101
|
Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H, Balamuth N, Maris JM, Brodeur GM. Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 2010; 16:1478-85. [PMID: 20179224 DOI: 10.1158/1078-0432.ccr-09-1531] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Neuroblastoma, a common pediatric tumor of the sympathetic nervous system, is characterized by clinical heterogeneity. The Trk family neurotrophin receptors play an important role in this behavior. Expression of TrkA is associated with favorable clinical features and outcome, whereas TrkB expression is associated with an unfavorable prognosis. We wanted to determine if the Trk-selective inhibitor lestaurtinib had therapeutic efficacy in a preclinical neuroblastoma model. EXPERIMENTAL DESIGN We performed intervention trials of lestaurtinib alone or in combination with other agents in TrkB-overexpressing neuroblastoma xenograft models. RESULTS Lestaurtinib alone significantly inhibited tumor growth compared to vehicle-treated animals [P = 0.0004 for tumor size and P = 0.011 for event-free survival (EFS)]. Lestaurtinib also enhanced the antitumor efficacy of the combinations of topotecan plus cyclophosphamide (P < 0.0001 for size and P < 0.0001 for EFS) or irinotecan plus temozolomide (P = 0.011 for size and P = 0.012 for EFS). There was no additive benefit of combining either 13-cis-retinoic acid or fenretinide with lestaurtinib compared to lestaurtinib alone. There was dramatic growth inhibition combining lestaurtinib with bevacizumab (P < 0.0001), but this combination had substantial systemic toxicity. CONCLUSIONS We show that lestaurtinib can inhibit the growth of neuroblastoma both in vitro and in vivo and can substantially enhance the efficacy of conventional chemotherapy, presumably by inhibition of the Trk/brain-derived neurotrophic factor autocrine survival pathway. It may also enhance the efficacy of selected biological agents, but further testing is required to rule out unanticipated toxicities. Our data support the incorporation of Trk inhibitors, such as lestaurtinib, in clinical trials of neuroblastoma or other tumors relying on Trk signaling pathways for survival.
Collapse
Affiliation(s)
- Radhika Iyer
- Division of Oncology and Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative movement disorder for which there is currently no effective therapy. Over the past several decades, there has been a considerable interest in neuroprotective therapies using trophic factors to alleviate the symptoms of PD. Neurotrophic factors (NTFs) are a class of molecules that influence a number of neuronal functions, including cell survival and axonal growth. Experimental studies in animal models suggest that members of neurotrophin family and GDNF family of ligands (GFLs) have the potent ability to protect degenerating dopamine neurons as well as promote regeneration of the nigrostriatal dopamine system. In clinical trials, although no serious adverse events related to the NTF therapy has been reported in patients, they remain inconclusive. In this chapter, we attempt to give a brief overview on several different growth factors that have been explored for use in animal models of PD and those already used in PD patients.
Collapse
|
103
|
A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One 2009; 4:e6606. [PMID: 19672298 PMCID: PMC2719871 DOI: 10.1371/journal.pone.0006606] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/11/2009] [Indexed: 12/23/2022] Open
Abstract
Background Stromal-Derived Inducing Activity (SDIA) is one of the most efficient methods of generating dopaminergic (DA) neurons from embryonic stem cells (ESC). DA neuron induction can be achieved by co-culturing ESC with the mouse stromal cell lines PA6 or MS5. The molecular nature of this effect, which has been termed “SDIA” is so far unknown. Recently, we found that factors secreted by PA6 cells provided lineage-specific instructions to induce DA differentiation of human ESC (hESC). Methodology/Principal Findings In the present study, we compared PA6 cells to various cell lines lacking the SDIA effect, and employed genome expression analysis to identify differentially-expressed signaling molecules. Among the factors highly expressed by PA6 cells, and known to be associated with CNS development, were stromal cell-derived factor 1 (SDF-1/CXCL12), pleiotrophin (PTN), insulin-like growth factor 2 (IGF2), and ephrin B1 (EFNB1). When these four factors, the combination of which was termed SPIE, were applied to hESC, they induced differentiation to TH-positive neurons in vitro. RT-PCR and western blot analysis confirmed the expression of midbrain specific markers, including engrailed 1, Nurr1, Pitx3, and dopamine transporter (DAT) in cultures influenced by these four molecules. Electrophysiological recordings showed that treatment of hESC with SPIE induced differentiation of neurons that were capable of generating action potentials and forming functional synaptic connections. Conclusions/Significance The combination of SDF-1, PTN, IGF2, and EFNB1 mimics the DA phenotype-inducing property of SDIA and was sufficient to promote differentiation of hESC to functional midbrain DA neurons. These findings provide a method for differentiating hESC to form DA neurons, without a requirement for the use of animal-derived cell lines or products.
Collapse
|
104
|
Sampieri K, Mencarelli MA, Carmela Epistolato M, Toti P, Lazzi S, Bruttini M, Francesco SD, Longo I, Meloni I, Mari F, Acquaviva A, Hadjistilianou T, Renieri A, Ariani F. Genomic differences between retinoma and retinoblastoma. Acta Oncol 2009; 47:1483-92. [PMID: 18785023 DOI: 10.1080/02841860802342382] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Genomic copy number changes are involved in the multi-step process transforming normal retina in retinoblastoma after RB1 mutational events. Previous studies on retinoblastoma samples led to a multi-step model in which after two successive RB1 mutations, further genomic changes accompany malignancy: 1q32.1 gain is followed by 6p22 gain, that in turn is followed by 16q22 loss and 2p24.1 gain. Retinoma is a benign variant of retinoblastoma that was initially considered a tumor regression, but recent evidences suggest that it rather represents a pre-malignant lesion. Genetic studies on retinoma tissue have rarely been performed. MATERIALS AND METHODS We investigated by Real-Time qPCR, copy number changes of candidate genes located within the 4 hot-spot regions (MDM4 at 1q32.1, MYCN at 2p24.1, E2F3 at 6p22 and CDH11 at 16q22) in retina, retinoma and retinoblastoma tissues from two different patients. RESULTS Our results demonstrated that some copy number changes thought to belong to early (MDM4 gain) or late stage (MYCN and E2F3 gain) of retinoblastoma are already present in retinoma at the same (for MDM4) or at lower (for MYCN and E2F3) copy number variation respect to retinoblastoma. CDH11 copy number is not altered in the two retinoma samples, but gain is present in one of the two retinoblastomas. DISCUSSION Our results suggest that MDM4 gain may be involved in the early transition from normal retina to retinoma, while MYCN and E2F3 progressive gain may represent driving factors of tumor progression. These results also confirm the pre-malignant nature of retinoma.
Collapse
|
105
|
Ramos B, Valín A, Sun X, Gill G. Sp4-dependent repression of neurotrophin-3 limits dendritic branching. Mol Cell Neurosci 2009; 42:152-9. [PMID: 19555762 DOI: 10.1016/j.mcn.2009.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 01/16/2023] Open
Abstract
Regulation of neuronal gene expression is critical to establish functional connections in the mammalian nervous system. The transcription factor Sp4 regulates dendritic patterning during cerebellar granule neuron development by limiting branching and promoting activity-dependent pruning. Here, we investigate neurotrophin-3 (NT3) as a target gene important for Sp4-dependent dendritic morphogenesis. We found that Sp4 overexpression reduced NT3 promoter activity whereas knockdown of Sp4 increased NT3 promoter activity and mRNA. Moreover, Sp4 bound to the NT3 promoter in vivo, supporting a direct role for Sp4 as a repressor of NT3 expression. Addition of exogenous NT3 promoted dendritic branching in cerebellar granule neurons. Furthermore, sequestering NT3 blocked the continued addition of dendritic branches observed upon Sp4 knockdown, but had no effect on dendrite pruning. These findings demonstrate that, during cerebellar granule neuron development, Sp4-dependent repression of neurotrophin-3 is required to limit dendritic branching and thereby promote acquisition of the mature dendritic pattern.
Collapse
Affiliation(s)
- Belén Ramos
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
106
|
Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 2009; 15:3244-50. [PMID: 19417027 DOI: 10.1158/1078-0432.ccr-08-1815] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuroblastoma, the most common and deadly solid tumor in children, exhibits heterogeneous clinical behavior, from spontaneous regression to relentless progression. Current evidence suggests that the TRK family of neurotrophin receptors plays a critical role in these diverse behaviors. Neuroblastomas expressing TrkA are biologically favorable and prone to spontaneous regression or differentiation, depending on the absence or presence of its ligand (NGF) in the microenvironment. In contrast, TrkB-expressing tumors frequently have MYCN amplification and are very aggressive and often fatal tumors. These tumors also express the TrkB ligand (BDNF), resulting in an autocrine or paracrine survival pathway. Exposure to BDNF promotes survival, drug resistance, and angiogenesis of TrkB-expressing tumors. Here we review the role of Trks in normal development, the different functions of Trk isoforms, and the major Trk signaling pathways. We also review the roles these receptors play in the heterogeneous biological and clinical behavior of neuroblastomas, and the activation of Trk receptors in other cancers. Finally we address the progress that has been made in developing targeted therapy with Trk-selective inhibitors to treat neuroblastomas and other tumors with activated Trk expression.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Alleva E, Francia N. Psychiatric vulnerability: Suggestions from animal models and role of neurotrophins. Neurosci Biobehav Rev 2009; 33:525-36. [DOI: 10.1016/j.neubiorev.2008.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 05/21/2008] [Accepted: 09/03/2008] [Indexed: 01/19/2023]
|
108
|
Rybakowski JK. BDNF gene: functional Val66Met polymorphism in mood disorders and schizophrenia. Pharmacogenomics 2009; 9:1589-93. [PMID: 19018714 DOI: 10.2217/14622416.9.11.1589] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) gene has become a candidate gene for molecular-genetic studies of mood disorders and schizophrenia, and also for pharmacogenomics of drugs used in the treatment of these conditions, such as mood-stabilizers in bipolar mood disorder, antidepressants in depression, and antipsychotics in schizophrenia. It has been demonstrated that the functional Val66Met polymorphism of the gene can be associated with a number of clinical and pharmacological phenomena in these illnesses.
Collapse
Affiliation(s)
- Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Science, Szpitalna 27/33, 60-572 Poznan, Poland.
| |
Collapse
|
109
|
Endo T, Ajiki T, Inoue H, Kikuchi M, Yashiro T, Nakama S, Hoshino Y, Murakami T, Kobayashi E. Early exercise in spinal cord injured rats induces allodynia through TrkB signaling. Biochem Biophys Res Commun 2009; 381:339-44. [PMID: 19222991 DOI: 10.1016/j.bbrc.2009.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/30/2022]
Abstract
Rehabilitation is important for the functional recovery of patients with spinal cord injury. However, neurological events associated with rehabilitation remain unclear. Herein, we investigated neuronal regeneration and exercise following spinal cord injury, and found that assisted stepping exercise of spinal cord injured rats in the inflammatory phase causes allodynia. Sprague-Dawley rats with thoracic spinal cord contusion injury were subjected to assisted stepping exercise 7 days following injury. Exercise promoted microscopic recovery of corticospinal tract neurons, but the paw withdrawal threshold decreased and C-fibers had aberrantly sprouted, suggesting a potential cause of the allodynia. Tropomyosin-related kinase B (TrkB) receptor for brain-derived neurotrophic factor (BDNF) was expressed on aberrantly sprouted C-fibers. Blocking of BDNF-TrkB signaling markedly suppressed aberrant sprouting and decreased the paw withdrawal threshold. Thus, early rehabilitation for spinal cord injury may cause allodynia with aberrant sprouting of C-fibers through BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Teruaki Endo
- Department of Orthopedic Surgery, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Antagonism of glutamate receptors in the CA1 to perirhinal cortex projection prevents long-term potentiation and attenuates levels of brain-derived neurotrophic factor. Brain Res 2009; 1265:53-64. [PMID: 19232328 DOI: 10.1016/j.brainres.2009.01.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 01/30/2009] [Accepted: 01/31/2009] [Indexed: 12/30/2022]
Abstract
The CA1 to perirhinal cortex projection is one of multiple hippocampal-neocortical projections considered to be involved in memory consolidation. This projection has been shown to sustain long-term potentiation (LTP) following stimulation of CA1. Here we examined the pharmacological properties underpinning the plasticity observed in this projection. A stimulating electrode was inserted into the area CA1 and a recording electrode was inserted into the perirhinal cortex of urethane-anaesthetised Wistar rats. Rats (n=6 in each drug group) were administered with either saline (0.09%), MK-801 (NMDA antagonist; 0.1 mg/kg) or CNQX (AMPA/kainate antagonist; 1.5 mg/kg). Baseline recordings were made for 10 min by stimulating area CA1 (0.05 Hz stimulation protocol). High-frequency stimulation (HFS; 250 Hz) was performed and post-HFS fEPSP recordings were made for 1 h (0.05 Hz, as above). Baseline and post-HFS paired-pulse facilitation (PPF) recordings were performed across six different interpulse intervals. CA1 and perirhinal cortex tissue samples were taken from the stimulated and unstimulated hemispheres of each rat brain and analysed using a brain-derived neurotrophic factor (BDNF) ELISA. Results indicate that LTP was induced in the saline and MK-801 groups but not in the CNQX group; fEPSPs in the latter group rapidly returned to baseline levels following a short period of post-tetanic potentiation. Drug treatment and HFS had no effect on PPF levels. Drug treatment significantly reduced concentrations of both CA1 and perirhinal BDNF and prevented stimulation-induced increases in BDNF in CA1. This molecular and electrophysiological data suggests that LTP in the CA1-perirhinal cortex projection may require activation of postsynaptic AMPA/kainate receptors in order to sustain LTP.
Collapse
|
111
|
Zhang YH, Chi XX, Nicol GD. Brain-derived neurotrophic factor enhances the excitability of rat sensory neurons through activation of the p75 neurotrophin receptor and the sphingomyelin pathway. J Physiol 2008; 586:3113-27. [PMID: 18450779 DOI: 10.1113/jphysiol.2008.152439] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neurotrophin-mediated signalling cascades can be initiated by activation of either the p75 neurotrophin receptor (p75(NTR)) or the more selective tyrosine kinase receptors. Previously, we demonstrated that nerve growth factor (NGF) increased the excitability of sensory neurons through activation of p75(NTR) to liberate sphingosine 1-phosphate. If neurotrophins can modulate the excitability of small diameter sensory neurons through activation of p75(NTR), then brain-derived neurotrophic factor (BDNF) should produce the same sensitizing action as did NGF. In this report, we show that focally applied BDNF increases the number of action potentials (APs) evoked by a ramp of depolarizing current by reducing the rheobase without altering the firing threshold. This increased excitability results, in part, from the capacity of BDNF to enhance a tetrodotoxin-resistant sodium current (TTX-R I(Na)) and to suppress a delayed rectifier-like potassium current (I(K)). The idea that BDNF acts via p75(NTR) is supported by the following observations. The sensitizing action of BDNF is prevented by pretreatment with a blocking antibody to p75(NTR) or an inhibitor of sphingosine kinase (dimethylsphingosine), but not by inhibitors of tyrosine kinase receptors (K252a or AG879). Furthermore, using single-cell RT-PCR, neurons that were sensitized by BDNF expressed the mRNA for p75(NTR) but not TrkB. These results demonstrate that neurotrophins can modulate the excitability of small diameter capsaicin-sensitive sensory neurons through the activation of p75(NTR) and its downstream sphingomyelin signalling cascade. Neurotrophins released upon activation of a variety of immuno-competent cells may be important mediators that give rise to the enhanced neuronal sensitivity associated with the inflammatory response.
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
112
|
Mercader JM, Saus E, Agüera Z, Bayés M, Boni C, Carreras A, Cellini E, de Cid R, Dierssen M, Escaramís G, Fernández-Aranda F, Forcano L, Gallego X, González JR, Gorwood P, Hebebrand J, Hinney A, Nacmias B, Puig A, Ribasés M, Ricca V, Romo L, Sorbi S, Versini A, Gratacòs M, Estivill X. Association of NTRK3 and its interaction with NGF suggest an altered cross-regulation of the neurotrophin signaling pathway in eating disorders. Hum Mol Genet 2008; 17:1234-44. [PMID: 18203754 DOI: 10.1093/hmg/ddn013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eating disorders (EDs) are complex psychiatric diseases that include anorexia nervosa and bulimia nervosa, and have higher than 50% heritability. Previous studies have found association of BDNF and NTRK2 to ED, while animal models suggest that other neurotrophin genes might also be involved in eating behavior. We have performed a family-based association study with 151 TagSNPs covering 10 neurotrophin signaling genes: NGFB, BDNF, NTRK1, NGFR/p75, NTF4/5, NTRK2, NTF3, NTRK3, CNTF and CNTFR in 371 ED trios of Spanish, French and German origin. Besides several nominal associations, we found a strong significant association after correcting for multiple testing (P = 1.04 x 10(-4)) between ED and rs7180942, located in the NTRK3 gene, which followed an overdominant model of inheritance. Interestingly, HapMap unrelated individuals carrying the rs7180942 risk genotypes for ED showed higher levels of expression of NTRK3 in lymphoblastoid cell lines. Furthermore, higher expression of the orthologous murine Ntrk3 gene was also detected in the hypothalamus of the anx/anx mouse model of anorexia. Finally, variants in NGFB gene appear to modify the risk conferred by the NTRK3 rs7180942 risk genotypes (P = 4.0 x 10(-5)) showing a synergistic epistatic interaction. The reported data, in addition to the previous reported findings for BDNF and NTRK2, point neurotrophin signaling genes as key regulators of eating behavior and their altered cross-regulation as susceptibility factors for EDs.
Collapse
Affiliation(s)
- Josep Maria Mercader
- Genes and Disease Program, Center for Genomic Regulation, 08003 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
The effects of neurotrophins during the middle and late stages of development are well known. It was previously thought that neurotrophins had no role during early development, but this is not the case and is the subject of this review article. The earliest neurotrophin receptor expressed is that for neurotrophin-3 (NT-3). TrkC is detected in the neural plate and is present in the neural tube. Initially, the distribution of TrkC is homogenous, but it becomes localized to specific regions of the neural tube as the neural tube differentiates. The receptor for brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), TrkB, is detected somewhat later than TrkC in the neural tube where it is also differentially localized. In contrast, the NGF receptor, TrkA, was not detected during early development. Both NT-3 and BDNF have been shown to have effects in vitro during early development. NT-3 caused an increase in neurite outgrowth and apoptosis in neural plate explants, and promoted differentiation of progenitors into motoneurons. BDNF increased the number of motoneurons in neural tube explants. These data suggest that NT-3 and BDNF may play a role during early development in vivo.
Collapse
Affiliation(s)
- Paulette Bernd
- Department of Anatomy and Cell Biology, State University of New York, Brooklyn, NY, USA.
| |
Collapse
|
114
|
P75 nerve growth factor receptor is expressed in regenerating human nerve grafts. J Surg Res 2007; 146:254-61. [PMID: 18036543 DOI: 10.1016/j.jss.2007.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/14/2007] [Accepted: 05/25/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND The purpose of this study was to elucidate the expression of p75 nerve growth factor receptor (p75NGFR) in human cross-facial nerve grafts and to compare the immunohistological findings with patient data and the functional outcome in facial reanimation. MATERIALS AND METHODS The study comprised 37 sural nerve graft specimens. All of the patients had long-lasting complete facial paralysis and were operated on by the standard two-stage procedure involving cross-facial nerve grafts and microneurovascular muscle transfer. Nerve biopsies were taken 4 to 20 months (mean, 8 months) after the cross-facial nerve grafting. Immunohistochemistry for p75NGFR as well as for Schwann cells (S-100; Dako, Glostrup, Denmark) and for Neurofilament-200 (NF-200; Boehringer, Mannheim, Germany) was performed. RESULTS In graft biopsies, the mean number of NF-200-positive axons amounted to 38% (range, 6-81%) of that in control samples. Further, regenerated axons were thinner than in control samples. Morphologically, the grafted nerves were characterized by fibrosis and invasion of inflammatory cells. A longer time between cross-facial nerve grafting and biopsy sampling correlated with a higher number of viable axons (NF-200) (P = 0.002). In all cases, expression of p75NGF receptor was clearly higher at the distal end of the grafted nerve. Expression of p75NGFR was lower in older than in younger patients (P = 0.003). A high expression of p75NGFR was often seen with better function of the transplanted muscle. CONCLUSION Increased expression of p75NGFR in human nerve grafts was noted, especially in younger patients. We suggest that p75NGFR expression might be a contributing factor in a successful axonal regeneration and eventual recovery of muscle function.
Collapse
|
115
|
Aguayo AJ, Clarke DB, Jelsma TN, Kittlerova P, Friedman HC, Bray GM. Effects of neurotrophins on the survival and regrowth of injured retinal neurons. CIBA FOUNDATION SYMPOSIUM 2007; 196:135-44; discussion 144-8. [PMID: 8866132 DOI: 10.1002/9780470514863.ch10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The focus of this short review is the role of certain neurotrophins and their receptors on the survival and regrowth of retinal ganglion cells (RGCs) whose axons are damaged in the optic nerve. Initial experiments in our laboratory documented patterns of RGC death after axotomy. Subsequent studies were designed to investigate the distribution of high-affinity neurotrophin receptors in neurons and glial cells of the retina and optic nerve. This information was used both in vitro and in vivo to study the effects of specific trophic molecules on the survival and regrowth of injured RGCs. During the course of experiments involving neurotrophin administration, an endogenous source of trophic support--independent of the exogenous administration of growth factors--was found within the eye. Several experiments were subsequently undertaken to define further this survival effect and determine its nature and source within the eye. Finally, anatomical techniques that help visualize fine axonal processes within the retina have provided insights into the specific effects of neurotrophins on the growth and branching of injured CNS axons.
Collapse
Affiliation(s)
- A J Aguayo
- Center for Research in Neuroscience, Montreal General Hospital Research Institute, Canada
| | | | | | | | | | | |
Collapse
|
116
|
Kozisek ME, Middlemas D, Bylund DB. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 2007; 117:30-51. [PMID: 17949819 DOI: 10.1016/j.pharmthera.2007.07.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 07/24/2007] [Indexed: 12/12/2022]
Abstract
The focus of this review is to critically examine and review the literature on the role of brain-derived neurotrophic factor (BDNF) and its primary receptor, tropomyosin-related kinase B (TrkB), in the actions of pharmacologically diverse antidepressant treatments for depression. This will include a review of the studies on the regulation of BDNF and TrkB by different types of antidepressant drug treatments and animal in models of depression, as well as altered levels of BDNF and TrkB in the blood and postmortem brain of patients with depression. Results from clinical and basic studies have demonstrated that stress and depression decrease BDNF expression and neurogenesis and antidepressant treatment reverses or blocks these effects, leading to the neurotrophic hypothesis of depression. Clinical studies demonstrate an association between BDNF levels and several disorders, including depression, epilepsy, bipolar disorder, Parkinson's and Alzheimer's diseases. Physical activity and diet exert neurotrophic effects and positively modulate BDNF levels. A common single nucleotide polymorphism (SNP) in the BDNF gene, a methionine substitution for valine, is associated with alterations in brain anatomy and memory, but what role it has in clinical disorders is unclear. Findings suggest that early childhood events and adult stress produce neurodegenerative alterations in the brain that can eventually cause breakdown of information processing in the neuronal networks regulating mood. Antidepressant treatments elevate activity-dependent neuronal plasticity by activating BDNF, thereby gradually restoring network function and ultimately mood.
Collapse
Affiliation(s)
- Megan E Kozisek
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, United States.
| | | | | |
Collapse
|
117
|
Abstract
The peripheral nervous system has the intrinsic capacity to regenerate but the reinnervation of muscles is often suboptimal and results in limited recovery of function. Injuries to nerves that innervate complex organs such as the larynx are particularly difficult to treat. The many functions of the larynx have evolved through the intricate neural regulation of highly specialized laryngeal muscles. In this review, we examine the responses of nerves and muscles to injury, focusing on changes in the expression of neurotrophic factors, and highlight differences between the skeletal limb and laryngeal muscle systems. We also describe how artificial nerve conduits have become a useful tool for delivery of neurotrophic factors as therapeutic agents to promote peripheral nerve repair and might eventually be useful in the treatment of laryngeal nerve injury.
Collapse
Affiliation(s)
- Paul J Kingham
- Blond McIndoe Research Laboratories, University of Manchester, Manchester, UK.
| | | |
Collapse
|
118
|
Sato K, Akaishi T, Matsuki N, Ohno Y, Nakazawa K. beta-Estradiol induces synaptogenesis in the hippocampus by enhancing brain-derived neurotrophic factor release from dentate gyrus granule cells. Brain Res 2007; 1150:108-20. [PMID: 17433270 DOI: 10.1016/j.brainres.2007.02.093] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 02/09/2007] [Accepted: 02/28/2007] [Indexed: 01/08/2023]
Abstract
We investigated the effect of beta-estradiol (E2) on synaptogenesis in the hippocampus using organotypic hippocampal slice cultures and subregional hippocampal neuron cultures. E2 increased the expression of PSD95, a postsynaptic marker, specifically in stratum lucidum of Cornu Ammonis 3 (CA3SL) in cultured hippocampal slices. E2 also increased the spine density at the proximal site of CA3 apical dendrites in CA3SL and PSD95 was clustered on these spine heads. The effects of E2 on the expression of PSD95 and the spine density disappeared when the dentate gyrus (DG) had been excised at 1 day in vitro (DIV). FM1-43 analysis of subregional hippocampal neuron cultures which were comprised of Ammon's horn neurons, DG neurons, or a mixture of these neurons, revealed that E2 increased the number of presynaptic sites in the cultures that contained DG neurons. K252a, a potent inhibitor of the high affinity receptor of brain-derived neurotrophic factor (BDNF), and function-blocking antibody to BDNF (BDNFAB) completely inhibited the effects of E2 in hippocampal slice cultures and subregional neuron cultures, whereas ICI182,780 (ICI), a strong antagonist of nuclear estrogen receptors (nERs), did not. Expression of BDNF in DG neurons was markedly higher than that in Ammon's horn neurons and E2 did not affect these expression levels. E2 significantly increased the BDNF release from DG neurons. KT5720, a specific inhibitor of 3'-5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA), and Rp-adenosine 3', 5'-cyclic monophosphorothioate triethylammonium salt (Rp-cAMP), a non-hydrolyzable diastereoisomer and a potent inhibitor of PKA, completely suppressed the E2-induced increase in BDNF release, whereas ICI and U0126, a potent inhibitor of MAP kinase kinase (MEK), did not. These results suggest that E2 induces synaptogenesis between mossy fibers and CA3 neurons by enhancing BDNF release from DG granule cells in a nER-independent and PKA-dependent manner.
Collapse
Affiliation(s)
- Kaoru Sato
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | |
Collapse
|
119
|
Perry RT, Wiener H, Harrell LE, Blacker D, Tanzi RE, Bertram L, Bassett SS, Go RCP. Follow-up mapping supports the evidence for linkage in the candidate region at 9q22 in the NIMH Alzheimer's disease Genetics Initiative cohort. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:220-7. [PMID: 17034007 DOI: 10.1002/ajmg.b.30433] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Other than the APOE peak at 19q13, the 9q22 region was identified in our original genomic scan as the candidate region with the highest multipoint lod score (MLS) in the subset of late onset Alzheimer's Disease (AD) families (MLS = 2.9 at 101 cM) from the NIMH Genetics Initiative sample. We have now genotyped an additional 12 short tandem repeats (STR) in this region. Multipoint analysis shows the region remains significant with an increase in the peak MLS from 2.9 to 3.8 at 95 cM near marker D9S1815, and the 1 LOD interval narrows from 21.5 to 11 cM. HLOD scores also provide evidence for significant linkage (4.5 with an alpha = 31%) with a further narrowing of the region to 6.6 cM (92.2-98.8 cM). Single nucleotide polymorphisms (SNPs) in the Ubiquilin1 gene (UBQLN1), located at 83.3 cM, have been reported to be significantly associated to AD, accounting for a substantial portion of the original linkage signal [Bertram et al., 2005]. Our analyses of the higher resolution genotype data generated here provide further support for the existence of a least one additional locus on chromosome 9q22. In an effort to pinpoint this putative AD susceptibility gene, we have begun to analyze SNPs in other candidate genes in and around this narrowed region to test for additional associations to AD.
Collapse
Affiliation(s)
- Rodney T Perry
- Department of Epidemiology and International Health, University of Alabama at Birmingham, Birmingham, Alabama 35294-0022, USA.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Do T, Kerr B, Kuzhikandathil EV. Brain-derived neurotrophic factor regulates the expression of D1 dopamine receptors. J Neurochem 2006; 100:416-28. [PMID: 17116228 DOI: 10.1111/j.1471-4159.2006.04249.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously demonstrated that the CAD catecholaminergic neuronal cell line is an appropriate model system to study the regulation of D(1) dopamine receptor expression. In this report, we show that brain-derived neurotrophic factor (BDNF) up-regulates the expression of D(1) dopamine receptor in CAD cells. In addition, by comparing D(1) receptor mRNA expression in wild-type, heterozygous and homozygous trkB knockout mice, we show that TrkB receptor signaling up-regulates D(1) receptor expression in vivo. In CAD cells expressing the TrkB receptor, BDNF increased D(1) receptor mRNA in a time- and dose-dependent manner with a fourfold increase in D(1) receptor mRNA observed as early as 3 h with 10 ng/mL of BDNF. Using different classes and concentrations of kinase inhibitors, we determined that BDNF-induced increase of D(1) receptor mRNA is mediated by the phosphatidylinositol 3-kinase signaling pathway. The increase required both new transcription and protein synthesis, as it was blocked by actinomycin D and cyclohexamide, respectively. Promoter deletion analysis identified a D(1) promoter region necessary for mediating the effect of BDNF. These results provide novel evidence that D(1) dopamine receptor expression is regulated by BDNF and its signaling pathway.
Collapse
Affiliation(s)
- Thuy Do
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
121
|
Voss OP, Milne S, Sharkey J, O'Neill MJ, McCulloch J. Molecular mechanisms of neurite growth with AMPA receptor potentiation. Neuropharmacology 2006; 52:590-7. [PMID: 17101156 DOI: 10.1016/j.neuropharm.2006.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 11/23/2022]
Abstract
Positive allosteric modulation of AMPA receptor function has therapeutic potential in a number of psychiatric disorders and neurodegenerative diseases. AMPA receptor potentiators can induce neurite sprouting in vivo. Using a strategy of combined morphological and biochemical analyses, we investigated the effect of the AMPA receptor potentiator LY404187 on neurite growth in the SH-SY5Y human neuroblastoma cell line. LY404187 (0.1-10 microM) increased average neurite length and neurofilament expression when co-administered with s-AMPA. Co-incubation with s-AMPA and LY404187 also increased Trk receptor expression. All actions of LY404187 were sensitive to AMPA receptor blockade by the selective antagonist CNQX (10 microM). Antibody sequestration of BDNF attenuated neurite growth following AMPA receptor potentiator administration, suggesting that LY404187 increases neurite length in vitro by a BDNF mediated mechanism. AMPA receptor potentiation activates multiple intracellular neurochemical cascades and the present report identifies BDNF as one key mediator of the neurotrophic effects of AMPA receptor potentiation.
Collapse
Affiliation(s)
- Oliver P Voss
- Division of Neuroscience, The University of Edinburgh, The Chancellor's Building (Room FU.203), 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | | | | | | | | |
Collapse
|
122
|
Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A. Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 2006; 143:175-87. [PMID: 16949762 DOI: 10.1016/j.neuroscience.2006.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 07/04/2006] [Accepted: 07/18/2006] [Indexed: 12/22/2022]
Abstract
Several studies have suggested that acid-sensing ion channel 2 (ASIC2) plays a role in mechanoperception and acid sensing in the peripheral nervous system. We examined the expression and distribution of ASIC2 in the rat dorsal root ganglion, the co-localization of ASIC2 with tropomyosin-related kinase (trk) receptors, and the effects of axotomy on ASIC2 expression. ASIC2 immunoreactivity was observed in both neurons and satellite cells. ASIC2-positive neurons accounted for 16.5 +/- 2.4% of the total neurons in normal dorsal root ganglion. Most ASIC2-positive neurons were medium-to-large neurons and were labeled with neurofilament 200 kD (NF200). Within these neurons, ASIC2 was not evenly distributed throughout the cytoplasm, but rather was accumulated prominently in the cytoplasm adjacent to the axon hillock and axonal process. We next examined the co-localization of ASIC2 with trk receptors. trkA was expressed in few ASIC2-positive neurons, and trkB and trkC were observed in 85.2% and 53.4% of ASIC2-positive neurons, respectively, while only 6.9% of ASIC2-positive neurons were co-localized with trkC alone. Peripheral axotomy markedly reduced ASIC2 expression in the axotomized dorsal root ganglion neurons. On the other hand, intense ASIC2 staining was observed in satellite cells. These results show that ASIC2 is expressed in the distinct neurochemical population of sensory neurons as well as satellite cells, and that peripheral axotomy induced marked reductions in ASIC2 in neurons.
Collapse
Affiliation(s)
- T Kawamata
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
123
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
124
|
Capsoni S, Cattaneo A. On the molecular basis linking Nerve Growth Factor (NGF) to Alzheimer's disease. Cell Mol Neurobiol 2006; 26:619-33. [PMID: 16944323 PMCID: PMC11520721 DOI: 10.1007/s10571-006-9112-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/26/2005] [Indexed: 01/27/2023]
Abstract
1. Alzheimer's disease (AD) is pathologically defined by the deposition of amyloid peptide and neurofibrillary tangles and is characterized by a progressive loss of cognition and memory function, due to marked cortical cholinergic depletion. 2. Cholinergic cortical innervation is provided by basal forebrain cholinergic neurons. The neurotrophin Nerve Growth Factor (NGF) promotes survival and differentiation of basal forebrain cholinergic neurons. 3. This assertion has been at the basis of the hypothesis developed in the last 20 years, whereby NGF deprivation would be one of the factor involved in the etiology of sporadic forms of AD. 4. In this review, we shall summarize data that lead to the production and characterization of a mouse model for AD (AD11 anti-NGF mice), based on the expression of transgenic antibodies neutralizing NGF. The AD-like phenotype of AD11 mice will be discussed on the basis of recent studies that have posed NGF and its precursor pro-NGF back to the stage of AD-like neurodegeneration, showing the involvement of the precursor pro-NGF in one of the cascades leading to AD neurodegeneration.
Collapse
Affiliation(s)
- Simona Capsoni
- Lay Line Genomics S.p.A., Via di Castel Romano 100, 00128, Rome, Italy.
| | | |
Collapse
|
125
|
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59:1116-27. [PMID: 16631126 DOI: 10.1016/j.biopsych.2006.02.013] [Citation(s) in RCA: 2457] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 02/14/2006] [Accepted: 02/17/2006] [Indexed: 02/06/2023]
Abstract
There is a growing body of evidence demonstrating that stress decreases the expression of brain-derived neurotrophic factor (BDNF) in limbic structures that control mood and that antidepressant treatment reverses or blocks the effects of stress. Decreased levels of BDNF, as well as other neurotrophic factors, could contribute to the atrophy of certain limbic structures, including the hippocampus and prefrontal cortex that has been observed in depressed subjects. Conversely, the neurotrophic actions of antidepressants could reverse neuronal atrophy and cell loss and thereby contribute to the therapeutic actions of these treatments. This review provides a critical examination of the neurotrophic hypothesis of depression that has evolved from this work, including analysis of preclinical cellular (adult neurogenesis) and behavioral models of depression and antidepressant actions, as well as clinical neuroimaging and postmortem studies. Although there are some limitations, the results of these studies are consistent with the hypothesis that decreased expression of BDNF and possibly other growth factors contributes to depression and that upregulation of BDNF plays a role in the actions of antidepressant treatment.
Collapse
Affiliation(s)
- Ronald S Duman
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508, USA.
| | | |
Collapse
|
126
|
Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama T, Yabe-Nishimura C. NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med 2006; 40:1785-95. [PMID: 16678016 DOI: 10.1016/j.freeradbiomed.2006.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 12/16/2005] [Accepted: 01/10/2006] [Indexed: 11/23/2022]
Abstract
Reactive oxygen species produced by NADPH oxidase are involved in the neuronal death associated with various neurodegenerative disorders. However, the role of NADPH oxidase in neuronal differentiation has not been well characterized. In nondifferentiated PC12 cells, the mRNA level of NOX1, a catalytic subunit of NADPH oxidase expressed in nonphagocytes, was approximately 10 times higher than that of the phagocyte type subunit, NOX2 (gp91(phox)), while the transcript of another isoform, NOX4, was not detected. Following nerve growth factor (NGF)-induced neurite outgrowth, the mRNA level of NOX1 and NOX2 was progressively increased and decreased, respectively. The NGF-induced increase in NOX1 mRNA was mediated by TrkA and accompanied by increased intracellular superoxide, which was suppressed by NADPH oxidase inhibitors. Unexpectedly, these inhibitors and superoxide scavengers significantly enhanced NGF-induced neurite outgrowth. Enhanced neurite outgrowth was similarly demonstrated in cells depleted with the NOX1 transcript by stable expression of ribozymes targeted for the NOX1 mRNA sequence. Furthermore, NGF-induced expression of betaIII-tubulin was significantly augmented in cells treated with NADPH oxidase inhibitors or stably expressing ribozymes. Phosphatidylinositol-3 (PI3) kinase inhibitors, without affecting NGF-induced NOX1 expression, augmented NGF-induced neurite outgrowth but not in clones expressing ribozymes. Taken together, increased superoxide production by up-regulation of NOX1 may negatively regulate neuronal differentiation by suppressing excessive neurite outgrowth.
Collapse
Affiliation(s)
- Masakazu Ibi
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
127
|
De Wit J, Eggers R, Evers R, Castrén E, Verhaagen J. Long-term adeno-associated viral vector-mediated expression of truncated TrkB in the adult rat facial nucleus results in motor neuron degeneration. J Neurosci 2006; 26:1516-30. [PMID: 16452675 PMCID: PMC6675476 DOI: 10.1523/jneurosci.4543-05.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adult facial motor neurons continue to express full-length TrkB tyrosine kinase receptor (TrkB.FL), the high-affinity receptor for the neurotrophins BDNF and neurotrophic factor-4/5 (NT-4/5), suggesting that they remain dependent on target-derived and locally produced neurotrophins in adulthood. Studies on the role of TrkB signaling in the adult CNS have been hampered by the early lethality of bdnf, nt-4/5, and trkB knock-out mice. We disrupted TrkB.FL signaling in adult facial motor neurons using adeno-associated viral vector-mediated overexpression of a naturally occurring dominant-negative TrkB receptor, TrkB.T1. Expression of TrkB.T1 resulted in neuronal atrophy and downregulation of NeuN (neuronal-specific nuclear protein) and ChAT expression in facial motor neurons. A subset of transduced neurons displayed signs of motor neuron degeneration that included dendritic beading and rounding of the soma at 2 months of TrkB.T1 expression. Cell counts revealed a significant reduction in motor neuron number in the facial nucleus at 4 months after onset of expression of TrkB.T1, suggesting that a proportion of TrkB.T1-expressing motor neurons became undetectable as a result of severe atrophy or was lost because of cell death. In contrast, overexpression of TrkB.FL did not result in a decrease in facial motor neuron number. Our results indicate that a subset of facial motor neurons remains dependent on TrkB ligands for the maintenance of structural and molecular characteristics in adulthood.
Collapse
|
128
|
Easton JB, Royer AR, Middlemas DS. The protein tyrosine phosphatase, Shp2, is required for the complete activation of the RAS/MAPK pathway by brain-derived neurotrophic factor. J Neurochem 2006; 97:834-45. [PMID: 16573649 DOI: 10.1111/j.1471-4159.2006.03789.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and other neurotrophins induce a unique prolonged activation of mitogen-activated protein kinase (MAPK) compared with growth factors. Characterization and kinetic and spatial modeling of the signaling pathways underlying this prolonged MAPK activation by BDNF will be important in understanding the physiological role of BDNF in many complex systems in the nervous system. In addition to Shc, fibroblast growth factor receptor substrate 2 (FRS2) is required for the BDNF-induced activation of MAPK. BDNF induces phosphorylation of FRS2. However, BDNF does not induce phosphorylation of FRS2 in cells expressing a deletion mutant of TrkB (TrkBDeltaPTB) missing the juxtamembrane NPXY motif. This motif is the binding site for SHC. NPXY is the consensus sequence for phosphotyrosine binding (PTB) domains, and notably, FRS2 and SHC contain PTB domains. This NPXY motif, which contains tyrosine 484 of TrkB, is therefore the binding site for both FRS2 and SHC. Moreover, the proline containing region (VIENP) of the NPXY motif is also required for FRS2 and SHC phosphorylation, which indicates this region is an important component of FRS2 and SHC recognition by TrkB. Previously, we had found that the phosphorylation of FRS2 induces association of FRS2 and growth factor receptor binding protein 2 (Grb2). Now, we have intriguing data that indicates BDNF induces association of the SH2 domain containing protein tyrosine phosphatase, Shp2, with FRS2. Moreover, the PTB association motif of TrkB containing tyrosine 484 is required for the BDNF-induced association of Shp2 with FRS2 and the phosphorylation of Shp2. These results imply that FRS2 and Shp2 are in a BDNF signaling pathway. Shp2 is required for complete MAPK activation by BDNF, as expression of a dominant negative Shp2 in cells attenuates BDNF-induced activation of MAPK. Moreover, expression of a dominant negative Shp2 attenuates Ras activation showing that the protein tyrosine phosphatase is required for complete activation of MAPKs by BDNF. In conclusion, Shp2 regulates BDNF signaling through the MAPK pathway by regulating either Ras directly or alternatively, by signaling components upstream of Ras. Characterization of MAPK signaling controlled by BDNF is likely to be required to understand the complex physiological role of BDNF in neuronal systems ranging from the regulation of neuronal growth and survival to the regulation of synapses.
Collapse
Affiliation(s)
- John B Easton
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, North Lauderdale, Memphis, Tennessee, USA
| | | | | |
Collapse
|
129
|
Schramm A, Schulte JH, Astrahantseff K, Apostolov O, Limpt VV, Sieverts H, Kuhfittig-Kulle S, Pfeiffer P, Versteeg R, Eggert A. Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett 2005; 228:143-53. [PMID: 15921851 DOI: 10.1016/j.canlet.2005.02.051] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 02/05/2005] [Indexed: 01/14/2023]
Abstract
The Trk family consists of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-NGF, BDNF, NT3 and NT4. Neurotrophins mediate their multiple effects through a number of distinct intracellular signaling cascades regulating such diverse biological responses as cell survival, proliferation and differentiation in normal and neoplastic neuronal cells. Expression of Trk receptors also plays an important role in the biology and clinical behavior of neuroblastomas. High expression of TrkA is present in neuroblastomas with favorable biological features and highly correlated with patient survival, whereas TrkB is mainly expressed on unfavorable, aggressive neuroblastomas. This short review discusses recent data on the biological roles of TrkA and TrkB signaling in neuroblastoma.
Collapse
Affiliation(s)
- Alexander Schramm
- Division of Hematology/Oncology and Endocrinology, University Children's Hospital of Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Grider MH, Mamounas LA, Le W, Shine HD. In situ expression of brain-derived neurotrophic factor or neurotrophin-3 promotes sprouting of cortical serotonergic axons following a neurotoxic lesion. J Neurosci Res 2005; 82:404-12. [PMID: 16206279 DOI: 10.1002/jnr.20635] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurotrophins promote sprouting and elongation of central nervous system (CNS) axons following injury. Consequently, it has been suggested that neurotrophins could be used to repair the CNS by inducing axonal sprouting from nearby intact axons, thereby compensating for the loss of recently injured axons. We tested whether long-term overexpression of neurotrophins in the rat cortex would induce sprouting of cortical serotonergic axons following a neurotoxic injury. After a single subcutaneous injection of para-chloroamphetamine (PCA; 9 mg/ml) that lesions the majority of serotonergic axons in the rat cortex, we injected adenoviral vectors containing cDNAs for brain-derived neurotrophic factor (Adv.BDNF), neurotrophin-3 (Adv.NT-3), or nerve growth factor (Adv.NGF) into the rat frontal cortex. Nine days later, we measured significant increases in the concentration of the respective neurotrophins surrounding the vector injection sites, as measured by ELISA. Immunohistochemical localization of serotonin revealed a fourfold increase in the density of serotonergic fibers surrounding the injection sites of Adv.BDNF and Adv.NT-3, corresponding to a 50% increase in cortical serotonin concentration, compared with a control vector containing the cDNA for enhanced green fluorescent protein (Adv.EGFP). In contrast, there was no difference in serotonergic fiber density or cortical serotonin concentration surrounding the injection of Adv.NGF compared with Adv.EGFP. These data demonstrate that localized overexpression of BDNF or NT-3, but not NGF, is sufficient to promote sprouting of serotonergic axons in the cortex following an experimental neurotoxic injury.
Collapse
Affiliation(s)
- M H Grider
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, and NINDS, NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
131
|
Meng M, Zhiling W, Hui Z, Shengfu L, Dan Y, Jiping H. Cellular levels of TrkB and MAPK in the neuroprotective role of BDNF for embryonic rat cortical neurons against hypoxia in vitro. Int J Dev Neurosci 2005; 23:515-21. [PMID: 16173113 DOI: 10.1016/j.ijdevneu.2005.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Intrauterine asphyxia often results in neonatal loss or mental retardation. Brain-derived neurotrophic factor (BDNF) has been shown to be a protective agent against hypoxic damage to neurons. To understand the signaling mechanism underling the neuroprotective function of BDNF and to find therapeutic interventions for intrauterine asphyxia, we utilized an immunofluorescent technique to measure the intracellular levels of tyrosine kinase B (TrkB), phosphorylated TrkB, and the mitogen-activated protein kinase (MAPK) in the rat embryonic cortical neurons cultured in hypoxic conditions with and without BDNF pretreatment. The results showed that the fluorescent intensity of TrkB and phosphorylated TrkB in the cytoplasm and the fluorescent intensity of MARK in both cytoplasma and nucleus of the neurons were significantly increased in the presence of BDNF. The results indicate that the neuroprotective function of BDNF against hypoxia-induced neurotoxicity requires the participation of TrkB and is transduced via the Ras-MAPK signaling pathway.
Collapse
Affiliation(s)
- Mao Meng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, 20 Renmin Nanlu, Chengdu Sichuan 610041, PR China
| | | | | | | | | | | |
Collapse
|
132
|
Szczepankiewicz A, Skibinska M, Czerski PM, Kapelski P, Leszczynska-Rodziewicz A, Słopien A, Dmitrzak-Weglarz M, Rybakowski F, Rybakowski J, Hauser J. No association of the brain-derived neurotrophic factor (BDNF) gene C-270T polymorphism with schizophrenia. Schizophr Res 2005; 76:187-93. [PMID: 15949651 DOI: 10.1016/j.schres.2005.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 02/10/2005] [Accepted: 02/12/2005] [Indexed: 12/24/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates a variety of neuromodulatory processes during development, as well as in adulthood. It has been proposed as a risk factor for schizophrenia. We have investigated a possible association between schizophrenia and the C-270T polymorphism in the brain-derived neurotrophic factor (BDNF) gene in 397 schizophrenic patients and 380 control subjects. The diagnosis of schizophrenia was made for each patient by at least two psychiatrists, using DSM-IV and ICD-10 criteria in structured clinical interviews for DSM-IV Axis I disorders (SCID). No association was found between schizophrenia and the analyzed polymorphism, for either genotype or allele distribution (for genotype: p=0.513, for alleles: p=0.812). Differences were not statistically significant when analyzed separately by sex. For males, the differences for genotype distribution and allele frequency were p=0.078 and p=0.162 respectively and for females: p=0.441 and p=0.315. Thus, our data indicate that variations in the BDNF gene are unlikely to be an important factor in susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Aleksandra Szczepankiewicz
- Laboratory of Psychiatric Genetics, University of Medical Sciences, ul. Szpitalna 27/33, 60-572 Poznan, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
|
134
|
Bachar O, Adner M, Uddman R, Cardell LO. Prolonged exposure to NT-3 attenuates cholinergic nerve-mediated contractions in cultured murine airways. Respir Physiol Neurobiol 2005; 147:81-9. [PMID: 15848126 DOI: 10.1016/j.resp.2005.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 01/28/2005] [Accepted: 01/28/2005] [Indexed: 11/19/2022]
Abstract
Chronic airway inflammation may induce subsequent airway hyper-responsiveness (AHR) including pathological alteration of neural activity. Asthmatic airways contain elevated levels of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) albeit, their effect on neural activity is unclear. This study evaluates the effects of NT-3 and BDNF on nerve mediated airway contractions in vitro. Tracheal segments from BALB/c J mice were cultured for 4 days with NT-3 or BDNF. Responsiveness to electric field stimulation (EFS) was evaluated in organ-bath and innervation patterns were examined by quantitative immunohistochemistry. In cultured segments the EFS-induced contractions were inhibited by tetrodotoxin or atropine. NT-3 reduced the EFS contractions in a concentration-dependent manner whereas BDNF had no effect. The amount of nerve fibers, found in conjunction with the tracheal smooth muscle, was similar in NT-3 treated and control segments. In conclusion, NT-3 attenuates cholinergic nerve-mediated contractions of airway in vitro. Considering the elevated levels of NT-3 found in asthmatic airways, the findings imply a protective role of NT-3 in AHR.
Collapse
Affiliation(s)
- Ofir Bachar
- Department of Otorhinolaryngology, Laboratory of Clinical Experimental Allergy Research, Malmö University Hospital, SE-20502 Malmö, Sweden.
| | | | | | | |
Collapse
|
135
|
Skibinska M, Hauser J, Czerski PM, Leszczynska-Rodziewicz A, Kosmowska M, Kapelski P, Slopien A, Zakrzewska M, Rybakowski JK. Association analysis of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar affective disorder. World J Biol Psychiatry 2005; 5:215-20. [PMID: 15543516 DOI: 10.1080/15622970410029936] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of schizophrenia and bipolar disorder. A functional polymorphism Val66Met of BDNF gene was studied in patients with schizophrenia (n=336), bipolar affective disorder (n=352) and healthy controls (n=375). Consensus diagnosis by at least two psychiatrists, according to DSM-IV and ICD-10 criteria, was made for each patient using a structured clinical interview for DSM-IV Axis I disorders (SCID). No association was found between the studied polymorphism and schizophrenia or bipolar affective disorder either for genotype or allele distribution (for genotype: p=0.210 in schizophrenia, p=0.400 in bipolar disorder; for alleles: p=0.260 in schizophrenia, p=0.406 in bipolar disorder). Results were also not significant when analysed by gender. For males genotype distribution and allele frequency were (respectively): p=0.480 and p=0.312 in schizophrenia, p=0.819 and p=0.673 in bipolar affective disorder. Genotype distribution and allele frequency observed in the female group were: p=0.258 for genotypes, p=0.482 for alleles in schizophrenia; p=0.432 for genotypes, p=0.464 for alleles in bipolar affective disorder. A subgroup of schizophrenic (n=62) and bipolar affective patients (n=28) with early age at onset (18 years or younger) was analysed (p=0.328 for genotypes, p=0.253 for alleles in schizophrenia; p=0.032 for genotypes, p=0.858 for alleles in bipolar affective disorder).
Collapse
Affiliation(s)
- Maria Skibinska
- Laboratory of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Pearse RN, Swendeman SL, Li Y, Rafii D, Hempstead BL. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood 2005; 105:4429-36. [PMID: 15657181 DOI: 10.1182/blood-2004-08-3096] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma (MM) is a B-cell neoplasm that is characterized by the clonal expansion of malignant plasma cells and is frequently associated with chromosomal translocations placing an oncogene under the control of the immunoglobulin heavy chain enhancer. Despite these pathogenic translocations, MM cells remain dependent on external cues for survival. We present evidence that brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), contribute to these survival cues. MM cells express TrkB, and respond to BDNF by activating mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase-a PI3K target (PI3K/Akt) signaling cascades. Addition of BDNF protects human MM cell lines (HMCLs) from apoptosis induced by dexamethasone or bortezomib and prolongs the survival of primary MM cells cultured alone or with human bone marrow (BM) stroma. As BDNF and TrkB are expressed by osteoblasts, stromal cells, and endothelial cells within the BM microenvironment, a BDNF-TrkB axis may be critical to the interactions of MM with bone and stroma that contribute to MM tumor progression. Finally, BDNF is expressed by malignant plasma cells isolated from a subset of patients with MM, as well as by most HMCLs, suggesting a potential role for this neurotrophin axis in autocrine as well as paracrine support of MM.
Collapse
Affiliation(s)
- Roger N Pearse
- Division of Hematology, Cornell University Medical College, Rm C-606, 1300 York Ave, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
137
|
Appert-Collin A, Duong FHT, Passilly-Degrace P, Gies JP, Warter JM, Poindron P. Quantification of neurotrophin mRNA expression in PMN mouse: modulation by xaliproden. Int J Immunopathol Pharmacol 2004; 17:157-64. [PMID: 15171816 DOI: 10.1177/039463200401700207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Compounds possessing neurotrophic properties may represent a possible treatment for neurodegenerative disorders such as amyotrophic lateral sclerosis. Xaliproden (SR57746A), an orally-active non-peptide compound, which has been found to exhibit neurotrophic effects in vitro and in vivo, increased the lifespan and delayed the progression of the motor neuron degeneration in PMN mice. We have used a quantitative reverse transcription/polymerase chain reaction amplification technique to study the regulation of neurotrophin mRNA and trk mRNA expression in PMN mice. NGF and NT-3 mRNA are downregulated in PMN mice. These deficiencies can be overcome by a treatment with xaliproden. Such an effect could contribute to neurotrophic effects of xaliproden in vivo and in vitro.
Collapse
Affiliation(s)
- A Appert-Collin
- University Louis Pasteur, Pharmacology Faculty, Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
138
|
Kuma H, Miki T, Matsumoto Y, Gu H, Li HP, Kusaka T, Satriotomo I, Okamoto H, Yokoyama T, Bedi KS, Onishi S, Suwaki H, Takeuchi Y. Early maternal deprivation induces alterations in brain-derived neurotrophic factor expression in the developing rat hippocampus. Neurosci Lett 2004; 372:68-73. [PMID: 15531090 DOI: 10.1016/j.neulet.2004.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 09/01/2004] [Accepted: 09/07/2004] [Indexed: 11/28/2022]
Abstract
The effects of maternal deprivation (MD) during early postnatal life on the brain-derived neurotrophic factor (BDNF) level were investigated in the present study. Wistar rats were assigned to either maternal deprivation or mother-reared control (MRC) groups. MD manipulation was achieved by separating rat pups from their mothers for 3h a day during postnatal days (PND) 10-15. At 16, 20, 30, and 60 days of age, the level of BDNF mRNA in the hippocampal formation of each group was determined using real-time PCR analysis. Early postnatal maternal deprivation of rat pups resulted in a significant increase in body weight at 60 days of age. The expression of BDNF mRNA in the hippocampus was significantly decreased at 16 days of age, and increased at 30 and 60 days of age. These data indicate that even a brief period of maternal deprivation during early postnatal life can affect hippocampal BDNF expression.
Collapse
Affiliation(s)
- Hiromi Kuma
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 2004; 430:1034-9. [PMID: 15329723 DOI: 10.1038/nature02765] [Citation(s) in RCA: 445] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 06/16/2004] [Indexed: 12/19/2022]
Abstract
Metastasis is a major factor in the malignancy of cancers, and is often responsible for the failure of cancer treatment. Anoikis (apoptosis resulting from loss of cell-matrix interactions) has been suggested to act as a physiological barrier to metastasis; resistance to anoikis may allow survival of cancer cells during systemic circulation, thereby facilitating secondary tumour formation in distant organs. In an attempt to identify metastasis-associated oncogenes, we designed an unbiased, genome-wide functional screen solely on the basis of anoikis suppression. Here, we report the identification of TrkB, a neurotrophic tyrosine kinase receptor, as a potent and specific suppressor of caspase-associated anoikis of non-malignant epithelial cells. By activating the phosphatidylinositol-3-OH kinase/protein kinase B pathway, TrkB induced the formation of large cellular aggregates that survive and proliferate in suspension. In mice, these cells formed rapidly growing tumours that infiltrated lymphatics and blood vessels to colonize distant organs. Consistent with the ability of TrkB to suppress anoikis, metastases--whether small vessel infiltrates or large tumour nodules--contained very few apoptotic cells. These observations demonstrate the potent oncogenic effects of TrkB and uncover a specific pro-survival function that may contribute to its metastatic capacity, providing a possible explanation for the aggressive nature of human tumours that overexpress TrkB.
Collapse
Affiliation(s)
- Sirith Douma
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | | | | | | | | | | |
Collapse
|
140
|
Gould TW, Oppenheim RW. The function of neurotrophic factor receptors expressed by the developing adductor motor pool in vivo. J Neurosci 2004; 24:4668-82. [PMID: 15140938 PMCID: PMC6729401 DOI: 10.1523/jneurosci.0580-04.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the spatio-temporal relationship between neurotrophic factor receptor (NTF-R) expression and motoneuron (MN) survival in the developing avian spinal cord and observed heterogeneity in the expression of NTF-Rs between, but not within, pools of MNs projecting to individual muscles. We then focused on the role of NTFs in regulating the survival of one motor pool of MNs, all of which innervate a pair of adductor muscles in the thigh and hence compete for survival during the period of programmed cell death (PCD). The complete NTF-R complement of these MNs was analyzed and found to include many, but not all, NTF-Rs. Treatment with exogenous individual NTFs rescued some, but not all, adductor MNs expressing appropriate NTF-Rs. In contrast, administration of multiple NTFs completely rescued adductor MNs from PCD. Additionally, adductor MNs were partially rescued from PCD by NTFs for which they failed to express receptors. NTF-Rs expressed by the nerve but not in the muscle target were capable of mediating survival signals to MNs in trans. Finally, the expression of some NTF-Rs by adductor MNs was not required for MN survival. These studies demonstrate the complexity in NTF regulation of a defined subset of competing MNs and suggest that properties other than NTF-R expression itself can play a role in mediating trophic responses to NTFs.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Neurobiology and Anatomy and Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
141
|
Rattiner LM, Davis M, French CT, Ressler KJ. Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci 2004; 24:4796-806. [PMID: 15152040 PMCID: PMC6729469 DOI: 10.1523/jneurosci.5654-03.2004] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 02/23/2004] [Accepted: 02/27/2004] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), play a critical role in activity-dependent synaptic plasticity and have been implicated as mediators of hippocampal-dependent learning and memory. The present study is the first to demonstrate a role for BDNF and TrkB in amygdala-dependent learning. Here, the use of Pavlovian fear conditioning as a learning model allows us to examine the concise role of BDNF in the amygdala after a single learning session and within a well understood neural circuit. Using in situ hybridization, mRNA levels of six different trophic factors [BDNF, neurotrophin (NT) 4/5, NGF, NT3, aFGF, and bFGF) were measured at varying time points during the consolidation period after fear conditioning. We found temporally specific changes only in BDNF gene expression in the basolateral amygdala after paired stimuli that supported learning but not after exposure to neutral or aversive stimuli alone. Using Western blotting, we found that the Trk receptor undergoes increased phosphorylation during this consolidation period, suggesting an activation of the receptor subsequent to BDNF release. Furthermore, disruption of neurotrophin signaling with intra-amygdala infusion of the Trk receptor antagonist K252a disrupted acquisition of fear conditioning. To address the specific role of the TrkB receptor, we created a novel lentiviral vector expressing a dominant-negative TrkB isoform (TrkB.T1), which specifically blocked TrkB activation in vitro. In vivo, TrkB.T1 lentivirus blocked fear acquisition without disrupting baseline startle or expression of fear. These data suggest that BDNF signaling through TrkB receptors in the amygdala is required for the acquisition of conditioned fear.
Collapse
Affiliation(s)
- Lisa M Rattiner
- Emory University School of Medicine, Center for Behavioral Neuroscience, Yerkes Research Center, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
142
|
Vernon EM, Oppenheim RW, Johnson JE. Distinct muscle targets do not vary in the developmental regulation of brain-derived neurotrophic factor. J Comp Neurol 470:317-329,2004. J Comp Neurol 2004; 470:330-7. [PMID: 14755520 DOI: 10.1002/cne.20018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developing neurons depend on many target-derived signals. One of these signals is the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous application of BDNF in vitro and in vivo rescues a population of lumbar motoneurons from programmed cell death. Given that BDNF does not rescue all motoneurons and that motoneurons differ in trophic factor receptor expression, subpopulations of motoneurons may have different sensitivities to the factor. These differences may be reflected in distinct target muscles specialized to produce different protein concentrations, or muscles may contain equal amounts of the factor and receptor expression determines motoneuron responsiveness. By using a sensitive electrochemiluminescent immunoassay (ECLIA), we measured normal developmental changes in BDNF protein concentration in anatomically and functionally distinct chick embryonic thigh muscles from E6 to E18. We found that there were no significant differences in BDNF protein concentration between muscles classified according to function (fast vs. slow) or anatomical position (flexor vs. extensor) and that the quantity of BDNF in the target did not appear to be activity dependent. These results suggest that, during development, the differences in the response of motoneurons to BDNF are not due to the anatomical or functional diversity of muscle targets. J. Comp. Neurol. 470:330-337, 2004.
Collapse
Affiliation(s)
- Elizabeth Marie Vernon
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
143
|
Berger C, Schabitz WR, Wolf M, Mueller H, Sommer C, Schwab S. Hypothermia and brain-derived neurotrophic factor reduce glutamate synergistically in acute stroke. Exp Neurol 2004; 185:305-12. [PMID: 14736512 DOI: 10.1016/j.expneurol.2003.10.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Moderate hypothermia and application of brain-derived neurotrophic factor (BDNF) have separately been identified as neuroprotective strategies in experimental cerebral ischemia. To assess their separate and combined effects on striatal glutamate release in the hyperacute phase of stroke, we inserted microdialysis probes into the striatum of rats 2 h before permanent middle cerebral artery occlusion (MCAO). The animals (N = 28) were randomly assigned to one of four treatment strategies commencing 30 min after MCAO: (1) hypothermia at 33 degrees C (n = 7); (2) intravenous BDNF infusion [300 microg/(kg/h) for 2 h, n = 7]; (3) combination of hypothermia and BDNF (n = 7); (4) control group (saline, n = 7). Infarct size at 5 h after MCAO was assessed with the silver-staining method. Total infarct volume was significantly reduced in the hypothermia (202.7 +/- 3.5 mm(3), P = 0.0002) and BDNF group (206.5 +/- 6.9 mm(3), P = 0.0006) as compared to control group (254.4 +/- 9.3 mm(3)). In the combination group, infarct size was further reduced with overall significance in post hoc tests (157.3 +/- 6.2 mm(3), P < 0.0001). Postischemic glutamate concentrations in the control group constantly remained significantly higher than in all other treatment groups. At 255 and 270 min after MCAO, striatal glutamate in the combination group decreased significantly more than in animals treated with hypothermia or BDNF alone.Combining hypothermia and BDNF therapy in the acute stage of ischemia has a synergistic effect in attenuating striatal glutamate release and reducing early infarct size.
Collapse
|
144
|
Abstract
The neurotrophins, which include nerve growth factor (NGF) and its relatives, were discovered and characterized for their distinctive ability to promote survival and differentiation of postmitotic neurons. Perhaps surprisingly, the neurotrophins have recently been found to utilize a family of receptor tyrosine kinases (the Trks) similar to those used by normally mitogenic growth factors. In fact, ectopic expression of the Trks in non-neuronal cells allows them to mediate conventional mitogenic responses to the neurotrophins. Despite similarities with other receptor tyrosine kinases, the Trks are rather unique in that they are almost exclusively expressed in the nervous system, and they also display a number of novel structural features. In addition to the Trks, the neurotrophins all bind to another cell surface receptor (known as p75 or the low-affinity NGF receptor), whose role remains quite controversial.
Collapse
Affiliation(s)
- D J Glass
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | |
Collapse
|
145
|
Kim DH, Jahng TA. Continuous brain-derived neurotrophic factor (BDNF) infusion after methylprednisolone treatment in severe spinal cord injury. J Korean Med Sci 2004; 19:113-22. [PMID: 14966352 PMCID: PMC2822246 DOI: 10.3346/jkms.2004.19.1.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although methylprednisolone (MP) is the standard of care in acute spinal cord injury (SCI), its functional outcome varies in clinical situation. Recent report demonstrated that MP depresses the expression of growth-promoting neurotrophic factors after acute SCI. The present study was designed to investigate whether continuous infusion of brain-derived neurotrophic factor (BDNF) after MP treatment promotes functional recovery in severe SCI. Contusion injury was produced at the T10 vertebral level of the spinal cord in adult rats. The rats received MP intravenously immediately after the injury and BDNF was infused intrathecally using an osmotic mini-pump for six weeks. Immunohistochemical methods were used to detect ED-1, Growth associated protein-43 (GAP-43), neurofilament (NF), and choline acethyl transferase (ChAT) levels. BDNF did not alter the effect of MP on hematogenous inflammatory cellular infiltration. MP treatment with BDNF infusion resulted in greater axonal survival and regeneration compared to MP treatment alone, as indicated by increases in NF and GAP-43 gene expression. Adjunctive BDNF infusion resulted in better locomotor test scores using the Basso-Beattie-Bresnahan (BBB) test. This study demonstrated that continuous infusion of BDNF after initial MP treatment improved functional recovery after severe spinal cord injury without dampening the acute effect of MP.
Collapse
Affiliation(s)
- Daniel H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| | | |
Collapse
|
146
|
Naka Y, Kitazawa A, Akaishi Y, Shimizu N. Neurite outgrowths of neurons using neurotrophin-coated nanoscale magnetic beads. J Biosci Bioeng 2004; 98:348-52. [PMID: 16233718 DOI: 10.1016/s1389-1723(04)00294-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 08/12/2004] [Indexed: 10/26/2022]
Abstract
Neurotrophin-coated nanoscale magnetic beads were used to regulate the differentiation and survival of neurons. The beads coated with nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) promoted neurite outgrowths of neurons in the same manner as soluble NGF or soluble BDNF, but beads coated with bovine serum albumin did not promote neurite outgrowths. When the volume of NGF-coated bead solution was increased, the number of neurons with neurite outgrowths increased. The addition of anti-NGF antibodies decreased the numbers of neurons with neurite outgrowths in proportion to the volume of anti-NGF antibodies added. NGF-coated beads appeared to bind to soma with neurite outgrowths as determined using fluorescence. In addition, hybrid beads coated with both NGF and BDNF promoted neurite outgrowths of PC12h cells, although the cells did not produce neurite outgrowths in response to BDNF. Neurons with neurite outgrowths could be concentrated within a particular area when NGF-coated beads were immobilized in a particular area of the culture plate surface using a magnet. The results demonstrate that neurotrophin-coated nanoscale magnetic beads allow us to cultivate neurons in a selected area of the culture plate surface by using a magnet. Thus, neurotrophin-coated nanoscale magnetic beads are applicable to micro-integrated systems and biosensors.
Collapse
Affiliation(s)
- Yukie Naka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | | | | | | |
Collapse
|
147
|
Alberch J, Pérez-Navarro E, Canals JM. Neurotrophic factors in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2004; 146:195-229. [PMID: 14699966 DOI: 10.1016/s0079-6123(03)46014-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a neurodegenerative disorder characterized by the selective loss of striatal neurons and, to a lesser extent, cortical neurons. The neurodegenerative process is caused by the mutation of huntingtin gene. Recent studies have established a link between mutant huntingtin, excitotoxicity and neurotrophic factors. Neurotrophic factors prevent cell death in degenerative processes but they can also enhance growth and function of neurons that are affected in Huntington's disease. The endogenous regulation of the expression of neurotrophic factors and their receptors in the striatum and its connections can be important to protect striatal cells and maintains basal ganglia connectivity. The administration of exogenous neurotrophic factors, in animal models of Huntington's disease, has been used to characterize the trophic requirements of striatal and cortical neurons. Neurotrophins, glial cell line-derived neurotrophic factor family members and ciliary neurotrophic factor have shown a potent neuroprotective effects on different neuronal populations of the striatum. Furthermore, they are also useful to maintain the integrity of the corticostriatal pathway. Thus, these neurotrophic factors may be suitable for the development of a neuroprotective therapy for neurodegenerative disorders of the basal ganglia.
Collapse
Affiliation(s)
- Jordi Alberch
- Department of Cell Biology and Pathology, Medical School, IDIBAPS, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain.
| | | | | |
Collapse
|
148
|
Abstract
Neurotrophins are a family of growth factors critical for the development and functioning of the nervous system. Although originally identified as neuronal survival factors, neurotrophins elicit many biological effects, ranging from proliferation to synaptic modulation to axonal pathfinding. Recent data indicate that the nature of the signaling cascades activated by neurotrophins, and the biological responses that ensue, are specified not only by the ligand itself but also by the temporal pattern and spatial location of stimulation. Studies on neurotrophin signaling have revealed variations in the Ras/MAP kinase, PI3 kinase, and phospholipase C pathways, which transmit spatial and temporal information. The anatomy of neurons makes them particularly appropriate for studying how the location and tempo of stimulation determine the signal cascades that are activated by receptor tyrosine kinases such as the Trk receptors. These signaling variations may represent a general mechanism eliciting specificity in growth factor responses.
Collapse
Affiliation(s)
- Rosalind A Segal
- Departments of Neurobiology and Pediatric Oncology, Harvard Medical School and Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
149
|
Gratto KA, Verge VMK. Neurotrophin-3 down-regulates trkA mRNA, NGF high-affinity binding sites, and associated phenotype in adult DRG neurons. Eur J Neurosci 2003; 18:1535-48. [PMID: 14511333 DOI: 10.1046/j.1460-9568.2003.02881.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurotrophin-3 (NT-3) binds to multiple trks, not only its initially identified receptor trkC. Recent studies in our laboratory show that NT-3 negatively regulates nociceptive phenotype associated with the trkA subpopulation. Due to the extensive overlap in trkA and trkC expression it is uncertain whether there is a direct influence of NT-3 on trkA in adult sensory neurons. Thus, the aim of this study was to examine whether NT-3 might alter trkA and associated neuronal phenotype outside of the trkC subpopulation. The effect of a seven-day intrathecal infusion of NT-3 on intact, uninjured adult rat dorsal root ganglion neurons was investigated. Serial sections were processed for receptor radioautography or in situ hybridization to identify and colocalize neurons expressing high-affinity nerve growth factor (NGF) binding sites, substance P (SP), trkC, or trkA mRNAs and to examine the influence of NT-3 on these populations. NT-3 does not appear to alter trkC expression, but evokes a notable reduction in trkA, high-affinity NGF binding sites, and SP levels. It is unlikely that signalling by trkC greatly influences this response because the down-regulation of SP occurs most notably in trkA neurons that lack trkC. Moreover, we have shown here that message levels of two trkA isoforms are differentially modulated by NT-3; infusion results in greater down-regulation of the noninsert containing isoform. These findings suggest a clinically relevant role for NT-3 as an antagonist to NGF, but also raise the caution that not just trkC-positive neurons are influenced following exposure to the neurotrophin.
Collapse
Affiliation(s)
- Kelly A Gratto
- Department of Anatomy and Cell Biology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | |
Collapse
|
150
|
Affiliation(s)
- Joshua B Rubin
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|