101
|
Xu J, Xue Y, Zhou R, Shi PY, Li H, Zhou J. Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Med Res Rev 2021; 41:1375-1426. [PMID: 33277927 PMCID: PMC8044022 DOI: 10.1002/med.21763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS-CoV-2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti-CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID-19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID-19.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
102
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
103
|
A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia. Blood 2021; 138:1317-1330. [PMID: 33876224 DOI: 10.1182/blood.2020008955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and metabolite depletion, which severely impaired nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted AMPK activation and downregulation of mTOR signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring either murine NOTCH1-induced primary leukemias or human T-ALL PDXs led to potent antileukemic effects with a significant extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.
Collapse
|
104
|
Wang G, Gaikwad H, McCarthy MK, Gonzalez-Juarrero M, Li Y, Armstrong M, Reisdorph N, Morrison TE, Simberg D. Lipid nanoparticle formulation of niclosamide (nano NCM) effectively inhibits SARS-CoV-2 replication in vitro. PRECISION NANOMEDICINE 2021; 4:724-737. [PMID: 34676370 PMCID: PMC8528232 DOI: 10.33218/001c.18813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As exemplified by the COVID-19 pandemic, highly infective respiratory viruses can spread rapidly in the population because of lack of effective approaches to control viral replication and spread. Niclosamide (NCM) is an old anthelminthic drug (World Health Organization essential medicine list) with pleiotropic pharmacological activities. Several recent publications demonstrated that NCM has broad antiviral activities and potently inhibits viral replication, including replication of SARS-CoV-2, SARS-CoV, and dengue viruses. Unfortunately, NCM is almost completely insoluble in water, which limits its clinical use. We developed a cost-effective lipid nanoparticle formulation of NCM (nano NCM) using only FDA-approved excipient and demonstrated potency against SARS-CoV-2 infection in cells (Vero E6 and ACE2-expressing lung epithelium cells).
Collapse
Affiliation(s)
- Guankui Wang
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mary K McCarthy
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80521
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Thomas E Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
105
|
Sekulovski N, MacLean JA, Bheemireddy SR, Yu Z, Okuda H, Pru C, Plunkett KN, Matzuk M, Hayashi K. Niclosamide's potential direct targets in ovarian cancer†. Biol Reprod 2021; 105:403-412. [PMID: 33855343 DOI: 10.1093/biolre/ioab071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates that niclosamide is an anti-cancer compound that is able to inhibit several signaling pathways. Although niclosamide has previously been identified by high-throughput screening platforms as a potential effective compound against several cancer types, no direct binding interactions with distinct biological molecule(s) has been established. The present study identifies key signal transduction mechanisms altered by niclosamide in ovarian cancer. Using affinity purification with a biotin-modified niclosamide derivative and mass spectrometry analysis, several RNA-binding proteins (RBPs) were identified. We chose the two RBPs, FXR1 and IGF2BP2, for further analysis. A significant correlation exists in which high-expression of FXR1 or IGF2BP2 is associated with reduced survival of ovarian cancer patients. Knockdown of FXR1 or IGF2BP2 in ovarian cancer cells resulted in significantly reduced cell viability, adhesion, and migration. Furthermore, FXR1 or IGF2BP2 deficient ovarian cancer cells exhibited reduced response to most doses of niclosamide showing greater cell viability than those with intact RBPs. These results suggest that FXR1 and IGF2BP2 are direct targets of niclosamide and could have critical activities that drive multiple oncogenic pathways in ovarian cancer.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | | | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Hiroshi Okuda
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, Japan
| | - Cindy Pru
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Kyle N Plunkett
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, USA
| | - Martin Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
106
|
Lawal B, Lee CY, Mokgautsi N, Sumitra MR, Khedkar H, Wu ATH, Huang HS. mTOR/EGFR/iNOS/MAP2K1/FGFR/TGFB1 Are Druggable Candidates for N-(2,4-Difluorophenyl)-2',4'-Difluoro-4-Hydroxybiphenyl-3-Carboxamide (NSC765598), With Consequent Anticancer Implications. Front Oncol 2021; 11:656738. [PMID: 33842373 PMCID: PMC8034425 DOI: 10.3389/fonc.2021.656738] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background The application of computational and multi-omics approaches has aided our understanding of carcinogenesis and the development of therapeutic strategies. NSC765598 is a novel small molecule derivative of salicylanilide. This study aims to investigate the ligand-protein interactions of NSC765598 with its potential targets and to evaluate its anticancer activities in vitro. Methods We used multi-computational tools and clinical databases, respectively, to identify the potential drug target for NSC765598 and analyze the genetic profile and prognostic relevance of the targets in multiple cancers. We evaluated the in vitro anticancer activities against the National Cancer Institute 60 (NCI60) human tumor cell lines and used molecular docking to study the ligand-protein interactions. Finally, we used the DTP-COMPARE algorithm to compare the NSC765598 anticancer fingerprints with NCI standard agents. Results We identified mammalian target of rapamycin (mTOR)/epidermal growth factor receptor (EGFR)/inducible nitric oxide synthase (iNOS)/mitogen-activated protein 2 kinase 1 (MAP2K1)/fibroblast growth factor receptor (FGFR)/transforming growth factor-β1 (TGFB1) as potential targets for NSC765598. The targets were enriched in cancer-associated pathways, were overexpressed and were of prognostic relevance in multiple cancers. Among the identified targets, genetic alterations occurred most frequently in EGFR (7%), particularly in glioblastoma, esophageal squamous cell cancer, head and neck squamous cell cancer, and non–small-cell lung cancer, and were associated with poor prognoses and survival of patients, while other targets were less frequently altered. NSC765598 displayed selective antiproliferative and cytotoxic preferences for NSCLC (50% growth inhibition (GI50) = 1.12–3.95 µM; total growth inhibition (TGI) = 3.72–16.60 μM), leukemia (GI50 = 1.20–3.10 µM; TGI = 3.90–12.70 μM), melanoma (GI50 = 1.45–3.59 µM), and renal cancer (GI50 = 1.38–3.40 µM; TGI = 4.84–13.70 μM) cell lines, while panels of colon, breast, ovarian, prostate, and central nervous system (CNS) cancer cell lines were less sensitive to NSC765598. Interestingly, NSC765598 docked well into the binding cavity of the targets by conventional H-bonds, van der Waal forces, and a variety of π-interactions, with higher preferences for EGFR (ΔG = −11.0 kcal/mol), NOS2 (ΔG = −11.0 kcal/mol), and mTOR (ΔG = −8.8 kcal/mol). NSC765598 shares similar anti-cancer fingerprints with NCI standard agents displayed acceptable physicochemical values and met the criteria of drug-likeness. Conclusion NSC765598 displayed significant anticancer and potential multi-target properties, thus serve as a novel candidate worthy of further preclinical studies.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Harshita Khedkar
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
107
|
Phase Ib trial of reformulated niclosamide with abiraterone/prednisone in men with castration-resistant prostate cancer. Sci Rep 2021; 11:6377. [PMID: 33737681 PMCID: PMC7973745 DOI: 10.1038/s41598-021-85969-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Niclosamide has preclinical activity against a wide range of cancers. In prostate cancer, it inhibits androgen receptor variant 7 and synergizes with abiraterone. The approved niclosamide formulation has poor oral bioavailability. The primary objective of this phase Ib trial was to identify a maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of a novel reformulated orally-bioavailable niclosamide/PDMX1001 in combination with abiraterone and prednisone in men with castration-resistant prostate cancer (CRPC). Eligible patients had progressing CRPC, adequate end-organ function, and no prior treatment with abiraterone or ketoconazole. Patients were treated with escalating doses of niclosamide/PDMX1001 and standard doses of abiraterone and prednisone. Peak and trough niclosamide plasma levels were measured. Common Terminology Criteria for Adverse Events (CTCAE) v4.0 and Prostate Cancer Working Group 2 criteria were used to evaluate toxicities and responses. Nine patients with metastatic CRPC were accrued, with no dose-limiting toxicities observed at all dose levels. The recommended Phase II dose of niclosamide/PDMX1001 was 1200 mg orally (PO) three times daily plus abiraterone 1000 mg PO once daily and prednisone 5 mg PO twice daily. Trough and peak niclosamide concentrations exceeded the therapeutic threshold of > 0.2 µM. The combination was well tolerated with most frequent adverse effects of diarrhea. Five out of eight evaluable patients achieved a PSA response; two achieved undetectable PSA and radiographic response. A novel niclosamide/PDMX1001 reformulation achieved targeted plasma levels when combined with abiraterone and prednisone, and was well tolerated. Further study of niclosamide/PDMX1001 with this combination is warranted.
Collapse
|
108
|
Wang X, Wu K, Fang L, Yang X, Zheng N, Du Z, Lu Y, Xie Z, Liu Z, Zuo Z, Ye F. Discovery of N-substituted sulfamoylbenzamide derivatives as novel inhibitors of STAT3 signaling pathway based on Niclosamide. Eur J Med Chem 2021; 218:113362. [PMID: 33774344 DOI: 10.1016/j.ejmech.2021.113362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been confirmed as an attractive therapeutic target for cancer therapy. Herein, we designed and synthesized a series of N-substituted Sulfamoylbenzamide STAT3 inhibitors based on small-molecule STAT3 inhibitor Niclosamide. Compound B12, the best active compound of this series, was identified as an inhibitor of IL-6/STAT3 signaling with an IC50 of 0.61-1.11 μM in MDA-MB-231, HCT-116 and SW480 tumor cell lines with STAT3 overexpression, by inhibiting the phosphorylation of STAT3 of Tyr705 residue and the expression of STAT3 downstream genes, inducing apoptosis and inhibiting the migration of cancer cells. Furthermore, in vivo study revealed that compound B12 suppressed the MDA-MB-231 xenograft tumor growth in nude mice at the dose of 30 mg/kg (i.g.), which has better antitumor activity than the positive control Niclosamide. More importantly, B12 is an orally bioavailable anticancer agent as a promising candidate for further development.
Collapse
Affiliation(s)
- Xuebao Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiqi Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Longcheng Fang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaojiao Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zongxuan Du
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ying Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zixin Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhiguo Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhigui Zuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Faqing Ye
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
109
|
Baranyai Z, Biri-Kovács B, Krátký M, Szeder B, Debreczeni ML, Budai J, Kovács B, Horváth L, Pári E, Németh Z, Cervenak L, Zsila F, Méhes E, Kiss É, Vinšová J, Bősze S. Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms. J Med Chem 2021; 64:2982-3005. [PMID: 33719423 DOI: 10.1021/acs.jmedchem.0c01399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Most therapeutic agents used for treating brain malignancies face hindered transport through the blood-brain barrier (BBB) and poor tissue penetration. To overcome these problems, we developed peptide conjugates of conventional and experimental anticancer agents. SynB3 cell-penetrating peptide derivatives were applied that can cross the BBB. Tuftsin derivatives were used to target the neuropilin-1 transport system for selectivity and better tumor penetration. Moreover, SynB3-tuftsin tandem compounds were synthesized to combine the beneficial properties of these peptides. Most of the conjugates showed high and selective efficacy against glioblastoma cells. SynB3 and tandem derivatives demonstrated superior cellular internalization. The penetration profile of the conjugates was determined on a lipid monolayer and Transwell co-culture system with noncontact HUVEC-U87 monolayers as simple ex vivo and in vitro BBB models. Importantly, in 3D spheroids, daunomycin-peptide conjugates possessed a better tumor penetration ability than daunomycin. These conjugates are promising tools for the delivery systems with tunable features.
Collapse
Affiliation(s)
- Zsuzsa Baranyai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.,Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Márta L Debreczeni
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Johanna Budai
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Bence Kovács
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary
| | - Lilla Horváth
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Edit Pári
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Zsuzsanna Németh
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - László Cervenak
- 3rd Department of Medicine Research Laboratory, Semmelweis University, Kútvölgyi út 4, H-1125 Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Előd Méhes
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- Eötvös Loránd Research Network, Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
110
|
Niclosamide suppresses the expansion of follicular helper T cells and alleviates disease severity in two murine models of lupus via STAT3. J Transl Med 2021; 19:86. [PMID: 33632240 PMCID: PMC7908700 DOI: 10.1186/s12967-021-02760-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Autoantibody production against endogenous cellular components is pathogenic feature of systemic lupus erythematosus (SLE). Follicular helper T (TFH) cells aid in B cell differentiation into autoantibody-producing plasma cells (PCs). The IL-6 and IL-21 cytokine-mediated STAT3 signaling are crucial for the differentiation to TFH cells. Niclosamide is an anti-helminthic drug used to treat parasitic infections but also exhibits a therapeutic effect on autoimmune diseases due to its potential immune regulatory effects. In this study, we examined whether niclosamide treatment could relieve lupus-like autoimmunity by modulating the differentiation of TFH cells in two murine models of lupus. Methods 10-week-old MRL/lpr mice were orally administered with 100 mg/kg of niclosamide or with 0.5% methylcellulose (MC, vehicle) daily for 7 weeks. TLR7 agonist, resiquimod was topically applied to an ear of 8-week-old C57BL/6 mice 3 times a week for 5 weeks. And they were orally administered with 100 mg/kg of niclosamide or with 0.5% MC daily for 5 weeks. Every mouse was analyzed for lupus nephritis, proteinuria, autoantibodies, immune complex, immune cell subsets at the time of the euthanization. Results Niclosamide treatment greatly improved proteinuria, anti-dsDNA antibody levels, immunoglobulin subclass titers, histology of lupus nephritis, and C3 deposition in MRL/lpr and R848-induced mice. In addition, niclosamide inhibited the proportion of TFH cells and PCs in the spleens of these animals, and effectively suppressed differentiation of TFH-like cells and expression of associated genes in vitro. Conclusions Niclosamide exerted therapeutic effects on murine lupus models by suppressing TFH cells and plasma cells through STAT3 inhibition. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02760-2.
Collapse
|
111
|
Brunaugh AD, Seo H, Warnken Z, Ding L, Seo SH, Smyth HDC. Development and evaluation of inhalable composite niclosamide-lysozyme particles: A broad-spectrum, patient-adaptable treatment for coronavirus infections and sequalae. PLoS One 2021; 16:e0246803. [PMID: 33571320 PMCID: PMC7877651 DOI: 10.1371/journal.pone.0246803] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Niclosamide (NIC) has demonstrated promising in vitro antiviral efficacy against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Though NIC is already FDA-approved, administration of the currently available oral formulation results in systemic drug levels that are too low for the inhibition of SARS-CoV-2. We hypothesized that the co-formulation of NIC with an endogenous protein, human lysozyme (hLYS), could enable the direct aerosol delivery of the drug to the respiratory tract as an alternative to oral delivery, thereby effectively treating COVID-19 by targeting the primary site of SARS-CoV-2 acquisition and spread. To test this hypothesis, we engineered and optimized composite particles containing NIC and hLYS suitable for delivery to the upper and lower airways via dry powder inhaler, nebulizer, and nasal spray. The novel formulation demonstrates potent in vitro and in vivo activity against two coronavirus strains, MERS-CoV and SARS-CoV-2, and may offer protection against methicillin-resistance staphylococcus aureus pneumonia and inflammatory lung damage occurring secondary to SARS-CoV-2 infections. The suitability of the formulation for all stages of the disease and low-cost development approach will ensure rapid clinical development and wide-spread utilization.
Collapse
Affiliation(s)
- Ashlee D. Brunaugh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Hyojong Seo
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Zachary Warnken
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| | - Sang Heui Seo
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Yoseong Gu, Dajeon, Korea
| | - Hugh D. C. Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
112
|
Abstract
Although common cancer therapies, such as chemotherapy and radiation therapy, have recently improved and yielded good results, evaluated as tumor shrinkage, disease recurrence is still a common event for most cancer patients. This is termed refractory cancer. This tumor regrowth following therapy is generally thought to be caused by a small, specific population of tumor cells called cancer stem cells (CSCs). Similar to other stem cells, CSCs have the capacity for self-renewal and multipotent differentiation, and they have been identified in many tumor types based on cell surface protein expression. This specific cell population has stemness characteristics as examined by serial transplantation in animal models. Previous studies have developed a specific signature of cell surface markers and biological functions that can identify CSCs in many solid tumors. In this review, we summarize the characterization of CSCs using new techniques for identifying and quantifying them in situ. These techniques and concepts could be valuable for evaluating the effects of therapies on this cell population. Finally, we conclude by discussing several unique preclinical treatment strategies to targets CSCs, such as reprogramming CSCs or inducing attack by immune cells. Therapeutic and diagnostic methodologies that can target and quantify CSCs will be valuable tools for eradicating refractory cancer.
Collapse
|
113
|
Mhatre O, Reddy BPK, Patnaik C, Chakrabarty S, Ingle A, De A, Srivastava R. pH-responsive delivery of anti-metastatic niclosamide using mussel inspired polydopamine nanoparticles. Int J Pharm 2021; 597:120278. [PMID: 33540007 DOI: 10.1016/j.ijpharm.2021.120278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Niclosamide (Nic), an FDA approved antihelminthic drug, is being repurposed as a potent anti-cancer and anti-inflammatory agent. Niclosamide exhibits anti-cancer activity in multiple cancer types, including breast, colon, and prostate cancers. Niclosamide, a BCS II drug, is practically insoluble in water and sparingly soluble in organic solvents (ethanol, dimethyl sulfoxide), leading to limited therapeutic applications, and necessitates the need for a drug carrier. Herein, we report the preparation of polydopamine nanoparticles loaded with niclosamide (Nic-PDA NPs). The designed formulation had a very high loading efficiency (~30%) and entrapment efficiency close to 90%. The average hydrodynamic diameter of Nic-PDA NPs was 146.3 nm, with a narrow size distribution (PDI = 0.039). The formulation exhibited a pH-dependent drug release profile, with ~35% drug released at pH 7.4 after 120 h, compared to > 50% at pH 5.5 in simulated physiological conditions. The NPs exhibited time-dependent cellular uptake and were primarily localized in the cytoplasm. The formulation exhibited comparable cytotoxicity in MDA-MB-231 cells (IC50 = 2.73 μM, 36 h), and inhibited the migration of cancer cells significantly compared to the free drug and unloaded PDA NPs. Furthermore, the unloaded NPs exhibited excellent in vivo compatibility. The study establishes a rigorously optimized protocol for the synthesis of Nic loaded PDA NPs. The biocompatibility, anti-migratory efficacy, and the in vivo non-toxic nature of PDA has been well demonstrated.
Collapse
Affiliation(s)
- Omkar Mhatre
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - B Pradeep K Reddy
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chetna Patnaik
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Sabyasachi Chakrabarty
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Aravind Ingle
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
114
|
Dzijak R, Galeta J, Vázquez A, Kozák J, Matoušová M, Fulka H, Dračínský M, Vrabel M. Structurally Redesigned Bioorthogonal Reagents for Mitochondria-Specific Prodrug Activation. JACS AU 2021; 1:23-30. [PMID: 33554213 PMCID: PMC7851953 DOI: 10.1021/jacsau.0c00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 06/05/2023]
Abstract
The development of abiotic chemical reactions that can be performed in an organelle-specific manner can provide new opportunities in drug delivery and cell and chemical biology. However, due to the complexity of the cellular environment, this remains a significant challenge. Here, we introduce structurally redesigned bioorthogonal tetrazine reagents that spontaneously accumulate in mitochondria of live mammalian cells. The attributes leading to their efficient accumulation in the organelle were optimized to include the right combination of lipophilicity and positive delocalized charge. The best performing mitochondriotropic tetrazines enable subcellular chemical release of TCO-caged compounds as we show using fluorogenic substrates and mitochondrial uncoupler niclosamide. Our work demonstrates that a shrewd redesign of common bioorthogonal reagents can lead to their transformation into organelle-specific probes, opening the possibility to activate prodrugs and manipulate biological processes at the subcellular level by using purely chemical tools.
Collapse
Affiliation(s)
- Rastislav Dzijak
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Juraj Galeta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Arcadio Vázquez
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Jaroslav Kozák
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Marika Matoušová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Helena Fulka
- Department
of Cell Nucleus Plasticity, Institute of
Experimental Medicine of the Czech Academy of Sciences, Víden̆ská 1083, 14220 Prague, Czech Republic
| | - Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Milan Vrabel
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| |
Collapse
|
115
|
Meng Y, Jin M, Tang X, Xu J. Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study. Appl Soft Comput 2021; 103:107135. [PMID: 33519322 PMCID: PMC7825831 DOI: 10.1016/j.asoc.2021.107135] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/10/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has caused a massive health crisis worldwide and upended the global economy. However, vaccines and traditional drug discovery for COVID-19 cost too much in terms of time, manpower, and money. Drug repurposing becomes one of the promising treatment strategies amid the COVID-19 crisis. At present, there are no publicly existing databases for experimentally supported human drug–virus interactions, and most existing drug repurposing methods require the rich information, which is not always available, especially for a new virus. In this study, on the one hand, we put size-able efforts to collect drug–virus interaction entries from literature and build the Human Drug Virus Database (HDVD). On the other hand, we propose a new approach, called SCPMF (similarity constrained probabilistic matrix factorization), to identify new drug–virus interactions for drug repurposing. SCPMF is implemented on an adjacency matrix of a heterogeneous drug–virus network, which integrates the known drug–virus interactions, drug chemical structures, and virus genomic sequences. SCPMF projects the drug–virus interactions matrix into two latent feature matrices for the drugs and viruses, which reconstruct the drug–virus interactions matrix when multiplied together, and then introduces the weighted similarity interaction matrix as constraints for drugs and viruses. Benchmarking comparisons on two different datasets demonstrate that SCPMF has reliable prediction performance and outperforms several recent approaches. Moreover, SCPMF-predicted drug candidates of COVID-19 also confirm the accuracy and reliability of SCPMF.
Collapse
Affiliation(s)
- Yajie Meng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Min Jin
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Xianfang Tang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Junlin Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
116
|
Andrade F, Rafael D, Vilar-Hernández M, Montero S, Martínez-Trucharte F, Seras-Franzoso J, Díaz-Riascos ZV, Boullosa A, García-Aranda N, Cámara-Sánchez P, Arango D, Nestor M, Abasolo I, Sarmento B, Schwartz S. Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. J Control Release 2021; 331:198-212. [PMID: 33482272 DOI: 10.1016/j.jconrel.2021.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a highly prevalent disease worldwide. Patient survival is hampered by tumor relapse and the appearance of drug-resistant metastases, which are sustained by the presence of cancer stem cells (CSC). Specific delivery of anti-CSC chemotherapeutic drugs to tumors by using targeted drug delivery systems that can also target CSC sub-population might substantially improve current clinical outcomes. CD44v6 is a robust biomarker for advanced CRC and CSC, due to its functional role in tumorigenesis and cancer initiation process. Here, we show that CD44v6-targeted polymeric micelles (PM) loaded with niclosamide (NCS), a drug against CSC, is a good therapeutic strategy against colorectal CSC and circulating tumor cells (CTC) in vivo. HCT116 cells were sorted according to their CD44v6 receptor expression into CD44v6+ (high) and CDv44v6- (low) subpopulations. Accordingly, CD44v6+ cells presented stemness properties, such as overexpression of defined stemness markers (ALDH1A1, CD44v3 and CXCR4) and high capacity to form colonspheres in low attachment conditions. NCS-loaded PM functionalized with an antibody fragment against CD44v6 (Fab-CD44v6) presented adequate size, charge, and encapsulation efficiency. In addition, Fab-CD44v6 significantly increased PM internalization in CD44v6+ cells. Further, encapsulation of NCS improved its effectiveness in vitro, particularly against colonspheres, and allowed to increase its intravenous dosage in vivo by increasing the amount of NCS able to be administered without causing toxicity. Remarkably, functionalized PM accumulate in tumors and significantly reduce CTC in vivo. In conclusion, CD44v6 targeted PM meet the essential conditions to become an efficient anti-CSC therapy.
Collapse
Affiliation(s)
- Fernanda Andrade
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-180, Portugal; Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza, Spain.
| | - Mireia Vilar-Hernández
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Sara Montero
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza, Spain.
| | - Francesc Martínez-Trucharte
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joaquin Seras-Franzoso
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Zamira V Díaz-Riascos
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Ana Boullosa
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Natalia García-Aranda
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Patricia Cámara-Sánchez
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Diego Arango
- Biomedical Research in Digestive Tract Tumors Group, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.
| | - Ibane Abasolo
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza, Spain; Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-180, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, Gandra 4585-116, Portugal.
| | - Simó Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Zaragoza, Spain.
| |
Collapse
|
117
|
Niyomdecha N, Suptawiwat O, Boonarkart C, Thitithanyanont A, Auewarakul P. Repurposing of antiparasitic niclosamide to inhibit respiratory syncytial virus (RSV) replication. Virus Res 2021; 295:198277. [PMID: 33476693 DOI: 10.1016/j.virusres.2020.198277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Despite being an important health problem, there are only supportive care treatments for respiratory syncytial virus (RSV) infection. Thus, discovery of specific therapeutic drugs for RSV is still needed. Recently, an antiparasitic drug niclosamide has shown a broad-spectrum antiviral activity. Here, our in vitro model was used to study the antiviral effect of niclosamide on RSV and its related mechanism. Niclosamide inhibited RSV with time and dose-dependent manner. Pretreatment with submicromolar concentration of niclosamide for 6 h presented the highest anti-RSV activity of 94 % (50 % effective concentration; EC50 of 0.022 μM). Niclosamide efficiently blocked infection of laboratory strains and clinical isolates of both RSV-A and RSV-B in a bronchial epithelial cell line. Although a disruption of the mechanistic target of rapamycin complex 1 (mTORC1) pathway by niclosamide was previously hypothesized as a mechanism against pH-independent viruses like RSV, using a chemical mTORC1 inhibitor, temsirolimus, and a chemical mTORC1 agonist, MHY1485 (MHY), we show here that the mechanism of RSV inhibition by niclosamide was mTORC1 independent. Indeed, our data indicated that niclosamide hindered RSV infection via proapoptotic activity by a reduction of AKT prosurvival protein, activation of cleaved caspase-3 and PARP (poly ADP-ribose polymerase), and an early apoptosis induction.
Collapse
Affiliation(s)
- Nattamon Niyomdecha
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
118
|
Amorphous Solid Dispersions and the Contribution of Nanoparticles to In Vitro Dissolution and In Vivo Testing: Niclosamide as a Case Study. Pharmaceutics 2021; 13:pharmaceutics13010097. [PMID: 33466598 PMCID: PMC7828663 DOI: 10.3390/pharmaceutics13010097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
We developed an amorphous solid dispersion (ASD) of the poorly water-soluble molecule niclosamide that achieved a more than two-fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60-fold relative to the crystalline material due to the generation of nanoparticles. Niclosamide is a weakly acidic drug, Biopharmaceutics Classification System (BCS) class II, and a poor glass former with low bioavailability in vivo. Hot-melt extrusion is a high-throughput manufacturing method commonly used in the development of ASDs for increasing the apparent solubility and bioavailability of poorly water-soluble compounds. We utilized the polymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP–VA) to manufacture niclosamide ASDs by extrusion. Samples were analyzed based on their microscopic and macroscopic behavior and their intermolecular interactions, using differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and dynamic light scattering (DLS). The niclosamide ASD generated nanoparticles with a mean particle size of about 100 nm in FaSSIF media. In a side-by-side diffusion test, these nanoparticles produced a four-fold increase in niclosamide diffusion. We successfully manufactured amorphous extrudates of the poor glass former niclosamide that showed remarkable in vitro dissolution and diffusion performance. These in vitro tests were translated to a rat model that also showed an increase in oral bioavailability.
Collapse
|
119
|
Maeda Y, Kikuchi R, Kawagoe J, Tsuji T, Koyama N, Yamaguchi K, Nakamura H, Aoshiba K. Anti-cancer strategy targeting the energy metabolism of tumor cells surviving a low-nutrient acidic microenvironment. Mol Metab 2020; 42:101093. [PMID: 33007425 PMCID: PMC7578269 DOI: 10.1016/j.molmet.2020.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tumor cells experience hypoxia, acidosis, and hypoglycemia. Metabolic adaptation to glucose shortage is essential to maintain tumor cells' survival because of their high glucose requirement. This study evaluated the hypothesis that acidosis might promote tumor survival during glucose shortage and if so, explored a novel drug targeting metabolic vulnerability to glucose shortage. METHODS Cell survival and bioenergetics metabolism were assessed in lung cancer cell lines. Our in-house small-molecule compounds were screened to identify those that kill cancer cells under low-glucose conditions. Cytotoxicity against non-cancerous cells was also assessed. Tumor growth was evaluated in vivo using a mouse engraft model. RESULTS Acidosis limited the cellular consumption of glucose and ATP, causing tumor cells to enter a metabolically dormant but energetically economic state, which promoted tumor cell survival during glucose deficiency. We identified ESI-09, a previously known exchange protein directly activated by cAMP (EAPC) inhibitor, as an anti-cancer compound that inhibited cancer cells under low-glucose conditions even when associated with acidosis. Bioenergetic studies showed that independent of EPAC inhibition, ESI-09 was a safer mitochondrial uncoupler than a classical uncoupler and created a futile cycle of mitochondrial respiration, leading to decreased ATP production, increased ATP dissipation, and fuel scavenging. Accordingly, ESI-09 exhibited more cytotoxic effects under low-glucose conditions than under normal glucose conditions. ESI-09 was also more effective than actively proliferating cells on quiescent glucose-restricted cells. Cisplatin showed opposite effects. ESI-09 inhibited tumor growth in lung cancer engraft mice. CONCLUSIONS This study highlights the acidosis-induced promotion of tumor survival during glucose shortage and demonstrates that ESI-09 is a novel potent anti-cancer mitochondrial uncoupler that targets a metabolic vulnerability to glucose shortage even when associated with acidosis. The higher cytotoxicity under lower-than-normal glucose conditions suggests that ESI-09 is safer than conventional chemotherapy, can target the metabolic vulnerability of tumor cells to low-glucose stress, and is applicable to many cancer cell types.
Collapse
Affiliation(s)
- Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Tsuji
- Department of Medicine, Otsuki Municipal Hospital, 1255 Hanasaki, Otsuki-chou, Otsuki-shi, Yamanashi, 401-0015, Japan
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| |
Collapse
|
120
|
Wu MM, Zhang Z, Tong CWS, Yan VW, Cho WCS, To KKW. Repurposing of niclosamide as a STAT3 inhibitor to enhance the anticancer effect of chemotherapeutic drugs in treating colorectal cancer. Life Sci 2020; 262:118522. [PMID: 33011217 DOI: 10.1016/j.lfs.2020.118522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
AIMS Colorectal cancer (CRC) is the third most common cancer worldwide. Mutation of various cell signaling molecules or aberrant activation of signaling pathways leads to poor response to chemotherapy in CRC. Signal transducer and activator of transcription protein 3 (STAT3) is an important signaling molecule, which plays crucial roles in regulating cell survival and growth. In this study, the potentitation of chemotherapy by putative STAT3 inhibitors for treating CRC was investigated. MAIN METHODS A few putative STAT3 inhibitors were investigated. Niclosamide, originally indicated for the treatment of tapeworm infection, was chosen for further investigation in five CRC cell lines (HCT116, HT29, HCC2998, LoVo and SW480). Western blot analysis was used to evaluate the expression of STAT3/phospho-STAT3 and its downstream targets. Sulforhodamine B assay was used to evaluate the cytotoxicity of drug combinations. Flow cytometric assays were used to investigate the apoptotic and cell cycle effect. KEY FINDINGS Niclosamide was found to inhibit expression and activation of STAT3 in a concentration- and time-dependent manner, thereby downregulating STAT3 downstream targets including survivin and cyclin-D1 to induce apoptosis and cell cycle arrest. When combined with niclosamide or specific STAT3 inhibitor (C188-9), the cytotoxicity and DNA damage response from SN38 (the active metabolite from irinotecan) were significantly enhanced. The sequential exposure of SN38 followed by niclosamide was found to be the most potent treatment sequence for the drug combination. SIGNIFICANCE Niclosamide represents a promising candidate for repurposing to potentiate the anticancer activity of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mia M Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Z Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - ViVi W Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
121
|
Zeyada MS, Abdel-Rahman N, El-Karef A, Yahia S, El-Sherbiny IM, Eissa LA. Niclosamide-loaded polymeric micelles ameliorate hepatocellular carcinoma in vivo through targeting Wnt and Notch pathways. Life Sci 2020; 261:118458. [PMID: 32961231 DOI: 10.1016/j.lfs.2020.118458] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
AIM Niclosamide (NIC) is an anthelmintic agent repurposed as a potent anticancer agent. However, its use is hindered by its poor solubility. We investigated the underlying mechanisms of NIC anticancer activity employing a novel oral NIC pluronic-based nanoformulation and tested its effect in thioacetamide-induced hepatocellular carcinoma (HCC) in rats. We evaluated its antitumor effect through regulating Wnt/β-catenin and Notch signaling pathways and apoptosis. MAIN METHODS Niclosamide-loaded pluronic nanoparticles (NIC-NPs) were optimally developed and characterized with sustained release properties up to 7 days. Sixteen weeks after HCC induction, NIC (70 mg/kg) and an equivalent dose of NIC-NPs were administered orally for 3 consecutive weeks. Hepatocyte integrity was assessed by measuring serum levels of aminotransferases, ALP, GGT, bilirubin, albumin and total protein. HCC development was detected by measuring AFP expression. Necroinflammation and fibrosis were scored by histopathological examination. Wnt/β-catenin and Notch signaling were evaluated by measuring hepatic mRNA levels of Wnt3A, Lrp5 and Lrp6 Co-receptors, Dvl-2, Notch1 and Hes1 and β-catenin protein levels. Apoptosis was assessed by measuring mRNA and protein levels of cyclin D1 and caspase-3. KEY FINDING The novel NIC-NPs restored liver integrity, reduced AFP levels and showed improved anticancer and proapoptotic activities compared to drug alone. The inhibitory effect of NIC on Wnt/β-catenin and Notch signaling pathways was potentiated by the NIC-NPs formulation. SIGNIFICANCE We conclude that NIC acts by inhibiting Wnt/β-catenin and Notch signaling and inducing apoptosis in HCC. Developing pluronic-based nanoformulations may be a promising approach to improve NIC solubility and offer the possibility of controlled release.
Collapse
Affiliation(s)
- Menna S Zeyada
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sarah Yahia
- Center for Materials Science, Zewail City of Science & Technology, 6th October City, 12578 Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, Zewail City of Science & Technology, 6th October City, 12578 Giza, Egypt.
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
122
|
Xu J, Berastegui-Cabrera J, Ye N, Carretero-Ledesma M, Pachón-Díaz J, Chen H, Pachón-Ibáñez ME, Sánchez-Céspedes J, Zhou J. Discovery of Novel Substituted N-(4-Amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide Analogues as Potent Human Adenovirus Inhibitors. J Med Chem 2020; 63:12830-12852. [PMID: 33112138 DOI: 10.1021/acs.jmedchem.0c01226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An effective therapy for human adenovirus (HAdV) infections in immunocompromised patients and healthy individuals with community-acquired pneumonia remains an unmet medical need. We herein reported a series of novel substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as potent HAdV inhibitors. Compounds 6, 15, 29, 40, 43, 46, 47, and 54 exhibited increased selectivity indexes (SI > 100) compared to the lead compound niclosamide, while maintaining sub-micromolar to low micromolar potency against HAdV. The preliminary mechanistic studies indicated that compounds 6 and 43 possibly target the HAdV DNA replication process, while compounds 46 and 47 suppress later steps of HAdV life cycle. Notably, among these derivatives, compound 15 showed improved anti-HAdV activity (IC50 = 0.27 μM), significantly decreased cytotoxicity (CC50 = 156.8 μM), and low in vivo toxicity (maximum tolerated dose = 150 mg/kg in hamster) as compared with niclosamide, supporting its further in vivo efficacy studies for the treatment of HAdV infections.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E-41013 Seville, Spain
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E-41013 Seville, Spain
| | - Jerónimo Pachón-Díaz
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E-41013 Seville, Spain.,Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Maria Eugenia Pachón-Ibáñez
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E-41013 Seville, Spain
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E-41013 Seville, Spain
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
123
|
Jain NK, Dimri S, Prasad R, Ravichandran G, Naidu V, De A, Srivastava R. Characteristics of Molecularly Engineered Anticancer Drug Conjugated Organic Nanomicelles for Site-Selective Cancer Cell Rupture and Growth Inhibition of Tumor Spheroids. ACS APPLIED BIO MATERIALS 2020; 3:7067-7079. [PMID: 35019366 DOI: 10.1021/acsabm.0c00913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-selective uptake and specific biodistribution of chemotherapeutic drugs are essential prerequisites for targeted cancer therapy. Especially, antibody and peptide conjugated drugs have been attempted as localized therapeutic agents. However, the characteristics of drug conjugated nanosystems are less explored, which are limited with their toxicity, low therapeutic efficacy, complicated synthesis, and high costs. Herein, we report a biocompatible (about 95%) molecularly engineered anticancer drug conjugated nanomicelles (∼200 nm in size) for site-selective CD44 overexpressed cancer cell rupture and tumor growth inhibition. Microscopic analysis demonstrates the distinct visualization of organic-organic interfaces (∼5 nm), which are corroborated with spectroscopic measurements confirmed the conjugation of niclosamide drug with hyaluronic acid (NIC-HA). Uniformly distributed hemocompatible (about 99%) organic nanomicelles exhibit the cellular membrane and cytoplasmic targeting with significant cellular rupture (IC50 of 4 μM for MDA MB 231 cells) indicating their inherent targeting ability for cancer cells and cancer stem cells. An inclusive in vitro and in vivo analysis for targeted antitumor activity (HT1080 tumor xenograft model) of NIC-HA nanoconjugates (∼24.6% loading) exhibited promising cancer cell death and tumor growth inhibition (60%, p < 0.05) due to STAT-3 signaling pathway inhibition and induction of apoptosis in CD44-positive triple negative breast cancer cells.
Collapse
Affiliation(s)
- Nishant Kumar Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT-B), Powai, Mumbai, India
| | - Shalini Dimri
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT-B), Powai, Mumbai, India
| | - Gayathri Ravichandran
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Vegi Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT-B), Powai, Mumbai, India
| |
Collapse
|
124
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
125
|
Dimri S, Malhotra R, Shet T, Mokal S, Gupta S, De A. Noncanonical pS727 post translational modification dictates major STAT3 activation and downstream functions in breast cancer. Exp Cell Res 2020; 396:112313. [PMID: 33002501 DOI: 10.1016/j.yexcr.2020.112313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022]
Abstract
Activation of STAT3 via Y705-phosphorylation is well documented across multiple cancer types and thus forms the basis of canonical pathway to judge STAT3 activation. Recently, important roles of two other post translational modification (PTM) sites, i.e. S727-phosphorylation and K685-acetylation, leading to STAT3 activation are reported. However, their critical mode of function in controlling STAT3 dimerization and signaling, independent of canonical activation remains elusive. Therefore, to understand the functional relevance of each STAT3 PTMs in breast cancer (BC), cell models are developed by stable overexpression of PTM-site specific point mutants, i.e. Y705F, S727A or K685R, in a 3'UTR-STAT3 knockdown BC cell background. Results using this model system reveal novel findings showing that phosphorylation at S727 can lead to STAT3 activation independent of phosphoY705. We also demonstrate that loss of pS727 or K685ac significantly affects functional phenotypes such as cell survival and proliferation as well as downstream transcriptional activity (Twist 1, Socs3, c-Myc, Bcl-1 and Mcl-1) of STAT3. Thereafter, by utilizing a BRET biosensor for measuring STAT3 phosphorylation in live cells, a crucial role of pS727 in dictating STAT3 activation and homodimerization formation is uncovered. Further by performing retrospective IHC analysis of total and phospho-forms of STAT3 in a cohort of 76 triple negative breast cancer (TNBC) patient samples, a significant dominant expression of phosphoS727 over phosphoY705 PTM (p < 0.001) is found in STAT3 positive cases. We also focus on validating known STAT3 inhibitor molecules for their action against both pY705 and pS727 activation. This study for the first time demonstrates that an anti-helminth drug compound, Niclosamide, is capable of inactivating both phospho-PTM sites on STAT3 and exhibits excellent anticancer efficacy in preclinical TNBC tumour model.
Collapse
Affiliation(s)
- Shalini Dimri
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Renu Malhotra
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
| | - Tanuja Shet
- Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Smruti Mokal
- Tata Memorial Hospital, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Sudeep Gupta
- Tata Memorial Hospital, Mumbai, India; Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
126
|
Ray E, Vaghasiya K, Sharma A, Shukla R, Khan R, Kumar A, Verma RK. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech 2020; 21:260. [PMID: 32944787 DOI: 10.1208/s12249-020-01803-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Niclosamide (NIC), an anthelminthic drug, is found to be promising in overcoming the problem of various types of drug-resistant cancer. In spite of strong anti-proliferative effect, NIC shows low aqueous solubility, leading to poor bioavailability. To overcome this limitation, and enhance its physicochemical properties and pharmacokinetic profile, we used co-crystallization technique as a promising strategy. In this work, we brought together the crystal and particle engineering at a time using spray drying to enhance physicochemical and aerodynamic properties of co-crystal particle for inhalation purpose. We investigated the formation and evaluation of pharmaceutical co-crystals of niclosamide-nicotinamide (NIC-NCT) prepared by rapid, continuous and scalable spray drying method and compared with conventional solvent evaporation technique. The newly formed co-crystal was evaluated by XRPD, FTIR, Raman spectroscopy and DSC, which showed an indication of formation of H bonds between drug (NIC) and co-former (NCT) as a major binding force in co-crystal development. The particle geometry of co-crystals including spherical shape, size 1-5 μm and aerodynamic properties (ED, 97.1 ± 8.9%; MMAD, 3.61 ± 0.87 μm; FPF, 71.74 ± 6.9% and GSD 1.46) attributes suitable for inhalation. For spray-dried co-crystal systems, an improvement in solubility characteristics (≥ 14.8-fold) was observed, relative to pure drug. To investigate the anti-proliferative activity, NIC-NCT co-crystals were investigated on A549 human lung adenomas cells, which showed a superior cytotoxic activity compared with pure drug. Mechanistically, NIC-NCT co-crystals enhanced autophagic flux in cancer cell which demonstrates autophagy-mediated cell death as shown by confocal microscopy. This technique could help in improving bioavailability of drug, hence reducing the need for high dosages and signifying a novel paradigm for future clinical applications.
Collapse
|
127
|
Chauhan DS, Prasad R, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Comprehensive Review on Current Interventions, Diagnostics, and Nanotechnology Perspectives against SARS-CoV-2. Bioconjug Chem 2020; 31:2021-2045. [PMID: 32680422 PMCID: PMC7425040 DOI: 10.1021/acs.bioconjchem.0c00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has dramatically challenged the healthcare system of almost all countries. The authorities are struggling to minimize the mortality along with ameliorating the economic downturn. Unfortunately, until now, there has been no promising medicine or vaccine available. Herein, we deliver perspectives of nanotechnology for increasing the specificity and sensitivity of current interventional platforms toward the urgent need of quickly deployable solutions. This review summarizes the recent involvement of nanotechnology from the development of a biosensor to fabrication of a multifunctional nanohybrid system for respiratory and deadly viruses, along with the recent interventions and current understanding about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Deepak S. Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, USA
| |
Collapse
|
128
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
129
|
Selvaraj J, Prabha T, Yadav N. Identification of Drug Candidates for Breast Cancer Therapy Through Scaffold Repurposing: A Brief Review. Curr Drug Res Rev 2020; 13:3-15. [PMID: 32838729 DOI: 10.2174/2589977512666200824103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/10/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
Conventional drug discovery is a time consuming and expensive expedition with less clinical preference achievement proportion intended for breast cancer therapy. Even if numerous novel approaches to the conformation of drugs have been introduced for breast cancer therapy, they are yet to be implemented in clinical practice. This tempting strategy facilitates a remarkable chance to take the entire benefit of existing drugs. Despite drug repurposing significantly decrease the investigational period and cost, it has got many objections and issues. Scaffold repurposing is an approach that procures a novel significance on the decrepit motto of "to commencement with a pristine drug" . Hence, we move into a probable and nearer approach, the exploitation of scaffolds, which was originally developed for other purposes, including anti-tumor activity. In this review, we summarize different drugs and scaffolds used in breast cancer therapy.
Collapse
Affiliation(s)
- Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research Ooty, Nilgiris, Tamilnadu, India
| | - Thangavelu Prabha
- Department of Pharmaceutical Chemistry, Nandha College of Pharmacy, Koorapalayam Pirivu, Pitchandam Palayam Post, Erode-638052, Tamilnadu, India
| | - Neetu Yadav
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research Ooty, Nilgiris, Tamilnadu, India
| |
Collapse
|
130
|
Samy ALPA, Bakthavachalam V, Vudutha M, Vinjamuri S, Chinnapaka S, Munirathinam G. Eprinomectin, a novel semi-synthetic macrocylic lactone is cytotoxic to PC3 metastatic prostate cancer cells via inducing apoptosis. Toxicol Appl Pharmacol 2020; 401:115071. [PMID: 32454055 PMCID: PMC7716802 DOI: 10.1016/j.taap.2020.115071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022]
Abstract
Prostate Cancer (PCa) is the second most common cancer among men in United States after skin cancer. Conventional chemotherapeutic drugs available for PCa treatment are limited due to toxicity and resistance issues. Therefore, there is an urgent need to develop more effective treatment for advanced PCa. In this current study, we focused on evaluating the anti-cancer efficacy of Eprinomectin (EP), a novel avermectin analog against PC3 metastatic PCa cells. EP displayed robust inhibition of cell viability of PC3 cells in addition to suppressing the colony formation and wound healing capabilities. Our study showed that EP targets PC3 cells via inducing ROS and apoptosis activation. EP treatment enforces cell cycle arrest at G0/G1 phase via targeting cyclin-dependent kinase 4 (CDK4) and subsequent induction of apoptosis in PC3 cells. At the molecular level, EP effectively inhibited the expression of various cancer stem cell markers such as ALDH1, Sox-2, Nanog, Oct3/4 and CD44. Interestingly, EP also inhibited the activity of alkaline phosphatase, a maker of pluripotent stem cells. Of note, EP treatment resulted in the translocation of β-catenin from the nucleus to the cytoplasm indicating that EP antagonizes Wnt/β-catenin signaling pathway. Western blotting analysis revealed that EP downregulated the expression of key cell cycle markers such as cyclin D1, cyclin D3, CDK4, and c-Myc. In addition, EP inhibited the anti-apoptotic markers such as Mcl-1, XIAP, c-IAP1 and survivin in PC3 cells. On the other hand, EP treatment resulted in the activation of pH2A.X, Bad, caspase-9, caspase-3 and cleavage of PARP1. Taken together, our data suggests that EP is a potential agent to treat advanced PCa cells via modulating apoptosis signaling.
Collapse
Affiliation(s)
| | - Velavan Bakthavachalam
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Mona Vudutha
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Smita Vinjamuri
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Somaiah Chinnapaka
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America.
| |
Collapse
|
131
|
Braga CL, Felix NS, Teixeira DE, Vieira JB, Silva-Aguiar RP, Bose RM, Antunes MA, Rocha NDN, Caruso-Neves C, Cruz FF, Rocco PRM, Silva PL. Niclosamide attenuates lung vascular remodeling in experimental pulmonary arterial hypertension. Eur J Pharmacol 2020; 887:173438. [PMID: 32795515 DOI: 10.1016/j.ejphar.2020.173438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Despite advances in medical therapy, pulmonary arterial hypertension (PAH) remains an inexorably progressive and highly lethal disease. Signal transducer and activator of transcription (STAT)-3 is one of the main intracellular transcription factors implicated in PAH vascular remodeling. We hypothesized that niclosamide, a STAT3 inhibitor, would reduce vascular remodeling in an established pulmonary arterial hypertension model, thus enhancing cardiac function. Male Wistar rats were treated either with monocrotaline (60 mg/kg), to induce PAH, or saline (C group) by intraperitoneal injection. On day 14, PAH animals were randomly assigned to receive oral (1) saline (PAH-SAL); (2) niclosamide (75 mg/kg/day) (PAH-NICLO); (3) sildenafil (20 mg/kg/day) (PAH-SIL); or (4) niclosamide + sildenafil (PAH-NICLO + SIL), once daily for 14 days. On day 28, right ventricular systolic pressure was lower in all treated groups compared to PAH-SAL. Pulmonary vascular collagen content was lower in PAH-NICLO (37 ± 3%) and PAH-NICLO + SIL (37 ± 6%) compared to PAH-SAL (68 ± 4%), but not in PAH-SIL (52 ± 1%). CD-34, an endothelial cell marker, was higher, while vimentin, a mesenchymal cell marker, was lower in PAH-NICLO and PAH-NICLO + SIL compared to PAH-SAL, suggesting attenuation of endothelial-mesenchymal transition. Expression of STAT3 downstream targets such as transforming growth factor (TGF)-β, hypoxia-inducible factor (HIF)-1, and provirus integration site for Moloney murine leukemia virus (PIM-1) in lung tissue was reduced in PAH-NICLO and PAH-NICLO + SIL compared to PAH-SAL. In conclusion, niclosamide, with or without sildenafil, mitigated vascular remodeling and improved right ventricle systolic pressure. This new role for a well-established drug may represent a promising therapy for PAH.
Collapse
Affiliation(s)
| | | | - Douglas Esteves Teixeira
- Laboratory of Biochemistry and Cell Signaling, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rodrigo Pacheco Silva-Aguiar
- Laboratory of Biochemistry and Cell Signaling, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Rio de Janeiro, Brazil; Fluminense Federal University, Niteroi, Brazil
| | - Celso Caruso-Neves
- Laboratory of Biochemistry and Cell Signaling, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
132
|
Oh HC, Shim JK, Park J, Lee JH, Choi RJ, Kim NH, Kim HS, Moon JH, Kim EH, Chang JH, Yook JI, Kang SG. Combined effects of niclosamide and temozolomide against human glioblastoma tumorspheres. J Cancer Res Clin Oncol 2020; 146:2817-2828. [PMID: 32712753 PMCID: PMC7519913 DOI: 10.1007/s00432-020-03330-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Glioblastoma (GBM) is the most aggressive type of brain tumor and has poor survival outcomes, even after a combination of surgery, radiotherapy, and chemotherapy. Temozolomide is the only agent that has been shown to be effective against GBM, suggesting that combination of temozolomide with other agents may be more effective. Niclosamide, an FDA approved anthelmintic agent, has shown anti-cancer effects against human colon, breast, prostate cancers as well as GBM. However, the efficacy of the combination of niclosamide with temozolomide against GBM tumorspheres (TSs) has not been determined. We hypothesized that the combined treatment could effectively suppress GBM TSs. METHODS GBM TSs (TS15-88, GSC11) were treated with niclosamide and/or temozolomide. Combined effects of two drugs were evaluated by measuring viability, neurosphere formation, and 3D-invasion in collagen matrix. Transcriptional profiles of GBM TS were analyzed using RNA sequencing. In vivo anticancer efficacy of combined drugs was tested in a mouse orthotopic xenograft model. RESULTS Combination treatment of niclosamide and temozolomide significantly inhibited the cell viability, stemness, and invasive properties of GBM TSs. This combined treatment significantly down-regulated the expression of epithelial mesenchymal transition-related markers, Zeb1, N-cadherin, and β-catenin. The combined treatment also significantly decreased tumor growth in orthotopic xenograft models. CONCLUSION The combination of niclosamide and temozolomide effectively decreased the stemness and invasive properties of GBM TSs, suggesting that this regimen may be therapeutically effective in treating patients with GBM.
Collapse
Affiliation(s)
- Hyeong-Cheol Oh
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Hyun Lee
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Department of Medical Science, Yonsei University Graduate School, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
133
|
Yu QS, Xin HR, Qiu RL, Deng ZL, Deng F, Yan ZJ. Niclosamide: drug repurposing for human chondrosarcoma treatment via the caspase-dependent mitochondrial apoptotic pathway. Am J Transl Res 2020; 12:3688-3701. [PMID: 32774727 PMCID: PMC7407720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Poor sensitivity to chemotherapy drugs and high recurrence rates are the bottlenecks to successful chondrosarcoma treatment. Notably, niclosamide has been identified as a potential anti-cancer agent. To investigate the effects and mechanisms of niclosamide in the context of human chondrosarcoma treatment, SW1353 and CAL78 human chondrosarcoma cells were treated with various concentrations of niclosamide. The CKK-8 assay was performed to quantify cell viability. Cell proliferation was determined with crystal violet staining and colony forming assays. TUNEL and annexin V-FITC flow cytometry assays were performed to detect cell apoptosis. Wound healing and Transwell assays were conducted to evaluate migratory and invasive cell behaviors. The effect of niclosamide on the mitochondria was evaluated with the JC-1 and Seahorse Cell Mito Stress Assays. The expression of caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, and β-tubulin levels were investigated by western blotting. Collectively, the data demonstrated that niclosamide inhibited cell growth and proliferation, attenuated migratory and invasive cell behaviors, and promoted apoptosis. Niclosamide is as a potent chondrosarcoma tumor inhibitor that activates the caspase-dependent mitochondrial apoptotic pathway and could be a novel therapeutic approach to treat chondrosarcoma.
Collapse
Affiliation(s)
- Qing-Shuai Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 400010, China
| | - Hao-Ran Xin
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University)Chongqing 400038, China
| | - Rong-Lin Qiu
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University)Chongqing 400038, China
| | - Zhong-Liang Deng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 400010, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University)Chongqing 400038, China
| | - Zheng-Jian Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing 400010, China
| |
Collapse
|
134
|
Wei W, Liu H, Yuan J, Yao Y. Targeting Wnt/β‐catenin by anthelmintic drug niclosamide overcomes paclitaxel resistance in esophageal cancer. Fundam Clin Pharmacol 2020; 35:165-173. [PMID: 32579788 DOI: 10.1111/fcp.12583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Wei
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Hongfang Liu
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Jia Yuan
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Yang Yao
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| |
Collapse
|
135
|
SS Pindiprolu SK, Krishnamurthy PT, Ghanta VR, Chintamaneni PK. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine (Lond) 2020; 15:1551-1565. [DOI: 10.2217/nnm-2020-0003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To study the active targeting efficacy of phenylboronic acid-modified niclosamide solid lipid nanoparticles (PBA-Niclo-SLN) in triple-negative breast cancer (TNBC). Materials & methods: PBA-Niclo-SLNs were formulated by an emulsification-solvent evaporation method using PBA-associated stearylamine (PBSA) as lipid. The drug uptake and the anticancer propensity of PBA-Niclo-SLN were studied in TNBC (MDA-MB231) cells and tumor-bearing mice. Results: PBA-Niclo-SLN formulation resulted in greater antitumor efficacy by inducing G0/G1 cell cycle arrest and apoptosis. Besides, PBA-Niclo-SLN effectively inhibited STAT3, CD44+/CD24- TNBC stem cell subpopulation, epithelial–mesenchymal transition markers. Besides, PBA-Niclo-SLN selectively accumulated at the tumor site with more significant tumor regression and improved the survivability in TNBC tumor-bearing mice. Conclusion: PBA-Niclo-SLN formulation would be an effective strategy to eradicate TNBC cells (breast cancer stem cells and nonbreast cancer stem cells) efficiently.
Collapse
Affiliation(s)
- Sai Kiran SS Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Venkata Rao Ghanta
- Synthetic Organic Chemistry Division, GVK Biosciences Private Limited, IDA Nacharam, Hyderabad, 500076, Telangana, India
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| |
Collapse
|
136
|
Salamoun JM, Garcia CJ, Hargett SR, Murray JH, Chen SY, Beretta M, Alexopoulos SJ, Shah DP, Olzomer EM, Tucker SP, Hoehn KL, Santos WL. 6-Amino[1,2,5]oxadiazolo[3,4- b]pyrazin-5-ol Derivatives as Efficacious Mitochondrial Uncouplers in STAM Mouse Model of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:6203-6224. [PMID: 32392051 PMCID: PMC11042500 DOI: 10.1021/acs.jmedchem.0c00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small molecule mitochondrial uncouplers have recently garnered great interest for their potential in treating nonalcoholic steatohepatitis (NASH). In this study, we report the structure-activity relationship profiling of a 6-amino[1,2,5]oxadiazolo[3,4-b]pyrazin-5-ol core, which utilizes the hydroxy moiety as the proton transporter across the mitochondrial inner membrane. We demonstrate that a wide array of substituents is tolerated with this novel scaffold that increased cellular metabolic rates in vitro using changes in oxygen consumption rate as a readout. In particular, compound SHS4121705 (12i) displayed an EC50 of 4.3 μM in L6 myoblast cells and excellent oral bioavailability and liver exposure in mice. In the STAM mouse model of NASH, administration of 12i at 25 mg kg-1 day-1 lowered liver triglyceride levels and improved liver markers such as alanine aminotransferase, NAFLD activity score, and fibrosis. Importantly, no changes in body temperature or food intake were observed. As potential treatment of NASH, mitochondrial uncouplers show promise for future development.
Collapse
Affiliation(s)
- Joseph M Salamoun
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher J Garcia
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stefan R Hargett
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Jacob H Murray
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Martina Beretta
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Stephanie J Alexopoulos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Divya P Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Simon P Tucker
- Continuum Biosciences, Pty Ltd., Sydney 2035, Australia
- Continuum Biosciences Inc., Boston, Massachusetts 02116, United States
| | - Kyle L Hoehn
- Departments of Pharmacology and Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2033, Australia
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
137
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
138
|
Fu Q, Jin X, Zhang Z, Lv H. Preparation and in vitro antitumor effects on MDA-MB-231 cells of niclosamide nanocrystals stabilized by poloxamer188 and PBS. Int J Pharm 2020; 584:119432. [DOI: 10.1016/j.ijpharm.2020.119432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
|
139
|
Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis. Int J Mol Sci 2020; 21:ijms21103416. [PMID: 32408543 PMCID: PMC7279329 DOI: 10.3390/ijms21103416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Ring-substituted 1-hydroxynaphthalene-2-carboxanilides were previously investigated for their antimycobacterial properties. In our study, we have shown their antiproliferative and cell death-inducing effects in cancer cell lines. Cell proliferation and viability were assessed by WST-1 assay and a dye exclusion test, respectively. Cell cycle distribution, phosphatidylserine externalization, levels of reactive oxygen or nitrogen species (RONS), mitochondrial membrane depolarization, and release of cytochrome c were estimated by flow cytometry. Levels of regulatory proteins were determined by Western blotting. Our data suggest that the ability to inhibit the proliferation of THP-1 or MCF-7 cells might be referred to meta- or para-substituted derivatives with electron-withdrawing groups -F, -Br, or -CF3 at anilide moiety. This effect was accompanied by accumulation of cells in G1 phase. Compound 10 also induced apoptosis in THP-1 cells in association with a loss of mitochondrial membrane potential and production of mitochondrial superoxide. Our study provides a new insight into the action of salicylanilide derivatives, hydroxynaphthalene carboxamides, in cancer cells. Thus, their structure merits further investigation as a model moiety of new small-molecule compounds with potential anticancer properties.
Collapse
|
140
|
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) highlights an urgent need for therapeutics. Through a series of drug repurposing screening campaigns, niclosamide, an FDA-approved anthelminthic drug, was found to be effective against various viral infections with nanomolar to micromolar potency such as SARS-CoV, MERS-CoV, ZIKV, HCV, and human adenovirus, indicating its potential as an antiviral agent. In this brief review, we summarize the broad antiviral activity of niclosamide and highlight its potential clinical use in the treatment of COVID-19.
Collapse
Affiliation(s)
| | | | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | | |
Collapse
|
141
|
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) highlights an urgent need for therapeutics. Through a series of drug repurposing screening campaigns, niclosamide, an FDA-approved anthelminthic drug, was found to be effective against various viral infections with nanomolar to micromolar potency such as SARS-CoV, MERS-CoV, ZIKV, HCV, and human adenovirus, indicating its potential as an antiviral agent. In this brief review, we summarize the broad antiviral activity of niclosamide and highlight its potential clinical use in the treatment of COVID-19.
Collapse
Affiliation(s)
| | | | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | | |
Collapse
|
142
|
Pinto MC, Schreiber R, Lerias J, Ousingsawat J, Duarte A, Amaral M, Kunzelmann K. Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells 2020; 9:cells9051138. [PMID: 32380794 PMCID: PMC7291285 DOI: 10.3390/cells9051138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022] Open
Abstract
Casein kinase 2 (CK2) is a highly ubiquitous and conserved serine/threonine kinase that forms a tetramer consisting of a catalytic subunit (CK2α) and a regulatory subunit (CK2β). Despite being ubiquitous, CK2 is commonly found at higher expression levels in cancer cells, where it inhibits apoptosis, and supports cell migration and proliferation. The Ca2+-activated chloride channel TMEM16A shows similar effects in cancer cells: TMEM16A increases cell proliferation and migration and is highly expressed in squamous cell carcinoma of the head and neck (HNSCC) as well as other malignant tumors. A microscopy-based high-throughput screening was performed to identify proteins that regulate TMEM16A. Within this screen, CK2 was found to be required for proper membrane expression of TMEM16A. small interfering (si) RNA-knockdown of CK2 reduced plasma membrane expression of TMEM16A and inhibited TMEM16A whole cell currents in (cystic fibrosis bronchial epithelial) CFBE airway epithelial cells and in the head and neck cancer cell lines Cal33 and BHY. Inhibitors of CK2, such as TBB and the preclinical compound CX4549 (silmitasertib), also blocked membrane expression of TMEM16A and Ca2+-activated whole cell currents. siRNA-knockout of CK2 and its pharmacological inhibition, as well as knockdown or inhibition of TMEM16A by either niclosamide or Ani9, attenuated cell proliferation. Simultaneous inhibition of CK2 and TMEM16A strongly potentiated inhibition of cell proliferation. Although membrane expression of TMEM16A is reduced by inhibition of CK2, our data suggest that the antiproliferative effects by inhibition of CK2 are mostly independent of TMEM16A. Simultaneous inhibition of TMEM16A by niclosamide and inhibition of CK2 by silmitasertib was additive with respect to blocking cell proliferation, while cytotoxicity was reduced when compared to solely blockade of CK2. Therefore, parallel blockade TMEM16A by niclosamide may assist with anticancer therapy by silmitasertib.
Collapse
Affiliation(s)
- Madalena C. Pinto
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
| | - Joana Lerias
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
| | - Aires Duarte
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Margarida Amaral
- Faculty of Sciences, University of Lisbon, BioISI—Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon, Portugal; (M.C.P.); (J.L.); (A.D.); (M.A.)
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, D-93053 Regensburg, Germany; (R.S.); (J.O.)
- Correspondence: ; Tel.: +49-941-943-4302; Fax: +49-941-943-4315
| |
Collapse
|
143
|
Reddy GB, Kerr DL, Spasojevic I, Tovmasyan A, Hsu DS, Brigman BE, Somarelli JA, Needham D, Eward WC. Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) Shows Efficacy Against Osteosarcoma. Mol Cancer Ther 2020; 19:1448-1461. [PMID: 32371588 DOI: 10.1158/1535-7163.mct-19-0689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/17/2019] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
Therapeutic advances for osteosarcoma have stagnated over the past several decades, leading to an unmet clinical need for patients. The purpose of this study was to develop a novel therapy for osteosarcoma by reformulating and validating niclosamide, an established anthelminthic agent, as a niclosamide stearate prodrug therapeutic (NSPT). We sought to improve the low and inefficient clinical bioavailability of oral dosing, especially for the relatively hydrophobic classes of anticancer drugs. Nanoparticles were fabricated by rapid solvent shifting and verified using dynamic light scattering and UV-vis spectrophotometry. NSPT efficacy was then studied in vitro for cell viability, cell proliferation, and intracellular signaling by Western blot analysis; ex vivo pulmonary metastatic assay model; and in vivo pharmacokinetic and lung mouse metastatic model of osteosarcoma. NSPT formulation stabilizes niclosamide stearate against hydrolysis and delays enzymolysis; increases circulation in vivo with t 1/2 approximately 5 hours; reduces cell viability and cell proliferation in human and canine osteosarcoma cells in vitro at 0.2-2 μmol/L IC50; inhibits recognized growth pathways and induces apoptosis at 20 μmol/L; eliminates metastatic lesions in the ex vivo lung metastatic model; and when injected intravenously at 50 mg/kg weekly, it prevents metastatic spread in the lungs in a mouse model of osteosarcoma over 30 days. In conclusion, niclosamide was optimized for preclinical drug delivery as a unique prodrug nanoparticle injected intravenously at 50 mg/kg (1.9 mmol/L). This increased bioavailability of niclosamide in the blood stream prevented metastatic disease in the mouse. This chemotherapeutic strategy is now ready for canine trials, and if successful, will be targeted for human trials in patients with osteosarcoma.
Collapse
Affiliation(s)
| | - David L Kerr
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Ivan Spasojevic
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | | | - David S Hsu
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - Brian E Brigman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina.,Duke Cancer Institute, Durham, North Carolina
| | - Jason A Somarelli
- Duke Cancer Institute, Durham, North Carolina.,Department of Medicine, Duke University, Durham, North Carolina
| | - David Needham
- Duke Cancer Institute, Durham, North Carolina.,Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina.,School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - William C Eward
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina. .,Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
144
|
Chen Y, Wu X, Liu C, Zhou Y. Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochem Funct 2020; 38:702-709. [PMID: 32283563 PMCID: PMC7496801 DOI: 10.1002/cbf.3537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/05/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Gastric cancer (GC) is one of the most prevalent types of malignancies. Betulinic acid (BA) is a natural pentacyclic triterpene with a lupine structure. However, to the best of our knowledge, there is no research study on the anti‐tumour and anti‐metastasis effect of BA on GC. In this study, we assessed the anti‐cancer effect of BA on human GC cells in vitro and in vivo. We first investigated the cytotoxicity and anti‐proliferation effect of BA on GC cells of SNU‐16 and NCI‐N87. The results indicated that BA had significant cytotoxic and inhibitory effects on GC cells in a dose‐ and time‐dependent manner. To further study the cytotoxic action of BA on GC cells, we assessed the apoptotic induction effect of BA on SNU‐16 cells and found that BA distinctly induced apoptosis in SNU‐16 cells. In addition, BA inhibited the migratory and invasive abilities of SNU‐16 cells. Western‐blot analysis revealed that BA suppressed the migration and invasion of GC cells by impairing epithelial‐mesenchymal transition progression. Furthermore, in vivo experiments showed that BA could delay tumour growth and inhibit pulmonary metastasis, which is consistent with the results of in vitro studies. Overall, we evaluated the anti‐cancer effect of BA on human GC cells in vivo and in vitro, and the present study provides new evidence on the use of BA as a potential anti‐cancer drug for GC treatment. Significance of the study BA significantly suppressed proliferation and triggered apoptosis in GC cells. Additionally, BA remarkably inhibited migration and invasion of GC cells by impairing the epithelial‐mesenchymal transition signalling pathway. It is worth noting that BA drastically retarded tumour growth in the xenograft mouse model of GC. Our results indicated that BA can be considered a candidate drug for GC therapy.
Collapse
Affiliation(s)
- Yun Chen
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Xiongjian Wu
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Chi Liu
- School of Medical & Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yun Zhou
- Digestive System Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
145
|
Zhirnik AS, Semochkina YP, Moskaleva EY. Inhibition of DNA Double-Strand Break Repair by Niclosamide in Human Colorectal Cancer Cells. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019120100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
146
|
Hatamipour M, Jaafari MR, Momtazi-Borojeni AA, Ramezani M, Sahebkar A. Nanoliposomal Encapsulation Enhances In Vivo Anti-Tumor Activity of Niclosamide against Melanoma. Anticancer Agents Med Chem 2020; 19:1618-1626. [PMID: 31284876 DOI: 10.2174/1871520619666190705120011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 05/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Niclosamide is an FDA-approved and old anti-helminthic drug used to treat parasitic infections. Recent studies have shown that niclosamide has broad anti-tumor effects relevant to the treatment of cancer. However, this drug has a low aqueous solubility hindering its systemic use. Herein, we report the preparation and characterization of niclosamide nanoliposomes and their in vivo anti-tumor effects. METHODS Nanoliposomes were prepared using thin-film method and the drug was encapsulated with a remote loading method. The nanoliposomes were investigated by the observation of morphology, analysis of particle size and zeta potential. Additionally, qualitative and quantitative analyses were performed using HPLC. We assessed the in vitro cytotoxicity of the nanoliposomal niclosamide on B16F10 melanoma cells. Inhibition of tumor growth was investigated in C57BL/6 mice bearing B16F0 melanoma cancer. RESULTS Analytical results indicated that the nanoliposomal system is a homogeneous and stable colloidal dispersion of niclosamide particles. Atomic force microscopy images and particle size analysis revealed that all niclosamide particles had a spherical shape with a diameter of approximately 108nm. According to in vitro and in vivo studies, nanoliposomal niclosamide exhibited a better anti-tumor activity against B16F10 melanoma tumor compared with free niclosamide. CONCLUSION Nanoliposomal encapsulation enhanced the aqueous solubility of niclosamide and improved its anti-tumor properties.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
147
|
Zhu B, He W, Yang F, Chen L. High-throughput transcriptome sequencing reveals the developmental toxicity mechanisms of niclosamide in zebrafish embryo. CHEMOSPHERE 2020; 244:125468. [PMID: 31790986 DOI: 10.1016/j.chemosphere.2019.125468] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Niclosamide (NIC) is the most widely used molluscicides for preventing the occurrence of schistosomiasis disease, and its residues can be found in various environmental samples. However, the toxicity mechanism of NIC during early developmental stage remains largely unknown. In the present study, zebrafish embryos were acutely exposed to NIC at an environmentally realistic concentration (0 and 40 μg/L) until 120 h post-fertilization. Transcriptomic sequencing was performed to provide mechanistic insight into developmental impairment. Pathway enrichment analyses found that biological processes related to lipid metabolism were significantly affected in exposed zebrafish larvae. Consistently, biochemical measurements showed that NIC developmental exposure depleted lipid storage, elevated lipid utilization, but inhibited lipid synthesis. Furthermore, as characterized by pathway enrichment and hormonal levels, steroid hormone biosynthesis was also significantly disrupted by NIC exposure in zebrafish larvae, indicating the endocrine disrupting potential of NIC. Detoxifying phase I and II processes (e.g., metabolism, conjugation and elimination) were significantly activated by NIC exposure. Overall, our findings suggest that NIC developmental exposure at an environmentally realistic concentration disturbs the lipid metabolism, induces endocrine disruption and initiates detoxifying capacity in zebrafish larvae, which will provide preliminary clues for developmental toxicity mechanisms of NIC.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Wei He
- School of Computer Science and Information Engineering, Hubei University, Wuhan, 430062, China
| | - Fan Yang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
148
|
Chen L, Bi S, Wei Q, Zhao Z, Wang C, Xie S. Ivermectin suppresses tumour growth and metastasis through degradation of PAK1 in oesophageal squamous cell carcinoma. J Cell Mol Med 2020; 24:5387-5401. [PMID: 32237037 PMCID: PMC7205794 DOI: 10.1111/jcmm.15195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 01/03/2023] Open
Abstract
Oesophageal squamous cell carcinoma (ESCC), the most common form of oesophageal malignancies in the Asia‐Pacific region, remains a major clinical challenge. In this study, we found that ivermectin, an effective antiparasitic drug that has been approved for patients to orally treat onchocerciasis for over 30 years, displayed potent antitumour activity against ESCC cells in vitro and in nude mice. We demonstrated that ivermectin significantly inhibited cell viability and colony formation, and induced apoptosis through a mitochondrial‐dependent manner in ESCC cells. Ivermectin also abrogated ESCC cell migration, invasion, as well as the protein levels of MMP‐2 and MMP‐9. Mechanistically, ivermectin strongly inhibited the expression of PAK1; by further gain‐ and loss‐of‐function experiments, we confirmed that PAK1 played a crucial role in ivermectin‐mediated inhibitory effects on ESCC cells. In addition, the data indicated that ivermectin promoted PAK1 degradation through the proteasome‐dependent pathway. Additionally, ivermectin synergized with chemotherapeutic drugs including cisplatin and 5‐fluorouracil to induce apoptosis of ESCC cells. Interestingly, the in vivo experiments also confirmed that ivermectin effectively suppressed tumour growth and lung metastasis of ESCC. Collectively, these results indicate that ivermectin exerts a potent antitumour activity against ESCC and is a promising therapeutic candidate drug for ESCC patients, even those carrying metastasis.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shuning Bi
- School of Pharmacy, Henan University, Kaifeng, China
| | - Qiuren Wei
- School of Pharmacy, Henan University, Kaifeng, China
| | - Zhijun Zhao
- Department of Medicine and Therapeutics, Luohe Medical College, Luohe, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Songqiang Xie
- School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
149
|
Sekulovski N, Whorton AE, Shi M, MacLean JA, Hayashi K. Endometriotic inflammatory microenvironment induced by macrophages can be targeted by niclosamide†. Biol Reprod 2020; 100:398-408. [PMID: 30329025 DOI: 10.1093/biolre/ioy222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 01/09/2023] Open
Abstract
Endometriosis causes severe chronic pelvic pain and infertility. We have recently reported that niclosamide treatment reduces growth and progression of endometriosis-like lesions and inflammatory signaling (NF${\rm \small K}$B and STAT3) in a mouse model. In the present study, we examined further inhibitory mechanisms by which niclosamide affects endometriotic lesions using an endometriotic epithelial cell line, 12Z, and macrophages differentiated from a monocytic THP-1 cell line. Niclosamide dose dependently reduced 12Z viability, reduced STAT3 and NF${\rm \small K}$B activity, and increased both cleaved caspase-3 and cleaved PARP. To model the inflammatory microenvironment in endometriotic lesions, we exposed 12Z cells to macrophage conditioned media (CM). Macrophages were differentiated from THP-1 cells using 12-O-tetradecanoylphorbol-13-acetate as M0, and then M0 macrophages were polarized into M1 or M2 using LPS/IFNγ or IL4/IL13, respectively. Conditioned media from M0, M1, or M2 cultures increased 12Z viability. This effect was blocked by niclosamide, and cell viability returned to that of CM from cells treated with niclosamide alone. To assess proteins targeted by niclosamide in 12Z cells, CM from 12Z cells cultured with M0, M1, or M2 with/without niclosamide were analyzed by cytokine/chemokine protein array kits. Conditioned media from M0, M1, and/or M2 stimulated the secretion of cytokines/chemokines from 12Z cells. Production of most of these secreted cytokines/chemokines in 12Z cells was inhibited by niclosamide. Knockdown of each gene in 12Z cells using siRNA resulted in reduced cell viability. These results indicate that niclosamide can inhibit the inflammatory factors in endometriotic epithelial cells stimulated by macrophages by targeting STAT3 and/or NF${\rm \small K}$B signaling.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
150
|
Shangguan F, Liu Y, Ma L, Qu G, Lv Q, An J, Yang S, Lu B, Cao Q. Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergetics. J Cancer 2020; 11:3454-3466. [PMID: 32284741 PMCID: PMC7150452 DOI: 10.7150/jca.41418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Ovarian carcinoma is a common malignant tumor of the female reproductive organs with an incidence rate second only to cervical and endometrial cancers. In the past 10 years, anticancer therapy has focused on Niclosamide, an anthelmintic teniacide that is commonly used against tapeworms and has been approved for use in humans for nearly 50 years. Importantly, Niclosamide has been confirmed to target the Wnt/β-catenin, mTOR, STAT3, NF-κB, and Notch pathways has been widely investigated in multiple cancer types. However, the potential benefits of Niclosamide therapy for treatment of ovarian carcinoma have not been established. Methods: CCK-8 colony formation assays were performed to evaluate cell viability and tumor growth. Cell apoptosis was measured by flow cytometry. A Seahorse XF96 analyzer was used to measure cellular bioenergetics. Mito-tracker stained mitochondria were visualized by confocal microscopy. Western blotting was used to detect expressed proteins. A nude mouse transplanted-tumor model was used to evaluate the antitumor activity of Niclosamide in ovarian carcinoma. Result: Niclosamide treatment significantly suppressed ovarian carcinoma growth and induced cell apoptosis by inactivating MEK1/2-ERK1/2 mediated signal transduction. Overall, mitochondrial respiration and aerobic glycolysis were both decreased by Niclosamide treatment. Niclosamide dramatically enhanced ROS-activated and JNK-mediated apoptosis in cells subjected to glucose deprivation. Niclosamide also showed in vivo antitumor activity in the nude mouse transplanted-tumor model. Conclusion: Collectively, these data highlight a novel anti-tumor mechanism of Niclosamide that involves an interruption of cell metabolism. The finding also indicates a potential for the application of Niclosamide in ovarian carcinoma therapy.
Collapse
Affiliation(s)
- Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Li Ma
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Guiwu Qu
- Anti-aging Research Institution, Binzhou Medical University, Yantai, Shandong 264003, P.R.China
| | - Qing Lv
- Anti-aging Research Institution, Binzhou Medical University, Yantai, Shandong 264003, P.R.China
| | - Jing An
- School of Medicine, University of California - San Diego, La Jolla, CA 92037, USA
| | - Shude Yang
- School of Agriculture, Ludong University, Yantai, Shandong 264025, P.R.China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.,Anti-aging Research Institution, Binzhou Medical University, Yantai, Shandong 264003, P.R.China
| |
Collapse
|