin homeostasis.
Collapse
Affiliation(s)
- Erica Nieuwenhuis
- Program in Developmental Biology, The Hospital for Sick Children, Toronto Medical Discovery Towers, MaRS Building, East Tower, Room 13-314, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Chen EH, Christiansen AE, Baker BS. Allocation and specification of the genital disc precursor cells in Drosophila. Dev Biol 2006; 281:270-85. [PMID: 15893978 DOI: 10.1016/j.ydbio.2005.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 02/19/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The adult structures of Drosophila melanogaster are derived from larval imaginal discs, which originate as clusters of cells within the embryonic ectoderm. The genital imaginal disc is composed of three primordia (female genital, male genital, and anal primordia) that originate from the embryonic tail segments A8, A9, and A10, respectively, and produce the sexually dimorphic genitalia and analia. We show that the genital disc precursor cells (GDPCs) are first detectable during mid-embryogenesis as a 22-cell cluster in the ventral epidermis. Analysis of mutant and double mutant phenotypes of embryonic patterning genes in the GDPCs, together with their expression patterns in these cells, revealed the following with respect to the origins and specification of the GDPCs. The allocation of the GDPCs from the ventral epidermis requires the function of ventral patterning genes, including the EGF receptor and the spitz group of genes. The ventral localization of the GDPCs is further restricted by the action of dorsal patterning genes. Along the anterior-posterior axis, several segment polarity genes (wingless, engrailed, hedgehog, and patched) are required for the proper allocation of the GDPCs. These segment polarity genes are expressed in some, but not all of the GDPCs, indicating that anterior and posterior compartments are not fully established in the GDPCs. In addition, we found that the three primordia of the larval genital disc have already been specified in the GDPCs by the coordinated actions of the homeotic (Hox) genes, abdominal-A, Abdominal-B, and caudal. By identifying how these different patterning networks regulate the allocation and primordial organization of the 22 embryonic precursors of the compound genital disc, we demonstrate that at least some of the organization of the larval disc originates as positional information in the embryo, thus providing a context for further studies on the development of the genital disc.
Collapse
Affiliation(s)
- Elizabeth H Chen
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
108
|
De Rivoyre M, Ruel L, Varjosalo M, Loubat A, Bidet M, Thérond P, Mus-Veteau I. Human receptors patched and smoothened partially transduce hedgehog signal when expressed in Drosophila cells. J Biol Chem 2006; 281:28584-95. [PMID: 16867986 DOI: 10.1074/jbc.m512986200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, dysfunctions of the Hedgehog receptors Patched and Smoothened are responsible for numerous pathologies. However, signaling mechanisms involving these receptors are less well characterized in mammals than in Drosophila. To obtain structure-function relationship information on human Patched and Smoothened, we expressed these human receptors in Drosophila Schneider 2 cells. We show here that, as its Drosophila counterpart, human Patched is able to repress the signaling pathway in the absence of Hedgehog ligand. In response to Hedgehog, human Patched is able to release Drosophila Smoothened inhibition, suggesting that human Patched is expressed in a functional state in Drosophila cells. We also provide experiments showing that human Smo, when expressed in Schneider cells, is able to bind the alkaloid cyclopamine, suggesting that it is expressed in a native conformational state. Furthermore, contrary to Drosophila Smoothened, human Smoothened does not interact with the kinesin Costal 2 and thus is unable to transduce the Hedgehog signal. Moreover, cell surface fluorescent labeling suggest that human Smoothened is enriched at the Schneider 2 plasma membrane in response to Hedgehog. These results suggest that human Smoothened is expressed in a functional state in Drosophila cells, where it undergoes a regulation of its localization comparable with its Drosophila homologue. Thus, we propose that the upstream part of the Hedgehog pathway involving Hedgehog interaction with Patched, regulation of Smoothened by Patched, and Smoothened enrichment at the plasma membrane is highly conserved between Drosophila and humans; in contrast, signaling downstream of Smoothened is different.
Collapse
Affiliation(s)
- Matthieu De Rivoyre
- Laboratoire de Physiologie Cellulaire et Moléculaire, CNRS Unité Mixte de Recherche (UMR) 6548, Université de Nice-Sophia Antipolis, Parc Valrose 06108 Nice Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
109
|
Huangfu D, Anderson KV. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 2006; 133:3-14. [PMID: 16339192 DOI: 10.1242/dev.02169] [Citation(s) in RCA: 375] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the framework of the Hedgehog (Hh) signaling pathway is evolutionarily conserved, recent studies indicate that fundamental differences exist between Drosophila and vertebrates in the way signals are transduced from the membrane protein Smoothened (Smo) to the Ci/Gli transcription factors. For example, Smo structure and the roles of fused and Suppressor of fused have diverged. Recently, many vertebrate-specific components have been identified that act between Smo and Gli. These include intra-flagellar transport proteins, which link vertebrate Hh signaling to cilia. Because abnormal Hh signaling can cause birth defects and cancer, these vertebrate-specific components may have roles in human health.
Collapse
Affiliation(s)
- Danwei Huangfu
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
110
|
Torroja C, Gorfinkiel N, Guerrero I. Mechanisms of Hedgehog gradient formation and interpretation. ACTA ACUST UNITED AC 2005; 64:334-56. [PMID: 16041759 DOI: 10.1002/neu.20168] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Morphogens are molecules that spread from localized sites of production, specifying distinct cell outcomes at different concentrations. Members of the Hedgehog (Hh) family of signaling molecules act as morphogens in different developmental systems. If we are to understand how Hh elicits multiple responses in a temporally and spatially specific manner, the molecular mechanism of Hh gradient formation needs to be established. Moreover, understanding the mechanisms of Hh signaling is a central issue in biology, not only because of the role of Hh in morphogenesis, but also because of its involvement in a wide range of human diseases. Here, we review the mechanisms affecting the dynamics of Hh gradient formation, mostly in the context of Drosophila wing development, although parallel findings in vertebrate systems are also discussed.
Collapse
Affiliation(s)
- Carlos Torroja
- Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
111
|
Perens EA, Shaham S. C. elegans daf-6 encodes a patched-related protein required for lumen formation. Dev Cell 2005; 8:893-906. [PMID: 15935778 DOI: 10.1016/j.devcel.2005.03.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 01/19/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
Sensory organs are often composed of neuronal sensory endings accommodated in a lumen formed by ensheathing epithelia or glia. Here we show that lumen formation in the C. elegans amphid sensory organ requires the gene daf-6. daf-6 encodes a Patched-related protein that localizes to the luminal surfaces of the amphid channel and other C. elegans tubes. While daf-6 mutants display only amphid lumen defects, animals defective for both daf-6 and the Dispatched gene che-14 exhibit defects in all tubular structures that express daf-6. Furthermore, DAF-6 protein is mislocalized, and lumen morphogenesis is abnormal, in mutants with defective sensory neuron endings. We propose that amphid lumen morphogenesis is coordinated by neuron-derived cues and a DAF-6/CHE-14 system that regulates vesicle dynamics during tubulogenesis.
Collapse
Affiliation(s)
- Elliot A Perens
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
112
|
Merianda TT, Botta V, Bhat KM. Patched regulation of axon guidance is by specifying neural identity in the Drosophila nerve cord. Dev Genes Evol 2005; 215:285-96. [PMID: 15754211 DOI: 10.1007/s00427-005-0475-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 01/27/2005] [Indexed: 12/17/2022]
Abstract
Within an axon bundle, one or two are pioneering axons and the rest are follower axons. Pioneering axons are projected first and the follower axons are projected later but follow a pioneering axon(s) pathway. It is not clear whether the pioneering axons have a guidance role for follower axons. In this paper, we have investigated the role of Patched (Ptc) in regulating the guidance of medial tract, one of the longitudinal tracts in the nerve cord. In patched mutants the medial longitudinal tract fails to fasciculate on its own side along the nerve cord, instead it abnormally crosses the midline and fasciculates with the contralateral tract. Interestingly, the medial tracts cross the midline ignoring the axon-repellant Slit on the midline and Roundabout on growth cones. The medial tract is pioneered by neurons pCC and vMP2. Our results show that guidance defects of this tract are due to loss and mis-specification of vMP2, which results in the projection from pCC to either stall or project outward near the location of vMP2. Thus, both pioneering neurons are necessary for the proper guidance of pioneering and follower axons. We also show that the loss of Ptc activity in the neuroectoderm prior to the formation of S1 and S2 neuroblasts causes the majority of axon guidance defects. These results provide insight into how mis-specification and loss of neurons can non-autonomously contribute to defects in axon pathfinding.
Collapse
Affiliation(s)
- Tanuja T Merianda
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
113
|
Collier LS, Suyama K, Anderson JH, Scott MP. Drosophila Costal1 mutations are alleles of protein kinase A that modulate hedgehog signaling. Genetics 2005; 167:783-96. [PMID: 15238528 PMCID: PMC1470909 DOI: 10.1534/genetics.103.024992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signaling is crucial for the development of many tissues, and altered Hh signal transduction can result in cancer. The Drosophila Costal1 (Cos1) and costal2 (cos2) genes have been implicated in Hh signaling. cos2 encodes a kinesin-related molecule, one component of a cytoplasmic complex of Hh signal transducers. Mutations in Cos1 enhance loss-of-function cos2 mutations, but the molecular nature of Cos1 has been unknown. We found that previously identified alleles of Cos1 actually map to two separate loci. Four alleles of Cos1 appear to be dominant-negative mutations of a catalytic subunit of protein kinase A (pka-C1) and the fifth allele, Cos1(A1), is a gain-of-function allele of the PKA regulatory subunit pka-RII. PKA-RII protein levels are higher in Cos1(A1) mutants than in wild type. Overexpression of wild-type pka-RII phenocopies Cos1 mutants. PKA activity is aberrant in Cos1(A1) mutants. PKA-RII is uniformly overproduced in the wing imaginal disc in Cos1(A1) mutants, but only certain cells respond by activating the transcription factor Ci and Hh target gene transcription. This work shows that overexpression of a wild-type regulatory subunit of PKA is sufficient to activate Hh target gene transcription.
Collapse
Affiliation(s)
- Lara S Collier
- Program in Cancer Biology, Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5439, USA
| | | | | | | |
Collapse
|
114
|
Abstract
Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, and murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.
Collapse
Affiliation(s)
- Corey Raffel
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
115
|
De Rivoyre M, Bonino F, Ruel L, Bidet M, Thérond P, Mus-Veteau I. Human receptor Smoothened, a mediator of Hedgehog signalling, expressed in its native conformation in yeast. FEBS Lett 2005; 579:1529-33. [PMID: 15733868 DOI: 10.1016/j.febslet.2005.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 01/19/2005] [Indexed: 12/14/2022]
Abstract
Though the role of Hedgehog (Hh) signalling in patterning and differentiation during development is well established, the underlying signal transduction mechanisms remain obscure. This is the first report on the overexpression of the human Hh signalling receptor Smoothened (hSmo) in Saccharomyces cerevisiae and Pichia pastoris. We show that hSmo is expressed in both types of yeast in its native conformational state. The first purification presented here will allow the characterisation of hSmo expressed in yeast, and the scale-up of hSmo production enabling structural studies to develop new therapeutic approaches against tumors and neurodegenerative diseases induced by Hh signalling dysfunction.
Collapse
Affiliation(s)
- Matthieu De Rivoyre
- Laboratoire de Physiologie Cellulaire et Moléculaire, UMR-CNRS 6548, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
116
|
Roederer K, Cozy L, Anderson J, Kumar JP. Novel dominant-negative mutation within the six domain of the conserved eye specification gene sine oculis inhibits eye development in Drosophila. Dev Dyn 2005; 232:753-66. [PMID: 15704100 PMCID: PMC2737192 DOI: 10.1002/dvdy.20316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The development of the compound eye of Drosophila is controlled, in part, by the concerted actions of several nuclear proteins that form an intricate regulatory system. One member of this network is sine oculis (so), the founding member of the Six gene family. Mutations within so affect the entire visual system, including the compound eye. The vertebrate homologs Six3 and Six6 also appear to play crucial roles in retinal formation. Mutations in Six3 inhibit retinal formation in chickens and fish, whereas those in Six6 are the underlying cause of bilateral anophthalmia in humans. Together, these phenotypes suggest a conserved role for the Six genes in eye development. In this report, we describe the effects of a dominant-negative mutation of sine oculis on the development of the compound eye of Drosophila. The mutation resides within the Six domain and may have implications for eye development and disease.
Collapse
Affiliation(s)
| | - Loralyn Cozy
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Jason Anderson
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
117
|
Jeong J, McMahon AP. Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development 2004; 132:143-54. [PMID: 15576403 DOI: 10.1242/dev.01566] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upregulation of Patched (Ptc), the Drosophila Hedgehog (Hh) receptor in response to Hh signaling limits the range of signaling within a target field by sequestering Hh. In vertebrates, Ptch1 also exhibits ligand-dependent transcriptional activation, but mutants lacking this response show surprisingly normal early development. The identification of Hh-interacting protein 1 (Hhip1), a vertebrate-specific feedback antagonist of Hh signaling, raises the possibility of overlapping feedback controls. We addressed the significance of feedback systems in sonic hedgehog (Shh)-dependent spinal cord patterning. Mouse embryos lacking both Ptch1 and Hhip1 feedback activities exhibit severe patterning defects consistent with an increased magnitude and range of Hh signaling, and disrupted growth control. Thus, Ptc/Ptch1-dependent feedback control of Hh morphogens is conserved between flies and mice, but this role is shared in vertebrates with Hhip1. Furthermore, this feedback mechanism is crucial in generating a neural tube that contains appropriate numbers of all ventral and intermediate neuronal cell types.
Collapse
Affiliation(s)
- Juhee Jeong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
118
|
Hime GR, Lada H, Fietz MJ, Gillies S, Passmore A, Wicking C, Wainwright BJ. Functional analysis in Drosophila indicates that the NBCCS/PTCH1 mutation G509V results in activation of smoothened through a dominant-negative mechanism. Dev Dyn 2004; 229:780-90. [PMID: 15042702 DOI: 10.1002/dvdy.10499] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in the human homolog of the patched gene are associated with the developmental (and cancer predisposition) condition Nevoid Basal Cell Carcinoma Syndrome (NBCCS), as well as with sporadic basal cell carcinomas. Most mutations that have been identified in the germline of NBCCS patients are truncating or frameshift mutations, with amino acid substitutions rarely found. We show that a missense mutation in the sterol-sensing domain G509V acts as a dominant negative when assayed in vivo in Drosophila. Ectopic expression of a Drosophila patched transgene, carrying the analogous mutation to G509V, causes ectopic activation of Hedgehog target genes and ectopic membrane stabilisation of Smoothened. The G509V transgene behaves in a manner similar, except in its subcellular distribution, to a C-terminal truncation that has been characterised previously as a dominant-negative protein. G509V exhibits vesicular localisation identical to the wild-type protein, but the C-terminal truncated Patched molecule is localised predominantly to the plasma membrane. This finding suggests that dominant-negative function can be conferred by interruption of different aspects of Patched protein behaviour. Another mutation at the same residue, G509R, did not exhibit dominant-negative activity, suggesting that simple removal of the glycine at 509 is not sufficient to impart dominant-negative function.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Cell Biology, University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
119
|
Ohki K, Kumamoto H, Ichinohasama R, Sato T, Takahashi N, Ooya K. PTC gene mutations and expression of SHH, PTC, SMO, and GLI-1 in odontogenic keratocysts. Int J Oral Maxillofac Surg 2004; 33:584-92. [PMID: 15308259 DOI: 10.1016/j.ijom.2004.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2004] [Indexed: 01/23/2023]
Abstract
The Patched (PTC) gene is responsible for basal cell nevus syndrome (BCNS) accompanied by multiple odontogenic keratocysts (OKCs), and its product plays a role in the Sonic hedgehog (SHH) signaling pathway involving smoothened (SMO) and GLI-1. To clarify the role of SHH signaling in OKCs, the expression of SHH, PTC, SMO, and GLI-1 and mutations of PTC were examined in 18 sporadic, 4 BCNS-associated OKCs and 7 control gingivae. SHH, PTC, SMO, and GLI-1 were detected in all OKC and gingiva samples by reverse transcriptase-polymerase chain reaction (RT-PCR). Immunoreactivity for SHH and GLI-1 was markedly higher in epithelial components than in subepithelial cells, while immunoreactivity for PTC and SMO was similar in epithelial components and subepithelial cells in OKCs. The positive rate of PTC and SMO expression in subepithelial cells of OKCs was significantly higher than that in gingivae. The positive rate of GLI-1 expression in subepithelial cells of BCNS-associated OKCs was significantly higher than that in primary OKCs. These results suggest that the SHH signaling might be involved in the pathophysiologic nature of OKCs. While mutations of the PTC gene could not be detected in 4 BCNS-associated OKCs by direct DNA sequencing, 3 of 5 primary and 4 of 4 recurrent OKCs had several mutations of this gene. These results suggest that PTC mutations are probably related not only to BCNS-associated OKCs but also to sporadic OKCs.
Collapse
Affiliation(s)
- K Ohki
- Department of Oral Medicine and Surgery, Division of Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
120
|
Hamaoka BY, Dann CE, Geisbrecht BV, Leahy DJ. Crystal structure of Caenorhabditis elegans HER-1 and characterization of the interaction between HER-1 and TRA-2A. Proc Natl Acad Sci U S A 2004; 101:11673-8. [PMID: 15289613 PMCID: PMC511037 DOI: 10.1073/pnas.0402559101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Indexed: 11/18/2022] Open
Abstract
HER-1 is a secreted protein that promotes male development in the nematode Caenorhabditis elegans. HER-1 inhibits the function of TRA-2A, a multipass integral membrane protein thought to serve as its receptor. We report here the 1.5-A crystal structure of HER-1. The structure was solved by the multiwavelength anomalous diffraction method by using selenomethionyl-substituted HER-1 produced in Chinese hamster ovary cells. The HER-1 structure consists of two all-helical domains and is not closely homologous to any known structure. Sites of amino acid substitutions known to impair HER-1 function were mapped on the HER-1 structure and classified according to the likely mechanism by which they affect HER-1 activity. A subset of these and other amino acid substitutions on the HER-1 surface were assayed for their ability to disrupt interactions between HER-1 and TRA-2A-expressing cells, and a localized region on the HER-1 surface important for mediating this interaction was identified.
Collapse
Affiliation(s)
- Brent Y Hamaoka
- Department of Biophysics and Biophysical Chemistry and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
121
|
Casali A, Struhl G. Reading the Hedgehog morphogen gradient by measuring the ratio of bound to unbound Patched protein. Nature 2004; 431:76-80. [PMID: 15300262 DOI: 10.1038/nature02835] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 07/09/2004] [Indexed: 02/06/2023]
Abstract
Morphogens are 'form-generating' substances that spread from localized sites of production and specify distinct cellular outcomes at different concentrations. A cell's perception of morphogen concentration is thought to be determined by the number of active receptors, with inactive receptors making little if any contribution. Patched (Ptc), the receptor for the morphogen Hedgehog (Hh), is active in the absence of ligand and blocks the expression of target genes by inhibiting Smoothened (Smo), an essential transducer of the Hh signal. Hh binding to Ptc abrogates the ability of Ptc to inhibit Smo, thereby unleashing Smo activity and inducing target gene expression. Here, we show that a cell's measure of ambient Hh concentration is not determined solely by the number of active (unliganded) Ptc molecules. Instead, we find that Hh-bound Ptc can titrate the inhibitory action of unbound Ptc. Furthermore, we demonstrate that this effect is sufficient to allow normal reading of the Hh gradient in the presence of a form of Ptc that cannot bind the ligand but retains its ability to inhibit Smo. These results support a model in which the ratio of bound to unbound Ptc molecules determines the cellular response to Hh.
Collapse
Affiliation(s)
- Andreu Casali
- Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
122
|
Nakano Y, Kim HR, Kawakami A, Roy S, Schier AF, Ingham PW. Inactivation of dispatched 1 by the chameleon mutation disrupts Hedgehog signalling in the zebrafish embryo. Dev Biol 2004; 269:381-92. [PMID: 15110707 DOI: 10.1016/j.ydbio.2004.01.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/07/2004] [Accepted: 01/12/2004] [Indexed: 10/26/2022]
Abstract
Searches of zebrafish EST and whole genome shotgun sequence databases for sequences encoding the sterol-sensing domain (SSD) protein motif identified two sets of DNA sequences with significant homology to the Drosophila dispatched gene required for release of secreted Hedgehog protein. Using morpholino antisense oligonucleotides, we found that inhibition of one of these genes, designated Disp1, results in a phenotype similar to that of the "you-type" mutants, previously implicated in signalling by Hedgehog proteins in the zebrafish embryo. Injection of disp1 mRNA into embryos homozygous for one such mutation, chameleon (con) results in rescue of the mutant phenotype. Radiation hybrid mapping localised disp1 to the same region of LG20 to which the con mutation was mapped by meiotic recombination analysis. Sequence analysis of disp1 cDNA derived from homozygous con mutant embryos revealed that both mutant alleles are associated with premature termination codons in the disp1 coding sequence. By analysing the expression of markers of specific cell types in the neural tube, pancreas and myotome of con mutant and Disp1 morphant embryos, we conclude that Disp1 activity is essential for the secretion of lipid-modified Hh proteins from midline structures.
Collapse
Affiliation(s)
- Y Nakano
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
123
|
Brellier F, Marionnet C, Chevallier-Lagente O, Toftgard R, Mauviel A, Sarasin A, Magnaldo T. Ultraviolet Irradiation Represses PATCHED Gene Transcription in Human Epidermal Keratinocytes through an Activator Protein-1-Dependent Process. Cancer Res 2004; 64:2699-704. [PMID: 15087382 DOI: 10.1158/0008-5472.can-03-3477] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basal cell carcinoma (BCC) is one of the major types of skin cancer arising from keratinocytes. The SONIC HEDGEHOG pathway is deregulated in 100% of sporadic BCCs, as indicated by the overexpression of PATCHED, whose product encodes the receptor of SONIC HEDGEHOG, in 100% of analyzed BCCs. Reverse transcription-PCR analysis revealed that exposure to UVB irradiation, which is a risk factor known to contribute to BCC development, induces a strong and sharp decrease of PATCHED mRNA level both in vitro and ex vivo. Transcription of a reporter gene driven by the 4.4-kb 5'-regulatory region of the human PATCHED gene was shown to be down-regulated after UVB irradiation. Furthermore, overexpression of c-JUN, a member of the activator protein (AP)-1 family, induced repression of the PATCHED promoter. The role of AP-1 in UVB-induced PATCHED repression was confirmed in mouse embryonic fibroblasts knocked out for c-JUN NH(2)-terminal protein kinase. This study thus provides the first evidence of UV-induced down-regulation at the transcriptional level of the BCC-associated tumor suppressor PATCHED relying on activation of the AP-1 oncogenic pathway.
Collapse
Affiliation(s)
- Florence Brellier
- Laboratory of Genetic Instability and Cancer, Centre National de la Recherche Scientifique UPR2169, Institut Gustave Roussy, Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
The Hedgehog (Hh) signal transduction pathway plays critical instructional roles during development. Activating mutations in human Hh signaling components predispose to a variety of tumor types, and have been observed in sporadic tumors occurring in a wide range of organs. Multiple insights into the regulation of Hh signaling have been achieved through studies using Drosophila melanogaster as a model organism. In Drosophila, regulation of the transcription factor Cubitus interruptus (Ci) is the ultimate target of the Hh pathway. Ci is regulated through communication of the membrane proteins Patched (Ptc) and Smoothened (Smo) to the intracellular Hedgehog Signaling Complex (HSC) in response to a graded concentration of Hh ligand. The HSC consists of the Kinesin Related Protein, Costal2 (Cos2), the serine-threonine protein kinase. Fused (Fu) and Ci. In the absence of Hh stimulation, the HSC is involved in processing of Ci to a truncated repressor protein. In response to Hh binding to Ptc, processing of Ci is blocked to allow for accumulation of full-length Ci activator protein(s). Differential concentrations of Hh ligand stimulate production of Ci transcriptional activators of varying strength, which facilitate activation of distinct subsets of target genes. The mechanism(s) by which Ptc and Smo communicate with the HSC in response to differential ligand concentrations to regulate Ci function are not yet fully elucidated. Here, we review what is known about regulation of individual Hh signaling components, concentrating on the mechanisms by which the Hh signal is propagated through Smo to the HSC.
Collapse
Affiliation(s)
- Stacey K. Ogden
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
| | - Manuel Ascano
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Graduate Program, Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | - Melanie A. Stegman
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Graduate Program, Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | - David J. Robbins
- Department of Pharmacology and Toxicology, Dartmouth Medical School, 7650 Remsen Hall, Hanover, NH 03755-3835, USA
- Corresponding author. Tel.: +1-603-650-1716; fax: +1-603-650-1129. (D.J. Robbins)
| |
Collapse
|
125
|
Stegman MA, Goetz JA, Ascano M, Ogden SK, Nybakken KE, Robbins DJ. The Kinesin-related protein Costal2 associates with membranes in a Hedgehog-sensitive, Smoothened-independent manner. J Biol Chem 2003; 279:7064-71. [PMID: 14645371 PMCID: PMC3659396 DOI: 10.1074/jbc.m311794200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Drosophila, Hedgehog (Hh) signal transduction has been shown to require a multiprotein complex (Hedgehog signaling complex (HSC)), which includes the Kinesin-related protein Costal2 (Cos2), the serine/threonine protein kinase Fused (Fu), and the transcription factor Cubitus interruptus (Ci). We present evidence that a biologically relevant fraction of the HSC is found in association with cellular membranes. We demonstrate that Cos2 is capable of tethering an exogenous protein to vesicular membranes and that Cos2 association with membranes is Hh-sensitive. In addition, we demonstrate that Cos2 associates with membranes in cells that lack the transmembrane protein Smoothened (Smo) through a domain of Cos2 distinct from its recently characterized Smo binding domain. We suggest that an Hh-regulated membrane binding activity of Cos2 is part of the mechanism by which Cos2 contributes to Hh signaling. We propose a model in which there are two distinct HSCs with discrete subcellular localizations and activities: one is endosome-associated and facilitates production of a repressor form of Ci (HSC-R), and one is Smo-associated and promotes Ci activation (HSC-A). In response to Hh and through interaction with Cos2, Smo mediates both inhibition of the endosome-associated HSC-R and activation of HSC-A at the plasma membrane.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Membrane/metabolism
- Centrifugation, Density Gradient
- DNA/chemistry
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Drosophila
- Drosophila Proteins/chemistry
- Drosophila Proteins/metabolism
- Drosophila Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Endosomes/metabolism
- Genes, Reporter
- Green Fluorescent Proteins
- Hedgehog Proteins
- Immunoblotting
- Kinesins/chemistry
- Kinesins/physiology
- Luminescent Proteins/metabolism
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Biological
- Protein Binding
- Protein Serine-Threonine Kinases/physiology
- Protein Structure, Tertiary
- RNA, Double-Stranded/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction
- Smoothened Receptor
- Time Factors
- Transcription Factors/metabolism
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Melanie A Stegman
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755-3835, USA
| | | | | | | | | | | |
Collapse
|
126
|
Canamasas I, Debes A, Natali PG, Kurzik-Dumke U. Understanding human cancer using Drosophila: Tid47, a cytosolic product of the DnaJ-like tumor suppressor gene l2Tid, is a novel molecular partner of patched related to skin cancer. J Biol Chem 2003; 278:30952-60. [PMID: 12783860 DOI: 10.1074/jbc.m304225200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recessive mutations of the Drosophila gene lethal(2)-tumorous imaginal discs (l(2)tid) cause neoplastic growth of the anlagen of the adult organs, the imaginal discs. Here we report that the three proteins encoded by this evolutionarily conserved gene, Tid50, Tid47, and Tid40, identified as members of the DnaJ cochaperone family, are destined for different cellular compartments, build complexes with many proteins in a developmental stage-specific manner, and are likely to be involved in different cellular processes. We show that the cytosolic Tid47 molecule is a novel component of the Hedgehog (Hh)-Patched (Ptc) signaling regulating cell/tissue polarity and spatial patterning during development and is associated with human tumors such as basal cell carcinoma (BCC) and medulloblastoma. We provide functional evidence for its direct in vivo interaction with the Hh-bound Ptc receptor during signal transmission. Because loss of l(2)tid causes neoplastic transformation of Hh-responsive cells, we suggest that Tid47 may at least act as a guardian of the Hh signaling gradient by regulating Ptc homeostasis in the tissue. Finally, we show that the expression of htid-1, the human counterpart of l(2)tid, is altered in human BCCs. We demonstrate that in BCCs loss of htid expression correlates with loss of differentiation capacity of the neoplastic cells similar to that found in the Drosophila tumor model.
Collapse
Affiliation(s)
- Itziar Canamasas
- Institute of Genetics, Laboratory for Comparative Tumor Biology, Johannes Gutenberg University, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
127
|
Abstract
The mammalian cell continuously adjusts its sterol content by regulating levels of key sterol synthetic enzymes and levels of LDL receptors that mediate uptake of cholesterol-laden particles. Control is brought about by sterol-regulated transcription of relevant genes and by regulated degradation of the committed step enzyme HMG-CoA reductase (HMGR). Current work has revealed that proteolysis is at the heart of each of these mechanistically distinct axes. Transcriptional control is effected by regulated cleavage of the membrane-bound transcription factor sterol regulatory element binding protein (SREBP), and HMGR degradation is brought about by ubiquitin-mediated degradation. In each case, ongoing cell biological processes are being harnessed to bring about regulation. The secretory pathway plays a central role in allowing sterol-mediated control of transcription. The constitutively active endoplasmic reticulum (ER) quality control apparatus is employed to bring about regulated destruction of HMGR. This review describes the methods and results of various studies to understand the mechanisms and molecules involved in these distinct but interrelated aspects of sterol regulation and the intriguing similarities that appear to exist at the levels of protein sequence and cell biology.
Collapse
Affiliation(s)
- Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla 92093-0347, USA.
| |
Collapse
|
128
|
Androutsellis-Theotokis A, Goldberg NR, Ueda K, Beppu T, Beckman ML, Das S, Javitch JA, Rudnick G. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J Biol Chem 2003; 278:12703-9. [PMID: 12569103 DOI: 10.1074/jbc.m206563200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tnaT gene of Symbiobacterium thermophilum encodes a protein homologous to sodium-dependent neurotransmitter transporters. Expression of the tnaT gene product in Escherichia coli conferred the ability to accumulate tryptophan from the medium and the ability to grow on tryptophan as a sole source of carbon. Transport was Na(+)-dependent and highly selective. The K(m) for tryptophan was approximately 145 nm, and tryptophan transport was unchanged in the presence of 100 microM concentrations of other amino acids. Tryptamine and serotonin were weak inhibitors with K(I) values of 200 and 440 microM, respectively. By using a T7 promoter-based system, TnaT with an N-terminal His(6) tag was expressed at high levels in the membrane and was purified to near-homogeneity in high yield.
Collapse
|
129
|
Alexandre C, Vincent JP. Requirements for transcriptional repression and activation by Engrailed in Drosophila embryos. Development 2003; 130:729-39. [PMID: 12506003 DOI: 10.1242/dev.00286] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic analysis shows that Engrailed (En), a homeodomain-containing transcription factor, has both negative and positive targets. Negative regulation is expected from a factor that has a well-defined repressor domain but activation is harder to comprehend. We used VP16En, a form of En that had its repressor domain replaced by the activation domain of VP16, to show that En activates targets using two parallel routes, by repressing a repressor and by being a bona fide activator. We identified the intermediate repressor activity as being encoded by sloppy paired 1 and 2 and showed that bona fide activation is dramatically enhanced by Wingless signaling. Thus, En is a bifunctional transcription factor and the recruitment of additional cofactors presumably specifies which function prevails on an individual promoter. Extradenticle (Exd) is a cofactor thought to be required for activation by Hox proteins. However, in thoracic segments, Exd is required for repression (as well as activation) by En. This is consistent with in vitro results showing that Exd is involved in recognition of positive and negative targets. Moreover, we provide genetic evidence that, in abdominal segments, Ubx and Abd-A, two homeotic proteins not previously thought to participate in the segmentation cascade, are also involved in the repression of target genes by En. We suggest that, like Exd, Ubx and Abd-A could help En recognize target genes or activate the expression of factors that do so.
Collapse
Affiliation(s)
- Cyrille Alexandre
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
130
|
Gorfinkiel N, Sánchez L, Guerrero I. Development of the Drosophila genital disc requires interactions between its segmental primordia. Development 2003; 130:295-305. [PMID: 12466197 DOI: 10.1242/dev.00214] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In both sexes, the Drosophila genital disc comprises three segmental primordia: the female genital primordium derived from segment A8, the male genital primordium derived from segment A9 and the anal primordium derived from segments A10-11. Each segmental primordium has an anterior (A) and a posterior (P) compartment, the P cells of the three segments being contiguous at the lateral edges of the disc. We show that Hedgehog (Hh) expressed in the P compartment differentially signals A cells at the AP compartment border and A cells at the segmental border. As in the wing imaginal disc, cell lineage restriction of the AP compartment border is defined by Hh signalling. There is also a lineage restriction barrier at the segmental borders, even though the P compartment cells of the three segments converge in the lateral areas of the disc. Lineage restriction between segments A9 and A10-11 depends on factors other than the Hh, En and Hox genes. The segmental borders, however, can be permeable to some morphogenetic signals. Furthermore, cell ablation experiments show that the presence of all primordia (either the anal or the genital primordium) during development are required for normal development of genital disc. Collectively, these findings suggest that interaction between segmental primordia is required for the normal development of the genital disc.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Centro de Biologia Molecular Severo Ochoa, C.S.I.C., Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
131
|
Abstract
Developmental pathways first elucidated by genetic studies in the fruit fly Drosophila melanogaster are conserved in vertebrates. The hedgehog pathway, first discovered because of its involvement in early Drosophila development, plays a key role in human embryogenesis. Dissruption of this pathway has been associated with congenital anomalies of the central nervous system, axial skeleton, limbs, and occasionally other organs. Many developmental genes continue to play an important role in regulation of cell growth and differentiation after embryogenesis, and mutations that lead to activation of the hedgehog pathway result in skin cancer and other malignancies in children and adults.
Collapse
Affiliation(s)
- Allen E Bale
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA.
| |
Collapse
|
132
|
Bai J, Montell D. Eyes absent, a key repressor of polar cell fate during Drosophila oogenesis. Development 2002; 129:5377-88. [PMID: 12403709 DOI: 10.1242/dev.00115] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Throughout Drosophila oogenesis, specialized somatic follicle cells perform crucial functions in egg chamber formation and in signaling between somatic and germline cells. In the ovary, at least three types of somatic follicle cells, polar cells, stalk cells and main body epithelial follicle cells, can be distinguished when egg chambers bud from the germarium. Although specification of these three somatic cell types is important for normal oogenesis and subsequent embryogenesis, the molecular basis for establishment of their cell fates is not completely understood. Our studies reveal the gene eyes absent (eya) to be a key repressor of polar cell fate. EYA is a nuclear protein that is normally excluded from polar and stalk cells, and the absence of EYA is sufficient to cause epithelial follicle cells to develop as polar cells. Furthermore, ectopic expression of EYA is capable of suppressing normal polar cell fate and compromising the normal functions of polar cells, such as promotion of border cell migration. Finally, we show that ectopic Hedgehog signaling, which is known to cause ectopic polar cell formation, does so by repressing eya expression in epithelial follicle cells.
Collapse
Affiliation(s)
- Jianwu Bai
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, USA
| | | |
Collapse
|
133
|
Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci U S A 2002; 99:14071-6. [PMID: 12391318 PMCID: PMC137838 DOI: 10.1073/pnas.182542899] [Citation(s) in RCA: 795] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2002] [Indexed: 12/13/2022] Open
Abstract
Smoothened (Smo), a distant relative of G protein-coupled receptors, mediates Hedgehog (Hh) signaling during embryonic development and can initiate or transmit ligand-independent pathway activation in tumorigenesis. Although the cellular mechanisms that regulate Smo function remain unclear, the direct inhibition of Smo by cyclopamine, a plant-derived steroidal alkaloid, suggests that endogenous small molecules may be involved. Here we demonstrate that SAG, a chlorobenzothiophene-containing Hh pathway agonist, binds to the Smo heptahelical bundle in a manner that antagonizes cyclopamine action. In addition, we have identified four small molecules that directly inhibit Smo activity but are structurally distinct from cyclopamine. Functional and biochemical studies of these compounds provide evidence for the small molecule modulation of Smo through multiple mechanisms and yield insights into the physiological regulation of Smo activity. The mechanistic differences between the Smo antagonists may be useful in the therapeutic manipulation of Hh signaling.
Collapse
Affiliation(s)
- James K Chen
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
134
|
Von Dassow G, Odell GM. Design and constraints of the Drosophila segment polarity module: robust spatial patterning emerges from intertwined cell state switches. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:179-215. [PMID: 12362429 DOI: 10.1002/jez.10144] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Drosophila segment polarity genes constitute the last tier in the segmentation cascade; their job is to maintain the boundaries between parasegments and provide positional "read-outs" within each parasegment for the entire developmental history of the animal. These genes constitute a relatively well-defined network with a relatively well-understood patterning task. In a previous publication (von Dassow et al. 2000. Nature 406:188-192) we showed that a computer model predicts the segment polarity network to be a robust boundary-making device. Here we elaborate those findings. First, we explore the constraints among parameters that govern the network model. Second, we test architectural variants of the core network, and show that the network tolerates a wide variety of adjustments in design. Third, we evaluate several topologically identical models that incorporate more or less molecular detail, finding that more-complex models perform noticeably better than simplified ones. Fourth, we discuss two instances in which the failure of the network model to behave in a life-like fashion highlights mechanistic details that need further experimental investigation. We conclude with an explanation of how the segment polarity network can be understood as an interwoven conspiracy of simple dynamical elements, several bistable switches and a homeostat. The robustness with which the network as a whole maintains a spatial regime of stable cell state emerges from generic dynamical properties of these simple elements.
Collapse
Affiliation(s)
- George Von Dassow
- Department of Zoology, University of Washington, Seattle, Washington 98105, USA.
| | | |
Collapse
|
135
|
Ma Y, Erkner A, Gong R, Yao S, Taipale J, Basler K, Beachy PA. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 2002; 111:63-75. [PMID: 12372301 DOI: 10.1016/s0092-8674(02)00977-7] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dispatched (disp) gene is required for long-range Hedgehog (Hh) signaling in Drosophila. Here, we demonstrate that one of two murine homologs, mDispA, can rescue disp function in Drosophila and is essential for all Hh patterning activities examined in the early mouse embryo. Embryonic fibroblasts lacking mDispA respond normally to exogenously provided Sonic hedgehog (Shh) signal, but are impaired in stimulation of other responding cells when expressing Shh. We have developed a biochemical assay that directly measures the activity of Disp proteins in release of soluble Hh proteins. This activity is disrupted by alteration of residues functionally conserved in Patched and in a related family of bacterial transmembrane transporters, thus suggesting similar mechanisms of action for all of these proteins.
Collapse
Affiliation(s)
- Yong Ma
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Bailey EC, Milenkovic L, Scott MP, Collawn JF, Johnson RL. Several PATCHED1 missense mutations display activity in patched1-deficient fibroblasts. J Biol Chem 2002; 277:33632-40. [PMID: 12072433 DOI: 10.1074/jbc.m202203200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in mouse and human patched1 (ptc1) genes are associated with birth defects and cancer. Ptc1 is a receptor for Hedgehog (Hh) signaling proteins. Hh proteins activate transcription of target genes, including ptc1, and Ptc1 represses those genes, both by regulating the activity of Gli transcription factors. We have established mammalian cell lines with reduced Ptc1 function and a lacZ reporter to investigate Hh signal transduction. Embryonic fibroblasts were derived from mice, heterozygous or homozygous for a ptc1 mutation that inserts lacZ under the control of the ptc1 promoter (ptc1-lacZ). In heterozygous ptc1 cells, ptc1-lacZ was expressed at low levels but could be induced by Sonic Hedgehog (Shh) and Gli-1. Homozygous ptc1 cells expressed high levels of ptc1-lacZ without Hh stimulation. ptc1-lacZ expression was dependent on cell density in ptc1 homozygotes and Hh-stimulated heterozygotes but was independent of density when Gli1 was used to activate ptc1-lacZ. A wild-type ptc1 transgene introduced into homozygous ptc1 cells greatly reduced ptc1-lacZ expression. Expression of either half of Ptc1 alone resulted in improper maturation of the protein and a failure to complement the ptc1(-/-) cells. When co-expressed, both Ptc1 halves matured and had an activity similar to that of the intact protein. Three missense PTCH1 mutations exhibited significant functions in homozygous ptc1 cells. The missense mutants retained activity when expressed at about 10-fold lower levels and appeared as stable as wild-type Ptc1. These studies suggest that some tumors and disease phenotypes may arise from small reductions in PTCH1 activity.
Collapse
Affiliation(s)
- Evans C Bailey
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
137
|
Lacbawan FL, Muenke M. Central nervous system embryogenesis and its failures. Pediatr Dev Pathol 2002; 5:425-47. [PMID: 12202995 DOI: 10.1007/s10024-002-0003-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Accepted: 12/01/2001] [Indexed: 11/29/2022]
Abstract
The well-orchestrated development of the central nervous system (CNS) requires highly integrated regulatory processes to ensure its precise spatial organization that provides the foundation for proper function. As emphasized in this review, the type, timing, and location of regulatory molecules influence the different stages of development from neuronal induction, regional specification, neuronal specification, and neuronal migration to axonal growth and guidance, neuronal survival, and synapse formation. The known molecular mechanisms are summarized from studies of invertebrates and lower vertebrates, in which we have learned more about the different ligands, receptors, transcription factors, and the intracellular signaling pathways that play specific roles in the different stages of development. Despite known molecular mechanisms of some disturbances, most of the clinical entities that arise from failures of CNS embryogenesis remain unexplained. As more novel genes and their functions are discovered, existing mechanisms will be refined and tenable explanations will be made. With these limitations, two specific clinical entities that have been relatively well studied, holoprosencephaly and neuronal migration defects, are discussed in more detail to illustrate the complexity of regulatory mechanisms that govern well-defined stages of CNS development.
Collapse
Affiliation(s)
- Felicitas L Lacbawan
- Department of Medical Genetics, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | |
Collapse
|
138
|
Tang CY, Sun YH. Use of mini-white as a reporter gene to screen for GAL4 insertions with spatially restricted expression pattern in the developing eye in drosophila. Genesis 2002; 34:39-45. [PMID: 12324945 DOI: 10.1002/gene.10135] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chiou-Yang Tang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
139
|
Bergstein I, Leopold PL, Sato N, Panteleyev A, Christiano A, Crystal R. In vivo enhanced expression of patched dampens the sonic hedgehog pathway. Mol Ther 2002; 6:258-64. [PMID: 12161193 DOI: 10.1006/mthe.2002.0628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sonic hedgehog (SHH)-patched (PTCH) pathway functions in normal embryonic development of the brain, musculoskeletal system, and hair follicles, and in normal post-natal control of hair follicles. Dysregulation of the pathway has been implicated in a variety of neoplasias, including those of skin and brain. Based on the knowledge that generalized, prolonged PTCH expression can inhibit the effects of SHH signaling, we tested the hypothesis that localized transient overexpression of PTCH would inhibit the phenotype of SHH-induced accelerated growth of hair follicles. Adenovirus (Ad)-mediated transient over-expression of Shh (AdShh) in telogen (8 weeks) mouse skin induced anagen hair growth as demonstrated by histology and gross appearance. Strikingly, local intradermal administration of a Ptch-expressing adenovirus (AdPtch), but not a Null control adenovirus (AdNull), 18 hours before AdShh injection, significantly blocked this phenotype, with 100% of AdPtch+AdShh mice failing to advance to anagen compared with AdNull+AdShh mice and AdShh mice (30% and 45% failing to advance to anagen, respectively). Thus, PTCH expression mediated by gene transfer can modulate the SHH signaling pathway in the adult mammal and may serve as a starting point for therapies relevant to clinical conditions resulting from dysregulation of this pathway as well as for strategies to suppress normal SHH-dependent processes, such as hair growth.
Collapse
Affiliation(s)
- Ivan Bergstein
- Division of Pulmonary and Critical Care Medicine, Weill Medical College of Cornell University, New York, New York, 10021, USA
| | | | | | | | | | | |
Collapse
|
140
|
Deckelbaum RA, Chan G, Miao D, Goltzman D, Karaplis AC. Ihh enhances differentiation of CFK-2 chondrocytic cells and antagonizes PTHrP-mediated activation of PKA. J Cell Sci 2002; 115:3015-25. [PMID: 12082161 DOI: 10.1242/jcs.115.14.3015] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Indian Hedgehog (Ihh), a member of the hedgehog (HH) family of secreted morphogens, and parathyroid hormone-related peptide (PTHrP) are key regulators of cartilage cell (chondrocyte) differentiation. We have investigated, in vitro, the actions of HH signalling and its possible interplay with PTHrP using rat CFK-2 chondrocytic cells. Markers of chondrocyte differentiation[alkaline phosphatase (ALP) activity, and type II (Col2a1) and type X collagen (Col10a1) expression] were enhanced by overexpression of Ihh or its N-terminal domain (N-Ihh), effects mimicked by exogenous administration of recombinant N-terminal HH peptide. Moreover, a missense mutation mapping to the N-terminal domain of Ihh (W160G) reduces the capacity of N-Ihh to induce differentiation. Prolonged exposure of CFK-2 cells to exogenous N-Shh(5×10-9 M) in the presence of PTHrP (10-8 M) or forskolin (10-7 M) resulted in perturbation of HH-mediated differentiation. In addition, overexpression of a constitutively active form of the PTHrP receptor (PTHR1 H223R) inhibited Ihh-mediated differentiation,implicating activation of protein kinase A (PKA) by PTHR1 as a probable mediator of the antagonistic effects of PTHrP. Conversely, overexpression of Ihh/N-Ihh or exogenous treatment with N-Shh led to dampening of PTHrP-mediated activation of PKA. Taken together, our data suggest that Ihh harbors the capacity to induce rather than inhibit chondrogenic differentiation, that PTHrP antagonizes HH-mediated differentiation through a PKA-dependent mechanism and that HH signalling, in turn, modulates PTHrP action through functional inhibition of signalling by PTHR1 to PKA.
Collapse
Affiliation(s)
- Ron A Deckelbaum
- Department of Medicine and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
141
|
Nybakken KE, Turck CW, Robbins DJ, Bishop JM. Hedgehog-stimulated phosphorylation of the kinesin-related protein Costal2 is mediated by the serine/threonine kinase fused. J Biol Chem 2002; 277:24638-47. [PMID: 11934882 DOI: 10.1074/jbc.m110730200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hedgehog (Hh) signaling molecule is required for the development of numerous tissues in Drosophila. Within the cell, Hh signal transduction utilizes a large protein complex consisting of the Fused (Fu), Costal2 (Cos2), and Cubitis interruptus (Ci) proteins, but the functional interactions between these proteins are still largely uncharacterized. Using a baculovirus system, we demonstrate that the serine/threonine kinase Fu phosphorylates the kinesin-like protein Cos2 when coexpressed with Cos2. Coexpression of Cos2 and a kinase-inactive version of Fu eliminates the majority of Cos2 phosphorylation. We then show that the primary Fu-induced phosphorylation site of Cos2 is serine 572, whereas serine 931 is phosphorylated to a lesser extent. Mutation of serine 572 to alanine eliminates most, but not all, specific phosphopeptides of Cos2 when coexpressed with Fu. We also demonstrate that the phosphorylation pattern of Cos2 produced by baculovirus coexpression with kinase-dead Fu is almost identical to the phosphorylation pattern of Cos2 isolated from unstimulated S2 cells. Finally, the phosphorylation pattern of Cos2 produced by baculovirus coinfection with wild-type Fu is almost identical to that of Cos2 isolated from S2 cells stimulated by Hh, indicating that phosphorylation of serines 572 and 931 is a genuine Hh signaling event. This study clarifies the unique functions of Fu and Cos2 in Hh signal transduction and identifies only the second known phosphorylation site of a kinesin-like molecule.
Collapse
Affiliation(s)
- Kent E Nybakken
- Hooper Foundation, Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
142
|
Shyamala BV, Bhat KM. A positive role for Patched-Smoothened signaling in promoting cell proliferation during normal head development in Drosophila. Development 2002; 129:1839-47. [PMID: 11934850 DOI: 10.1242/dev.129.8.1839] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transmembrane receptor Patched regulates several developmental processes in both invertebrates and vertebrates. In vertebrates, Patched also acts as a tumor suppressor. The Patched pathway normally operates by negatively regulating Smoothened, a G-protein-coupled receptor; binding of Hedgehog ligand to Patched relieves this negative interaction and allows signaling by Smoothened. We show that Ptc regulates Drosophila head development by promoting cell proliferation in the eye-antennal disc. During head morphogenesis, Patched positively interacts with Smoothened, which leads to the activation of Activin type I receptor Baboon and stimulation of cell proliferation in the eye-antennal disc. Thus, loss of Ptc or Smoothened activity affects cell proliferation in the eye-antennal disc and results in adult head capsule defects. Similarly, reducing the dose of smoothened in a patched background enhances the head defects. Consistent with these results, gain-of-function Hedgehog interferes with the activation of Baboon by Patched and Smoothened, leading to a similar head capsule defect. Expression of an activated form of Baboon in the patched domain in a patched mutant background completely rescues the head defects. These results provide insight into head morphogenesis, a process we know very little about, and reveal an unexpected non-canonical positive signaling pathway in which Patched and Smoothened function to promote cell proliferation as opposed to repressing it.
Collapse
Affiliation(s)
- Baragur V Shyamala
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
143
|
Mohr SE, Boswell RE. Genetic analysis of Drosophila melanogaster polytene chromosome region 44D-45F: loci required for viability and fertility. Genetics 2002; 160:1503-10. [PMID: 11973305 PMCID: PMC1462071 DOI: 10.1093/genetics/160.4.1503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A genetic screen to identify mutations in genes in the 45A region on the right arm of chromosome 2 that are involved in oogenesis in Drosophila was undertaken. Several lethal but no female sterile mutations in the region had previously been identified in screens for P-element insertion or utilizing X rays or EMS as a mutagen. Here we report the identification of EMS-induced mutations in 21 essential loci in the 45D-45F region, including 13 previously unidentified loci. In addition, we isolated three mutant alleles of a newly identified locus required for fertility, sine prole. Mutations in sine prole disrupt spermatogenesis at or before individualization of spermatozoa and cause multiple defects in oogenesis, including inappropriate division of the germline cyst and arrest of oogenesis at stage 4.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
144
|
Johnson RL, Zhou L, Bailey EC. Distinct consequences of sterol sensor mutations in Drosophila and mouse patched homologs. Dev Biol 2002; 242:224-35. [PMID: 11820817 DOI: 10.1006/dbio.2001.0524] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The membrane protein Patched (Ptc) is a critical regulator of Hedgehog signaling. Ptc is among a family of proteins that contain a sterol sensor motif. The function of this domain is poorly understood, but some proteins that contain sterol sensors are involved in cholesterol homeostasis. In the SREBP cleavage-activating protein (SCAP), sterols inhibit the protein's activity through this domain. Mutations in two highly conserved residues in the SCAP sterol sensor have been identified that confer resistance to sterol regulation. We introduced the analogous mutations in the sterol sensor motif of fly Ptc and mouse Ptc1 and examined their effect on protein activity. In contrast to SCAP, the sterol sensor mutations had different affects on Drosophila Ptc; Ptc Y442C retained function, while Ptc D584N conferred dominant negative activity. In the wing imaginal disc, Ptc D584N overexpression induced Hedgehog targets by stabilizing Cubitus interruptus and inducing decapentaplegic. However, Ptc D584N did not induce collier, a gene that requires high levels of Hedgehog signaling. In mouse Ptc1, the Y438C and D585N mutations did not stimulate signaling in Shh-responsive cell lines but did complement murine ptc1(-/-) cells. The results suggest that mutations in sterol sensor motifs alter function differently between sterol sensor family members.
Collapse
Affiliation(s)
- Ronald L Johnson
- Departments of Cell Biology and Neurobiology, University of Alabama at Birmingham, 35294-0005, USA.
| | | | | |
Collapse
|
145
|
Bren-Mattison Y, Olwin BB. Sonic hedgehog inhibits the terminal differentiation of limb myoblasts committed to the slow muscle lineage. Dev Biol 2002; 242:130-48. [PMID: 11820811 DOI: 10.1006/dbio.2001.0528] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proliferation, differentiation, and fusion of a small number of myogenic precursor cells must be precisely regulated during development to ensure the proper size, organization, and function of the limb musculature. We have examined the role of Sonic hedgehog (Shh) in these processes by both augmentation and inhibition of the Shh-mediated signaling pathway. Our data show that Shh regulates muscle development by repressing the terminal differentiation of early myogenic precursor cells and does not function as a myoblast mitogen. Shh function in hypaxial muscle appears to be spatially restricted to the early myoblast population within the ventral muscles of the posterior region of the limb. Furthermore, Shh appears to act as a permissive, rather than an inductive, signal for slow MyHC expression in myoblasts. Our data thus provide the foundation for a new hypothesis for Shh function in hypaxial skeletal muscle development.
Collapse
Affiliation(s)
- Yvette Bren-Mattison
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
146
|
Amanai K, Jiang J. Distinct roles of Central missing and Dispatched in sending the Hedgehog signal. Development 2001; 128:5119-27. [PMID: 11748147 DOI: 10.1242/dev.128.24.5119] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secreted Hedgehog (Hh) proteins control many aspects of growth and patterning in animal development. The mechanism by which the Hh signal is sent and transduced is still not well understood. We describe a genetic screen aimed at identifying positive regulators in the hh pathway. We recovered multiple new alleles of hh and dispatched (disp). In addition, we identified a novel component in the hh pathway, which we name central missing (cmn). Loss-of-function mutations in cmn cause similar patterning defects to those caused by hh or dispatched (disp) mutations. Moreover, cmn affects the expression of hh responsive genes but not of hh itself. Like disp, cmn acts upstream of patched (ptc) and its activity is required only in the Hh secreting cells. However, unlike disp, which is required for the release of the cholesterol-modified form of Hh, cmn regulates the activity of Hh in a manner that is independent of cholesterol modification. Finally, we show that cmn mutations bear molecular lesions in CG11495, which encodes a putative membrane bound acyltransferase related to Porcupine, a protein implicated in regulating the secretion of Wingless (Wg) signal.
Collapse
Affiliation(s)
- K Amanai
- Center for Developmental Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | |
Collapse
|
147
|
Makino S, Masuya H, Ishijima J, Yada Y, Shiroishi T. A spontaneous mouse mutation, mesenchymal dysplasia (mes), is caused by a deletion of the most C-terminal cytoplasmic domain of patched (ptc). Dev Biol 2001; 239:95-106. [PMID: 11784021 DOI: 10.1006/dbio.2001.0419] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A recessive mouse mutation, mesenchymal dysplasia (mes), which arose spontaneously on Chromosome 13, causes excess skin, increased body weight, and mild preaxial polydactyly. Fine gene mapping in this study indicated that mes is tightly linked to patched (ptc) that encodes a transmembrane receptor protein for Shh. Molecular characterization of the ptc gene of the mes mutant and an allelism test using a ptc knockout allele (ptc(-)) demonstrated that mes is caused by a deletion of the most C-terminal cytoplasmic domain of the ptc gene. Since mes homozygous embryos exhibit normal spinal cord development as compared with ptc(-) homozygotes, which die around 10 dpc with severe neural tube defects, the C-terminal cytoplasmic domain lost in mes mutation is dispensable for inhibition of Shh signaling in early embryogenesis. However, compound heterozygotes of ptc(-) and mes alleles, which survive up to birth and die neonatally, had increased body weight and exhibited abnormal anteroposterior axis formation of the limb buds. These findings indicate that Ptc is a negative regulator of body weight and ectopic activation of Shh signaling in the anterior mesenchyme of the limb buds, and that the C-terminal cytoplasmic domain of Ptc is involved in its repressive action.
Collapse
Affiliation(s)
- S Makino
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | | | | | |
Collapse
|
148
|
Pierucci-Alves F, Clark AM, Russell LD. A developmental study of the Desert hedgehog-null mouse testis. Biol Reprod 2001; 65:1392-402. [PMID: 11673255 DOI: 10.1095/biolreprod65.5.1392] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Desert hedgehog (Dhh) is a cell-signaling molecule that was first discovered in Drosophila. A unique testicular phenotype has been described in neonatal and adult Dhh-null animals that includes anastomotic seminiferous tubules, pertitubular cell abnormalities, and absence of adult-type Leydig cells. In the present study, we addressed the developmental basis for the abnormalities previously described for the adult Dhh-null phenotype. The source of Dhh is the Sertoli cell, and receptors are localized on peritubular cells and possibly Leydig cells. The development of testes from Dhh-null mouse embryos was studied using light and electron microscopy at 11.5, 12.5, 13.5, and 16.5 days postcoitum (dpc) and was compared with that in control Dhh heterozygous and wild-type embryos. Dhh-null and control testes were generally similar during the period of early cord formation (11.5-12.5 dpc). By 13.5 dpc, the basal lamina delimiting the cords was lacking in some regions and disorganized in Dhh-null testes, and occasional germ cells were seen outside cords. At 16.5 dpc, these defects were more prominent and cord organization was less well defined than in controls. In addition, there were numerous extracordal germ cells, some of which were partially enclosed by a somatic cell of unknown identity. Numerous fibroblast-like cells, apparently secreting collagen and basal lamina, characterized the interstitium of the Dhh-null testis. These defects likely stem from abnormal peritubular stimulation due to the lack of Dhh, leading to the abnormalities seen in the developmental stages studied here and in the adult testis.
Collapse
Affiliation(s)
- F Pierucci-Alves
- Southern Illinois University School of Medicine, Department of Physiology, Carbondale, Illinois 62901, USA
| | | | | |
Collapse
|
149
|
Pearse RV, Vogan KJ, Tabin CJ. Ptc1 and Ptc2 transcripts provide distinct readouts of Hedgehog signaling activity during chick embryogenesis. Dev Biol 2001; 239:15-29. [PMID: 11784016 DOI: 10.1006/dbio.2001.0430] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hedgehog (Hh) signaling in vertebrates controls patterning and differentiation of a broad range of tissues during development. The Hh receptor Patched (Ptc) is a critical regulator of signaling, maintaining active repression of the pathway in the absence of stimulation, limiting excess diffusion of ligand, and providing an efficient negative feedback mechanism for fine-tuning the responsiveness of receiving cells. Two distinct Ptc genes have been isolated from several vertebrates. Here, we describe the cloning of a second Ptc gene from chick (Ptc2). We show that Ptc1 and Ptc2 are both upregulated at sites of active Hh signaling but that the expression patterns of these genes only partially overlap, thus providing distinct readouts of Hh pathway stimulation. We also show that chick Ptc2 is expressed in the posterior apical ectodermal ridge (AER) of the limb bud in a pattern similar to Fgf4 and that the induction of Ptc2 within the AER, like that of Fgf4, is mediated via antagonism of BMP signaling. The differential responsiveness of cells to Hh pathway stimulation (as marked by the differential induction of Ptc genes) suggests heterogeneity in the mechanisms by which Hh signals are transduced within different populations of receiving cells.
Collapse
Affiliation(s)
- R V Pearse
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
150
|
Abstract
The primitive gonad of the Drosophila embryo is formed from two cell types, the somatic gonad precursor cells (SGPs) and the germ cells, which originate at distant sites. To reach the SGPs the germ cells must undergo a complex series of cell movements. While there is evidence that attractive and repulsive signals guide germ cell migration through the embryo, the molecular identity of these instructive molecules has remained elusive. Here, we present evidence suggesting that hedgehog (hh) may serve as such an attractive guidance cue. Misexpression of hh in the soma induces germ cells to migrate to inappropriate locations. Conversely, cell-autonomous components of the hh pathway appear to be required in the germline for proper germ cell migration.
Collapse
Affiliation(s)
- G Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|