101
|
Arcucci A, Ruocco MR, Albano F, Granato G, Romano V, Corso G, Bancone C, De Vendittis E, Della Corte A, Montagnani S. Analysis of extracellular superoxide dismutase and Akt in ascending aortic aneurysm with tricuspid or bicuspid aortic valve. Eur J Histochem 2014; 58:2383. [PMID: 25308842 PMCID: PMC4194390 DOI: 10.4081/ejh.2014.2383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022] Open
Abstract
Ascending aortic aneurysm (AsAA) is a consequence of medial degeneration (MD), deriving from apoptotic loss of smooth muscle cells (SMC) and fragmentation of elastin and collagen fibers. Alterations of extracellular matrix structure and protein composition, typical of medial degeneration, can modulate intracellular pathways. In this study we examined the relevance of superoxide dismutase (SOD3) and Akt in AsAA pathogenesis, evaluating their tissue distribution and protein levels in ascending aortic tissues from controls (n=6), patients affected by AsAA associated to tricuspid aortic valve (TAV, n=9) or bicuspid aortic valve (BAV, n=9). The results showed a significant reduction of SOD3, phospho-Akt and Akt protein levels in AsAA tissues from patients with BAV, compared to controls, whereas the differences observed between controls and patients with TAV were not significant. The decreased levels of SOD3 and Akt in BAV aortic tissues are associated with decreased Erk1/Erk2 phosphorylation and MMP-9 levels increase. The authors suggest a role of decreased SOD3 protein levels in the progression of AsAA with BAV and a link between ECM modifications of aortic media layer and impaired Erk1/Erk2 and Akt signaling in the late stages of the aortopathy associated with BAV.
Collapse
|
102
|
Abstract
Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and antioxidants, how they relate to normal physiological function and the pathophysiology of different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, followed by discussion of novel experimental approaches for the development of improved antioxidant therapies.
Collapse
|
103
|
Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94:329-54. [PMID: 24692350 DOI: 10.1152/physrev.00040.2012] [Citation(s) in RCA: 1540] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated as by-products of normal cellular metabolic activities. Superoxide dismutase, glutathione peroxidase, and catalase are the enzymes involved in protecting cells from the damaging effects of ROS. ROS are produced in response to ultraviolet radiation, cigarette smoking, alcohol, nonsteroidal anti-inflammatory drugs, ischemia-reperfusion injury, chronic infections, and inflammatory disorders. Disruption of normal cellular homeostasis by redox signaling may result in cardiovascular, neurodegenerative diseases and cancer. ROS are produced within the gastrointestinal (GI) tract, but their roles in pathophysiology and disease pathogenesis have not been well studied. Despite the protective barrier provided by the mucosa, ingested materials and microbial pathogens can induce oxidative injury and GI inflammatory responses involving the epithelium and immune/inflammatory cells. The pathogenesis of various GI diseases including peptic ulcers, gastrointestinal cancers, and inflammatory bowel disease is in part due to oxidative stress. Unraveling the signaling events initiated at the cellular level by oxidative free radicals as well as the physiological responses to such stress is important to better understand disease pathogenesis and to develop new therapies to manage a variety of conditions for which current therapies are not always sufficient.
Collapse
|
104
|
Byun SJ, Ji MR, Jang YJ, Hwang AI, Chung HK, Kim JS, Kim KW, Chung HJ, Yang BC, Jeon I, Park JK, Yoo JG, Kim TY. Human extracellular superoxide dismutase (EC-SOD) expression in transgenic chicken. BMB Rep 2014; 46:404-9. [PMID: 23977988 PMCID: PMC4133906 DOI: 10.5483/bmbrep.2013.46.8.251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD) is a metalloprotein and functions as an antioxidant enzyme. In this study, we used lentiviral vectors to generate transgenic chickens that express the human EC-SOD gene. The recombinant lentiviruses were injected into the subgerminal cavity of freshly laid eggs. Subsequently, the embryos were incubated to hatch using phases II and III of the surrogate shell ex vivo culture system. Of 158 injected embryos, 16 chicks (G0) hatched and were screened for the hEC-SOD by PCR. Only 1 chick was identified as a transgenic bird containing the transgene in its germline. This founder (G0) bird was mated with wild-type hens to produce transgenic progeny, and 2 transgenic chicks (G1) were produced. In the generated transgenic hens (G2), the hEC-SOD protein was expressed in the egg white and showed antioxidant activity. These results highlight the potential of the chicken for production of biologically active proteins in egg white. [BMB Reports 2013; 46(8): 404-409]
Collapse
Affiliation(s)
- Sung June Byun
- Laboratory of Dermatology-immunology, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
The functional role of MnSOD as a biomarker of human diseases and therapeutic potential of a new isoform of a human recombinant MnSOD. BIOMED RESEARCH INTERNATIONAL 2014; 2014:476789. [PMID: 24511533 PMCID: PMC3913005 DOI: 10.1155/2014/476789] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/19/2013] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are generated as a consequence of metabolic reactions in the mitochondria of eukaryotic cells. This work describes the role of the manganese superoxide dismutase (MnSOD) as a biomarker of different human diseases and proposes a new therapeutic application for the prevention of cancer and its treatment. The paper also describes how a new form of human MnSOD was discovered, its initial application, and its clinical potentials. The MnSOD isolated from a human liposarcoma cell line (LSA) was able to kill cancer cells expressing estrogen receptors, but it did not have cytotoxic effects on normal cells. Together with its oncotoxic activity, the recombinant MnSOD (rMnSOD) exerts a radioprotective effect on normal cells irradiated with X-rays. The rMnSOD is characterized by the presence of a leader peptide, which allows the protein to enter cells: this unique property can be used in the radiodiagnosis of cancer or chemotherapy, conjugating radioactive substances or chemotherapic drugs to the leader peptide of the MnSOD. Compared to traditional chemotherapic agents, the drugs conjugated with the leader peptide of MnSOD can selectively reach and enter cancer cells, thus reducing the side effects of traditional treatments.
Collapse
|
106
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
107
|
Xu M, Bijoux H, Gonzalez P, Mounicou S. Investigating the response of cuproproteins from oysters (Crassostrea gigas) after waterborne copper exposure by metallomic and proteomic approaches. Metallomics 2014; 6:338-46. [DOI: 10.1039/c3mt00375b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
108
|
Polymorphisms in the superoxidase dismutase genes reveal no association with human longevity in Germans: a case-control association study. Biogerontology 2013; 14:719-27. [PMID: 24146173 DOI: 10.1007/s10522-013-9470-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/20/2013] [Indexed: 01/10/2023]
Abstract
The role of superoxide dismutases (SODs) in aging and oxidative stress regulation has been widely studied and there is growing evidence that imbalances in these processes influence lifespan in several species. In humans, genetic polymorphisms in SOD genes may play an important role in the development of age-related diseases and genetic variation in SOD2 is thought to be associated with longevity. These observations prompted us to perform a case-control association study using a comprehensive haplotype tagging approach for the three SOD genes (SOD1, SOD2, SOD3) by testing a total of 19 SNPs in our extensive collection of 1,612 long-lived individuals (centenarians and nonagenarians) and 1,104 younger controls. Furthermore, we intended to replicate the previous association of the SOD2 SNP rs4880 with longevity observed in a Danish cohort. In our study, no association was detected between the tested SNPs and the longevity phenotype, neither in the entire long-lived sample set nor in the centenarian subgroup analysis. Our results suggest that there is no considerable influence of sequence variation in the SOD genes on human longevity in Germans.
Collapse
|
109
|
Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys Acta Gen Subj 2013; 1840:495-506. [PMID: 24135455 DOI: 10.1016/j.bbagen.2013.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thanks to their impressive catalytic properties, cerium oxide nanoparticles (nanoceria) are able to mimic the activity of superoxide dismutase and of catalase, therefore acting as reactive oxygen species (ROS) scavengers in many biological contexts, for instance offering neuroprotection and reduction of apoptosis rate in many types of cells exposed to oxidative stress (stem cells, endothelial cells, epithelial cells, osteoblasts, etc.). METHODS We report on the investigation at gene level, through quantitative real time RT-PCR, of the effects of cerium oxide nanoparticles on ROS mechanisms in neuron-like PC12 cells. After three days of treatment, transcription of 84 genes involved in antioxidant defense, in ROS metabolism, and coding oxygen transporters is evaluated, and its relevance to central nervous system degenerative diseases is considered. RESULTS Experimental evidences reveal intriguing differences in transcriptional profiles of cells treated with cerium oxide nanoparticles with respect to the controls: nanoceria acts as strong exogenous ROS scavenger, modulating transcription of genes involved in natural cell defenses, down-regulating genes involved in inflammatory processes, and up-regulating some genes involved in neuroprotection. CONCLUSIONS Our findings are extremely promising for future biomedical applications of cerium oxide nanoparticles, further supporting their possible exploitation in the treatment of neurodegenerative diseases. GENERAL SIGNIFICANCE This work represents the first documented step to the comprehension of mechanisms underlying the anti-oxidant action of cerium oxide nanoparticles. Our findings allow for a better comprehension of the phenomena of ROS scavenging and neuroprotection at a gene level, suggesting future therapeutic approaches even at a pre-clinical level.
Collapse
|
110
|
Jeon YJ, Yoo H, Kim BH, Lee YS, Jeon B, Kim SS, Kim TY. IFNγ-mediated inhibition of cell proliferation through increased PKCδ-induced overexpression of EC-SOD. BMB Rep 2013. [PMID: 23187006 PMCID: PMC4133801 DOI: 10.5483/bmbrep.2012.45.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD) overexpression modulates cellular responses such as tumor cell suppression and is induced by IFNγ. Therefore, we examined the role of EC-SOD in IFNγ-mediated tumor cell suppression. We observed that the dominant-negative protein kinase C delta (PKCδ) suppresses IFNγ-induced EC-SOD expression in both keratinocytes and melanoma cells. Our results also showed that PKCδ-induced ECSOD expression was reduced by pretreatment with a PKCspecific inhibitor or a siRNA against PKCδ. PKCδ-induced ECSOD expression suppressed cell proliferations by the up-regulation of p21 and Rb, and the downregulation of cyclin A and D. Finally, we demonstrated that increased expression of EC-SOD drastically suppressed lung melanoma proliferation in an EC-SOD transgenic mouse via p21 expression. In summary, our findings suggest that IFNγ-induced EC-SOD expression occurs via activation of PKCδ. Therefore, the upregulation of EC-SOD may be effective for prevention of various cancers, including melanoma, via cell cycle arrest. [BMB Reports 2012; 45(11): 659-664]
Collapse
Affiliation(s)
- Yoon-Jae Jeon
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea
| | | | | | | | | | | | | |
Collapse
|
111
|
Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol 2013; 140:105-17. [DOI: 10.1007/s00418-013-1099-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
|
112
|
Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH. Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 2013; 18:1765-76. [PMID: 23244636 PMCID: PMC3619152 DOI: 10.1089/ars.2012.4766] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIM To determine if the NADPH oxidase isoform Nox4 contributes to increased H(2)O(2) generation in persistent pulmonary hypertension of the newborn (PPHN) pulmonary arteries (PA), and to identify downstream signaling targets of Nox4 that contribute to vascular remodeling and vasoconstriction. RESULTS PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs, PA, and PA smooth muscle cells (PASMC) were isolated from control and PPHN lambs. Increased expression of p22(phox) and Nox4 in PPHN lungs, PA, and PASMC was associated with increased reactive oxygen species in PPHN PA, increased protein thiol oxidation in PPHN PASMC, and a decreased activity of extracellular superoxide dismutase (ecSOD) in the lungs and PASMC. Nox4 small interfering RNA (siRNA) decreased Nox4 expression and thiol oxidation and increased the ecSOD activity in PPHN PASMC. An increased activity of nuclear factor-kappa B (NFκB) and expression of its target gene cyclin D1 were detected in PPHN lungs, PA, and PASMC. Nox4 siRNA and catalase attenuated these increases in PASMC, and catalase decreased cyclin D1 expression in PPHN lungs. INNOVATION This study demonstrates for the first time that Nox4 expression is elevated in a lamb model of neonatal pulmonary hypertension. It identifies increased NFκB and cyclin D1 expression and a decreased ecSOD activity as targets of increased Nox4 signaling. CONCLUSION PPHN increases p22(phox) and Nox4 expression and activity resulting in elevated H(2)O(2) levels in PPHN PA. Increased H(2)O(2) induces vasoconstriction via mechanisms involving ecSOD inactivation, and stimulates vascular remodeling via NFκB activation and increased cyclin D1 expression. Approaches that inhibit the pulmonary arterial Nox4 activity may attenuate vasoconstriction and vascular remodeling in PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
113
|
Fike CD, Dikalova A, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL. Reactive oxygen species-reducing strategies improve pulmonary arterial responses to nitric oxide in piglets with chronic hypoxia-induced pulmonary hypertension. Antioxid Redox Signal 2013; 18:1727-38. [PMID: 23244497 PMCID: PMC3619184 DOI: 10.1089/ars.2012.4823] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS There are no effective treatments for chronic pulmonary hypertension in infants with cardiopulmonary disorders associated with hypoxia, such as those with chronic lung disease. These patients often have poor or inconsistent pulmonary dilator responses to inhaled nitric oxide (iNO) therapy for unknown reasons. One possible explanation for poor responsiveness to iNO is reduced NO bioavailability caused by interactions between reactive oxygen species (ROS) and NO. Our major aim was to determine if strategies to reduce ROS improve dilator responses to the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP), in resistance pulmonary arteries (PRAs) from a newborn piglet model of chronic pulmonary hypertension. RESULTS The dilation to SNAP was significantly impaired in PRAs from piglets with chronic hypoxia-induced pulmonary hypertension. ROS scavengers, including cell-permeable and impermeable agents to degrade hydrogen peroxide (H(2)O(2)), improved dilation to SNAP in PRAs from chronically hypoxic piglets. Treatment with agents to inhibit nitric oxide synthase and NADPH oxidase, potential enzymatic sources of ROS, also improved dilation to SNAP in PRAs from hypoxic piglets. INNOVATION Our studies are the first to utilize a newborn model of chronic pulmonary hypertension to evaluate the impact of a number of potential therapeutic strategies for ROS removal on responses to exogenous NO in the vessels most relevant to the regulation of pulmonary vascular resistance (PRA). CONCLUSIONS Strategies aimed at reducing ROS merit further evaluation and consideration as therapeutic approaches to improve responses to iNO in infants with chronic pulmonary hypertension.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Wagener FADTG, Carels CE, Lundvig DMS. Targeting the redox balance in inflammatory skin conditions. Int J Mol Sci 2013; 14:9126-67. [PMID: 23624605 PMCID: PMC3676777 DOI: 10.3390/ijms14059126] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has been linked to various inflammatory diseases. Inflammation is an essential response in the protection against injurious insults and thus important at the onset of wound healing. However, hampered resolution of inflammation can result in a chronic, exaggerated response with additional tissue damage. In the pathogenesis of several inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue damage is central. The prolonged release of excess ROS in the skin can aggravate inflammatory injury and promote chronic inflammation. The cellular redox balance is therefore tightly regulated by several (enzymatic) antioxidants and pro-oxidants; however, in case of chronic inflammation, the antioxidant system may be depleted, and prolonged oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, restoring the redox balance forms an innovative therapeutic target in the development of new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of antioxidant-related therapies is still in its infancy.
Collapse
Affiliation(s)
- Frank A. D. T. G. Wagener
- Authors to whom correspondence should be addressed; E-Mails: (F.A.D.T.G.W.); (D.M.S.L.); Tel.: +31-24-3614082 (F.A.D.T.G.W.); Fax: +31-24-3540631 (F.A.D.T.G.W. & D.M.S.L.)
| | | | - Ditte M. S. Lundvig
- Authors to whom correspondence should be addressed; E-Mails: (F.A.D.T.G.W.); (D.M.S.L.); Tel.: +31-24-3614082 (F.A.D.T.G.W.); Fax: +31-24-3540631 (F.A.D.T.G.W. & D.M.S.L.)
| |
Collapse
|
115
|
Wang XF, Wu YH, Jiao J, Guan CP, Yang XG, Wang MS. Diagnostic Value of Superoxide Dismutase in Tuberculous and Malignant Pleural Effusions. Asian Pac J Cancer Prev 2013; 14:821-4. [DOI: 10.7314/apjcp.2013.14.2.821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
116
|
Unexplained antepartum stillbirth: a consequence of placental aging? Placenta 2013; 34:310-3. [PMID: 23452441 DOI: 10.1016/j.placenta.2013.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/10/2013] [Accepted: 01/30/2013] [Indexed: 11/24/2022]
Abstract
Unexplained antepartum stillbirth is a major obstetric health problem. Data demonstrate a rapid rise in risk per 1000 continuing pregnancies as gestation advances beyond 40 weeks. We review the evidence that such stillbirths are a consequence of aging related changes in the late gestation placenta. We suggest that the relatively small number of continuing pregnancies after 40 completed weeks means that negative effects of genes that produce aging affect so few pregnancies that polymorphisms in genes that produce these effects are retained in the population. Aging related changes likely represent a consequence of the damaging effects of oxidative stress, increased by cigarette smoking counteracted by the mitigating effects of oxidative defence pathways. The aging related changes are likely downstream from nutrient sensing units such as mTOR and include effects on production of telomerase and consequent shortening of telomere length. The late gestation changes occur in the context of increasing fetal growth and nutrient supply demands that can produce the rapid development of a mismatch between placental supply and fetal need resulting in fetal demise. Premature aging may also play an important role in antepartum stillbirth occurring earlier in pregnancy, especially in the context of growth restriction.
Collapse
|
117
|
Decreased O-GlcNAcylation of the key proteins in kinase and redox signalling pathways is a novel mechanism of the beneficial effect of α-lipoic acid in diabetic liver. Br J Nutr 2013; 110:401-12. [PMID: 23312093 DOI: 10.1017/s0007114512005429] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study aimed to investigate the effects of the treatment with a-lipoic acid (LA), a naturally occurring compound possessing antioxidant activity, on liver oxidant stress in a rat model of streptozotocin (STZ)-induced diabetes by examining potential mechanistic points that influence changes in the expression of antioxidant enzymes such as catalase (CAT) and CuZn/Mn superoxide dismutase(s) (SOD). LA was administered for 4 weeks by daily intraperitoneal injections (10 mg/kg) to STZ-induced diabetic rats, starting from the last STZ treatment. LA administration practically normalised the activities of the indicators of hepatocellular injury, alanine and aspartate aminotransferases, and lowered oxidative stress, as observed by the thiobarbituric acid-reactive substance assay, restored the reduced glutathione:glutathione disulphide ratio and increased the protein sulfhydryl group content. The lower level of DNA damage detected by the comet assay revealed that LA reduced cytotoxic signalling, exerting a hepatoprotective effect. The LA-treated diabetic rats displayed restored specific enzymatic activities of CAT, CuZnSOD and MnSOD. Quantitative real-time PCR analysis showed that LA restored CAT gene expression to its physiological level and increased CuZnSOD gene expression, but the gene expression of MnSOD remained at the diabetic level. Although the amounts of CAT and CuZnSOD protein expression returned to the control levels, the protein expression of MnSOD was elevated. These results suggested that LA administration affected CAT and CuZnSOD expression mainly at the transcriptional level, and MnSOD expression at the post-transcriptional level. The observed LA-promoted decrease in the O-GlcNAcylation of extracellular signal-regulated kinase, protein 38 kinase, NF-kB, CCAAT/enhancer-binding protein and the antioxidative enzymes themselves in diabetic rats suggests that the regulatory mechanisms that supported the changes in antioxidative enzyme expression were also influenced by post-translational mechanisms.
Collapse
|
118
|
Hydrogen peroxide induce modifications of human extracellular superoxide dismutase that results in enzyme inhibition. Redox Biol 2013; 1:24-31. [PMID: 24024135 PMCID: PMC3757672 DOI: 10.1016/j.redox.2012.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/25/2022] Open
Abstract
Superoxide dismutase (EC-SOD) controls the level of superoxide in the extracellular space by catalyzing the dismutation of superoxide into hydrogen peroxide and molecular oxygen. In addition, the enzyme reacts with hydrogen peroxide in a peroxidase reaction which is known to disrupt enzymatic activity. Here, we show that the peroxidase reaction supports a site-specific bond cleavage. Analyses by peptide mapping and mass spectrometry shows that oxidation of Pro112 supports the cleavage of the Pro112–His113 peptide bond. Substitution of Ala for Pro112 did not inhibit fragmentation, indicating that the oxidative fragmentation at this position is dictated by spatial organization and not by side-chain specificity. The major part of EC-SOD inhibited by the peroxidase reaction was not fragmented but found to encompass oxidations of histidine residues involved in the coordination of copper (His98 and His163). These oxidations are likely to support the dissociation of copper from the active site and thus loss of enzymatic activity. Homologous modifications have also been described for the intracellular isozyme, Cu/Zn-SOD, reflecting the almost identical structures of the active site within these enzymes. We speculate that the inactivation of EC-SOD by peroxidase activity plays a role in regulating SOD activity in vivo, as even low levels of superoxide will allow for the peroxidase reaction to occur.
Collapse
|
119
|
|
120
|
Abstract
OBJECTIVES Reason for the unsuccessful use of antioxidants in transplantation might be the unknown kinetics of reactive oxygen species (ROS) release. In this study, we compared the kinetics of ROS release from rat pancreata in the presence and absence of blood. METHODS In vivo, ischemia-reperfusion injury (IRI) was induced in pancreata of male Wistar rats by occlusion of the arterial blood supply for 1 or 2 hours. In vitro, isolated pancreata were single-pass perfused with Krebs-Henseleit bicarbonate solution. Reactive oxygen species were quantified by electron spin resonance spectroscopy using CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) as spin label. Thiols (glutathione), nicotinamide adenine dinucleotide phosphate-oxidase activity, myeloperoxidase activity, and adenosine triphosphate content were measured. RESULTS During reperfusion, an increase in IRI-induced ROS in arterial blood was noted after 2 hours of warm ischemia. In sharp contrast, ROS release was immediate and short lived in blood-free perfused organs. The degree of tissue damage correlated with nicotinamide adenine dinucleotide phosphate-oxidase activity and adenosine triphosphate content. Antioxidative capacity of tissues was reduced. CONCLUSIONS Electron spin resonance spectroscopy in conjunction with spin labels allows for the detection of ROS kinetics in pancreatic IRI. Reactive oxygen species kinetics are dependent on the length of the ischemic period and the presence or absence of blood.
Collapse
|
121
|
Lung oxidative damage by hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:856918. [PMID: 22966417 PMCID: PMC3433143 DOI: 10.1155/2012/856918] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described.
Collapse
|
122
|
Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 2012; 86:1649-65. [PMID: 22811024 DOI: 10.1007/s00204-012-0906-3] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
The oxygen paradox tells us that oxygen is both necessary for aerobic life and toxic to all life forms. Reactive oxygen species (ROS) touch every biological and medical discipline, especially those involving proliferative status, supporting the idea that active oxygen may be increased in tumor cells. In fact, metabolism of oxygen and the resulting toxic byproducts can cause cancer and death. Efforts to counteract the damage caused by ROS are gaining acceptance as a basis for novel therapeutic approaches, and the field of prevention of cancer is experiencing an upsurge of interest in medically useful antioxidants. Apoptosis is an important means of regulating cell numbers in the developing cell system, but it is so important that it must be controlled. Normal cell death in homeostasis of multicellular organisms is mediated through tightly regulated apoptotic pathways that involve oxidative stress regulation. Defective signaling through these pathways can contribute to both unbalance in apoptosis and development of cancer. Finally, in this review, we discuss new knowledge about recent tools that provide powerful antioxidant strategies, and designing methods to deliver to target cells, in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- José M Matés
- Department of Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, Málaga, Spain.
| | | | | | | |
Collapse
|
123
|
Bouças RI, Jarrouge-Bouças TR, Lima MA, Trindade ES, Moraes FA, Cavalheiro RP, Tersariol IL, Hoppenstead D, Fareed J, Nader HB. Glycosaminoglycan backbone is not required for the modulation of hemostasis: Effect of different heparin derivatives and non-glycosaminoglycan analogs. Matrix Biol 2012; 31:308-16. [DOI: 10.1016/j.matbio.2012.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/10/2012] [Accepted: 03/23/2012] [Indexed: 11/26/2022]
|
124
|
Can mesenchymal stem cells reduce vulnerability of dopaminergic neurons in thesubstantia nigrato oxidative insult in individuals at risk to Parkinson's disease? Cell Biol Int 2012; 36:617-24. [DOI: 10.1042/cbi20110602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
125
|
Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol 2012; 59:235-42. [PMID: 22398104 DOI: 10.1016/j.jjcc.2012.01.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 12/22/2022]
Abstract
Uric acid is the end product of purine metabolism. Its immediate precursor, xanthine, is converted to uric acid by an enzymatic reaction involving xanthine oxidoreductase. Uric acid has been formerly considered a major antioxidant in human plasma with possible beneficial anti-atherosclerotic effects. In contrast, studies in the past two decades have reported associations between elevated serum uric acid levels and cardiovascular events, suggesting a potential role for uric acid as a risk factor for atherosclerosis and related diseases. In this paper, the molecular pattern of uric acid formation, its possible deleterious effects, as well as the involvement of xanthine oxidoreductase in reactive oxygen species generation are critically discussed. Reactive oxygen species contribute to vascular oxidative stress and endothelial dysfunction, which are associated with the risk of atherosclerosis. Recent studies have renewed attention to the xanthine oxidoreductase system, since xanthine oxidoreductase inhibitors, such as allopurinol and oxypurinol, would be capable of preventing atherosclerosis progression by reducing endothelial dysfunction. Also, beneficial effects could be obtained in patients with congestive heart failure. The simultaneous reduction in uric acid levels might contribute to these effects, or be a mere epiphenomenon of the drug action. The molecular mechanisms involved are discussed.
Collapse
|
126
|
Nightingale H, Kemp K, Gray E, Hares K, Mallam E, Scolding N, Wilkins A. Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells Dev 2012; 21:2026-35. [PMID: 22132904 DOI: 10.1089/scd.2011.0516] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The discovery that mesenchymal stem cells (MSCs) secrete SOD3 may help explain studies in which MSCs have direct antioxidant activities both in vivo and in vitro. SOD3 is an antioxidant enzyme that dismutes toxic free radicals produced during inflammatory processes. Therefore, MSC production and secretion of active and therapeutically significant levels of SOD3 would further support the use of MSCs as a cellular based antioxidant therapy. The aim of this study was therefore to investigate in vitro if MSC differentiation down the adipogenic, chondrogenic, and osteogenic lineages influences the expression of the antioxidant molecule SOD3. Human bone marrow MSCs and their differentiated progeny were cultured under standard conditions and both the SOD3 gene and protein expression examined. Following adipogenesis, cultures demonstrated that both SOD3 protein and gene expression are significantly increased, and conversely, following chondrogenesis SOD3 protein and gene expression is significantly decreased. Following osteogenesis there were no significant changes in SOD3 protein or gene expression. This in vitro study describes the initial characterization of SOD3 expression and secretion by differentiated MSCs. This should help guide further in vivo work establishing the therapeutic and antioxidative potential of MSC and their differentiated progeny.
Collapse
Affiliation(s)
- Helen Nightingale
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristo, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
127
|
Case AJ, Mezhir JJ, O'Leary BR, Hrabe JE, Domann FE. Rational design of a secreted enzymatically inactive mutant of extracellular superoxide dismutase. Redox Rep 2012; 17:239-45. [PMID: 23339859 PMCID: PMC3569055 DOI: 10.1179/1351000212y.0000000028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Extracellular superoxide dismutase (SOD3) is a secreted enzyme that regulates levels of extracellular superoxide and protects the extracellular matrix from degradation by reactive species. The SOD3 protein contains a heparin-binding domain and resides in a microenvironment rich in other heparin-bound growth factors, raising the possibility that SOD3 may have some biological role independent of its catalytic activity. To begin to address this, we designed and created enzymatically inactive mutant constructs targeting either the copper coordinating (i.e. H96 and H98) or superoxide channeling (i.e. N180 and R186) amino acid residues of SOD3. All constructs expressed equal quantities of immature intracellular SOD proteins, but only the N180A, R186A, and combination N180A/R186A mutants produced fully processed and secreted extracellular protein. Furthermore, while SOD activity was significantly inhibited in the single N180A and R186A mutants, the activity was completely abrogated in the N180A/R186A double mutant. Overall, the use of this novel tool may have broad reaching impacts into various fields of biology and medicine, and will aid in the delineation of cellular processes that are regulated by solely the SOD3 protein, its reactive oxygen species substrates and products, or the combination of both.
Collapse
Affiliation(s)
- Adam J. Case
- Free Radical and Radiation Biology ProgramDepartment of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - James J. Mezhir
- Department of SurgeryCarver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Brianne R. O'Leary
- Department of SurgeryCarver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer E. Hrabe
- Department of SurgeryCarver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology ProgramDepartment of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
128
|
Ljubisavljevic S, Stojanovic I, Pavlovic D, Sokolovic D, Stevanovic I. Aminoguanidine and N-acetyl-cysteine supress oxidative and nitrosative stress in EAE rat brains. Redox Rep 2011; 16:166-72. [PMID: 21888767 DOI: 10.1179/1351000211y.0000000007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of human multiple sclerosis (MS). We have evaluated the role of oxidative and nitrosative stress, as the causal factors in the development of EAE, responsible for the damage of cardinal cellular components, such as lipids, proteins and nucleic acids, resulting in demyelination, axonal damage, and neuronal death. EAE was induced in female Sprague-Dawley rats, 3 months old (300±20 g), by immunization with myelin basic protein in combination with Complete Freund's adjuvant (CFA). The animals were divided into seven groups: control, EAE, CFA, EAE+aminoguanidine (AG), AG, EAE+N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the levels of nitrosative and oxidative stress were determined in 10% homogenate of the whole encephalitic mass. In EAE rats, brain NO production and MDA level were significantly increased (P<0.001) compared to the control values, whereas AG and NAC treatment decreased both parameters in EAE rats compared to EAE group (P<0.001). Glutathione (GSH) was reduced (P<0.001) in EAE rats in comparison with the control and CFA groups, but increased in EAE+AG and EAE+NAC group compared to the EAE group (P<0.01). Superoxide dismutase (SOD) activity was significantly decreased (P<0.001) in the EAE group compared to all other experimental groups. The clinical expression of EAE was significantly decreased (P<0.05) in the EAE groups treated with AG and NAC compared to EAE rats, during disease development. The obtained results prove an important role of oxidative and nitrosative stress in the pathogenesis of EAE, whereas AG and NAC protective effects offer new possibilities for a modified combined approach in MS therapy.
Collapse
|
129
|
Yen CC, Lai YW, Chen HL, Lai CW, Lin CY, Chen W, Kuan YP, Hsu WH, Chen CM. Aerosolized human extracellular superoxide dismutase prevents hyperoxia-induced lung injury. PLoS One 2011; 6:e26870. [PMID: 22046389 PMCID: PMC3202580 DOI: 10.1371/journal.pone.0026870] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022] Open
Abstract
An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Chih-Ching Yen
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Wen Lai
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Ling Chen
- Department of Bioresources, Da-Yeh University, Changhwa, Taiwan
| | - Cheng-Wei Lai
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Yu Lin
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wei Chen
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Internal Medicine, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Yu-Ping Kuan
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wu-Huei Hsu
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
130
|
Wedgwood S, Lakshminrusimha S, Fukai T, Russell JA, Schumacker PT, Steinhorn RH. Hydrogen peroxide regulates extracellular superoxide dismutase activity and expression in neonatal pulmonary hypertension. Antioxid Redox Signal 2011; 15:1497-506. [PMID: 20919937 PMCID: PMC3151423 DOI: 10.1089/ars.2010.3630] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/02/2010] [Indexed: 11/13/2022]
Abstract
We previously demonstrated that superoxide and H(2)O(2) promote pulmonary arterial vasoconstriction in a lamb model of persistent pulmonary hypertension of the newborn (PPHN). Because extracellular superoxide dismutase (ecSOD) augments vasodilation, we hypothesized that H(2)O(2)-mediated ecSOD inactivation contributes to pulmonary arterial vasoconstriction in PPHN lambs. ecSOD activity was decreased in pulmonary arterial smooth muscle cells (PASMCs) isolated from PPHN lambs relative to controls. Exposure to 95% O(2) to mimic hyperoxic ventilation reduced ecSOD activity in control PASMCs. In both cases, these events were associated with increased protein thiol oxidation, as detected by the redox sensor roGFP. Accordingly, exogenous H(2)O(2) decreased ecSOD activity in control PASMCs, and PEG-catalase restored ecSOD activity in PPHN PASMCs. In intact animal studies, ecSOD activity was decreased in fetal PPHN lambs, and in PPHN lambs ventilated with 100% O(2) relative to controls. In ventilated PPHN lambs, administration of a single dose of intratracheal PEG-catalase enhanced ecSOD activity, reduced superoxide levels, and improved oxygenation. We propose that H(2)O(2) generated by PPHN and hyperoxia inactivates ecSOD, and intratracheal catalase enhances enzyme function. The associated decrease in extracellular superoxide augments vasodilation, suggesting that H(2)O(2) scavengers may represent an effective therapy in the clinical management of PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, 310 E. Superior St., Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
131
|
Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int J Biochem Cell Biol 2011; 43:1122-33. [DOI: 10.1016/j.biocel.2011.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/22/2011] [Accepted: 04/07/2011] [Indexed: 11/18/2022]
|
132
|
Schnorr CE, Morrone MDS, Weber MH, Lorenzi R, Behr GA, Moreira JCF. The effects of vitamin A supplementation to rats during gestation and lactation upon redox parameters: increased oxidative stress and redox modulation in mothers and their offspring. Food Chem Toxicol 2011; 49:2645-54. [PMID: 21771631 DOI: 10.1016/j.fct.2011.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 06/19/2011] [Accepted: 07/06/2011] [Indexed: 11/25/2022]
Abstract
Vitamin A is an essential nutrient required in adequate amounts for reproduction and development. Subtle variations in the status of maternal nutrition may affect physiological and metabolic parameters in the fetus. Evidence suggests a key role for oxidative stress in these events. Literature is controversial about the effects of vitamin A supplementation. Here, we studied the effects of vitamin A supplementation on female Wistar rats during gestation and lactation on oxidative stress parameters of maternal and offspring tissues. Rats received daily doses of vitamin A at 2500, 12,500 and 25,000IU/kg. We observed an increase of oxidative damage markers in the reproductive tissues and plasma of dams. The activity of glutathione-S-transferase was modulated by vitamin A supplementation. It was found to be increased in the liver of dams and decreased in the kidneys of mothers and offspring. In pups, supplementation decreased the total antioxidant potential of the liver along with decreased superoxide dismutase/catalase activity ratio in the kidney. The levels of lipoperoxidation were increased in male offspring, but decreased in female pups. Collectively, the results suggest that excessive vitamin A intake during gestation and lactation might be toxic for mothers with adverse effects for the developing offspring.
Collapse
Affiliation(s)
- Carlos Eduardo Schnorr
- Centro de Estudos de Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
133
|
Consequences of hyperoxia and the toxicity of oxygen in the lung. Nurs Res Pract 2011; 2011:260482. [PMID: 21994818 PMCID: PMC3169834 DOI: 10.1155/2011/260482] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
Oxygen (O(2)) is life essential but as a drug has a maximum positive biological benefit and accompanying toxicity effects. Oxygen is therapeutic for treatment of hypoxemia and hypoxia associated with many pathological processes. Pathophysiological processes are associated with increased levels of hyperoxia-induced reactive O(2) species (ROS) which may readily react with surrounding biological tissues, damaging lipids, proteins, and nucleic acids. Protective antioxidant defenses can become overwhelmed with ROS leading to oxidative stress. Activated alveolar capillary endothelium is characterized by increased adhesiveness causing accumulation of cell populations such as neutrophils, which are a source of ROS. Increased levels of ROS cause hyperpermeability, coagulopathy, and collagen deposition as well as other irreversible changes occurring within the alveolar space. In hyperoxia, multiple signaling pathways determine the pulmonary cellular response: apoptosis, necrosis, or repair. Understanding the effects of O(2) administration is important to prevent inadvertent alveolar damage caused by hyperoxia in patients requiring supplemental oxygenation.
Collapse
|
134
|
Lauritzen KH, Cheng C, Wiksen H, Bergersen LH, Klungland A. Mitochondrial DNA toxicity compromises mitochondrial dynamics and induces hippocampal antioxidant defenses. DNA Repair (Amst) 2011; 10:639-53. [PMID: 21550321 DOI: 10.1016/j.dnarep.2011.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/18/2011] [Accepted: 04/06/2011] [Indexed: 11/20/2022]
Abstract
Mitochondria are highly dynamic organelles that can be actively transported within the cell to satisfy local requirements. They are vital for providing cellular energy, but are also an important endogenous source of reactive oxygen species. The distribution of mitochondria is particularly important for neurons because of the morphological complexity of these cells, and because neural processing is metabolically expensive. Defects in mitochondrial distribution, observed in several neurodegenerative diseases, can result in synaptic dysfunction. We have generated transgenic mice expressing an enzyme in forebrain neurons that causes mitochondrial DNA (mtDNA) damage in the form of abasic-sites, creating mtDNA toxicity. Here, we report that mitochondrial distribution is disturbed in hippocampal neurons of these mice. Moreover, mtDNA copy number and mitochondrial transcription are reduced, and oxidative stress is increased. There is also a loss of receptors at excitatory glutamatergic synapses in the dentate gyrus, and the size of the postsynaptic density in this region is abnormal. We speculate that the loss of synaptic mitochondria caused by accumulation in the neuronal cell body contributes to the observed synaptic abnormalities, as well as the overall loss of mtDNA and diminished mitochondrial transcription. Collectively, these changes lead to mitochondria with reduced function and increased oxidative stress.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, NO-0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
135
|
Exogenous superoxide dismutase: action on liver oxidative stress in animals with streptozotocin-induced diabetes. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:754132. [PMID: 21437212 PMCID: PMC3061218 DOI: 10.1155/2011/754132] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 12/12/2022]
Abstract
Aim. To investigate the effects of exogenous antioxidant copper zinc superoxide dismutase (Cu/Zn SOD) on oxidative stress in the experimental model of diabetes mellitus (DM). Methods. Twenty eight male Wistar rats divided in four groups were used: control (CO), controls treated with SOD (CO + SOD), diabetics (DM), and diabetics treated with SOD (DM + SOD). SOD (orgotein, 13 mg/Kg body weight was administered. DM was induced by a single streptozotocin injection (i.p., 70 mg/kg), and 60 days later, we evaluated liver oxidative stress. Results. Liver lipoperoxidation was increased in the DM group and significantly decreased in the DM + SOD group. Nitrite and nitrate measures were reduced in the DM and increased in the DM + SOD group, while iNOS expression in the DM group was 32% greater than in the CO and 53% greater in the DM + SOD group than in the DM group (P < .01). P65 expression was 37% higher in the DM (P < .05), and there was no significant difference between the DM and DM + SOD groups. Conclusion. SOD treatment reduced liver oxidative stress in diabetic animals, even though it did not change NFκB. SOD also increased NO, probably by the increased dismutation of the superoxide radical. The iNOS expression increase, which became even more evident after SOD administration.
Collapse
|
136
|
Inflammatory cytokine induced regulation of superoxide dismutase 3 expression by human mesenchymal stem cells. Stem Cell Rev Rep 2011; 6:548-59. [PMID: 20683679 DOI: 10.1007/s12015-010-9178-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasing evidence suggests that bone marrow derived-mesenchymal stem cells (MSCs) have neuroprotective properties and a major mechanism of action is through their capacity to secrete a diverse range of potentially neurotrophic or anti-oxidant factors. The recent discovery that MSCs secrete superoxide dismutase 3 (SOD3) may help explain studies in which MSCs have a direct anti-oxidant activity that is conducive to neuroprotection in both in vivo and in vitro. SOD3 attenuates tissue damage and reduces inflammation and may confer neuroprotective effects against nitric oxide-mediated stress to cerebellar neurons; but, its role in relation to central nervous system inflammation and neurodegeneration has not been extensively investigated. Here we have performed a series of experiments showing that SOD3 secretion by human bone marrow-derived MSCs is regulated synergistically by the inflammatory cytokines TNF-alpha and IFN-gamma, rather than through direct exposure to reactive oxygen species. Furthermore, we have shown SOD3 secretion by MSCs is increased by activated microglial cells. We have also shown that MSCs and recombinant SOD are able to increase both neuronal and axonal survival in vitro against nitric oxide or microglial induced damage, with an increased MSC-induced neuroprotective effect evident in the presence of inflammatory cytokines TNF-alpha and IFN-gamma. We have shown MSCs are able to convey these neuroprotective effects through secretion of soluble factors alone and furthermore demonstrated that SOD3 secretion by MSCs is, at least, partially responsible for this phenomenon. SOD3 secretion by MSCs maybe of relevance to treatment strategies for inflammatory disease of the central nervous system.
Collapse
|
137
|
Starr ME, Ueda J, Yamamoto S, Evers BM, Saito H. The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation. Free Radic Biol Med 2011; 50:371-80. [PMID: 21092756 PMCID: PMC3340560 DOI: 10.1016/j.freeradbiomed.2010.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/13/2010] [Accepted: 11/10/2010] [Indexed: 01/09/2023]
Abstract
Systemic inflammatory response syndrome (SIRS), a serious clinical condition characterized by whole-body inflammation, is particularly threatening for elderly patients, who suffer much higher mortality rates than the young. A major pathological consequence of SIRS is acute lung injury caused by neutrophil-mediated oxidative damage. Previously, we reported an increase in protein tyrosine nitration (a marker of oxidative/nitrosative damage) and a decrease in the antioxidant enzyme extracellular superoxide dismutase (EC-SOD) in the lungs of young mice during endotoxemia-induced SIRS. Here we demonstrate that during endotoxemia, down-regulation of EC-SOD is significantly more profound and prolonged, whereas up-regulation of iNOS is augmented, in aged compared to young mice. Aged mice also showed 2.5-fold higher protein nitration levels, compared to young mice, with particularly strong nitration in the pulmonary vascular endothelium during SIRS. Additionally, by two-dimensional gel electrophoresis, Western blotting, and mass spectrometry, we identified proteins that show increased tyrosine nitration in age- and SIRS-dependent manners; these proteins (profilin-1, transgelin-2, LASP 1, tropomyosin, and myosin) include components of the actin cytoskeleton responsible for maintaining pulmonary vascular permeability. Reduced EC-SOD in combination with increased oxidative/nitrosative damage and altered cytoskeletal protein function due to tyrosine nitration may contribute to augmented lung injury in the aged with SIRS.
Collapse
Affiliation(s)
- Marlene E Starr
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Surgery, University of Kentucky, Lexington, KY 40536
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Junji Ueda
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - Shoji Yamamoto
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555
| | - B. Mark Evers
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Surgery, University of Kentucky, Lexington, KY 40536
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Hiroshi Saito
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Surgery, University of Kentucky, Lexington, KY 40536
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
138
|
Tian J, Chen J, Jiang D, Liao S, Wang A. Transcriptional regulation of extracellular copper zinc superoxide dismutase from white shrimp Litopenaeus vannamei following Vibrio alginolyticus and WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2011; 30:234-240. [PMID: 20974259 DOI: 10.1016/j.fsi.2010.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/30/2010] [Accepted: 10/17/2010] [Indexed: 05/30/2023]
Abstract
The cDNA encoding an extracellular copper zinc superoxide dismutase (LvECSOD) was cloned from the hepatopancreas of white shrimp Litopenaeus vannamei. It consisted of 915 bp nucleotides with an open reading frame corresponding to a deduced protein of 178 amino acids. The LvECSOD contains a putative signal peptide of 16 amino acids, two potential N-linked glycosylation sites (N(115)GTA and N(135)ITG) and a copper zinc superoxide dismutase family signature sequence (G(162)NAGaRvACctI(173)). It was found that four copper binding sites, four zinc binding sites and two cysteines involving in the formation of the disulfide bridge were conserved in the protein. LvECSOD shared 33-58% identity to ECSODs from other organisms. Expression analysis revealed that LvECSOD mRNA was widely distributed in all the tissues examined. When the shrimp challenged with Vibrio alginolyticus or white spot syndrome virus (WSSV), expression of LvECSOD mRNA in the hepatopancreas and hemocytes was mediated responsively. Our results suggested that LvECSOD was implicated in the immune response induced by V. alginolyticus and WSSV.
Collapse
Affiliation(s)
- Jianxiao Tian
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | | | | | | | | |
Collapse
|
139
|
Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis 2010; 2011:164608. [PMID: 21197107 PMCID: PMC3010615 DOI: 10.4061/2011/164608] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/10/2010] [Indexed: 12/14/2022] Open
Abstract
Although significant advances have recently been made in the understanding and treatment of multiple sclerosis, reduction of long-term disability remains a key goal. Evidence suggests that inflammation and oxidative stress within the central nervous system are major causes of ongoing tissue damage in the disease. Invading inflammatory cells, as well as resident central nervous system cells, release a number of reactive oxygen and nitrogen species which cause demyelination and axonal destruction, the pathological hallmarks of multiple sclerosis. Reduction in oxidative damage is an important therapeutic strategy to slow or halt disease processes. Many drugs in clinical practice or currently in trial target this mechanism. Cell-based therapies offer an alternative source of antioxidant capability. Classically thought of as being important for myelin or cell replacement in multiple sclerosis, stem cells may, however, have a more important role as providers of supporting factors or direct attenuators of the disease. In this paper we focus on the antioxidant properties of mesenchymal stem cells and discuss their potential importance as a cell-based therapy for multiple sclerosis.
Collapse
Affiliation(s)
- Jonathan Witherick
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol BS16 1LE, UK
| | - Alastair Wilkins
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol BS16 1LE, UK
| | - Neil Scolding
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol BS16 1LE, UK
| | - Kevin Kemp
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol BS16 1LE, UK
| |
Collapse
|
140
|
Honda M, Yamada H, Nozawa Y, Ishizaki T, Kuroda M, Noguchi T. Consumption of bonito extract suppresses the decrease in cerebral blood flow in stroke-prone spontaneously hypertensive rats. ACTA ACUST UNITED AC 2010; 31:251-8. [PMID: 20834182 DOI: 10.2220/biomedres.31.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of consuming bonito extract (BE) on cerebral blood flow was evaluated in stroke-prone spontaneously hypertensive rats (SHRSP), a cerebrovascular disease model. BE dissolved in drinking water was given to 5-week-old male SHRSP for 7 weeks. Tap water was given to the control group. At the age of 12 weeks, blood flow and vascular diameter were measured in the middle cerebral artery. Both cerebral blood flow and cerebral vessel width were greater in the BE group than in the control group. Also, stroke occurred in 7 (with death in 2) of the 8 animals in the control group but in none of the 6 animals in the BE group. To clarify its mechanism, the expressions of nitrogen oxide synthase (NOS) and the superoxide dismutase activity (SOD) in the brain were evaluated. NOS mRNA expression and SOD activity in the cerebrum were higher in the BE group. These results suggest that the consumption of BE suppresses the decrease of cerebral blood flow and reduces the risk of stroke to maintain vasorelaxation through the production of nitrogen oxide and suppression of active oxygen generation.
Collapse
Affiliation(s)
- Masashi Honda
- Research Institute for Health Fundamentals, Ajinomoto Co. Inc, Kawasaki, Japan
| | | | | | | | | | | |
Collapse
|
141
|
Kemp K, Hares K, Mallam E, Heesom KJ, Scolding N, Wilkins A. Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem 2010; 114:1569-80. [PMID: 20028455 DOI: 10.1111/j.1471-4159.2009.06553.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been postulated that bone marrow-derived mesenchymal stem cells (MSCs) might be effective treatments for neurodegenerative disorders either by replacement of lost cells by differentiation into functional neural tissue; modulation of the immune system to prevent further neurodegeneration; and/or provision of trophic support for the diseased nervous system. Here we have performed a series of experiments showing that human bone marrow-derived MSCs are able to protect cultured rodent cerebellar neurons, and specifically cells expressing Purkinje cell markers, against either nitric oxide exposure or withdrawal of trophic support via cell-cell contact and/or secretion of soluble factors, or through secretion of soluble factors alone. We have demonstrated that MSCs protect cerebellar neurons against toxic insults via modulation of both the phosphatidylinositol 3-kinase/Akt and MAPK pathways and defined superoxide dismutase 3 as a secreted active antioxidant biomolecule by which MSCs modulate, at least in part, their neuroprotective effect on cerebellar cells in vitro. Together, the results demonstrate new and specific mechanisms by which MSCs promote cerebellar neuronal survival and add further evidence to the concept that MSCs may be potential therapeutic agents for neurological disorders involving the cerebellum.
Collapse
Affiliation(s)
- Kevin Kemp
- Multiple Sclerosis and Stem Cell Group, Institute of Clinical Neurosciences, Clinical Sciences North Bristol, University of Bristol, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
Extracellular redox (reduction-oxidation) state is a factor that serves as an important regulator of cell-microenvironmental interactions and is determined by several known variables; including redox-modulating proteins that are located on the plasma membrane or outside of cells, extracellular thiol/disulfide couples, and reactive oxygen species (ROS)/reactive nitrogen species (RNS) that are capable of traveling across plasma membranes into the extracellular space. The extracellular redox state works in concert with the intracellular redox state to control both the influx and efflux of ROS/RNS that may serve to modulate redox signaling or to perturb normal cellular processes or both. Under physiologic conditions, the extracellular space is known to have a relatively more-oxidized redox state than the interior of the cell. During pathologic conditions, such as cancer, the extracellular redox state may be altered, causing specific proteins such as proteases, soluble factors, or the extracellular matrix to have altered functions or activities. Recent studies have strongly supported an important relation between the extracellular redox state and cancer cell aggressiveness. The purpose of this review is to identify redox buffer networks in extracellular spaces and to emphasize the possible roles of the extracellular redox state in cancer, knowledge that may contribute to potential therapeutic interventions.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison,Wisconsin, USA
| | | |
Collapse
|
143
|
Chan KM, Rajab NF, Siegel D, Din LB, Ross D, Inayat-Hussain SH. Goniothalamin induces coronary artery smooth muscle cells apoptosis: the p53-dependent caspase-2 activation pathway. Toxicol Sci 2010; 116:533-48. [PMID: 20498002 DOI: 10.1093/toxsci/kfq151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Goniothalamin (GN), a styryl-lactone isolated from Goniothalamus andersonii, has been demonstrated to possess antirestenostic properties by inducing apoptosis on coronary artery smooth muscle cells (CASMCs). In this study, the molecular mechanisms of GN-induced CASMCs apoptosis were further elucidated. Apoptosis assessment based on the externalization of phosphatidylserine demonstrated that GN induces CASMCs apoptosis in a concentration-dependent manner. The GN-induced DNA damage occurred with concomitant elevation of p53 as early as 2 h, demonstrating an upstream signal for apoptosis. However, the p53 elevation in GN-treated CASMCs was independent of NAD(P)H: quinone oxidoreductase 1 and Mdm-2 expression. An increase in hydrogen peroxide and reduction in free thiols confirmed the role for oxidative stress in GN treatment. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-FMK) that significantly abrogated GN-induced CASMCs apoptosis suggested the involvement of caspase(s). The role of apical caspase-2, -8, and -9 was then investigated, and sequential activation of caspase-2 and -9 but not caspase-8 leading to downstream caspase-3 cleavage was observed in GN-treated CASMCs. Reduction of ATP level and decrease in oxygen consumption further confirmed the role of mitochondria in GN-induced apoptosis in CASMCs. The mitochondrial release of cytochrome c was seen without mitochondrial membrane potential loss and was independent of cardiolipin. These data provide insight into the mechanisms of GN-induced apoptosis, which may have important implications in the development of drug-eluting stents.
Collapse
Affiliation(s)
- Kok Meng Chan
- Department of Biomedical Science, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | | | | | | | | | | |
Collapse
|
144
|
Son YJ, Bae JY, Chong SH, Lee HS, Mo SH, Kim TY, Choe H. Expression, high cell density culture and purification of recombinant EC-SOD in Escherichia coli. Appl Biochem Biotechnol 2010; 162:1585-98. [PMID: 20467833 DOI: 10.1007/s12010-010-8940-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 02/23/2010] [Indexed: 11/26/2022]
Abstract
Superoxide dismutase (SOD) catalyzes the dismutation of the biologically toxic superoxide anion into oxygen and hydrogen peroxide and is deployed by the immune system to kill invading microorganisms. Extracellular SOD (EC-SOD) is a copper- and zinc-containing glycoprotein found predominantly in the soluble extracellular compartment that consists of approximately 30-kDa subunits. Here, we purified recombinant EC-SOD3 (rEC-SOD) from Escherichia coli BL21(DE3) expressing a pET-SOD3-1 construct. Cells were cultured by high-density fed-batch fermentation to a final OD(600) of 51.8, yielding a final dry cell weight of 17.6 g/L. rEC-SOD, which was expressed as an inclusion body, comprised 48.7% of total protein. rEC-SOD was refolded by a simple dilution refolding method and purified by cation-exchange and reverse-phase chromatography. The highly purified rEC-SOD thus obtained was a mixture of monomers and dimers, both of which were active. The molecular weights of monomeric and dimeric rEC-SOD were 25,255 and 50,514 Da, respectively. The purified rEC-SOD had 4.3 EU/mg of endotoxin and the solubility of rEC-SOD was more than 80% between pH 7 and 10. In 2 L of fed-batch fermentation, 60 mg of EC-SOD (99.9% purity) could be produced and total activity was 330.24 U. The process established in this report, involving high-cell-density fermentation, simple dilution refolding, and purification with ion-exchange and reverse-phase chromatography, represents a commercially viable process for producing rEC-SOD.
Collapse
Affiliation(s)
- Young-Jin Son
- Department of Physiology and Research Institute for Biomacromolecules, University of Ulsan College of Medicine, 388-1 PoongNap-dong, Songpa-goo, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
145
|
Effects of Labor on Placental Expression of Superoxide Dismutases in Preeclampsia. Placenta 2010; 31:392-400. [DOI: 10.1016/j.placenta.2010.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/22/2022]
|
146
|
Combelles CMH, Holick EA, Paolella LJ, Walker DC, Wu Q. Profiling of superoxide dismutase isoenzymes in compartments of the developing bovine antral follicles. Reproduction 2010; 139:871-81. [PMID: 20197373 PMCID: PMC3244472 DOI: 10.1530/rep-09-0390] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antral follicle constitutes a complex and regulated ovarian microenvironment that influences oocyte quality. Oxidative stress is a cellular state that may play a role during folliculogenesis and oogenesis, although direct supporting evidence is currently lacking. We thus evaluated the expression of the three isoforms (SOD1, SOD2, and SOD3) of the enzymatic antioxidant superoxide dismutase in all the cellular (granulosa cells, cumulus cells, and oocytes) and extracellular (follicular fluid) compartments of the follicle. Comparisons were made in bovine ovaries across progressive stages of antral follicular development. Follicular fluid possessed increased amounts of SOD1, SOD2, and SOD3 in small antral follicles when compared with large antral follicles; concomitantly, total SOD activity was highest in follicular fluids from smaller diameter follicles. SOD1, SOD2, and SOD3 proteins were expressed in granulosa cells without any fluctuations in follicle sizes. All three SOD isoforms were present, but were distributed differently in oocytes from small, medium, or large antral follicles. Cumulus cells expressed high levels of SOD3, some SOD2, but no detectable SOD1. Our studies provide a temporal and spatial expression profile of the three SOD isoforms in the different compartments of the developing bovine antral follicles. These results lay the ground for future investigations into the potential regulation and roles of antioxidants during folliculogenesis and oogenesis.
Collapse
Affiliation(s)
- Catherine M H Combelles
- Biology Department, Middlebury College, McCardell Bicentennial Hall 346, Middlebury, Vermont 05753, USA.
| | | | | | | | | |
Collapse
|
147
|
Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. AN ACAD BRAS CIENC 2010; 81:409-29. [PMID: 19722012 DOI: 10.1590/s0001-37652009000300007] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.
Collapse
Affiliation(s)
- Juliana L Dreyfuss
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
148
|
Ahl IM, Jonsson BH, Tibell LAE. Thermodynamic characterization of the interaction between the C-terminal domain of extracellular superoxide dismutase and heparin by isothermal titration calorimetry. Biochemistry 2009; 48:9932-40. [PMID: 19754153 DOI: 10.1021/bi900981k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular superoxide dismutase (ECSOD) interacts with heparin through its C-terminal domain. In this study we used isothermal titration calorimetry (ITC) to get detailed thermodynamic information about the interaction. We have shown that the interaction between ECSOD and intestinal mucosal heparin (M(w) 6000-30000 Da) is exothermic and driven by enthalpy at physiological salt concentration. However, the contribution from entropy is favorable for binding of small isolated heparin fragments. By studying different size-defined heparin fragments, we also concluded that a hexasaccharide moiety is sufficient for strong binding to ECSOD. The binding involves proton transfer from the buffer to the ECSOD-heparin complex, and the results indicate that the number of ionic interactions made between ECSOD and heparin upon binding varies from three to five for heparin and an octasaccharide fragment, respectively. Surprisingly and despite the many charges found on both the protein and the polysaccharide, our results indicate that the nonionic contribution to the binding is large. From the temperature dependence we have calculated the constant pressure heat capacity change (DeltaC(p)) of the interaction to -644 J K(-1) mol(-1) and -306 J K(-1) mol(-1) for heparin and an octasaccharide, respectively.
Collapse
Affiliation(s)
- Ing-Marie Ahl
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | | | | |
Collapse
|
149
|
Kliment CR, Suliman HB, Tobolewski JM, Reynolds CM, Day BJ, Zhu X, McTiernan CF, McGaffin KR, Piantadosi CA, Oury TD. Extracellular superoxide dismutase regulates cardiac function and fibrosis. J Mol Cell Cardiol 2009; 47:730-42. [PMID: 19695260 PMCID: PMC2774793 DOI: 10.1016/j.yjmcc.2009.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 01/12/2023]
Abstract
Extracellular superoxide dismutase (EC-SOD) is an antioxidant that protects the heart from ischemia and the lung from inflammation and fibrosis. The role of cardiac EC-SOD under normal conditions and injury remains unclear. Cardiac toxicity, a common side effect of doxorubicin, involves oxidative stress. We hypothesize that EC-SOD is critical for normal cardiac function and protects the heart from oxidant-induced fibrosis and loss of function. C57BL/6 and EC-SOD-null mice were treated with doxorubicin, 15 mg/kg (i.p.). After 15 days, echocardiography was used to assess cardiac function. Left ventricle (LV) tissue was used to assess fibrosis and inflammation by staining, Western blot, and hydroxyproline analysis. At baseline, EC-SOD-null mice have LV wall thinning and increases in LV end diastolic dimensions compared to wild-type mice but have normal cardiac function. After doxorubicin, EC-SOD-null mice have decreases in fractional shortening not apparent in WT mice. Lack of EC-SOD also leads to increases in myocardial apoptosis and significantly more LV fibrosis and inflammatory cell infiltration. Administration of the metalloporphyrin AEOL 10150 abrogates the loss of cardiac function, and potentially fibrosis, associated with doxorubicin treatment in both wild-type and EC-SOD KO mice. EC-SOD is critical for normal cardiac morphology and protects the heart from oxidant-induced fibrosis, apoptosis, and loss of function. The antioxidant metalloporphyrin AEOL 10150 effectively protects cardiac function from doxorubicin-induced oxidative stress in vivo. These findings identify targets for the use of antioxidant agents in oxidant-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Mladěnka P, Hrdina R, Bobrovová Z, Semecký V, Vávrová J, Holečková M, Palicka V, Mazurová Y, Nachtigal P. Cardiac biomarkers in a model of acute catecholamine cardiotoxicity. Hum Exp Toxicol 2009; 28:631-40. [DOI: 10.1177/0960327109350665] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coronary heart disease and in particular its most serious form — acute myocardial infarction (AMI) — represents the most common cause of mortality in developed countries. Better prognosis may be achieved by understanding the etiopathogenetic mechanisms of AMI. Therefore, a catecholamine model of myocardial injury, which has appeared to be very similar to AMI in human in some aspect, was used. Male Wistar:Han rats were randomly divided into two groups: control group (saline) and isoprenaline group (ISO; synthetic catecholamine, 100 mg.kg— 1 subcutaneously [s.c.]). After 24 hours, functional parameters were measured, biochemical markers in the blood and metals content in the heart tissue were analysed and histological examination was performed. ISO caused marked myocardial injury that was associated with myocardial calcium overload. Close correlation between myocardial impairment (i.e. serum TnT, stroke volume index and wet ventricles weight) and the levels of myocardial calcium was observed. Direct reactive oxygen species (ROS) involvement was documented only by non-significant increase in malonyldialdehyde 24 hours after ISO injury. Moreover, myocardial element analysis revealed no significant changes as for the content of zinc and iron while selenium and copper increased in the ISO group although it reached statistical significance only for the latter.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic,
| | - Radomír Hrdina
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Zuzana Bobrovová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimír Semecký
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Jaroslava Vávrová
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Magdaléna Holečková
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Yvona Mazurová
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|