101
|
Gadre A, Dyson T, Jedrych J, Anhalt G, Byrd AS, Aguh C. Proteomic Profiling of Central Centrifugal Cicatricial Alopecia Reveals Role of Humoral Immune Response Pathway and Metabolic Dysregulation. JID INNOVATIONS 2024; 4:100263. [PMID: 38585195 PMCID: PMC10995914 DOI: 10.1016/j.xjidi.2024.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/09/2024] Open
Abstract
Proteomic profiling on other primary cicatricial alopecias, such as frontal fibrosing alopecia and lichen planopilaris, have suggested a T helper 1-mediated inflammatory pathway, but in central centrifugal cicatricial alopecia (CCCA), the protein expression patterns are unknown. In this study, we sought to characterize protein expression patterns in CCCA to identify biomarkers of disease activity that will identify potential therapeutic avenues for treatment. Scalp protein quantification was performed to understand protein expression patterns in affected versus unaffected scalps in CCCA. A total of 5444 proteins were identified, of which 148 proteins were found to be differentially expressed in CCCA-affected scalp, with upregulation of adaptive immune pathways (IGHG3, P = .034; IGHG4, P = .01; IGG1, P = .026) and markers of fibrosis (ITGA1, P = .016; SFRP2, P = .045; TPM2, P = .029; SLMAP, P = .016) and downregulation of metabolic proteins (ALOX15B, P = .003; FADS2, P = .006; ELOVL5, P = .007; FA2H, P = .017; FAR2, P = .011; SC5D, P < .001). Our analysis revealed, to our knowledge, previously unknown humoral immune canonical pathways, notably IgG, implicated in CCCA and additionally confirmed aberrant lipid metabolism pathways implicated in diabetes mellitus, suggesting unique mechanisms of disease in patients with CCCA.
Collapse
Affiliation(s)
- Aditi Gadre
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- School of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Taylor Dyson
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Jaroslaw Jedrych
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Grant Anhalt
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angel S. Byrd
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Crystal Aguh
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
102
|
Wang N, Zhang C. Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. Antioxidants (Basel) 2024; 13:455. [PMID: 38671903 PMCID: PMC11047699 DOI: 10.3390/antiox13040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the principal culprit behind chronic kidney disease (CKD), ultimately developing end-stage renal disease (ESRD) and necessitating costly dialysis or kidney transplantation. The limited therapeutic efficiency among individuals with DKD is a result of our finite understanding of its pathogenesis. DKD is the result of complex interactions between various factors. Oxidative stress is a fundamental factor that can establish a link between hyperglycemia and the vascular complications frequently encountered in diabetes, particularly DKD. It is crucial to recognize the essential and integral role of oxidative stress in the development of diabetic vascular complications, particularly DKD. Hyperglycemia is the primary culprit that can trigger an upsurge in the production of reactive oxygen species (ROS), ultimately sparking oxidative stress. The main endogenous sources of ROS include mitochondrial ROS production, NADPH oxidases (Nox), uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase (XO), cytochrome P450 (CYP450), and lipoxygenase. Under persistent high glucose levels, immune cells, the complement system, advanced glycation end products (AGEs), protein kinase C (PKC), polyol pathway, and the hexosamine pathway are activated. Consequently, the oxidant-antioxidant balance within the body is disrupted, which triggers a series of reactions in various downstream pathways, including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor beta/p38-mitogen-activated protein kinase (TGF-β/p38-MAPK), nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase (AMPK), and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. The disease might persist even if strict glucose control is achieved, which can be attributed to epigenetic modifications. The treatment of DKD remains an unresolved issue. Therefore, reducing ROS is an intriguing therapeutic target. The clinical trials have shown that bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, blood glucose-lowering drugs, such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can effectively slow down the progression of DKD by reducing oxidative stress. Other antioxidants, including vitamins, lipoic acid, Nox inhibitors, epigenetic regulators, and complement inhibitors, present a promising therapeutic option for the treatment of DKD. In this review, we conduct a thorough assessment of both preclinical studies and current findings from clinical studies that focus on targeted interventions aimed at manipulating these pathways. We aim to provide a comprehensive overview of the current state of research in this area and identify key areas for future exploration.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
103
|
Sun Y, Zhao Y, Lu Y, Li H, Xiang J, Yang D, Wang J, Gao X, Wang Y. Urinary stem cell-derived exocrine circRNA ATG7 regulates the SOCS1/STAT3 signaling pathway through miR-4500, inhibits M1 macrophage polarization, and alleviates the progression of diabetes nephropathy. Int Urol Nephrol 2024; 56:1449-1463. [PMID: 37815664 PMCID: PMC10924005 DOI: 10.1007/s11255-023-03819-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE The etiopathogenesis of diabetes nephropathy (DN) has not yet been fully clarified. Finding effective treatments to prevent renal failure in DN patients has become the main focus of research in recent years. Circular RNA (circRNA) has been shown to play a momentous role in DN progression. Based on this, we aimed to investigate the potential mechanism by which urine-derived stem cell (USC)-derived exosome circRNA ATG7 (Exo-ATG7) mediates DN progression. METHODS Exosomes from USCs were isolated and identified. The DN rat model was established by intraperitoneally injecting 60 mg/kg streptozotocin. The protein expression levels were measured by Western blot and immunofluorescence. HE and Masson staining were used to evaluate renal injury, and the expression of related genes was detected by RT-qPCR. RESULTS CircRNA ATG7 was significantly downregulated in the DN rat model, and the extracellular vesicles of USCs improved renal function and reduced inflammation in DN rats. However, after knocking down the USCs-derived exosome circRNA ATG7, improvement and therapeutic effect on renal function in DN rats were lost. In addition, overexpression of ATG7 facilitated the switching of macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype both in vivo and in vitro. Mechanistically, upregulation of circRNA ATG7 expression can alleviate renal damage in DN rats. Importantly, the USCs-derived exosome circRNA ATG7 promotes macrophage M2 polarization by regulating the SOCS1/STAT3 signaling pathway through miR-4500. In addition, animal experiments also confirmed that after knocking down ATG7 in USC cells, the extracted exosome-treated DN rats could weaken the therapeutic effect of USC exosomes. CONCLUSION Our research results indicate that USC-derived exosomal circRNA ATG7 facilitates macrophage phenotype switching from M1 to M2 through the SOCS1/STAT3 signaling pathway mediated by miR-4500, thereby inhibiting DN progression.
Collapse
Affiliation(s)
- Yang Sun
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yanhong Zhao
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yongxin Lu
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Hongmei Li
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Jin Xiang
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Dongmei Yang
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Jinrui Wang
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Xinglian Gao
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China
| | - Yian Wang
- Kidney Internal Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, 653100, Yunnan, China.
| |
Collapse
|
104
|
Zeng Y, Li Y, Jiang W, Hou N. Molecular mechanisms of metabolic dysregulation in diabetic cardiomyopathy. Front Cardiovasc Med 2024; 11:1375400. [PMID: 38596692 PMCID: PMC11003275 DOI: 10.3389/fcvm.2024.1375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious complications of diabetes mellitus, has become recognized as a cardiometabolic disease. In normoxic conditions, the majority of the ATP production (>95%) required for heart beating comes from mitochondrial oxidative phosphorylation of fatty acids (FAs) and glucose, with the remaining portion coming from a variety of sources, including fructose, lactate, ketone bodies (KB) and branched chain amino acids (BCAA). Increased FA intake and decreased utilization of glucose and lactic acid were observed in the diabetic hearts of animal models and diabetic patients. Moreover, the polyol pathway is activated, and fructose metabolism is enhanced. The use of ketones as energy sources in human diabetic hearts also increases significantly. Furthermore, elevated BCAA levels and impaired BCAA metabolism were observed in the hearts of diabetic mice and patients. The shift in energy substrate preference in diabetic hearts results in increased oxygen consumption and impaired oxidative phosphorylation, leading to diabetic cardiomyopathy. However, the precise mechanisms by which impaired myocardial metabolic alterations result in diabetes mellitus cardiac disease are not fully understood. Therefore, this review focuses on the molecular mechanisms involved in alterations of myocardial energy metabolism. It not only adds more molecular targets for the diagnosis and treatment, but also provides an experimental foundation for screening novel therapeutic agents for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yue Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wenyue Jiang
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
105
|
Yaribeygi H, Hemmati MA, Nasimi F, Pakdel R, Jamialahmadi T, Sahebkar A. Empagliflozin alleviates diabetes-induced cognitive impairments by lowering nicotinamide adenine dinucleotide phosphate oxidase-4 expression and potentiating the antioxidant defense system in brain tissue of diabetic rats. Behav Brain Res 2024; 460:114830. [PMID: 38141785 DOI: 10.1016/j.bbr.2023.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Diabetes-induced cognitive impairment is a major challenge in patients with uncontrolled diabetes mellitus. It has a complicated pathophysiology, but the role of oxidative stress is central. Therefore, the use of antidiabetic drugs with extra-glycemic effects that reduce oxidative damage may be a promising treatment option. METHODS Male Wistar rats were randomly divided into four groups as normal, normal treated, diabetic and diabetic treated (n = 8 per group). Type 1 diabetes was induced by a single intraperitoneal dose of streptozotocin (STZ) (40 mg/kg). Two treatment groups received empagliflozin for 5 weeks (20 mg/kg/po). Cognitive ability was evaluated using open field, Elevated Plus Maze (EPM) and the Morris Water Maze (MWM) tests at study completion. Blood and brain tissue samples were collected - and analysis for malondialdehyde (MDA) and glutathione (GLT) content and catalase (CAT) and superoxide dismutase (SOD) enzyme activity were performed. Additionally, expression of nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox-4) enzyme in brain tissue was analyzed using RT-PCR. RESULTS STZ increased blood glucose and induced diabetes with oxidative stress by lowering the antioxidant system potency and increasing Nox-4 expression after 5-weeks in brain tissue accompanied by reduction in cognitive performance. Also, diabetes induced anxiety-like behavior and impaired spatial memory in MWM, EPM and open field tests. However, empagliflozin reversed these changes, improving SOD and CAT activity, GLT content and reducing Nox-4 expression and MDA concentration in brain tissue while improving cognitive ability. It reduced anxiety and depression-related activities. It also improved spatial memory in MWM test. CONCLUSION Uncontrolled diabetes negatively impacts mental function and impairs learning and cognitive performance via oxidative stress induction, the Nox-4 enzyme playing a central role. Empagliflozin reverses these effects, improving cognitive ability via promoting the anti-oxidative system and damping Nox-4 free radical generator enzyme expression. Therefore, empagliflozin is a promising treatment, providing both antidiabetic and extra-glycemic benefits for improving brain function in the diabetic milieu.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Fatemeh Nasimi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Roghayeh Pakdel
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
106
|
Li K, Uyanga VA, Wang X, Jiao H, Zhao J, Zhou Y, Li H, Lin H. Allicin Promotes Glucose Uptake by Activating AMPK through CSE/H 2S-Induced S-Sulfhydration in a Muscle-Fiber Dependent Way in Broiler Chickens. Mol Nutr Food Res 2024; 68:e2300622. [PMID: 38339885 DOI: 10.1002/mnfr.202300622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 02/12/2024]
Abstract
SCOPE Allicin, a product of enzymatic reaction when garlic is injured, plays an important role in maintaining glucose homeostasis in mammals. However, the effect of allicin on glucose homeostasis in the state of insulin resistance remains to be elucidated. This study investigates the effect of allicin on glucose metabolism using different muscle fibers in a chicken model. METHODS AND RESULTS Day-old male Arbor Acres broilers are randomly divided into three groups and fed a basal diet supplemented with 0, 150, or 300 mg kg-1 allicin for 42 days. Results show that allicin improves the zootechnical performance of broilers at the finishing stage. The glucose loading test (2 g kg-1 body mass) indicates the regulatory role of allicin on glucose homeostasis. In vitro results demonstrate allicin increases glutathione (GSH) level and the expression of cystathionine γ lyase (CSE), leading to endogenous hydrogen sulfide (H2S) production in M. pectoralis major (PM) muscle-derived myotubes. Allicin stimulates adenosine monophosphate-activated protein kinase (AMPK) S-sulfhydration and AMPK phosphorylation to promote glucose uptake, which is suppressed in the presence of d,l-propargylglycine (PAG, a CSE inhibitor). CONCLUSION This study demonstrates that allicin induces AMPK S-sulfhydration and AMPK phosphorylation to promote glucose uptake via the CSE/H2S system in a muscle fiber-dependent manner.
Collapse
Affiliation(s)
- Kelin Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Victoria A Uyanga
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271000, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271000, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|
107
|
Xuan L, Yang S, Ren L, Liu H, Zhang W, Sun Y, Xu B, Gong L, Liu L. Akebia saponin D attenuates allergic airway inflammation through AMPK activation. J Nat Med 2024; 78:393-402. [PMID: 38175326 DOI: 10.1007/s11418-023-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Akebia saponin D (ASD) is a bioactive triterpenoid saponin extracted from Dipsacus asper Wall. ex DC.. This study aimed to investigate the effects of ASD on allergic airway inflammation. Human lung epithelial BEAS-2B cells and bone marrow-derived mast cells (BMMCs) were pretreated with ASD (50, 100 and 200 μΜ) and AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) (1 mM), and then stimulated with lipopolysaccharide (LPS) or IL-33. Pretreatment with ASD and AICAR significantly inhibited TNF-α and IL-6 production from BEAS-2B cells, and IL-13 production from BMMCs. Moreover, pretreatment with ASD and AICAR significantly increased p-AMPK expression in BEAS-2B cells. Inhibition of AMPK by siRNA and compound C partly abrogated the suppression effect of ASD on TNF-α, IL-6, and IL-13 production. Asthma murine model was induced by ovalbumin (OVA) challenge and treated with ASD (150 and 300 mg/kg) or AICAR (100 mg/kg). Infiltration of eosinophils, neutrophils, monocytes, and lymphocytes, and production of TNF-α, IL-6, IL-4, and IL-13 were attenuated in ASD and AICAR treated mice. Lung histopathological changes were also ameliorated after ASD and AICAR treatment. Additionally, it showed that treatment with ASD and AICAR increased p-AMPK expression in the lung tissues. In conclusion, ASD exhibited protective effects on allergic airway inflammation through the induction of AMPK activation.
Collapse
Affiliation(s)
- Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Wen Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Beijing, 100020, China.
| |
Collapse
|
108
|
Imenshahidi M, Roohbakhsh A, Hosseinzadeh H. Effects of telmisartan on metabolic syndrome components: a comprehensive review. Biomed Pharmacother 2024; 171:116169. [PMID: 38228033 DOI: 10.1016/j.biopha.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Telmisartan is an antagonist of the angiotensin II receptor used in the management of hypertension (alone or in combination with other antihypertensive agents. It belongs to the drug class of angiotensin II receptor blockers (ARBs). Among drugs of this class, telmisartan shows particular pharmacologic properties, including a longer half-life than any other angiotensin II receptor blockers that bring higher and persistent antihypertensive activity. In hypertensive patients, telmisartan has superior efficacy than other antihypertensive drugs (losartan, valsartan, ramipril, atenolol, and perindopril) in controlling blood pressure, especially towards the end of the dosing interval. Telmisartan has a partial PPARγ-agonistic effect whilst does not have the safety concerns of full agonists of PPARγ receptors (thiazolidinediones). Moreover, telmisartan has an agonist activity on PPARα and PPARδ receptors and modulates the adipokine levels. Thus, telmisartan could be considered as a suitable alternative option, with multi-benefit for all components of metabolic syndrome including hypertension, diabetes mellitus, obesity, and hyperlipidemia. This review will highlight the role of telmisartan in metabolic syndrome and the main mechanisms of action of telmisartan are discussed and summarized. Many studies have demonstrated the useful properties of telmisartan in the prevention and improving of metabolic syndrome and this well-tolerated drug can be greatly proposed in the treatment of different components of metabolic syndrome. However, larger and long-duration studies are needed to confirm these findings in long-term observational studies and prospective trials and to determine the optimum dose of telmisartan in metabolic syndrome.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
109
|
Li X, Feng L, Kuang Q, Wang X, Yang J, Niu X, Gao L, Huang L, Luo P, Li L. Microplastics cause hepatotoxicity in diabetic mice by disrupting glucolipid metabolism via PP2A/AMPK/HNF4A and promoting fibrosis via the Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1018-1030. [PMID: 38064261 DOI: 10.1002/tox.24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 01/09/2024]
Abstract
In recent years, microplastics (MPs) have gained significant attention as a persistent environmental pollutant resulting from the decomposition of plastics, leading to their accumulation in the human body. The liver, particularly of individuals with type 2 diabetes mellitus (T2DM), is known to be more susceptible to the adverse effects of environmental pollutants. Therefore, to investigate the potential impact of MPs on the liver of diabetic mice and elucidate the underlying toxicological mechanisms, we exposed db/db mice to 0.5 μm MPs for 3 months. Our results revealed that MPs exposure resulted in several harmful effects, including decreased body weight, disruption of liver structure and function, elevated blood glucose levels, impaired glucose tolerance, and increased glycogen accumulation in the hepatic tissue of the mice. Furthermore, MPs exposure was found to promote hepatic gluconeogenesis by perturbing the PP2A/AMPK/HNF4A signaling pathway. In addition, MPs disrupt redox balance, leading to oxidative damage in the liver. This exposure also disrupted hepatic lipid metabolism, stimulating lipid synthesis while inhibiting catabolism, ultimately resulting in the development of fatty liver. Moreover, MPs were found to induce liver fibrosis by activating the Wnt/β-catenin signaling pathway. Furthermore, MPs influenced adaptive thermogenesis in brown fat by modulating the expression of uncoupling protein 1 (UCP1) and genes associated with mitochondrial oxidative respiration thermogenesis in brown fat. In conclusion, our study demonstrates that MPs induce oxidative damage in the liver, disturb glucose and lipid metabolism, promote hepatic fibrosis, and influence adaptive thermogenesis in brown fat in diabetic mice. These findings underscore the potential adverse effects of MPs on liver health in individuals with T2DM and highlight the importance of further research in this area.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Lixiang Feng
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Jun Yang
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
110
|
Liu P, Zhang Z, Chen H, Chen Q. Pyroptosis: Mechanisms and links with diabetic cardiomyopathy. Ageing Res Rev 2024; 94:102182. [PMID: 38182080 DOI: 10.1016/j.arr.2023.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycaemia that seriously affects human health. Diabetic cardiomyopathy (DCM) is a major cardiovascular complication and one of the main causes of death in patients with DM. Although DCM attracts great attention, and new therapeutic methods are continuously developed, there is a lack of effective treatment strategies. Therefore, exploring and targeting new signalling pathways related to the evolution of DCM becomes a hotspot and difficulty in the prevention and treatment of DCM. Pyroptosis is a newly discovered regulated cell death that is heavily dependent on the formation of plasma membrane pores by members of the gasdermin protein family and is reported to be involved in the occurrence, development, and pathogenesis of DCM. In this review, we focus on the molecular mechanisms of pyroptosis, its involvement in the relevant signalling pathways of DCM, and potential pyroptosis-targeting therapeutic strategies for the treatment of DCM. Our review provides new insights into the use of pyroptosis as a useful tool for the prevention and treatment of DCM and clarifies future research directions.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China
| | - Huizhen Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
111
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
112
|
Li J, Nan X, Ma Y, Wang Z, Fang H. Therapeutic Potential of Fingolimod in Diabetes Mellitus and Its Chronic Complications. Diabetes Metab Syndr Obes 2024; 17:507-516. [PMID: 38318451 PMCID: PMC10840523 DOI: 10.2147/dmso.s385016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by elevated blood glucose due to a deficiency of insulin secretion and/or action. Long-term poor blood glucose control may lead to chronic damage and dysfunction of the heart, kidneys, eyes, and other organs. Therefore, it is important to develop treatments for diabetes and its chronic complications. Fingolimod is a structural sphingosine analogue and sphingosine-1-phosphate receptor modulator currently used for the treatment of relapsing-remitting multiple sclerosis. Several studies have shown that it has beneficial effects on the improvement of diabetes and its chronic complications. This paper reviews the therapeutic potential of Fingolimod in diabetes and its chronic complications, aiming to further guide future treatment strategies.
Collapse
Affiliation(s)
- Jie Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
- Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, 063000, People’s Republic of China
| | - Xinyu Nan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Yixuan Ma
- Graduate School, Hebei North University, Zhangjiakou, 075000, People’s Republic of China
| | - Zhen Wang
- Department of Orthopedics, Handan First Hospital, Handan, 056000, People’s Republic of China
| | - Hui Fang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
- Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, 063000, People’s Republic of China
| |
Collapse
|
113
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
114
|
Wen X, Lv C, Zhou R, Wang Y, Zhou X, Qin S. The Molecular Mechanism Underlying the Therapeutic Effect of Dihydromyricetin on Type 2 Diabetes Mellitus Based on Network Pharmacology, Molecular Docking, and Transcriptomics. Foods 2024; 13:344. [PMID: 38275711 PMCID: PMC10815645 DOI: 10.3390/foods13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and complex disease, and traditional drugs have many side effects. The active compound dihydromyricetin (DHM), derived from natural plants, has been shown in our previous study to possess the potential for reducing blood glucose levels; however, its precise molecular mechanism remains unclear. In the present study, network pharmacology and transcriptomics were performed to screen the molecular targets and signaling pathways of DHM disturbed associated with T2DM, and the results were partially verified by molecular docking, RT-PCR, and Western blotting at in vivo levels. Firstly, the effect of DHM on blood glucose, lipid profile, and liver oxidative stress in db/db mice was explored and the results showed that DHM could reduce blood glucose and improve oxidative stress in the liver. Secondly, GO analysis based on network pharmacology and transcriptomics results showed that DHM mainly played a significant role in anti-inflammatory, antioxidant, and fatty acid metabolism in biological processes, on lipoprotein and respiratory chain on cell components, and on redox-related enzyme activity, iron ion binding, and glutathione transferase on molecular functional processes. KEGG system analysis results showed that the PI3K-Akt signaling pathway, IL17 signaling pathway, HIF signaling pathway, MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and TNF signaling pathway were typical signaling pathways disturbed by DHM in T2DM. Thirdly, molecular docking results showed that VEGFA, SRC, HIF1A, ESR1, KDR, MMP9, PPARG, and MAPK14 are key target genes, five genes of which were verified by RT-PCR in a dose-dependent manner. Finally, Western blotting results revealed that DHM effectively upregulated the expression of AKT protein and downregulated the expression of MEK protein in the liver of db/db mice. Therefore, our study found that DHM played a therapeutic effect partially by activation of the PI3K/AKT/MAPK signaling pathway. This study establishes the foundation for DHM as a novel therapeutic agent for T2DM. Additionally, it presents a fresh approach to utilizing natural plant extracts for chemoprevention and treatment of T2DM.
Collapse
Affiliation(s)
- Xinnian Wen
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Chenghao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Runze Zhou
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Yixue Wang
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Xixin Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
115
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
116
|
Shu Y, Yang X, Wei L, Wen C, Luo H, Qin T, Ma L, Liu Y, Wang B, Liu C, Zhou C. Akebia saponin D from Dipsacus asper wall. Ex C.B. Clarke ameliorates skeletal muscle insulin resistance through activation of IGF1R/AMPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117049. [PMID: 37591362 DOI: 10.1016/j.jep.2023.117049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dipsacus asper Wall. Ex C.B. Clarke (DA), a perennial herb, is one of the most commonly used herbs in Traditional Chinese Medicine for strengthening muscles and bones and regulating blood vessels. Akebia saponin D (ASD/AVI) is a triterpenoid saponin extracted from the root of DA, which has favorable pharmacological properties such as anti-osteoporosis, anti-apoptosis, liver protection and hypolipidemic. AIM OF THE STUDY To explore the underlying mechanisms and regulatory role of Akebia saponin D (ASD/AVI) on high-fat diet-induced insulin resistance in skeletal muscle. MATERIALS AND METHODS C2C12 cells were used to explore the best concentration in the skeletal muscle insulin resistance model in an in vitro experiment. The protective effect of AVI on insulin resistance and the corresponding signaling pathway were detected by glucose content measurement, quantitative PCR, and Western blot. A high-fat diet STZ-induced insulin resistance mice model was used to evaluate the protective function of AVI in vivo. After four weeks of treatment, ITT, OGTT, and treadmill tests were applied to examine insulin sensitivity and their serum and skeletal muscle tissues were collected for further analysis. RESULTS AVI effectively reduced body weight, blood glucose levels and calorie intake in insulin-resistant mice, and reduced lipid accumulation and in their muscle tissue. AVI also improved glucose uptake and insulin sensitivity in both in vivo and in vitro experiments. Following AVI administration, there was an increase in the expression of the AMPK signaling pathway. Our experiments further confirmed that AVI specifically targets the IGF1R, thereby more effectively regulating the insulin signaling pathway. CONCLUSION AVI improves type 2 diabetes-induced insulin resistance in skeletal muscle by activating the IGF1R-AMPK signaling pathway, promoting glucose uptake and energy metabolism in IR.
Collapse
Affiliation(s)
- Yue Shu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Xinru Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Linlin Wei
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Cailing Wen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Hui Luo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Tian Qin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Liqing Ma
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Ying Liu
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China; School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Cuiling Liu
- Department of Pharmacy, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, 518101, China.
| | - Chun Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
117
|
Thakuri LS, Park CM, Park JW, Rhyu DY. Gracilaria chorda subcritical-water extracts as ameliorant of insulin resistance induced by high-glucose in zebrafish and dexamethasone in L6 myotubes. J Tradit Complement Med 2024; 14:82-90. [PMID: 38223809 PMCID: PMC10785150 DOI: 10.1016/j.jtcme.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 01/16/2024] Open
Abstract
Background and aim Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to insulin. Loss of insulin sensitivity disrupts glucose homeostasis and elevates the risk of developing the metabolic syndrome that includes Type 2 diabetes. This study assesses the effect on subcritical-water extract of Gracilaria chorda (GC) at 210 °C (GCSW210) in IR induction models of high glucose (HG)-induced zebrafish larvae and dexamethasone (DEX)-induced L6 myotubes. Experimental procedure The dose of HG and DEX for IR induction in zebrafish larvae and L6 myotubes was 130 mM or 0.5 μM. The capacity of glucose uptake was quantified by fluorescence staining or intensity. In addition, the activation of protein and mRNA expressions for insulin signaling (insulin-dependent or independent pathways) was measured. Results and conclusion Exposure of zebrafish larvae to HG significantly reduced the intracellular glucose uptake with dose-dependnet manner compared to control. However, the group treated with GCSW210 significantly averted HG levels like the insulin-treated group, and significantly up- or down-regulated the mRNA expressions related to insulin production (insα) and insulin signaling pathways. Moreover, the treatment with GCSW210 effectively regulated the protein expression of PI3K/AKT, AMPK, and GLUT4 involved in the action of insulin in IR models of L6 myotubes compared to DEX-treated control. Our data indicate that GCSW210 stimulates activation of PI3K/AKT and AMPK pathways to attenuate the development of IR induced by HG in zebrafish and DEX in L6 myotubes. In conclusion, GCSW210 is a potential agent for alleviating various diseases associated with the insulin resistance.
Collapse
Affiliation(s)
- Laxmi Sen Thakuri
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Chul Min Park
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeonbuk, 56212, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Dong Young Rhyu
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam, 58554, Republic of Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam, 58554, Republic of Korea
| |
Collapse
|
118
|
Quaiyoom A, Kumar R. An Overview of Diabetic Cardiomyopathy. Curr Diabetes Rev 2024; 20:e121023222139. [PMID: 37842898 DOI: 10.2174/0115733998255538231001122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 10/17/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a myocardial disorder that is characterised by structural and functional abnormalities of the heart muscle in the absence of hypertension, valvular heart disease, congenital heart defects, or coronary artery disease (CAD). After witnessing a particular form of cardiomyopathy in diabetic individuals, Rubler et al. came up with the moniker diabetic cardiomyopathy in 1972. Four stages of DCM are documented, and the American College of Cardiology/American Heart Association Stage and New York Heart Association Class for HF have some overlap. Diabetes is linked to several distinct forms of heart failure. Around 40% of people with heart failure with preserved ejection fraction (HFpEF) have diabetes, which is thought to be closely associated with the pathophysiology of HFpEF. Diabetes and HF are uniquely associated in a bidirectional manner. When compared to the general population without diabetes, those with diabetes have a risk of heart failure that is up to four times higher. A biomarker is a trait that is reliably measured and assessed as a predictor of healthy biological activities, pathological processes, or pharmacologic responses to a clinical treatment. Several biomarker values have been discovered to be greater in patients with diabetes than in control subjects among those who have recently developed heart failure. Myocardial fibrosis and hypertrophy are the primary characteristics of DCM, and structural alterations in the diabetic myocardium are often examined by non-invasive, reliable, and reproducible procedures. An invasive method called endomyocardial biopsy (EMB) is most often used to diagnose many cardiac illnesses.
Collapse
Affiliation(s)
- Abdul Quaiyoom
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| | - Ranjeet Kumar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| |
Collapse
|
119
|
Safaie N, Masoumi S, Alizadeh S, Mirzajanzadeh P, Nejabati HR, Hajiabbasi M, Alivirdiloo V, Basmenji NC, Derakhshi Radvar A, Majidi Z, Faridvand Y. SGLT2 inhibitors and AMPK: The road to cellular housekeeping? Cell Biochem Funct 2024; 42:e3922. [PMID: 38269506 DOI: 10.1002/cbf.3922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Sodium-glucose co-transporter-2 (SGLT2) inhibitors, known as Gliflozins, are a class of Glucose-lowering drugs in adults with type 2 diabetes (T2D) that induce glucosuria by blocking SGLT2 co-transporters in the proximal tubules. Several lines of evidence suggest that SGLT2 inhibitors regulate multiple mechanisms associated with the regulation of varying cellular pathways. The 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway plays an important role in metabolic homeostasis by influencing cellular processes. Recently, it has been shown that SGLT2 inhibitors can affect the AMPK pathway in differing physiological and pathological ways, resulting in kidney, intestinal, cardiovascular, and liver protective effects. Additionally, they have therapeutic effects on nonalcoholic fatty liver disease and diabetes mellitus-associated complications. In this review, we summarize the results of studies of AMPK-associated therapeutic effects of SGLT2 inhibitors in different organelle functions.
Collapse
Affiliation(s)
- Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahab Masoumi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Fellowship, Vanderbilt University of Medical center, Nashville, Tennessee, USA
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramasr, Iran
| | | | | | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
120
|
Panghal A, Jena G. Gut-Gonad Perturbations in Type-1 Diabetes Mellitus: Role of Dysbiosis, Oxidative Stress, Inflammation and Energy-Dysbalance. Curr Diabetes Rev 2024; 20:e220823220204. [PMID: 37608613 DOI: 10.2174/1573399820666230822151740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Type 1 diabetes mellitus is a major metabolic disorder that affects people of all age groups throughout the world. It is responsible for the alterations in male gonadal physiology in experimental models as well as in clinical cases. On the other side, diabetes mellitus has also been associated with perturbations in the gut physiology and microbiota dysbiosis. The accumulating evidence suggests a link between the gut and gonad as evident from the i) experimental data providing insights into type 1 diabetes mellitus induced gut perturbations, ii) link of gut physiology with alterations of testicular health, iii) role of gut microbiota in androgen metabolism in the intestine, and iv) epidemiological evidence linking type 1 diabetes mellitus with inflammatory bowel disease and male infertility. Considering all the pieces of evidence, it is summarized that gut dysbiosis, oxidative stress, inflammation and energy dys-balance are the prime factors involved in the gonadal damage under type 1 diabetes mellitus, in which the gut contributes significantly. Identification of novel biomarkers and intervention of suitable agents targeting these prime factors may be a step forward to restore the gonadal damage in diabetic conditions.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| |
Collapse
|
121
|
Martínez-Sánchez JE, Cárdenas Y, Trujillo X, Ríos-Silva M, Díaz-Reval MI, Bricio-Barrios JA, Muñiz J, Alcaraz-Siqueiros J, Huerta M. Increased Frequency of Giant Miniature End-Plate Potentials at the Neuromuscular Junction in Diabetic Rats. Biomedicines 2023; 12:68. [PMID: 38255175 PMCID: PMC10813272 DOI: 10.3390/biomedicines12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
There is a need for research addressing the functional characteristics of the motor end-plate in diabetes to identify mechanisms contributing to neuromuscular dysfunction. Here, we investigated the effect of diabetes on spontaneous acetylcholine release in the rat neuromuscular junction. We studied two randomized groups of male Wistar rats (n = 7 per group, 350 ± 50 g, 12-16 weeks of age): one with streptozotocin-induced experimental diabetes, and a healthy control group without diabetes. After 8 weeks of monitoring after diabetes induction, rats in both groups were anesthetized with pentobarbital. Then, the diaphragm muscle was dissected for electrophysiological recordings of miniature end-plate potentials (MEPPs) using a single electrode located at the region of the muscle end-plate. All experiments were conducted at environmental temperature (20-22 °C) in rat Ringer solution with constant bubbling carbogen (95% O2, 5% CO2). Compared to healthy controls, in the diaphragm neuromuscular end-plate derived from diabetic rats, the MEPPs were higher in amplitude and frequency, and the proportion of giant MEPPs was elevated (7.09% vs. 1.4% in controls). Our results showed that diabetes affected the acetylcholine MEPP pattern and increased the number of giant potentials compared to healthy controls.
Collapse
Affiliation(s)
- Julián Elías Martínez-Sánchez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Yolitzy Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Mónica Ríos-Silva
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima—CONAHCyT, Av. 25 de Julio 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico
| | - M. Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Jaime Alberto Bricio-Barrios
- Facultad de Medicina, Universidad de Colima, Av. Universidad #333, Col. Las Víboras, Colima 28040, Colima, Mexico;
| | - Jesús Muñiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| | - Julio Alcaraz-Siqueiros
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Km 40 Autopista Colima-Manzanillo, Crucero de Tecomán, Tecomán 28930, Colima, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio # 965, Col. Villas San Sebastián, Colima 28045, Colima, Mexico; (J.E.M.-S.); (X.T.)
| |
Collapse
|
122
|
Yu H, Zhong D, Li S, Mo H, Zhang Z, Gao J, Ren X, Yu J, Geng S, Wang Y, Li Y, Wang L. FGF21 Improves Glycolipid Metabolism in Rainbow Trout ( Oncorhynchus mykiss) Fed a High-Carbohydrate Diet by Inhibiting Inflammatory Responses and Activating Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20118-20130. [PMID: 38061326 DOI: 10.1021/acs.jafc.3c06768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, the coding region of rainbow trout fgf21 was cloned and sequenced to synthesize a recombinant protein (rFGF21) and investigate its potential role in improving glycolipid metabolism. Acute injection of rFGF21 into rainbow trout effectively reduced serum glucose levels. To investigate the effect of rFGF21 on high-carbohydrate diet (HCD)-induced metabolic disorders in rainbow trout, a 31-day feeding experiment was conducted. At the end of the third week, fish were injected with either PBS or rFGF21. The results showed that the final body weight (FBW) significantly increased in rainbow trout on an HCD (P < 0.05), but there were potential risks including disturbances in glycolipid metabolism and increased inflammatory responses. However, these effects were altered by rFGF21 treatment. In addition, rFGF21 promotes glucose uptake by increasing the phosphorylation levels of AKT (protein kinase B) and GSK3β (glycogen synthase kinase 3β), increasing hepatic glycogen, thereby lowering serum glucose. Notably, the rFGF21 did not exacerbate the inflammatory response but downregulated the expression of inflammatory factors. Interestingly, the activation of autophagy and the AMPK pathway may contribute to the positive effect of rFGF21, where rFGF21 injection significantly increased the levels of LC3I/II protein and phosphorylate AMPKα (P < 0.05).
Collapse
Affiliation(s)
- Huixia Yu
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Debin Zhong
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Shuai Li
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Haolin Mo
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Zhihao Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jiuwei Gao
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xin Ren
- Meixian Aquaculture Farm of Shitouhe Reservoir Administration, Xianyang 712000, Shaanxi, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Shuo Geng
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yingwei Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
123
|
Naidoo K, Khathi A. The Potential Role of Gossypetin in the Treatment of Diabetes Mellitus and Its Associated Complications: A Review. Int J Mol Sci 2023; 24:17609. [PMID: 38139436 PMCID: PMC10743819 DOI: 10.3390/ijms242417609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused by insulin resistance and dysfunctional beta (β)-cells in the pancreas. Hyperglycaemia is a characteristic of uncontrolled diabetes which eventually leads to fatal organ system damage. In T2DM, free radicals are continuously produced, causing extensive tissue damage and subsequent macro-and microvascular complications. The standard approach to managing T2DM is pharmacological treatment with anti-diabetic medications. However, patients' adherence to treatment is frequently decreased by the side effects and expense of medications, which has a detrimental impact on their health outcomes. Quercetin, a flavonoid, is a one of the most potent anti-oxidants which ameliorates T2DM. Thus, there is an increased demand to investigate quercetin and its derivatives, as it is hypothesised that similar structured compounds may exhibit similar biological activity. Gossypetin is a hexahydroxylated flavonoid found in the calyx of Hibiscus sabdariffa. Gossypetin has a similar chemical structure to quercetin with an extra hydroxyl group. Furthermore, previous literature has elucidated that gossypetin exhibits neuroprotective, hepatoprotective, reproprotective and nephroprotective properties. The mechanisms underlying gossypetin's therapeutic potential have been linked to its anti-oxidant, anti-inflammatory and immunomodulatory properties. Hence, this review highlights the potential role of gossypetin in the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
124
|
Tang W, Yan C, He S, Du M, Cheng B, Deng B, Zhu S, Li Y, Wang Q. Neuron-targeted overexpression of caveolin-1 alleviates diabetes-associated cognitive dysfunction via regulating mitochondrial fission-mitophagy axis. Cell Commun Signal 2023; 21:357. [PMID: 38102662 PMCID: PMC10722701 DOI: 10.1186/s12964-023-01328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) induced diabetes-associated cognitive dysfunction (DACD) that seriously affects the self-management of T2DM patients, is currently one of the most severe T2DM-associated complications, but the mechanistic basis remains unclear. Mitochondria are highly dynamic organelles, whose function refers to a broad spectrum of features such as mitochondrial dynamics, mitophagy and so on. Mitochondrial abnormalities have emerged as key determinants for cognitive function, the relationship between DACD and mitochondria is not well understood. METHODS Here, we explored the underlying mechanism of mitochondrial dysfunction of T2DM mice and HT22 cells treated with high glucose/palmitic acid (HG/Pal) focusing on the mitochondrial fission-mitophagy axis with drug injection, western blotting, Immunofluorescence, and electron microscopy. We further explored the potential role of caveolin-1 (cav-1) in T2DM induced mitochondrial dysfunction and synaptic alteration through viral transduction. RESULTS As previously reported, T2DM condition significantly prompted hippocampal mitochondrial fission, whereas mitophagy was blocked rather than increasing, which was accompanied by dysfunctional mitochondria and impaired neuronal function. By contrast, Mdivi-1 (mitochondrial division inhibitor) and urolithin A (mitophagy activator) ameliorated mitochondrial and neuronal function and thereafter lead to cognitive improvement by inhibiting excessive mitochondrial fission and giving rise to mitophagy, respectively. We have previously shown that cav-1 can significantly improve DACD by inhibiting ferroptosis. Here, we further demonstrated that cav-1 could not only inhibit mitochondrial fission via the interaction with GSK3β to modulate Drp1 pathway, but also rescue mitophagy through interacting with AMPK to activate PINK1/Parkin and ULK1-dependent signlings. CONCLUSIONS Overall, our data for the first time point to a mitochondrial fission-mitophagy axis as a driver of neuronal dysfunction in a phenotype that was exaggerated by T2DM, and the protective role of cav-1 in DACD. Graphic Summary Illustration. In T2DM, excessive mitochondrial fission and impaired mitophagy conspire to an altered mitochondrial morphology and mitochondrial dysfunction, with a consequent neuronal damage, overall suggesting an unbalanced mitochondrial fission-mitophagy axis. Upon cav-1 overexpression, GSK3β and AMPK are phosphorylated respectively to activate Drp1 and mitophagy-related pathways (PINK1 and ULKI), ultimately inhibits mitochondrial fission and enhances mitophagy. In the meantime, the mitochondrial morphology and neuronal function are rescued, indicating the protective role of cav-1 on mitochondrial fission-mitophagy axis. Video Abstract.
Collapse
Affiliation(s)
- Wenxin Tang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Shan Zhu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
125
|
Cui Y, Chen J, Zhang Z, Shi H, Sun W, Yi Q. The role of AMPK in macrophage metabolism, function and polarisation. J Transl Med 2023; 21:892. [PMID: 38066566 PMCID: PMC10709986 DOI: 10.1186/s12967-023-04772-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitous sensor of energy and nutritional status in eukaryotic cells. It plays a key role in regulating cellular energy homeostasis and multiple aspects of cell metabolism. During macrophage polarisation, AMPK not only guides the metabolic programming of macrophages, but also counter-regulates the inflammatory function of macrophages and promotes their polarisation toward the anti-inflammatory phenotype. AMPK is located at the intersection of macrophage metabolism and inflammation. The metabolic characteristics of macrophages are closely related to immune-related diseases, infectious diseases, cancer progression and immunotherapy. This review discusses the structure of AMPK and its role in the metabolism, function and polarisation of macrophages. In addition, it summarises the important role of the AMPK pathway and AMPK activators in the development of macrophage-related diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Junhua Chen
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Zhao Zhang
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
126
|
Srilatha M, Malla R, Adem MP, Foote JB, Nagaraju GP. Obesity associated pancreatic ductal adenocarcinoma: Therapeutic challenges. Semin Cancer Biol 2023; 97:12-20. [PMID: 37926347 DOI: 10.1016/j.semcancer.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Obesity is a prominent health issue worldwide and directly impacts pancreatic health, with obese individuals exhibiting a significant risk for increasing pancreatic ductal adenocarcinoma (PDAC). Several factors potentially explain the increased risk for the development of PDAC, including obesity-induced chronic inflammation within and outside of the pancreas, development of insulin resistance and metabolic dysfunction, promotion of immune suppression within the pancreas during inflammation, pre- and malignant stages, variations in hormones levels (adiponectin, ghrelin, and leptin) produced from the adipose tissue, and acquisition of somatic mutations in tumor once- and suppressor proteins critical for pancreatic tumorigenesis. In this manuscript, we will explore the broad impact of these obesity-induced risk factors on the development and progression of PDAC, focusing on changes within the tumor microenvironment (TME) as they pertain to prevention, current therapeutic strategies, and future directions for targeting obesity management as they relate to the prevention of pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India
| | - Ramarao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Megha Priya Adem
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, Andhra Pradesh 517502, India
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
127
|
Hong Y, Wang J, Sun W, Zhang L, Xu X, Zhang K. Gallic acid improves the metformin effects on diabetic kidney disease in mice. Ren Fail 2023; 45:2183726. [PMID: 37723077 PMCID: PMC9987773 DOI: 10.1080/0886022x.2023.2183726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVES Metformin is an antidiabetic agent that is used as the first-line treatment of type 2 diabetes mellitus. Gallic acid is a type of phenolic acid that has been shown to be a potential drug candidate to treat diabetic kidney disease, an important complication of diabetes. We aimed to test whether a combination of gallic acid and metformin can exert synergetic effect on diabetic kidney disease in diabetic mice model. METHODS Streptozotocin (65 mg/kg) intraperitoneal injection was used to induce diabetic kidney disease in mice. The diabetic mice were treated with saline (Vehicle), gallic acid (GA) (30 mg/kg), metformin (MET) (200 mg/kg), or the combination of gallic acid (30 mg/kg) and metformin (200 mg/kg) (GA + MET). RESULTS Our results demonstrated that compared to the untreated diabetic mice, all three strategies (GA, MET, and GA + MET) exhibited various effects on improving renal morphology and functions, reducing oxidative stress in kidney tissues, and restoring AMP-activated protein kinase (AMPK)/silent mating type information regulation 2 homolog 1 (SIRT1) signaling in kidney tissues of diabetic mice. Notably, the combination strategy (GA + MET) provided the most potent renal protection effects than any single strategies (GA or MET). CONCLUSION Our results support the hypothesis that gallic acid might serve as a potential supplement to metformin to enhance the therapeutical effect of metformin.
Collapse
Affiliation(s)
- Yan Hong
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Jidong Wang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Wenjuan Sun
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Lai Zhang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Xuefang Xu
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Kaiyue Zhang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| |
Collapse
|
128
|
Soetikno V, Andini P, Iskandar M, Matheos CC, Herdiman JA, Kyle IK, Suma MNI, Louisa M, Estuningtyas A. Alpha-Mangosteen lessens high-fat/high-glucose diet and low-dose streptozotocin induced-hepatic manifestations in the insulin resistance rat model. PHARMACEUTICAL BIOLOGY 2023; 61:241-248. [PMID: 36655319 PMCID: PMC9969969 DOI: 10.1080/13880209.2023.2166086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
CONTEXT α-Mangosteen (α-MG) attenuates insulin resistance (IR). However, it is still unknown whether α-MG could alleviate hepatic manifestations in IR rats. OBJECTIVE To investigate the effect of α-MG on alleviating hepatic manifestations in IR rats through AMP-activated protein kinase (AMPK) and sterol-regulatory element-binding protein-1 (SREBP-1) pathway. MATERIALS AND METHODS IR was induced by exposing male Sprague-Dawley rats (180-200 g) to high-fat/high-glucose diet and low-dose injection of streptozotocin (HF/HG/STZ), then treated with α-MG at a dose of 100 or 200 mg/kg/day for 8 weeks. At the end of the study (11 weeks), serum and liver were harvested for biochemical analysis, and the activity of AMPK, SREBP-1c, acetyl-CoA carboxylase (ACC), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, insulin receptor substrate (IRS)-1, Bax and liver histopathology were analyzed. RESULTS α-MG at both doses significantly lowered ALT, AST, triglyceride, and cholesterol total by 16.5, 15.7, 38, and 36%, respectively. These beneficial effects of α-MG are associated with the downregulation of the IR-induced inflammation in the liver. Furthermore, α-MG, at both doses, activated AMPK by 24-29 times and reduced SREBP-1c by 44-50% as well as ACC expression by 19-31% similar to metformin. All treatment groups showed liver histopathology improvement regarding fat deposition in the liver. CONCLUSIONS Based on the findings demonstrated, α-MG protected against HF/HG/STZ-induced hepatic manifestations of the IR rats, at least in part via the modulation of the AMPK/SREBP-1c/ACC pathway and it could be a potential drug candidate to prevent IR-induced hepatic manifestations.
Collapse
Affiliation(s)
- Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Prisma Andini
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Miskiyah Iskandar
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Joshua Alward Herdiman
- Undergraduate Program in Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Iqbal Kevin Kyle
- Undergraduate Program in Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ari Estuningtyas
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
129
|
Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol 2023; 14:1284981. [PMID: 38089479 PMCID: PMC10711283 DOI: 10.3389/fphys.2023.1284981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/10/2024] Open
Abstract
Poor wound healing and pathological healing have been pressing issues in recent years, as they impact human quality of life and pose risks of long-term complications. The study of neovascularization has emerged as a prominent research focus to address these problems. During the process of repair and regeneration, the establishment of a new vascular system is an indispensable stage for complete healing. It provides favorable conditions for nutrient delivery, oxygen supply, and creates an inflammatory environment. Moreover, it is a key manifestation of the proliferative phase of wound healing, bridging the inflammatory and remodeling phases. These three stages are closely interconnected and inseparable. This paper comprehensively integrates the regulatory mechanisms of new blood vessel formation in wound healing, focusing on the proliferation and migration of endothelial cells and the release of angiogenesis-related factors under different healing outcomes. Additionally, the hidden link between the inflammatory environment and angiogenesis in wound healing is explored.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Chong Yao
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Yujie Shui
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Hong Yan
- Laboratory of Plastic Surgery, Department of Plastic Surgery and Reconstruction, Second Hospital of West China, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
130
|
Asante DB, Wiafe GA. Therapeutic Benefit of Vernonia amygdalina in the Treatment of Diabetes and Its Associated Complications in Preclinical Studies. J Diabetes Res 2023; 2023:3159352. [PMID: 38033739 PMCID: PMC10686711 DOI: 10.1155/2023/3159352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Diabetes mellitus (DM), a complex heterogeneous metabolic disorder characterized by a defect in the function of insulin, is on the rapid rise globally. Sustained hyperglycemia which is a major sign of DM is linked to the generation of reactive oxygen species which promotes adverse complications of the disorder. Traditional herbal treatment of DM is a common practice in Africa and other tropical parts of the world. Vernonia amygdalina (VA), one of the highly researched species in the Asteraceae family, has proven to possess potent antidiabetic properties. Several phytochemicals identified in multiple extracts from VA are purported to be responsible for the antidiabetic potential of the plant. In this review, we discuss the therapeutic potential of VA in diabetes and its associated complications. We appraise the current evidence and further suggest potential areas that could be effectively exploited in future VA research on diabetes.
Collapse
Affiliation(s)
- Du-Bois Asante
- Department of Biomedical Sciences, University of Cape Coast, Ghana
- Department of Forensic Science, University of Cape Coast, Ghana
| | | |
Collapse
|
131
|
Atteia HH, AlFaris NA, Alshammari GM, Alamri E, Ahmed SF, Albalwi R, Abdel-Sattar SAL. The Hepatic Antisteatosis Effect of Xanthohumol in High-Fat Diet-Fed Rats Entails Activation of AMPK as a Possible Protective Mechanism. Foods 2023; 12:4214. [PMID: 38231665 DOI: 10.3390/foods12234214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Obesity is the leading cause of non-alcoholic fatty liver disease by provoking hyperglycemia, hyperlipidemia, insulin resistance, oxidative stress, and inflammation. Low activity of AMP-activated protein kinase (AMPK) is linked to obesity, liver injury, and NAFLD. This study involves examining if the anti-steatosis effect of Xanthohumol (XH) in high-fat diet (HFD)-fed rats involves the regulation of AMPK. Adult male rats were divided into five groups (n = 8 each) as control (3.85 kcal/g); XH (control diet + 20 mg/kg), HFD (4.73 kcl/g), HFD + XH (20 mg/kg), and HFD + XH (30 mg/kg) + compound c (cc) (0.2 mg/kg). All treatments were conducted for 12 weeks. Treatment with XH attenuated the gain in body weight, fat pads, fasting glucose, and insulin in HFD rats. It also lowered serum leptin and free fatty acids (FFAs) and improved glucose and insulin tolerances in these rats. It also attenuated the increase in serum livers of liver marker enzymes and reduced serum and hepatic levels of triglycerides (TGs), cholesterol (CHOL), FFAs, as well as serum levels of low-density lipoproteins cholesterol (LDL-c) oxidized LDL-c. XH also reduced hepatic levels of malondialdehyde (MDA), nuclear accumulation of NF-κB, and the levels of tumor necrosis-factor-α (TNF-α) and interleukin-6 (IL-6) while stimulating the nuclear levels of Nrf2 and total levels of glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in these HFD-fed rats. At the molecular levels, XH increased hepatic mRNA expression and phosphorylation of AMPK (Thr72) and reduced the expression of lipogenic genes SREBP1c and ACC-1. In concomitance, XH reduced hepatic liver droplet accumulation, reduced the number of apoptotic nuclei, and improved the structures of nuclei, mitochondria, and rough endoplasmic reticulum. Co-treatment with CC, an AMPK inhibitor, completely abolished all these effects of XH. In conclusion, XH attenuates obesity and HFD-mediated hepatic steatosis by activating hepatic AMPK.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
| | - Nora A AlFaris
- Department of Physical Sports Sciences, College of Sports Sciences & Physical Activity, Princess Nourah bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Eman Alamri
- Department of Food Science and Nutrition, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
| | - Salwa Fares Ahmed
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
- Department of Histology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Renad Albalwi
- Department of Food Science and Nutrition, University of Tabuk, Tabuk P.O. Box 47512, Saudi Arabia
| | | |
Collapse
|
132
|
Zhang LH, Wang J, Tan BH, Yin YB, Kang YM. Roux-en-Y Gastric Bypass Improves Insulin Sensitivity in Obese Rats with Type 2 Diabetes Mellitus by Regulating the Grin3a/AMPK Signal Axis in Hypothalamic Arcuate Nucleus. Diabetes Metab Syndr Obes 2023; 16:3617-3629. [PMID: 38028990 PMCID: PMC10644885 DOI: 10.2147/dmso.s430445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The objective of this study was to explore the effects and related mechanisms of Roux-en-Y gastric bypass (RYGB) on insulin sensitivity in obese rats with type 2 diabetes mellitus (T2DM). Methods The obese T2DM rat model was constructed by feeding a high-fat diet and injecting streptozotocin (STZ), and treated with RYGB. Grin3a shRNA was injected into the bilateral hypothalamic arcuate nucleus (ARC) to knockdown the Grin3a expression on T2DM rats. Eight weeks after operation, the body weight, fasting blood glucose (FBG), fasting serum insulin (FSI), homeostatic model assessment of insulin resistance (HOMA-IR), and plasma triglyceride (TG) levels were assessed. Hematoxylin & eosin (H&E) staining was adopted to observe the white adipose tissue (WAT) of rats. Western blot and qRT-PCR were used to detect the expression of Grin3a, adenosine 5' monophosphate-activated protein kinase (AMPK) and p-AMPK in ARC of rats. Later, the plasmid over-expressing or knocking down Grin3a was transfected into differentiated 3T3-L1 adipocytes, and the TG level and the formation of lipid droplets in adipocyte were assessed by TG kit and oil red O staining. The expression of lipogenic transcription factors in cells was detected by qRT-PCR. Results RYGB reduced FBG, FSI, HOMA-IR and plasma TG levels in T2DM rats while increasing Grin3a expression and p-AMPK/AMPK ratio in ARC. Knockdown of Grin3a not only reversed the decrease of FBG, FSI, HOMA-IR and plasma TG levels in T2DM rats induced by RYGB, but also reversed the up-regulation of p-AMPK/AMPK ratio in ARC affected by RYGB. Moreover, knocking down Grin3a significantly increased the TG level, promoted the formation of lipid droplets and up-regulated the expressions of lipogenic transcription factors in adipocytes. Conclusion RYGB improved the insulin sensitivity, reduced the plasma TG level and lessens the fat accumulation in obese T2DM rats by regulating the Grin3a/AMPK signal in ARC.
Collapse
Affiliation(s)
- Li-Hai Zhang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, People’s Republic of China
- Six Wards of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, People’s Republic of China
| | - Jiao Wang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, People’s Republic of China
- Six Wards of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, People’s Republic of China
| | - Bai-Hong Tan
- Six Wards of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, People’s Republic of China
| | - Yan-Bin Yin
- Six Wards of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, People’s Republic of China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an, People’s Republic of China
| |
Collapse
|
133
|
Hossain MS, Roney M, Bin Mohd Yunus MY, Shariffuddin JH. Virtual screening, molecular docking, molecular dynamics, and MM-GBSA approaches identify prospective fructose-1,6-bisphosphatase inhibitors from pineapple for diabetes management. J Biomol Struct Dyn 2023; 42:13619-13634. [PMID: 37916669 DOI: 10.1080/07391102.2023.2276889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Diabetes affects millions globally and poses treatment challenges. Targeting the enzyme fructose-1,6-bisphosphatase (FBPase) in gluconeogenesis and exploring plant-based therapies offer potential solutions for improving diabetes management while supporting sustainability and medicinal advancements. Utilizing pineapple (Ananas comosus L. Merr.) waste as a source of drug precursors could be valuable for health and environmental care due to its medicinal benefits and abundant yearly biomass production. Therefore, this study conducted a virtual screening to identify potential natural compounds from pineapple that could inhibit FBPase activity. A total of 112 compounds were screened for drug-likeness and ADMET properties, and molecular docking simulations were performed on 20 selected compounds using blind docking. The lead compound, butane-2,3-diyl diacetate, was subjected to 100 ns MD simulations, revealing a binding energy of -5.4 kcal/mol comparable to metformin (-5.6 kcal/mol). The MD simulation also confirmed stable complexes with crucial hydrogen bonds. Glu20, Ala24, Thr27, Gly28, Glu29, Leu30, Val160, Met177, Asp178, and Cys179 were identified as key amino acids that stabilized the human liver FBPase-butane-2,3-diyl diacetate complex, while Tyr215 and Asp218 played a crucial role in the human liver FBPase-Metformin complex. Our study indicates that the lead compound has high intestinal solubility. Therefore, it would show rapid bloodstream distribution and effective action on the target protein, making butane-2,3-diyl diacetate a potential antidiabetic drug candidate. However, further investigations in vitro, preclinical, and clinical trials are required to thoroughly assess its efficacy and safety.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Jun Haslinda Shariffuddin
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| |
Collapse
|
134
|
Liu J, Liu S, Yu M, Li J, Xie Z, Gao B, Liu Y. Anti-inflammatory effect and mechanism of catalpol in various inflammatory diseases. Drug Dev Res 2023; 84:1376-1394. [PMID: 37534768 DOI: 10.1002/ddr.22096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Catalpol is a kind of iridoid glucoside, widely found in a variety of plants, mostly extracted from the rhizome of the traditional medicinal herb rehmanniae. It has various biological activities such as anti-inflammatory, antioxidant, and antitumor. The anti-inflammatory effects of catalpol have been demonstrated in a variety of diseases, such as neurological diseases, atherosclerosis, renal diseases, respiratory diseases, digestive diseases, bone and joint diseases, eye diseases, and periodontitis. The purpose of this review is to summarize the existing literature on the anti-inflammatory effects of catalpol in a variety of inflammatory diseases over the last decade and to focus on the anti-inflammatory mechanisms of catalpol.
Collapse
Affiliation(s)
- Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Boyang Gao
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
135
|
Ozcaliskan Ilkay H, Karabulut D, Kamaci Ozocak G, Mehmetbeyoglu E, Kaymak E, Kisioglu B, Cicek B, Akyol A. Quinoa ( Chenopodium quinoa Willd.) supplemented cafeteria diet ameliorates glucose intolerance in rats. Food Sci Nutr 2023; 11:6920-6930. [PMID: 37970433 PMCID: PMC10630841 DOI: 10.1002/fsn3.3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 11/17/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a pseudocereal with rich nutritional composition, gluten free, and organoleptic. The primary aim of this study was to elucidate the possible protective roles of quinoa in glucose homeostasis in a model of cafeteria diet-induced obesity. Male Wistar rats (3 weeks of age) were randomly allocated to be fed by; control chow (CON; n = 6), quinoa (QUI; n = 6), cafeteria (CAF; n = 6), or quinoa and cafeteria (CAFQ; n = 6) for 15 weeks. CAFQ resulted in decreased saturated fat, sugar, and sodium intake in comparison with CAF. Compared to CON, CAF increased body weight gain, plasma insulin, plasma glucose, decreased liver IRS-1, AMPK mRNA expressions, and pancreatic β-cell insulin immunoreactivity, and developed hepatocyte degeneration and microvesicular steatosis. Compared to CAF, QUI lowered body weight, plasma glucose, and plasma insulin, increased liver IRS-1 and AMPK mRNA expressions, and pancreatic β-cell insulin immunoreactivity. Compared to CAF, CAFQ lowered plasma glucose, increased liver IRS-1 mRNA expressions, increased pancreatic β-cell insulin immunoreactivity, and lowered hepatocyte degeneration and microvesicular steatosis. Dietary treatments did not influence IRS-2, AKT2, and INSR mRNA expressions. HOMA-IR, HOMA-β, and QUICKI were also similar between groups. Restoration of insulin in CAFQ islets was as well as that of CON and QUI groups. In conclusion, as a functional food, quinoa may be useful in the prevention of obesity and associated metabolic outcomes such as glucose intolerance, disrupted pancreatic β-cell function, hepatic insulin resistance, and lipid accumulation.
Collapse
Affiliation(s)
- Hatice Ozcaliskan Ilkay
- Faculty of Health Sciences, Department of Nutrition and DieteticsHacettepe UniversityAnkaraTurkey
- Faculty of Health Sciences, Department of Nutrition and DieteticsErciyes UniversityKayseriTurkey
| | - Derya Karabulut
- Faculty of Medicine, Department of Histology and EmbryologyErciyes UniversityKayseriTurkey
| | - Gonca Kamaci Ozocak
- Faculty of Veterinary Medicine, Department of Laboratory Animals ScienceErciyes UniversityKayseriTurkey
| | | | - Emin Kaymak
- Faculty of Medicine, Department of Histology and EmbryologyYozgat Bozok UniversityYozgatTurkey
| | - Betul Kisioglu
- Faculty of Health Sciences, Department of Nutrition and DieteticsHacettepe UniversityAnkaraTurkey
| | - Betul Cicek
- Faculty of Health Sciences, Department of Nutrition and DieteticsErciyes UniversityKayseriTurkey
| | - Asli Akyol
- Faculty of Health Sciences, Department of Nutrition and DieteticsHacettepe UniversityAnkaraTurkey
| |
Collapse
|
136
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
137
|
Mobasheri L, Ahadi M, Beheshti Namdar A, Alavi MS, Bemidinezhad A, Moshirian Farahi SM, Esmaeilizadeh M, Nikpasand N, Einafshar E, Ghorbani A. Pathophysiology of diabetic hepatopathy and molecular mechanisms underlying the hepatoprotective effects of phytochemicals. Biomed Pharmacother 2023; 167:115502. [PMID: 37734266 DOI: 10.1016/j.biopha.2023.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Patients with diabetes are at risk for liver disorders including glycogen hepatopathy, non-alcoholic fatty liver disease, cirrhosis, and hepatic fibrosis. The pathophysiological mechanisms behind diabetic hepatopathy are complex, some of them include fatty acid accumulation, increased reactive oxygen species, increased advanced glycation end-products, hyperactivity of polyol pathways, increased apoptosis and necrosis, and promotion of fibrosis. A growing number of studies have shown that herbal extracts and their active phytochemicals have antihyperglycemic properties and beneficial effects on diabetic complications. The current review, for the first time, focused on herbal agents that showed beneficial effects on diabetic hepatopathy. For example, animal studies have shown that Moringa oleifera and Morus alba improve liver function in both type-1 and type-2 diabetes. Also, evidence from clinical trials suggests that Boswellia serrata, Juglans regia, Melissa officinalis, Portulaca oleracea, Silybum marianum, Talapotaka Churna, and Urtica dioica reduce serum liver enzymes in diabetic patients. The main active ingredient of these plants to protect the liver seems to be phenolic compounds such as niazirin, chlorogenic acid, resveratrol, etc. Mechanisms responsible for the hepatoprotective activity of herbal agents include improving glucose metabolism, restoring adipokines levels, antioxidant defense, and anti-inflammatory activity. Several signaling pathways are involved in hepatoprotective effects of herbal agents in diabetes, such as phosphoinositide 3-kinase, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, and c-Jun NH2-terminal kinase.
Collapse
Affiliation(s)
- Leila Mobasheri
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Ahadi
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahdi Esmaeilizadeh
- Innovative Medical Research Center, Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Niloofar Nikpasand
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Einafshar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
138
|
Burton MA, Garratt ES, Hewitt MO, Sharkh HY, Antoun E, Westbury LD, Dennison EM, Harvey NC, Cooper C, MacIsaac JL, Kobor MS, Patel HP, Godfrey KM, Lillycrop KA. DNA methylation of insulin signaling pathways is associated with HOMA2-IR in primary myoblasts from older adults. Skelet Muscle 2023; 13:17. [PMID: 37898813 PMCID: PMC10612387 DOI: 10.1186/s13395-023-00326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND While ageing is associated with increased insulin resistance (IR), the molecular mechanisms underlying increased IR in the muscle, the primary organ for glucose clearance, have yet to be elucidated in older individuals. As epigenetic processes are suggested to contribute to the development of ageing-associated diseases, we investigated whether differential DNA methylation was associated with IR in human primary muscle stem cells (myoblasts) from community-dwelling older individuals. METHODS We measured DNA methylation (Infinium HumanMethylationEPIC BeadChip) in myoblast cultures from vastus lateralis biopsies (119 males/females, mean age 78.24 years) from the Hertfordshire Sarcopenia Study extension (HSSe) and examined differentially methylated cytosine phosphate guanine (CpG) sites (dmCpG), regions (DMRs) and gene pathways associated with HOMA2-IR, an index for the assessment of insulin resistance, and levels of glycated hemoglobin HbA1c. RESULTS Thirty-eight dmCpGs (false discovery rate (FDR) < 0.05) were associated with HOMA2-IR, with dmCpGs enriched in genes linked with JNK, AMPK and insulin signaling. The methylation signal associated with HOMA2-IR was attenuated after the addition of either BMI (6 dmCpGs), appendicular lean mass index (ALMi) (7 dmCpGs), grip strength (15 dmCpGs) or gait speed (23 dmCpGs) as covariates in the model. There were 8 DMRs (Stouffer < 0.05) associated with HOMA2-IR, including DMRs within T-box transcription factor (TBX1) and nuclear receptor subfamily-2 group F member-2 (NR2F2); the DMRs within TBX1 and NR2F2 remained associated with HOMA2-IR after adjustment for BMI, ALMi, grip strength or gait speed. Forty-nine dmCpGs and 21 DMRs were associated with HbA1c, with cg13451048, located within exoribonuclease family member 3 (ERI3) associated with both HOMA2-IR and HbA1c. HOMA2-IR and HbA1c were not associated with accelerated epigenetic ageing. CONCLUSIONS These findings suggest that insulin resistance is associated with differential DNA methylation in human primary myoblasts with both muscle mass and body composition making a significant contribution to the methylation changes associated with IR.
Collapse
Affiliation(s)
- Mark A Burton
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma S Garratt
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Matthew O Hewitt
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hanan Y Sharkh
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, University of Southampton, Southampton, UK
| | - Elie Antoun
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Leo D Westbury
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Elaine M Dennison
- NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Nicholas C Harvey
- NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, Edwin S.H. Leong Healthy Aging Program, University of British Columbia, Vancouver, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, Edwin S.H. Leong Healthy Aging Program, University of British Columbia, Vancouver, Canada
| | - Harnish P Patel
- NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- Faculty of Medicine, Academic Geriatric Medicine, University of Southampton, Southampton, UK
| | - Keith M Godfrey
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Karen A Lillycrop
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK.
- Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
139
|
Ding Z, Wei Y, Peng J, Wang S, Chen G, Sun J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines 2023; 11:2711. [PMID: 37893085 PMCID: PMC10603830 DOI: 10.3390/biomedicines11102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently redefined as metabolic-dysfunction-associated fatty liver disease (MASLD), is liver-metabolism-associated steatohepatitis caused by nonalcoholic factors. NAFLD/MASLD is currently the most prevalent liver disease in the world, affecting one-fourth of the global population, and its prevalence increases with age. Current treatments are limited; one important reason hindering drug development is the insufficient understanding of the onset and pathogenesis of NAFLD/MASLD. C-reactive protein (CRP), a marker of inflammation, has been linked to NAFLD and aging in recent studies. As a conserved acute-phase protein, CRP is widely characterized for its host defense functions, but the link between CRP and NAFLD/MASLD remains unclear. Herein, we discuss the currently available evidence for the involvement of CRP in MASLD to identify areas where further research is needed. We hope this review can provide new insights into the development of aging-associated NAFLD biomarkers and suggest that modulation of CRP signaling is a potential therapeutic target.
Collapse
Affiliation(s)
- Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuqiu Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jing Peng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Siyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Guixi Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
140
|
Wang Z, Cao Z, Yue Z, Yang Z. Research progress of dihydromyricetin in the treatment of diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1216907. [PMID: 37732125 PMCID: PMC10507363 DOI: 10.3389/fendo.2023.1216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Diabetic Mellitus (DM), a chronic metabolic disorder disease characterized by hyperglycemia, is mainly caused by the absolute or relative deficiency of insulin secretion or decreased insulin sensitivity in target tissue cells. Dihydromyricetin (DMY) is a flavonoid compound of dihydroflavonol that widely exists in Ampelopsis grossedentata. This review aims to summarize the research progress of DMY in the treatment of DM. A detailed summary of related signaling induced by DMY are discussed. Increasing evidence implicates that DMY display hypoglycemic effects in DM via improving glucose and lipid metabolism, attenuating inflammatory responses, and reducing oxidative stress, with the signal transduction pathways underlying the regulation of AMPK or mTOR/autophagy, and relevant downstream cascades, including PGC-1α/SIRT3, MEK/ERK, and PI3K/Akt signal pathways. Hence, the mechanisms underlying the therapeutic implications of DMY in DM are still obscure. In this review, following with a brief introduction of the absorption, metabolism, distribution, and excretion characteristics of DMY, we summarized the current pharmacological developments of DMY as well as possible molecular mechanisms in the treatment of DM, aiming to push the understanding about the protective role of DMY as well as its preclinical assessment of novel application.
Collapse
Affiliation(s)
| | | | | | - Zhengfeng Yang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
141
|
Kaur M, Misra S, Swarnkar P, Patel P, Das Kurmi B, Das Gupta G, Singh A. Understanding the role of hyperglycemia and the molecular mechanism associated with diabetic neuropathy and possible therapeutic strategies. Biochem Pharmacol 2023; 215:115723. [PMID: 37536473 DOI: 10.1016/j.bcp.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Diabetic neuropathy is a neuro-degenerative disorder that encompasses numerous factors that impact peripheral nerves in the context of diabetes mellitus (DM). Diabetic peripheral neuropathy (DPN) is very prevalent and impacts 50% of diabetic patients. DPN is a length-dependent peripheral nerve lesion that primarily causes distal sensory loss, discomfort, and foot ulceration that may lead to amputation. The pathophysiology is yet to be fully understood, but current literature on the pathophysiology of DPN revolves around understanding various signaling cascades involving the polyol, hexosamine, protein-kinase C, AGE, oxidative stress, and poly (ADP ribose) polymerase pathways. The results of research have suggested that hyperglycemia target Schwann cells and in severe cases, demyelination resulting in central and peripheral sensitization is evident in diabetic patients. Various diagnostic approaches are available, but detection at an early stage remains a challenge. Traditional analgesics and opioids that can be used "as required" have not been the mainstay of treatment thus far. Instead, anticonvulsants and antidepressants that must be taken routinely over time have been the most common treatments. For now, prolonging life and preserving the quality of life are the ultimate goals of diabetes treatment. Furthermore, the rising prevalence of DPN has substantial consequences for occupational therapy because such therapy is necessary for supporting wellness, warding off other chronic-diseases, and avoiding the development of a disability; this is accomplished by engaging in fulfilling activities like yoga, meditation, and physical exercise. Therefore, occupational therapy, along with palliative therapy, may prove to be crucial in halting the onset of neuropathic-symptoms and in lessening those symptoms once they have occurred.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Sakshi Misra
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Priyanka Swarnkar
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India.
| |
Collapse
|
142
|
Akbar M, Wandy A, Soraya GV, Goysal Y, Lotisna M, Basri MI. Sudomotor dysfunction in diabetic peripheral neuropathy (DPN) and its testing modalities: A literature review. Heliyon 2023; 9:e18184. [PMID: 37539131 PMCID: PMC10393629 DOI: 10.1016/j.heliyon.2023.e18184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Long term consequences of diabetes mellitus (DM) may include multi-organ complications such as retinopathy, cardiovascular disease, neuronal, and kidney damage. One of the most prevalent complication is diabetic peripheral neuropathy (DPN), occurring in half of all diabetics, and is the main cause of disability globally with profound impact on a patient's quality of life. Small fiber neuropathy (SFN) can develop in the pre-diabetes stage preceding large fiber damage in DPN. Asymptomatic SFN is difficult to diagnose in early stages, with sudomotor dysfunction considered one of the earliest manifestations of autonomic neuropathy. Early detection is crucial as it can prevent potential cardiovascular events. Although punch skin biopsy is the gold-standard method for SFN diagnosis, implementation as routine screening is hindered due to its invasive, impractical, and time-consuming nature. Other sudomotor testing modalities, most of which evaluate the postganglionic cholinergic sympathetic nervous system, have been developed with varying sensitivity and specificity for SFN diagnosis. Here, we provide an overview on the general mechanism of DPN, the importance of sudomotor assessment for early detection of autonomic dysfunction in DPN, the benefits and disadvantages of current testing modalities, factors that may affect testing, and the importance of future discoveries on sudomotor testing for successful DPN diagnosis.
Collapse
Affiliation(s)
- Muhammad Akbar
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Alvian Wandy
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Gita Vita Soraya
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Yudy Goysal
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mimi Lotisna
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Iqbal Basri
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
143
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
144
|
Lam CS, Xia YX, Chen BS, Du YX, Liu KL, Zhang HJ. Dihydro-Resveratrol Attenuates Oxidative Stress, Adipogenesis and Insulin Resistance in In Vitro Models and High-Fat Diet-Induced Mouse Model via AMPK Activation. Nutrients 2023; 15:3006. [PMID: 37447331 DOI: 10.3390/nu15133006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Management of obesity has become a prevalent strategy for preventing the diseases closely integrated with excess body weight such as diabetes over the last half century. Searching for therapeutic agents acting on oxidative stress, adipogenesis and insulin resistance is considered as an efficient approach to control obesity-related diseases. The present study was designed to examine the in vitro and in vivo effects of dihydro-resveratrol (DR2), a naturally occurring compound from Dendrobium medicinal plants, on oxidative stress aggravation, adipogenesis, lipogenesis and insulin sensitivity. We utilized an in vitro 3T3-L1 adipocyte differentiation model to show that DR2 could reduce pre-adipocyte maturation by activation of AMPK/SIRT1 signaling proteins to inhibit p38MAPK proteins. With the use of in vitro oxidative-stress-induced hepatocytes and myoblasts models, DR2 was also shown to be able to reduce oxidative stress aggravation through mediation of Nrf2-related antioxidative cascade, reduce intracellular lipid accumulation through phosphorylation of ACC protein, reduce lipid peroxidation in hepatocytes and promote insulin sensitivity via activation of AKT protein in the insulin-resistant HepG2 cells and C2C12 cells. The effects of DR2 on adipogenesis, lipid accumulation, insulin resistance and blood glucose clearance were further demonstrated in the high-fat diet-induced obesity mouse model. Our in vitro and in vivo studies determined that DR2 could contain therapeutic potential for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chu-Shing Lam
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yi-Xuan Xia
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Bai-Sen Chen
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yin-Xiao Du
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Kang-Lun Liu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
145
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
146
|
Chauhan S, Singh AP, Rana AC, Kumar S, Kumar R, Singh J, Jangra A, Kumar D. Natural activators of AMPK signaling: potential role in the management of type-2 diabetes. J Diabetes Metab Disord 2023; 22:47-59. [PMID: 37255783 PMCID: PMC10225395 DOI: 10.1007/s40200-022-01155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/30/2022] [Indexed: 06/01/2023]
Abstract
Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase involved in the homeostasis of cellular energy. AMPK has developed as an appealing clinical target for the diagnosis of multiple metabolic diseases such as diabetes mellitus, obesity, inflammation, and cancer. Genetic and pharmacological studies indicate that AMPK is needed in response to glucose deficiency, dietary restriction, and increased physical activity for preserving glucose homeostasis. After activation, AMPK influences metabolic mechanisms contributing to enhanced ATP production, thus growing processes that absorb ATP simultaneously. In this review, several natural products have been discussed which enhance the sensitivity of AMPK and alleviate sub complications or different pathways by which such AMPK triggers can be addressed. AMPK Natural products as potential AMPK activators can be developed as alternate pharmacological intervention to reverse metabolic disorders including type 2 diabetes.
Collapse
Affiliation(s)
- Sanyogita Chauhan
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Aakash Partap Singh
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Avtar Chand Rana
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Haryana 122502 Rewari, India
| | - Ravi Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031 Haryana India
| | - Jitender Singh
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, P.O. Mianpur, Ropar, 140108 Punjab India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| | - Dinesh Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119 Haryana India
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031 India
| |
Collapse
|
147
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
148
|
Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives. Food Chem 2023; 408:135183. [PMID: 36566543 DOI: 10.1016/j.foodchem.2022.135183] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is one of the most serious health problems worldwide. Species in the genus Polygonatum are traditional food and medicinal plants, which play an important role in controlling blood glucose. In this reveiw, we systematically summarized the traditional and modern applications of the genus Polygonatum in DM, focused on the material bases of polysaccharides, flavonoids and saponins. We highlighted their mechanisms of action in preventing obese diabetes, improving insulin resistance, promoting insulin secretion, regulating intestinal microecology, inhibiting advanced glycation end products (AGEs) accumulation, suppressing carbohydrate digestion and obsorption and modulating gluconeogenesis. Based on the safety and efficacy of this 'medicinal food' and its utility in the prevention and treatment of diabetes, we proposed a research and development program that includs diet design (supplementary food), medical nutrition therapy and new drugs, which could provide new pathways for the use of natural plants in prevention and treatment of DM.
Collapse
|
149
|
Choi JH, Kim KM, Park SE, Kim MK, Kim S. Short-Term Effects of PJE Administration on Metabolic Parameters in Diet-Induced Obesity Mice. Foods 2023; 12:1675. [PMID: 37107470 PMCID: PMC10137377 DOI: 10.3390/foods12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The study investigated the effects of Petasites japonicus (Siebold & Zucc.) Maxim. extract (PJE) and fenofibrate on diet-induced obesity (DIO) in mice. PJE was found to contain various bio-active polyphenolic compounds, including kaempferol, p-hydroxybenzoic acid, ferulic acid, gallic acid, chlorogenic acid, 3,4-dicaffeoylquinic acid, caffeic acid, quercetin, rutin, protocatechuic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, p-coumaric acid, apigenin, and 1,3-dicaffeoylquinic acid. The results showed that PJE treatment up to 1000 μg/mL did not affect the viability of 3T3-L1 cell line, and it reduced the feed efficiency ratio in DIO mice. PJE administration also resulted in a significant reduction in body weight gain and fat accumulation in the liver compared to the DIO control group. Additionally, PJE administration improved the levels of lipid and related parameters, including total cholesterol, triacylglycerol, low-density lipoprotein, very low-density lipoprotein, glucose, insulin, insulin resistance, leptin, and atherogenic or cardiac indexes compared to the DIO control group. The study suggested that PJE may have a beneficial effect on insulin resistance, lipid profiles, atherogenesis, adipokines, and cardiac risk associated with diet-induced obesity.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Ki-Man Kim
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Se-Eun Park
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| | - Myung-Kon Kim
- Department of Food Science and Technology, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Seung Kim
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea; (J.-H.C.); (K.-M.K.)
| |
Collapse
|
150
|
Huang A, Ji L, Li Y, Li Y, Yu Q. Gut microbiome plays a vital role in post-stroke injury repair by mediating neuroinflammation. Int Immunopharmacol 2023; 118:110126. [PMID: 37031605 DOI: 10.1016/j.intimp.2023.110126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Cerebral stroke is a common neurological disease and often causes severe neurological deficits. With high morbidity, mortality, and disability rates, stroke threatens patients' life quality and brings a heavy economic burden on society. Ischemic cerebral lesions incur pathological changes as well as spontaneous nerve repair following stroke. Strategies such as drug therapy, physical therapy, and surgical treatment, can ameliorate blood and oxygen supply in the brain, hamper the inflammatory responses and maintain the structural and functional integrity of the brain. The gut microbiome, referred to as the "second genome" of the human body, participates in the regulation of multiple physiological functions including metabolism, digestion, inflammation, and immunity. The gut microbiome is not only inextricably associated with dangerous factors pertaining to stroke, including high blood pressure, diabetes, obesity, and atherosclerosis, but also influences stroke occurrence and prognosis. AMPK functions as a hub of metabolic control and is responsible for the regulation of metabolic events under physiological and pathological conditions. The AMPK mediators have been found to exert dual roles in regulating gut microbiota and neuroinflammation/neuronal apoptosis in stroke. In this study, we reviewed the role of the gut microbiome in cerebral stroke and the underlying mechanism of the AMPK signaling pathway in stroke. AMPK mediators in nerve repair and the regulation of intestinal microbial balance were also summarized.
Collapse
Affiliation(s)
- Airu Huang
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ling Ji
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yufeng Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|