101
|
Wang B, Pan Y, Xie Y, Wang C, Yang Y, Sun H, Yan Z, Cui Y, Li L, Zhou Y, Liu W, Pan Z. Metabolic and Immunological Implications of MME +CAF-Mediated Hypoxia Signaling in Pancreatic Cancer Progression: Therapeutic Insights and Translational Opportunities. Biol Proced Online 2024; 26:29. [PMID: 39342097 PMCID: PMC11438378 DOI: 10.1186/s12575-024-00254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Pancreatic cancer is a devastating malignancy with a high mortality rate, poor prognosis, and limited treatment options. The tumor microenvironment (TME) plays a crucial role in tumor progression and therapy resistance. Multiple subpopulations of cancer-associated fibroblasts (CAFs) within the TME can switch between different states, exhibiting both antitumorigenic and protumorigenic functions in pancreatic cancer. It seems that targeting fibroblast-related proteins and other stromal components is an appealing approach to combat pancreatic cancer. This study employed single-cell transcriptome sequencing to identify MME (Membrane Metalloendopeptidase)-expressing CAFs in pancreatic cancer. Systematic screening was conducted based on tumor differentiation, lymph node metastasis, and T-stage parameters to identify and confirm the existence of a subpopulation of fibroblasts termed MME+CAFs. Subsequent analyses included temporal studies, exploration of intercellular communication patterns focusing on the hypoxia signaling pathway, and investigation of MME+CAF functions in the pancreatic cancer microenvironment. The pathway enrichment analysis and clinical relevance revealed a strong association between high MME expression and glycolysis, hypoxia markers, and pro-cancer inflammatory pathways. The role of MME+CAFs was validated through in vivo and in vitro experiments, including high-throughput drug screening to evaluate potential targeted therapeutic strategies. Single-cell transcriptome sequencing revealed tumor-associated fibroblasts with high MME expression, termed MME+CAF, exhibiting a unique end-stage differentiation function in the TME. MME+CAF involvement in the hypoxia signaling pathway suggested the potential effects on pancreatic cancer progression through intercellular communication. High MME expression was associated with increased glycolysis, hypoxia markers (VEGF), and pro-cancer inflammatory pathways in pancreatic cancer patients, correlating with lower survival rates, advanced disease stage, and higher oncogene mutation rates. Animal experiments confirmed that elevated MME expression in CAFs increases tumor burden, promotes an immunosuppressive microenvironment, and enhances resistance to chemotherapy and immunotherapy. The developed MME+CAF inhibitor IOX2 (a specific prolyl hydroxylase-2 (PHD2) inhibitor), combined with AG (Paclitaxel + Gemcitabine) and anti-PD1 therapy, demonstrated promising antitumor effects, offering a translational strategy for targeting MME in CAFs of pancreatic cancer. The study findings highlighted the significant role of MME+CAF in pancreatic cancer progression by shaping the TME and influencing key pathways. Targeting MME presented a promising strategy to combat the disease, with potential implications for therapeutic interventions aimed at disrupting MME+CAF functions and enhancing the efficacy of pancreatic cancer treatments.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Pan
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin, University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yongjie Xie
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Cong Wang
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yinli Yang
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Haiyan Sun
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhuchen Yan
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yameng Cui
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ling Li
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yaoyao Zhou
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Weishuai Liu
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Pain Management, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Zhanyu Pan
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
102
|
Ma J, Chen Z, Hou L. Revealing a cancer-associated fibroblast-based risk signature for pancreatic adenocarcinoma through single-cell and bulk RNA-seq analysis. Aging (Albany NY) 2024; 16:12525-12542. [PMID: 39332020 PMCID: PMC11466480 DOI: 10.18632/aging.206043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/15/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE Proliferation of stromal connective tissue is a hallmark of pancreatic adenocarcinoma (PAAD). The engagement of activated cancer-associated fibroblasts (CAFs) contributes to the progression of PAAD through their involvement in tumor fibrogenesis. However, the prognostic significance of CAF-based risk signature in PAAD has not been explored. METHODS The single-cell RNA sequencing (scRNA-seq) data sourced from GSE155698 within the Gene Expression Omnibus (GEO) database was supplemented by bulk RNA sequencing data from The Cancer Genome Atlas (TCGA) and microarray data retrieved from the GEO database. The scRNA-seq data underwent processing via the Seurat package to identify distinct CAF clusters utilizing specific CAF markers. Differential gene expression analysis between normal and tumor samples was conducted within the TCGA-PAAD cohort. Univariate Cox regression analysis pinpointed genes associated with CAF clusters, identifying prognostic CAF-related genes. These genes were utilized in LASSO regression to craft a predictive risk signature. Subsequently, integrating clinicopathological traits and the risk signature, a nomogram model was constructed. RESULTS Our scRNA-seq analysis unveiled four distinct CAF clusters in PAAD, with two linked to PAAD prognosis. Among 207 identified DEGs, 148 exhibited significant correlation with these CAF clusters, forming the basis of a seven-gene risk signature. This signature emerged as an independent predictor in multivariate analysis for PAAD and demonstrated predictive efficacy in immunotherapeutic outcomes. Additionally, a novel nomogram, integrating age and the CAF-based risk signature, exhibited robust predictability and reliability in prognosticating PAAD. Moreover, the risk signature displayed substantial correlations with stromal and immune scores, as well as specific immune cell types. CONCLUSIONS The prognosis of PAAD can be accurately predicted using the CAF-based risk signature, and a thorough analysis of the PAAD CAF signature may aid in deciphering the patient's immunotherapy response and presenting fresh cancer treatment options.
Collapse
Affiliation(s)
- Jing Ma
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhinan Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Limin Hou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
103
|
Jiang H, Wang GT, Wang Z, Ma QY, Ma ZH. Resveratrol inhibits pancreatic cancer proliferation and metastasis by depleting senescent tumor-associated fibroblasts. World J Gastrointest Oncol 2024; 16:3980-3993. [PMID: 39350997 PMCID: PMC11438786 DOI: 10.4251/wjgo.v16.i9.3980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Pancreatic cancer, a formidable gastrointestinal neoplasm, is characterized by its insidious onset, rapid progression, and resistance to treatment, which often lead to a grim prognosis. While the complex pathogenesis of pancreatic cancer is well recognized, recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts. However, their precise role in pancreatic cancer remains unknown. Resveratrol is a natural polyphenol known for its multifaceted biological actions, including antioxidative and neuroprotective properties, as well as its potential to inhibit tumor proliferation and migration. Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis. AIM To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts. METHODS Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression of α-SMA and p16. HP-1 expression was determined using immunohistochemistry. Cells were treated with the senescence-inducing factors known as 3CKs. Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate. Western blotting was conducted to assess the expression levels of p16 and p21. Immunofluorescence was performed to assess LaminB1 expression. Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors, including IL-4, IL-6, IL-8, IL-13, MMP-2, MMP-9, CXCL1, and CXCL12. A scratch assay was used to assess the migratory capacity of the cells, whereas Transwell assays were used to evaluate their invasive potential. RESULTS Specifically, we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues, linking their abundance to cancer progression. Intriguingly, Resveratrol effectively eradicated these fibroblasts and hindered their senescence, which consequently impeded pancreatic cancer progression. CONCLUSION This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.
Collapse
Affiliation(s)
- He Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Guo-Tai Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Qing-Yong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhen-Hua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
104
|
Ju Y, Xu D, Liao MM, Sun Y, Bao WD, Yao F, Ma L. Barriers and opportunities in pancreatic cancer immunotherapy. NPJ Precis Oncol 2024; 8:199. [PMID: 39266715 PMCID: PMC11393360 DOI: 10.1038/s41698-024-00681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a fatal clinical challenge characterized by a dismal 5-year overall survival rate, primarily due to the lack of early diagnosis and limited therapeutic efficacy. Immunotherapy, a proven success in multiple cancers, has yet to demonstrate significant benefits in PDAC. Recent studies have revealed the immunosuppressive characteristics of the PDAC tumor microenvironment (TME), including immune cells with suppressive properties, desmoplastic stroma, microbiome influences, and PDAC-specific signaling pathways. In this article, we review recent advances in understanding the immunosuppressive TME of PDAC, TME differences among various mouse models of pancreatic cancer, and the mechanisms underlying resistance to immunotherapeutic interventions. Furthermore, we discuss the potential of targeting cancer cell-intrinsic pathways and TME components to sensitize PDAC to immune therapies, providing insights into strategies and future perspectives to break through the barriers in improving pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Dongzhi Xu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China
| | - Miao-Miao Liao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wen-Dai Bao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, 518000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518000, China.
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
105
|
Zhu S, Zou M, Li C, Tang Y, Luo H, Dong X. MC1R regulates T regulatory cell differentiation through metabolic reprogramming to promote colon cancer. Int Immunopharmacol 2024; 138:112546. [PMID: 38917522 DOI: 10.1016/j.intimp.2024.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Until 2021, colon cancer was a leading cancer globally. Early detection improves outcomes; however, advanced cases still having poor prognosis. Therefore, an understanding of associated molecular mechanisms is crucial for developing new preventive and therapeutic strategies for colon cancer. METHODS The TCGA database was analyzed to assess melanocortin 1receptor (MC1R) expression in colon cancer and its link with patient prognosis. Further, models and diverse experimental techniques were employed to investigate the impact of MC1R on colon cancer progression and its underlying mechanism was elucidated. RESULTS In a follow-up study of clinical patients, the important role of MC1R was identified in the development of colon cancer. First, MC1R was expressed more highly in colon tumor tissues than in adjacent tissues. In addition, MC1R was associated with colon cancer prognosis, and higher expression of MC1R tended to predict a worse prognosis. This conclusion was verified in MC1R-/- mice, which showed a greater resistance to tumor growth than wild-type mice, as expected. Further investigation revealed a significant change in the portion of Tregs in MC1R-/- mice, while the portion of CD4 + and CD8 + T cells remained unchanged. The in vitro experiments revealed a weaker ability of the MC1R-/- T cells to differentiate into Tregs. Previous studies report that the functional integrity of Tregs is interwoven with cellular metabolism. Therefore, MC1R was deduced to regulate the differentiation of Tregs by reprogramming the metabolism. As expected, MC1R-/- T cells exhibited weaker mitochondrial function and a lower aerobic oxidation capacity. Concurrently, the MC1R-/- T cells had stronger limiting effects on colon cancer cells. According to these results, the MC1R inhibitor was hypothesized as a potential therapeutic agent to suppress colon cancer. The results showed that upon MC1R suppression, the tumors in the mice developed more slowly, and the mice survived longer, potentially providing a novel strategy to treat clinical colon cancer. CONCLUSION By regulating Tregs differentiation, MC1R overexpression in colon cancer correlates with poor prognosis, while MC1R inhibition shows potential as a therapeutic approach to slow tumor growth and enhance survival.
Collapse
Affiliation(s)
- Shaoliang Zhu
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Mengjie Zou
- Department of Nephrology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Chunxing Li
- Department of Operating Room, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yuntian Tang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Honglin Luo
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Xiaofeng Dong
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| |
Collapse
|
106
|
Sun Y, Yinwang E, Wang S, Wang Z, Wang F, Xue Y, Zhang W, Zhao S, Mou H, Chen S, Jin L, Li B, Ye Z. Phenotypic and spatial heterogeneity of CD8 + tumour infiltrating lymphocytes. Mol Cancer 2024; 23:193. [PMID: 39251981 PMCID: PMC11382426 DOI: 10.1186/s12943-024-02104-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Collapse
Affiliation(s)
- Yikan Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Eloy Yinwang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shengdong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Shixin Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Lingxiao Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China
| | - Binghao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang, University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
107
|
Luo Y, Xia Y, Liu D, Li X, Li H, Liu J, Zhou D, Dong Y, Li X, Qian Y, Xu C, Tao K, Li G, Pan W, Zhong Q, Liu X, Xu S, Wang Z, Liu R, Zhang W, Shan W, Fang T, Wang S, Peng Z, Jin P, Jin N, Shi S, Chen Y, Wang M, Jiao X, Luo M, Gong W, Wang Y, Yao Y, Zhao Y, Huang X, Ji X, He Z, Zhao G, Liu R, Wu M, Chen G, Hong L, Ma D, Fang Y, Liang H, Gao Q. Neoadjuvant PARPi or chemotherapy in ovarian cancer informs targeting effector Treg cells for homologous-recombination-deficient tumors. Cell 2024; 187:4905-4925.e24. [PMID: 38971151 DOI: 10.1016/j.cell.2024.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Collapse
Affiliation(s)
- Yikai Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Xia
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Huayi Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahao Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongchen Zhou
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Dong
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xin Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiyu Qian
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangjia Tao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guannan Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Zhong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingzhe Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Wang
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ronghua Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanying Shan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siyuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zikun Peng
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shennan Shi
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengjie Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaofei Jiao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengshi Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenjian Gong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Yao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Yi Zhao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xinlin Huang
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xuwo Ji
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Zhaoren He
- BioMap (Beijing) Intelligence Technology Limited, Beijing 100089, China
| | - Guangnian Zhao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ding Ma
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yong Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qinglei Gao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
108
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
109
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
110
|
Vera R, Lamberti MJ, Gonzalez AL, Fernandez-Zapico ME. Epigenetic regulation of the tumor microenvironment: A leading force driving pancreatic cancer. Pancreatology 2024; 24:878-886. [PMID: 39095296 PMCID: PMC11994899 DOI: 10.1016/j.pan.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
Dysregulation of the epigenomic landscape of tumor cells has been implicated in the pathogenesis of pancreatic cancer. However, these alterations are not only restricted to neoplastic cells. The behavior of other cell populations in the tumor stroma such as cancer-associated fibroblasts, immune cells, and others are mostly regulated by epigenetic pathways. Here, we present an overview of the main cellular and acellular components of the pancreatic cancer tumor microenvironment and discuss how the epigenetic mechanisms operate at different levels in the stroma to establish a differential gene expression to regulate distinct cellular phenotypes contributing to pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Renzo Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN, 55901, USA.
| | - María Julia Lamberti
- INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba, 5800, Argentina
| | - Alina L Gonzalez
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de La Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa - Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), Santa Rosa, Argentina
| | | |
Collapse
|
111
|
Hu Z, Guo X, Li Z, Meng Z, Huang S. The neoantigens derived from transposable elements - A hidden treasure for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189126. [PMID: 38849060 DOI: 10.1016/j.bbcan.2024.189126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Neoantigen-based therapy is a promising approach that selectively activates the immune system of the host to recognize and eradicate cancer cells. Preliminary clinical trials have validated the feasibility, safety, and immunogenicity of personalized neoantigen-directed vaccines, enhancing their effectiveness and broad applicability in immunotherapy. While many ongoing oncological trials concentrate on neoantigens derived from mutations, these targets do not consistently provoke an immune response in all patients harboring the mutations. Additionally, tumors like ovarian cancer, which have a low tumor mutational burden (TMB), may be less amenable to mutation-based neoantigen therapies. Recent advancements in next-generation sequencing and bioinformatics have uncovered a rich source of neoantigens from non-canonical RNAs associated with transposable elements (TEs). Considering the substantial presence of TEs in the human genome and the proven immunogenicity of TE-derived neoantigens in various tumor types, this review investigates the latest findings on TE-derived neoantigens, examining their clinical implications, challenges, and unique advantages in enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyi Guo
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziteng Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
112
|
Karabayas M, Ibrahim HE, Roelofs AJ, Reynolds G, Kidder D, De Bari C. Vascular disease persistence in giant cell arteritis: are stromal cells neglected? Ann Rheum Dis 2024; 83:1100-1109. [PMID: 38684323 PMCID: PMC11420755 DOI: 10.1136/ard-2023-225270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Giant cell arteritis (GCA), the most common systemic vasculitis, is characterised by aberrant interactions between infiltrating and resident cells of the vessel wall. Ageing and breach of tolerance are prerequisites for GCA development, resulting in dendritic and T-cell dysfunction. Inflammatory cytokines polarise T-cells, activate resident macrophages and synergistically enhance vascular inflammation, providing a loop of autoreactivity. These events originate in the adventitia, commonly regarded as the biological epicentre of the vessel wall, with additional recruitment of cells that infiltrate and migrate towards the intima. Thus, GCA-vessels exhibit infiltrates across the vascular layers, with various cytokines and growth factors amplifying the pathogenic process. These events activate ineffective repair mechanisms, where dysfunctional vascular smooth muscle cells and fibroblasts phenotypically shift along their lineage and colonise the intima. While high-dose glucocorticoids broadly suppress these inflammatory events, they cause well known deleterious effects. Despite the emerging targeted therapeutics, disease relapse remains common, affecting >50% of patients. This may reflect a discrepancy between systemic and local mediators of inflammation. Indeed, temporal arteries and aortas of GCA-patients can show immune-mediated abnormalities, despite the treatment induced clinical remission. The mechanisms of persistence of vascular disease in GCA remain elusive. Studies in other chronic inflammatory diseases point to the fibroblasts (and their lineage cells including myofibroblasts) as possible orchestrators or even effectors of disease chronicity through interactions with immune cells. Here, we critically review the contribution of immune and stromal cells to GCA pathogenesis and analyse the molecular mechanisms by which these would underpin the persistence of vascular disease.
Collapse
Affiliation(s)
- Maira Karabayas
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Hafeez E Ibrahim
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Gary Reynolds
- Centre for Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dana Kidder
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
113
|
Bell ATF, Mitchell JT, Kiemen AL, Lyman M, Fujikura K, Lee JW, Coyne E, Shin SM, Nagaraj S, Deshpande A, Wu PH, Sidiropoulos DN, Erbe R, Stern J, Chan R, Williams S, Chell JM, Ciotti L, Zimmerman JW, Wirtz D, Ho WJ, Zaidi N, Thompson E, Jaffee EM, Wood LD, Fertig EJ, Kagohara LT. PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration. Cell Syst 2024; 15:753-769.e5. [PMID: 39116880 PMCID: PMC11409191 DOI: 10.1016/j.cels.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/06/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis.
Collapse
Affiliation(s)
- Alexander T F Bell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob T Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley L Kiemen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Melissa Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kohei Fujikura
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jae W Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Erin Coyne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah M Shin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sushma Nagaraj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rossin Erbe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Lauren Ciotti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elizabeth Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Laura D Wood
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA.
| | - Luciane T Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA.
| |
Collapse
|
114
|
Cai S, Zhao M, Yang G, Li C, Hu M, Yang L, Xing L, Sun X. Modified spatial architecture of regulatory T cells after neoadjuvant chemotherapy in non-small cell lung cancer patients. Int Immunopharmacol 2024; 137:112434. [PMID: 38889507 DOI: 10.1016/j.intimp.2024.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
It is crucial to decipher the modulation of regulatory T cells (Tregs) in tumor microenvironment (TME) induced by chemotherapy, which may contribute to improving the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer (NSCLC). We retrospectively collected specimens from patients with II-III NSCLC, constituting two cohorts: a neoadjuvant chemotherapy (NAC) cohort (N = 141) with biopsy (N = 58) and postoperative specimens (N = 141), and a surgery-only cohort (N = 122) as the control group. Then, the cell density (Dens), infiltration score (InS), and Treg-cell proximity score (TrPS) were conducted using a panel of multiplex fluorescence staining (Foxp3, CD4, CD8, CK, CD31, ɑSMA). Subsequently, the association of Tregs with cancer microvessels (CMVs) and cancer-associated fibroblasts (CAFs) was analyzed. Patients with NAC treatment have a higher density of Tregs in both paired (P < 0.001) and unpaired analysis (P = 0.022). Additionally, patients with NAC treatment showed higher infiltration score (paired, P < 0.001; unpaired, P = 0.014) and more CD8+T cells around Tregs (paired/unpaired, both P < 0.001). Subgroup analysis indicated that tumors with a diameter of ≤ 5 cm exhibited increase in both Dens(Treg) and InS(Treg), and gemcitabine, pemetrexed and taxel enhanced Dens(Treg) and TrPS(CD8) following NAC. Multivariate analysis identified that the Dens(Tregs), InS(Tregs) and TrPS(CD8) were significantly associated with better chemotherapy response [OR = 8.54, 95%CI (1.69, 43.14), P = 0.009; OR = 7.14, 95%CI (1.70, 30.08), P = 0.024; OR = 5.50, 95%CI (1.09, 27.75), P = 0.039, respectively] and positive recurrence-free survival [HR = 3.23, 95%CI (1.47, 7.10), P = 0.004; HR = 2.70; 95%CI (1.27, 5.72); P = 0.010; HR = 2.55, 95%CI (1.21, 5.39), P = 0.014, respectively]. Moreover, TrPS(CD8) and TrPS(CD4) were negatively correlated with the CMVs and CAFs. These discoveries have deepened our comprehension of the immune-modulating impact of chemotherapy and underscored that the modified spatial landscape of Tregs after chemotherapy should be taken into account for personalized immunotherapy, aiming to ultimately improve clinical outcomes in patients with NSCLC.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
115
|
Zhao Y, Tang G, Li J, Bian X, Zhou X, Feng J. Integrative transcriptome analysis reveals the molecular events underlying impaired T-cell responses in EGFR-mutant lung cancer. Sci Rep 2024; 14:18366. [PMID: 39112565 PMCID: PMC11306370 DOI: 10.1038/s41598-024-69020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
EGFR mutations are critical oncogenic drivers in lung adenocarcinoma (LUAD). However, the mechanisms by which they impact the tumor microenvironment (TME) and tumor immunity are unclear. Furthermore, the reasons underlying the poor response of EGFR-mutant (EGFR-MU) LUADs to immunotherapy with PD-1/PD-L1 inhibitors are unknown. Utilizing single-cell RNA (sc-RNA) and bulk RNA sequencing datasets, we conducted high-dimensional weighted gene coexpression network analysis to identify key genes and immune-related pathways contributing to the immunosuppressive TME. EGFR-MU cancer cells downregulated MHC class I genes to evade CD8+ cytotoxic T cells, expressed substantial levels of MHC class II molecules, and engaged with CD4+ regulatory T cells (Tregs). EGFR-MU tumors may recruit Tregs primarily through the CCL17/CCL22/CCR4 axis, leading to a Treg-enriched TME. High levels of MHC class II-positive cancer-associated fibroblasts and tumor endothelial cells were found within EGFR-MU tumors. Owing to the absence of costimulatory factors, they may inhibit rather than activate the tumor antigen-specific CD4+ T-cell response, contributing further to immune suppression. Multiplex immunohistochemistry analyses in a LUAD cohort confirmed increased expression of MHC class II molecules in cancer cells and fibroblasts in EGFR-MU tumors. Our research elucidates the highly immunosuppressive TME in EGFR-MU LUAD and suggests potential targets for effective immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Gu Tang
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jun Li
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaonan Bian
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
116
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
117
|
Coursier D, Calvo F. CAFs vs. TECs: when blood feuds fuel cancer progression, dissemination and therapeutic resistance. Cell Oncol (Dordr) 2024; 47:1091-1112. [PMID: 38453816 PMCID: PMC11322395 DOI: 10.1007/s13402-024-00931-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Neoplastic progression involves complex interactions between cancer cells and the surrounding stromal milieu, fostering microenvironments that crucially drive tumor progression and dissemination. Of these stromal constituents, cancer-associated fibroblasts (CAFs) emerge as predominant inhabitants within the tumor microenvironment (TME), actively shaping multiple facets of tumorigenesis, including cancer cell proliferation, invasiveness, and immune evasion. Notably, CAFs also orchestrate the production of pro-angiogenic factors, fueling neovascularization to sustain the metabolic demands of proliferating cancer cells. Moreover, CAFs may also directly or indirectly affect endothelial cell behavior and vascular architecture, which may impact in tumor progression and responses to anti-cancer interventions. Conversely, tumor endothelial cells (TECs) exhibit a corrupted state that has been shown to affect cancer cell growth and inflammation. Both CAFs and TECs are emerging as pivotal regulators of the TME, engaging in multifaceted biological processes that significantly impact cancer progression, dissemination, and therapeutic responses. Yet, the intricate interplay between these stromal components and the orchestrated functions of each cell type remains incompletely elucidated. In this review, we summarize the current understanding of the dynamic interrelationships between CAFs and TECs, discussing the challenges and prospects for leveraging their interactions towards therapeutic advancements in cancer.
Collapse
Affiliation(s)
- Diane Coursier
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain.
| |
Collapse
|
118
|
Ramos C, Gerakopoulos V, Oehler R. Metastasis-associated fibroblasts in peritoneal surface malignancies. Br J Cancer 2024; 131:407-419. [PMID: 38783165 PMCID: PMC11300623 DOI: 10.1038/s41416-024-02717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Over decades, peritoneal surface malignancies (PSMs) have been associated with limited treatment options and poor prognosis. However, advancements in perioperative systemic chemotherapy, cytoreductive surgery (CRS), and hyperthermic intraperitoneal chemotherapy (HIPEC) have significantly improved clinical outcomes. PSMs predominantly result from the spread of intra-abdominal neoplasia, which then form secondary peritoneal metastases. Colorectal, ovarian, and gastric cancers are the most common contributors. Despite diverse primary origins, the uniqueness of the peritoneum microenvironment shapes the common features of PSMs. Peritoneal metastization involves complex interactions between tumour cells and the peritoneal microenvironment. Fibroblasts play a crucial role, contributing to tumour development, progression, and therapy resistance. Peritoneal metastasis-associated fibroblasts (MAFs) in PSMs exhibit high heterogeneity. Single-cell RNA sequencing technology has revealed that immune-regulatory cancer-associated fibroblasts (iCAFs) seem to be the most prevalent subtype in PSMs. In addition, other major subtypes as myofibroblastic CAFs (myCAFs) and matrix CAFs (mCAFs) were frequently observed across PSMs studies. Peritoneal MAFs are suggested to originate from mesothelial cells, submesothelial fibroblasts, pericytes, endothelial cells, and omental-resident cells. This plasticity and heterogeneity of CAFs contribute to the complex microenvironment in PSMs, impacting treatment responses. Understanding these interactions is crucial for developing targeted and local therapies to improve PSMs patient outcomes.
Collapse
Affiliation(s)
- Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Vasileios Gerakopoulos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
119
|
Qin C, Zhao B, Wang Y, Li Z, Li T, Zhao Y, Wang W, Zhao Y. Extracellular vesicles miR-31-5p promotes pancreatic cancer chemoresistance via regulating LATS2-Hippo pathway and promoting SPARC secretion from pancreatic stellate cells. J Extracell Vesicles 2024; 13:e12488. [PMID: 39104296 DOI: 10.1002/jev2.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignant diseases. Gemcitabine-based chemotherapy is still one of the first-line systemic treatments, but chemoresistance occurs in the majority of patients. Recently, accumulated evidence has demonstrated the role of the tumour microenvironment in promoting chemoresistance. In the tumour microenvironment, pancreatic stellate cells (PSCs) are among the main cellular components, and extracellular vesicles (EVs) are common mediators of cell‒cell communication. In this study, we showed that SP1-transcribed miR-31-5p not only targeted LATS2 in pancreatic cancer cells but also regulated the Hippo pathway in PSCs through EV transfer. Consequently, PSCs synthesized and secreted protein acidic and rich in cysteins (SPARC), which was preferentially expressed in stromal cells, stimulating Extracellular Signal regulated kinase (ERK) signalling in pancreatic cancer cells. Therefore, pancreatic cancer cell survival and chemoresistance were improved due to both the intrinsic Hippo pathway regulated by miR-31-5p and external SPARC-induced ERK signalling. In mouse models, miR-31-5p overexpression in pancreatic cancer cells promoted the chemoresistance of coinjected xenografts. In a tissue microarray, pancreatic cancer patients with higher miR-31-5p expression had shorter overall survival. Therefore, miR-31-5p regulates the Hippo pathway in multiple cell types within the tumour microenvironment via EVs, ultimately contributing to the chemoresistance of pancreatic cancer cells.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
120
|
Dai S, Liu Y, Liu Z, Li R, Luo F, Li Y, Dai L, Peng X. Cancer-associated fibroblasts mediate resistance to anti-EGFR therapies in cancer. Pharmacol Res 2024; 206:107304. [PMID: 39002870 DOI: 10.1016/j.phrs.2024.107304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Over the last decade, epidermal growth factor receptor (EGFR)-targeted therapies have transformed the treatment landscape for patients with advanced solid tumors. Despite these advances, resistance to anti-EGFR therapies is still a significant clinical challenge. While cell-autonomous mechanisms of resistance are well-documented, they do not fully elucidate the complexity of drug resistance. Cancer-associated fibroblasts (CAFs), key mediators within the tumor microenvironment (TME), have emerged as pivotal players in cancer progression and chemoresistance. Recent evidence implicates CAFs in resistance to anti-EGFR therapies, suggesting they may undermine treatment efficacy. This review synthesizes current data, highlighting the critical role of CAFs in resistance pathogenesis and summarizing recent therapeutic strategies targeting CAFs. We underscore the challenges and advocate for the exploration of CAFs as a potential dual-targeted approach.
Collapse
Affiliation(s)
- Shuang Dai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingtong Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China
| | - Ruidan Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China
| | - Feng Luo
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu Sichuan, China.
| |
Collapse
|
121
|
Chen M, Chen F, Gao Z, Li X, Hu L, Yang S, Zhao S, Song Z. CAFs and T cells interplay: The emergence of a new arena in cancer combat. Biomed Pharmacother 2024; 177:117045. [PMID: 38955088 DOI: 10.1016/j.biopha.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuying Yang
- Department of intensive medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
122
|
Huang Y, Wang X, Wen C, Wang J, Zhou H, Wu L. Cancer-associated fibroblast-derived colony-stimulating factor 2 confers acquired osimertinib resistance in lung adenocarcinoma via promoting ribosome biosynthesis. MedComm (Beijing) 2024; 5:e653. [PMID: 39036343 PMCID: PMC11260172 DOI: 10.1002/mco2.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Acquired resistance is a major obstacle to the therapeutic efficacy of osimertinib in lung adenocarcinoma (LUAD), but the underlying mechanisms are still not fully understood. Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell type in LUAD tumor-microenvironment (TME) and have emerged as a key player in chemoresistance. However, the function of CAFs in osimertinib resistance is still unclear. Here, we showed that CAFs derived from osimertinib-resistant LUAD tissues (CAFOR) produced much more colony-stimulating factor 2 (CSF2) than those isolated from osimertinib-sensitive tissues. CAFOR-derived CSF2 activated the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) signaling pathway and upregulated lnc-CSRNP3 in LUAD cells. Lnc-CSRNP3 then promoted the expression of nearby gene CSRNP3 by recruiting chromodomain helicase DNA binding protein 9 (CHD9) and inhibited the phosphatase activity of the serine/threonine protein phosphatase 1 catalytic subunit α (PP1α), thereby induced osimertinib resistance by enhancing ribosome biogenesis. Collectively, our study reveals a critical role for CAFs in the development of osimertinib resistance and identifies the CSF2 pathway as an attractive target for monitoring osimertinib efficacy and overcoming osimertinib resistance in LUAD.
Collapse
Affiliation(s)
- Yutang Huang
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Xiaoqing Wang
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Chunjie Wen
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Jingchan Wang
- School of StomatologyChongqing Medical UniversityChongqingChina
| | - Honghao Zhou
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
- Pharmacogenetics Research InstituteInstitute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Lanxiang Wu
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| |
Collapse
|
123
|
Suzuki Y, Sato T, Sugimori M, Kanemaru Y, Onodera S, Tsuchiya H, Nakamori Y, Tsuyuki S, Ikeda A, Ikeda R, Goda Y, Kaneko H, Irie K, Sue S, Maeda S. Activation of STING in pancreatic cancer-associated fibroblasts exerts an antitumor effect by enhancing tumor immunity. Sci Rep 2024; 14:17071. [PMID: 39048609 PMCID: PMC11269671 DOI: 10.1038/s41598-024-68061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate; therefore, the development of effective treatments is a priority. The stimulator of interferon genes (STING) pathway enhances tumor immunity by inducing the production of type 1 interferon (IFN) and proinflammatory cytokines and chemokines and promoting the infiltration of cytotoxic T cells. To assess the function of STING on pancreatic tumorigenesis, Ptf1aER-Cre/+ LSL-KrasG12D/+ p53loxP/loxP mice (KPC mice) and Ptf1aER-Cre/+ LSL-KrasG12D/+ p53loxP/loxP/STING-/- mice (KPCS mice) were generated. However, STING deletion did not affect pancreatic tumorigenesis in mice. Because STING is expressed not only in immune cells but also in cancer-associated fibroblasts (CAFs), we evaluated the STING function in PDAC CAFs. A mouse STING agonist 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA) was administered to KPC mice and CAFs from KPC mice and the resulting immune response was evaluated. DMXAA activated STING in PDAC CAFs in KPC mice, promoting cytotoxic T cell infiltration by secreting proinflammatory cytokines and enhancing tumor immunity. We next generated STING-deficient PDAC cells and subcutaneous tumors in which STING was expressed only in CAFs by performing bone marrow transplantation and assessed the antitumor effect of STING-activated CAFs. The administration of DMXAA to subcutaneous tumors expressing STING only in CAFs sustained the antitumor effect of DMXAA. About half of human PDACs lacked STING expression in the cancer stroma, suggesting that STING activation in PDAC CAFs exerts an antitumor effect, and STING agonists can be more effective in tumors with high than in those with low STING expression in the stroma.
Collapse
Affiliation(s)
- Yoshimasa Suzuki
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeshi Sato
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Makoto Sugimori
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yushi Kanemaru
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Sho Onodera
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiromi Tsuchiya
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoshinori Nakamori
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Sho Tsuyuki
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Aya Ikeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ryosuke Ikeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshihiro Goda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kuniyasu Irie
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Soichiro Sue
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
124
|
Sun Y, Ying K, Sun J, Wang Y, Qiu L, Ji M, Sun L, Chen J. PRRX1-OLR1 axis supports CAFs-mediated lung cancer progression and immune suppression. Cancer Cell Int 2024; 24:247. [PMID: 39010054 PMCID: PMC11251326 DOI: 10.1186/s12935-024-03436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE To investigate the mechanism by which cancer-associated fibroblasts (CAFs) affect the growth and immune evasion of lung cancer cells. METHODS Initially, datasets comparing CAFs with normal fibroblasts were downloaded from the GEO dataset GSE48397. Genes with the most significant differential expression were selected and validated using clinical data. Subsequently, CAFs were isolated, and the selected genes were knocked down in CAFs. Co-culture experiments were conducted with H1299 or A549 cells to analyze changes in lung cancer cell growth, migration, and immune evasion in vitro and in vivo. To further elucidate the upstream regulatory mechanism, relevant ChIP-seq data were downloaded from the GEO database, and the regulatory relationships were validated through ChIP-qPCR and luciferase reporter assays. RESULTS OLR1 was significantly overexpressed in CAFs and strongly correlated with adverse prognosis in lung cancer patients. Knockdown of OLR1 markedly inhibited CAFs' support for the growth and immune evasion of lung cancer cells in vitro and in vivo. ChIP-seq results demonstrated that PRRX1 can promote OLR1 expression by recruiting H3K27ac and H3K4me3, thereby activating CAFs. Knockdown of PRRX1 significantly inhibited CAFs' function, while further overexpression of OLR1 restored CAFs' support for lung cancer cell growth, migration, and immune evasion. CONCLUSION PRRX1 promotes OLR1 expression by recruiting H3K27ac and H3K4me3, activating CAFs, and thereby promoting the growth, migration, and immune evasion of lung cancer cells.
Collapse
Affiliation(s)
- Yunhao Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Kaijun Ying
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Jian Sun
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Yao Wang
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Limin Qiu
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Mingming Ji
- Department of Thoracic Surgery, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Lin Sun
- Department of Endocrinology, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China
| | - Jinjin Chen
- Department of Oncology, The First People's Hospital of Yancheng City, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, 224005, Jiangsu, People's Republic of China.
| |
Collapse
|
125
|
Pereira BA, Ritchie S, Chambers CR, Gordon KA, Magenau A, Murphy KJ, Nobis M, Tyma VM, Liew YF, Lucas MC, Naeini MM, Barkauskas DS, Chacon-Fajardo D, Howell AE, Parker AL, Warren SC, Reed DA, Lee V, Metcalf XL, Lee YK, O’Regan LP, Zhu J, Trpceski M, Fontaine ARM, Stoehr J, Rouet R, Lin X, Chitty JL, Porazinski S, Wu SZ, Filipe EC, Cadell AL, Holliday H, Yang J, Papanicolaou M, Lyons RJ, Zaratzian A, Tayao M, Da Silva A, Vennin C, Yin J, Dew AB, McMillan PJ, Goldstein LD, Deveson IW, Croucher DR, Samuel MS, Sim HW, Batten M, Chantrill L, Grimmond SM, Gill AJ, Samra J, Jeffry Evans TR, Sasaki T, Phan TG, Swarbrick A, Sansom OJ, Morton JP, Australian Pancreatic Cancer Matrix Atlas (APMA), Australian Pancreatic Cancer Genome Initiative (APGI), Pajic M, Parker BL, Herrmann D, Cox TR, Timpson P. Temporally resolved proteomics identifies nidogen-2 as a cotarget in pancreatic cancer that modulates fibrosis and therapy response. SCIENCE ADVANCES 2024; 10:eadl1197. [PMID: 38959305 PMCID: PMC11221519 DOI: 10.1126/sciadv.adl1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.
Collapse
Affiliation(s)
- Brooke A. Pereira
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Shona Ritchie
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Katie A. Gordon
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Astrid Magenau
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Kendelle J. Murphy
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Victoria M. Tyma
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ying Fei Liew
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Morghan C. Lucas
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marjan M. Naeini
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Deborah S. Barkauskas
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- ACRF INCITe Intravital Imaging Centre, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Diego Chacon-Fajardo
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anna E. Howell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Amelia L. Parker
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Sean C. Warren
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Victoria Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Xanthe L. Metcalf
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Young Kyung Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Luke P. O’Regan
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Jessie Zhu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Michael Trpceski
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Angela R. M. Fontaine
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- ACRF INCITe Intravital Imaging Centre, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Janett Stoehr
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Romain Rouet
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Xufeng Lin
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jessica L. Chitty
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Sean Porazinski
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sunny Z. Wu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genentech Inc., South San Francisco, CA, USA
| | - Elysse C. Filipe
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Antonia L. Cadell
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Holly Holliday
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jessica Yang
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Michael Papanicolaou
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Ruth J. Lyons
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anaiis Zaratzian
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Tayao
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew Da Silva
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Claire Vennin
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Julia Yin
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Alysha B. Dew
- Centre for Advanced Histology & Microscopy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Paul J. McMillan
- Centre for Advanced Histology & Microscopy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Biological Optical Microscopy Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Leonard D. Goldstein
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Ira W. Deveson
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - David R. Croucher
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Hao-Wen Sim
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Marcel Batten
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Lorraine Chantrill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Department of Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Sean M. Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J. Gill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Thomas R. Jeffry Evans
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita, Japan
| | - Tri G. Phan
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P. Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Marina Pajic
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Benjamin L. Parker
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Thomas R. Cox
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
126
|
Belle JI, Sen D, Baer JM, Liu X, Lander VE, Ye J, Sells BE, Knolhoff BL, Faiz A, Kang LI, Qian G, Fields RC, Ding L, Kim H, Provenzano PP, Stewart SA, DeNardo DG. Senescence Defines a Distinct Subset of Myofibroblasts That Orchestrates Immunosuppression in Pancreatic Cancer. Cancer Discov 2024; 14:1324-1355. [PMID: 38683144 DOI: 10.1158/2159-8290.cd-23-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 01/29/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) therapeutic resistance is largely attributed to a unique tumor microenvironment embedded with an abundance of cancer-associated fibroblasts (CAF). Distinct CAF populations were recently identified, but the phenotypic drivers and specific impact of CAF heterogeneity remain unclear. In this study, we identify a subpopulation of senescent myofibroblastic CAFs (SenCAF) in mouse and human PDAC. These SenCAFs are a phenotypically distinct subset of myofibroblastic CAFs that localize near tumor ducts and accumulate with PDAC progression. To assess the impact of endogenous SenCAFs in PDAC, we used an LSL-KRASG12D;p53flox;p48-CRE;INK-ATTAC (KPPC-IA) mouse model of spontaneous PDAC with inducible senescent cell depletion. Depletion of senescent stromal cells in genetic and pharmacologic PDAC models relieved immune suppression by macrophages, delayed tumor progression, and increased responsiveness to chemotherapy. Collectively, our findings demonstrate that SenCAFs promote PDAC progression and immune cell dysfunction. Significance: CAF heterogeneity in PDAC remains poorly understood. In this study, we identify a novel subpopulation of senescent CAFs that promotes PDAC progression and immunosuppression. Targeting CAF senescence in combination therapies could increase tumor vulnerability to chemo or immunotherapy. See related article by Ye et al., p. 1302.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Devashish Sen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xiuting Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Varintra E Lander
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jiayu Ye
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Blake E Sells
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ahmad Faiz
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Liang-I Kang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Guhan Qian
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Ryan C Fields
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hyun Kim
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
127
|
McAndrews KM, Mahadevan KK, Kalluri R. Mouse Models to Evaluate the Functional Role of the Tumor Microenvironment in Cancer Progression and Therapy Responses. Cold Spring Harb Perspect Med 2024; 14:a041411. [PMID: 38191175 PMCID: PMC11216184 DOI: 10.1101/cshperspect.a041411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.
Collapse
Affiliation(s)
- Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
128
|
Xiao Y, Wang Z, Gu M, Wei P, Wang X, Li W. Cancer-associated fibroblasts: heterogeneity and their role in the tumor immune response. Clin Exp Med 2024; 24:126. [PMID: 38864912 PMCID: PMC11169017 DOI: 10.1007/s10238-024-01375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
In recent decades, many reports have been published on the composition and function of the tumor microenvironment (TME), among which cancer-associated fibroblasts (CAFs) have received much attention. CAFs have different degrees of heterogeneity in terms of their origin, phenotype, and function and can be divided into different subpopulations. These subgroups may play different roles in the occurrence and development of tumors. In addition, CAFs are closely associated with tumor immunity and have been found to regulate immune cell activity and to suppress the tumor immune response. In this review, we systematize the heterogeneity and characteristics of CAFs, discuss how specific CAF subgroups contribute to cancer progression by inducing an immunosuppressive microenvironment, and finally, we examine the future clinical applications of CAF subgroups.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weiying Li
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
129
|
Varveri A, Papadopoulou M, Papadovasilakis Z, Compeer EB, Legaki AI, Delis A, Damaskou V, Boon L, Papadogiorgaki S, Samiotaki M, Foukas PG, Eliopoulos AG, Hatzioannou A, Alissafi T, Dustin ML, Verginis P. Immunological synapse formation between T regulatory cells and cancer-associated fibroblasts promotes tumour development. Nat Commun 2024; 15:4988. [PMID: 38862534 PMCID: PMC11167033 DOI: 10.1038/s41467-024-49282-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) have emerged as a dominant non-hematopoietic cell population in the tumour microenvironment, serving diverse functions in tumour progression. However, the mechanisms via which CAFs influence the anti-tumour immunity remain poorly understood. Here, using multiple tumour models and biopsies from cancer patients, we report that α-SMA+ CAFs can form immunological synapses with Foxp3+ regulatory T cells (Tregs) in tumours. Notably, α-SMA+ CAFs can phagocytose and process tumour antigens and exhibit a tolerogenic phenotype which instructs movement arrest, activation and proliferation in Tregs in an antigen-specific manner. Moreover, α-SMA+ CAFs display double-membrane structures resembling autophagosomes in their cytoplasm. Single-cell transcriptomic data showed an enrichment in autophagy and antigen processing/presentation pathways in α-SMA-expressing CAF clusters. Conditional knockout of Atg5 in α-SMA+ CAFs promoted inflammatory re-programming in CAFs, reduced Treg cell infiltration and attenuated tumour development. Overall, our findings reveal an immunosuppressive mechanism entailing the formation of synapses between α-SMA+ CAFs and Tregs in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Athina Varveri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Miranta Papadopoulou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Zacharias Papadovasilakis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Aigli-Ioanna Legaki
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasios Delis
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasileia Damaskou
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | | | | | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Centre Alexander Fleming, Vari, Athens, 166 72, Greece
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Hatzioannou
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Themis Alissafi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Laboratory of Biology, School of Medicine, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Panayotis Verginis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
130
|
Chen J, Chen R, Huang J. A pan-cancer single-cell transcriptional analysis of antigen-presenting cancer-associated fibroblasts in the tumor microenvironment. Front Immunol 2024; 15:1372432. [PMID: 38903527 PMCID: PMC11187094 DOI: 10.3389/fimmu.2024.1372432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.
Collapse
Affiliation(s)
- Juntao Chen
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
131
|
Wu J, Lu Q, Zhao J, Wu W, Wang Z, Yu G, Tian G, Gao Z, Wang Q. Enhancing the Inhibition of Breast Cancer Growth Through Synergistic Modulation of the Tumor Microenvironment Using Combined Nano-Delivery Systems. Int J Nanomedicine 2024; 19:5125-5138. [PMID: 38855730 PMCID: PMC11162247 DOI: 10.2147/ijn.s460874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Breast cancer is a prevalent malignancy among women worldwide, and malignancy is closely linked to the tumor microenvironment (TME). Here, we prepared mixed nano-sized formulations composed of pH-sensitive liposomes (Ber/Ru486@CLPs) and small-sized nano-micelles (Dox@CLGs). These liposomes and nano-micelles were modified by chondroitin sulfate (CS) to selectively target breast cancer cells. Methods Ber/Ru486@CLPs and Dox@CLGs were prepared by thin-film dispersion and ethanol injection, respectively. To mimic actual TME, the in vitro "condition medium of fibroblasts + MCF-7" cell model and in vivo "4T1/NIH-3T3" co-implantation mice model were established to evaluate the anti-tumor effect of drugs. Results The physicochemical properties showed that Dox@CLGs and Ber/Ru486@CLPs were 28 nm and 100 nm in particle size, respectively. In vitro experiments showed that the mixed formulations significantly improved drug uptake and inhibited cell proliferation and migration. The in vivo anti-tumor studies further confirmed the enhanced anti-tumor capabilities of Dox@CLGs + Ber/Ru486@CLPs, including smaller tumor volumes, weak collagen deposition, and low expression levels of α-SMA and CD31 proteins, leading to a superior anti-tumor effect. Conclusion In brief, this combination therapy based on Dox@CLGs and Ber/Ru486@CLPs could effectively inhibit tumor development, which provides a promising approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jingliang Wu
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
| | - Qiao Lu
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Jialin Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Wendi Wu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Zhihua Wang
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
| | - Guohua Yu
- Department of Oncology, Weifang People’s Hospital, Weifang, 261000, People’s Republic of China
| | - Guixiang Tian
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiqin Gao
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Qing Wang
- Department of Stomatology, Weifang People’s Hospital, Weifang, 261000, People’s Republic of China
| |
Collapse
|
132
|
Loffredo LF, Savage TM, Ringham OR, Arpaia N. Treg-tissue cell interactions in repair and regeneration. J Exp Med 2024; 221:e20231244. [PMID: 38668758 PMCID: PMC11046849 DOI: 10.1084/jem.20231244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Regulatory T (Treg) cells are classically known for their critical immunosuppressive functions that support peripheral tolerance. More recent work has demonstrated that Treg cells produce pro-repair mediators independent of their immunosuppressive function, a process that is critical to repair and regeneration in response to numerous tissue insults. These factors act on resident parenchymal and structural cells to initiate repair in a tissue-specific context. This review examines interactions between Treg cells and tissue-resident non-immune cells-in the context of tissue repair, fibrosis, and cancer-and discusses areas for future exploration.
Collapse
Affiliation(s)
- Lucas F. Loffredo
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Thomas M. Savage
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Olivia R. Ringham
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
133
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
134
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
135
|
Li PH, Zhang X, Yan H, Xia X, Deng Y, Miao Q, Luo Y, Liu G, Luo H, Zhang Y, Xu H, Jiang L, Li ZH, Shu Y. Contribution of crosstalk of mesothelial and tumoral epithelial cells in pleural metastasis of lung cancer. Transl Lung Cancer Res 2024; 13:965-985. [PMID: 38854934 PMCID: PMC11157377 DOI: 10.21037/tlcr-24-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Background Tumor metastasis commonly affects pleura in advanced lung cancer and results in malignant pleural effusion (MPE). MPE is related to poor prognosis, but without systematic investigation on different cell types and their crosstalk at single cell resolution. Methods We conducted single-cell RNA-sequencing (scRNA-seq) of lung cancer patients with pleural effusion. Next, our data were integrated with 5 datasets derived from individuals under normal, non-malignant disease and lung carcinomatous conditions. Mesothelial cells were re-clustered and their interactions with epithelial cells were comprehensively analyzed. Taking advantage of inferred ligand-receptor pairs, a prediction model of prognosis was constructed. The co-culture of mesothelial cells and malignant epithelial cells in vitro and RNA-seq was performed. Epidermal growth factor receptor (EGFR) antagonist cetuximab was utilized to prevent the lung cancer cells' invasiveness. Spatial distribution of cells in lung adenocarcinoma patients' samples were also analyzed to validate our findings. Results The most distinctive transcriptome profiles between tumor and control were revealed in mesothelial cells, which is the predominate cell type of pleura. Five subtypes were divided, including one predominately identified in MPE which was characterized by enriched cancer-related pathways (e.g., cell migration) along evolutionary trajectory from normal mesothelial cells. Cancer-associated mesothelial cells (CAMCs) exhibited varied interactions with different subtypes of malignant epithelial cells, and multiple ligands/receptors exhibited significant correlation with poor prognosis. Experimentally, mesothelial cells can increase the migration ability of lung cancer cells through co-culturing. EGFR was the only affected gene in cancer cells that exhibited interaction with mesothelial cells and was associated with poor prognosis. Using EGFR antagonist cetuximab prevented the lung cancer cells' increased invasiveness caused by mesothelial cells. Moreover, epithelial mitogen (EPGN)-EGFR interaction was supported through spatial distribution analysis, revealing the significant proximity between EPGN+ mesothelial cells and EGFR+ epithelial cells. Conclusions Our findings highlighted the important role of mesothelial cells and their interactions with cancer cells in pleural metastasis of lung cancer, providing potential targets for treatment.
Collapse
Affiliation(s)
- Pei-Heng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huayun Yan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuyang Xia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqi Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Miao
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqiao Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guihong Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Han Luo
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Lung Cancer Center, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Hui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
136
|
Smith H, Arbe-Barnes E, Shah EA, Sivakumar S. Manipulating regulatory T cells: is it the key to unlocking effective immunotherapy for pancreatic ductal adenocarcinoma? Front Immunol 2024; 15:1406250. [PMID: 38873607 PMCID: PMC11170104 DOI: 10.3389/fimmu.2024.1406250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The five-year survival rates for pancreatic ductal adenocarcinoma (PDAC) have scarcely improved over the last half-century. It is inherently resistant to FDA-approved immunotherapies, which have transformed the outlook for patients with other advanced solid tumours. Accumulating evidence relates this resistance to its hallmark immunosuppressive milieu, which instils progressive dysfunction among tumour-infiltrating effector T cells. This milieu is established at the inception of neoplasia by immunosuppressive cellular populations, including regulatory T cells (Tregs), which accumulate in parallel with the progression to malignant PDAC. Thus, the therapeutic manipulation of Tregs has captured significant scientific and commercial attention, bolstered by the discovery that an abundance of tumour-infiltrating Tregs correlates with a poor prognosis in PDAC patients. Herein, we propose a mechanism for the resistance of PDAC to anti-PD-1 and CTLA-4 immunotherapies and re-assess the rationale for pursuing Treg-targeted therapies in light of recent studies that profiled the immune landscape of patient-derived tumour samples. We evaluate strategies that are emerging to limit Treg-mediated immunosuppression for the treatment of PDAC, and signpost early-stage trials that provide preliminary evidence of clinical activity. In this context, we find a compelling argument for investment in the ongoing development of Treg-targeted immunotherapies for PDAC.
Collapse
Affiliation(s)
- Henry Smith
- School of Medicine and Biomedical Sciences, University of Oxford, Oxford, United Kingdom
| | - Edward Arbe-Barnes
- Institute of Immunology and Transplantation, University College London, London, United Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Shivan Sivakumar
- Institute of Immunology and Immunotherapy, Birmingham Medical School, Birmingham, United Kingdom
- Birmingham Cancer Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
137
|
Yamashita K, Kumamoto Y. CAFs-Associated Genes (CAFGs) in Pancreatic Ductal Adenocarcinoma (PDAC) and Novel Therapeutic Strategy. Int J Mol Sci 2024; 25:6003. [PMID: 38892190 PMCID: PMC11172745 DOI: 10.3390/ijms25116003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive cancer with striking fibrosis, and its mortality rate is ranked second across human cancers. Cancer-associated fibroblasts (CAFs) play a critical role in PDAC progression, and we reviewed the molecular understanding of PDAC CAFs and novel therapeutic potential at present. CAFs-associated genes (CAFGs) were tentatively classified into three categories by stroma specificity representing stroma/epithelia expression ratios (SE ratios). The recent classification using single cell transcriptome technology clarified that CAFs were composed of myofibroblasts (myCAFs), inflammatory CAFs (iCAFs), and other minor ones (e.g., POSTN-CAFs and antigen presenting CAFs, apCAFs). LRRC15 is a myCAFs marker, and myCAFs depletion by diphtheria toxin induces the rapid accumulation of cytotoxic T lymphocytes (CTLs) and therefore augment PDL1 antibody treatments. This finding proposes that myCAFs may be a critical regulator of tumor immunity in terms of PDAC progression. myCAFs are located in CAFs adjacent to tumor cells, while iCAFs marked by PDPN and/or COL14A1 are distant from tumor cells, where hypoxic and acidic environments being located in iCAFs putatively due to poor blood supply is consistent with HIF1A and GPR68 expressions. iCAFs may be shared with SASP (secretion-associated phenotypes) in senescent CAFs. myCAFs are classically characterized by CAFGs induced by TGFB1, while chemoresistant CAFs with SASP may dependent on IL6 expression and accompanied by STAT3 activation. Recently, it was found that the unique metabolism of CAFs can be targeted to prevent PDAC progression, where PDAC cells utilize glucose, whereas CAFs in turn utilize lactate, which may be epigenetically regulated, mediated by its target genes including CXCR4. In summary, CAFs have unique molecular characteristics, which have been rigorously clarified as novel therapeutic targets of PDAC progression.
Collapse
Affiliation(s)
- Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara 252-0374, Japan
| | - Yusuke Kumamoto
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara 252-0374, Japan;
| |
Collapse
|
138
|
Milosevic V, Östman A. Interactions between cancer-associated fibroblasts and T-cells: functional crosstalk with targeting and biomarker potential. Ups J Med Sci 2024; 129:10710. [PMID: 38863724 PMCID: PMC11165253 DOI: 10.48101/ujms.v129.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population recognized as a key component of the tumour microenvironment (TME). Cancer-associated fibroblasts are known to play an important role in maintaining and remodelling the extracellular matrix (ECM) in the tumour stroma, supporting cancer progression and inhibiting the immune system's response against cancer cells. This review aims to summarize the immunomodulatory roles of CAFs, particularly focussing on their T-cell suppressive effects. Cancer-associated fibroblasts have several ways by which they can affect the tumour's immune microenvironment (TIME). For example, their interactions with macrophages and dendritic cells (DCs) create an immunosuppressive milieu that can indirectly affect T-cell anticancer immunity and enable immune evasion. In addition, a number of recent studies have confirmed CAF-mediated direct suppressive effects on T-cell anticancer capacity through ECM remodelling, promoting the expression of immune checkpoints, cytokine secretion and the release of extracellular vesicles. The consequential impact of CAFs on T-cell function is then reflected in affecting T-cell proliferation and apoptosis, migration and infiltration, differentiation and exhaustion. Emerging evidence highlights the existence of specific CAF subsets with distinct capabilities to modulate the immune landscape of TME in various cancers, suggesting the possibility of their exploitation as possible prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Vladan Milosevic
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Arne Östman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
139
|
Liu Y, Han X, Han Y, Bi J, Wu Y, Xiang D, Zhang Y, Bi W, Xu M, Li J. Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene 2024; 907:148286. [PMID: 38367852 DOI: 10.1016/j.gene.2024.148286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Osteosarcoma (OS), with a peak incidence during the adolescent growth spurt, is correlated with poor prognosis for its high malignancy. The tumor microenvironment (TME) is highly complicated, with frequent interactions between tumor and stromal cells. The cancer-associated fibroblasts (CAFs) in the TME have been considered to actively involve in the progression, metastasis, and drug resistance of OS. This study aimed to characterize cellular heterogeneity and molecular characterization in CAFs subtypes and explore the potential targeting therapeutic strategies to improve the prognosis of OS patients. METHODS The single-cell atlas of human OS tumor lesions were constructed from the GEO database. Then significant marker genes and potential biological functions for each CAFs subtype were identified and explored using the Seurat R package. Next, by performing the survival analyses and constructing the risk scores for CAFs subtypes, we aimed to identify and characterize the prognostic values of specific marker genes and different CAFs subtypes. Furthermore, we explored the therapeutic targets and innovative drugs targeting different CAFs subtypes based on the GDSC database. Finally, prognoses related CAFs subtypes were further validated through immunohistochemistry (IHC) on clinical OS specimens. RESULTS Overall, nine main cell clusters and five subtypes of CAFs were identified. The differentially expressed marker genes for each CAFs clusters were then identified. Moreover, through Gene Ontology (GO) enrichment analysis, we defined the CAFs_2 (upregulated CXCL14 and C3), which was closely related to leukocyte migration and chemotaxis, as inflammatory CAFs (iCAFs). Likewise, we defined the CAFs_4 (upregulated CD74, HLA-DRA and HLA-DRB1), which was closely related to antigen process and presentation, as antigen-presenting CAFs (apCAFs). Furthermore, Kaplan-Meier analyses showed that CAFs_2 and CAFs_4 were correlated with poor clinical prognosis of OS patients. Meanwhile, therapeutic drugs targeting CAFs_2 and CAFs_4, such as 17-AAG/Docetaxel/Bleomycin and PHA-793887/NG-25/KIN001-102, were also explored, respectively. Finally, IHC assay confirmed the abundant CAFs_2 and CAFs_4 subtypes infiltration in the OS microenvironment compared with adjacent tissues. CONCLUSION Our study revealed the diversity, complexity, and heterogeneity of CAFs in OS, and complemented the single-cell atlas in OS TME.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, Yunnan, China; Chinese PLA Spinal Cord Injury Treatment Center, Kunming, Yunnan 650032, China
| | - Xinli Han
- School of Medicine, Nankai University, Tianjin 300074, China
| | - Yuchen Han
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Jingyou Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yanan Wu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Dongquan Xiang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yinglong Zhang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Wenzhi Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; School of Medicine, Nankai University, Tianjin 300074, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Meng Xu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China.
| | - Jianxiong Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
140
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
141
|
Kazakova AN, Lukina MM, Anufrieva KS, Bekbaeva IV, Ivanova OM, Shnaider PV, Slonov A, Arapidi GP, Shender VO. Exploring the diversity of cancer-associated fibroblasts: insights into mechanisms of drug resistance. Front Cell Dev Biol 2024; 12:1403122. [PMID: 38818409 PMCID: PMC11137237 DOI: 10.3389/fcell.2024.1403122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction: Among the various stromal cell types within the tumor microenvironment, cancer-associated fibroblasts (CAFs) emerge as the predominant constituent, exhibiting a diverse array of oncogenic functions not intrinsic to normal fibroblasts. Their involvement spans across all stages of tumorigenesis, encompassing initiation, progression, and metastasis. Current understanding posits the coexistence of distinct subpopulations of CAFs within the tumor microenvironment across a spectrum of solid tumors, showcasing both pro- and antitumor activities. Recent advancements in single-cell transcriptomics have revolutionized our ability to meticulously dissect the heterogeneity inherent to CAF populations. Furthermore, accumulating evidence underscores the pivotal role of CAFs in conferring therapeutic resistance to tumors against various drug modalities. Consequently, efforts are underway to develop pharmacological agents specifically targeting CAFs. Methods: This review embarks on a comprehensive analysis, consolidating data from 36 independent single-cell RNA sequencing investigations spanning 17 distinct human malignant tumor types. Results: Our exploration centers on elucidating CAF population markers, discerning their prognostic relevance, delineating their functional contributions, and elucidating the underlying mechanisms orchestrating chemoresistance. Discussion: Finally, we deliberate on the therapeutic potential of harnessing CAFs as promising targets for intervention strategies in clinical oncology.
Collapse
Affiliation(s)
- Anastasia N. Kazakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Maria M. Lukina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ksenia S. Anufrieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina V. Bekbaeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Olga M. Ivanova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina V. Shnaider
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Slonov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Georgij P. Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria O. Shender
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
142
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
143
|
Chen X, Huang H. Tumor cell-intrinsic epigenetic SETpoint of cancer-associated fibroblasts. Cancer Cell 2024; 42:744-746. [PMID: 38670089 PMCID: PMC11533375 DOI: 10.1016/j.ccell.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Cancer-associated fibroblasts (CAFs) exhibit spatial and functional diversity. Here, Niu et al. unveil SETD2's function in lipid metabolism and CAF heterogeneity in pancreatic ductal adenocarcinoma. SETD2 deficiency boosts oxidative phosphorylation activity, prompting lipid-laden CAF formation through BMP2 signaling, offering promising therapeutic avenues in personalized cancer treatment.
Collapse
Affiliation(s)
- Xiongfeng Chen
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
144
|
Niu N, Shen X, Wang Z, Chen Y, Weng Y, Yu F, Tang Y, Lu P, Liu M, Wang L, Sun Y, Yang M, Shen B, Jin J, Lu Z, Jiang K, Shi Y, Xue J. Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell 2024; 42:869-884.e9. [PMID: 38579725 DOI: 10.1016/j.ccell.2024.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of cancer-associated fibroblasts (CAFs) as part of the host response to tumor cells. The origins and functions of transcriptionally diverse CAF populations in PDAC remain poorly understood. Tumor cell-intrinsic genetic mutations and epigenetic dysregulation may reshape the TME; however, their impacts on CAF heterogeneity remain elusive. SETD2, a histone H3K36 trimethyl-transferase, functions as a tumor suppressor. Through single-cell RNA sequencing, we identify a lipid-laden CAF subpopulation marked by ABCA8a in Setd2-deficient pancreatic tumors. Our findings reveal that tumor-intrinsic SETD2 loss unleashes BMP2 signaling via ectopic gain of H3K27Ac, leading to CAFs differentiation toward lipid-rich phenotype. Lipid-laden CAFs then enhance tumor progression by providing lipids for mitochondrial oxidative phosphorylation via ABCA8a transporter. Together, our study links CAF heterogeneity to epigenetic dysregulation in tumor cells, highlighting a previously unappreciated metabolic interaction between CAFs and pancreatic tumor cells.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuqing Shen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yueyue Chen
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawen Weng
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feier Yu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yufeng Shi
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
145
|
Liu M, Ren Y, Zhou Z, Yang J, Shi X, Cai Y, Arreola AX, Luo W, Fung KM, Xu C, Nipp RD, Bronze MS, Zheng L, Li YP, Houchen CW, Zhang Y, Li M. The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia. Cancer Cell 2024; 42:885-903.e4. [PMID: 38608702 PMCID: PMC11162958 DOI: 10.1016/j.ccell.2024.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yu Ren
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xiuhui Shi
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yang Cai
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex X Arreola
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wenyi Luo
- Department of Pathology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ryan D Nipp
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael S Bronze
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yi-Ping Li
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yuqing Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
146
|
Varinelli L, Battistessa D, Guaglio M, Zanutto S, Illescas O, Lorenc EJ, Pisati F, Kusamura S, Cattaneo L, Sabella G, Milione M, Perbellini A, Noci S, Paolino C, Kuhn E, Galassi M, Cavalleri T, Deraco M, Gariboldi M, Baratti D. Colorectal carcinoma peritoneal metastases-derived organoids: results and perspective of a model for tailoring hyperthermic intraperitoneal chemotherapy from bench-to-bedside. J Exp Clin Cancer Res 2024; 43:132. [PMID: 38698446 PMCID: PMC11064374 DOI: 10.1186/s13046-024-03052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Peritoneal metastases from colorectal cancer (CRCPM) are related to poor prognosis. Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) have been reported to improve survival, but peritoneal recurrence rates are still high and there is no consensus on the drug of choice for HIPEC. The aim of this study was to use patient derived organoids (PDO) to build a relevant CRCPM model to improve HIPEC efficacy in a comprehensive bench-to-bedside strategy. METHODS Oxaliplatin (L-OHP), cisplatin (CDDP), mitomycin-c (MMC) and doxorubicin (DOX) were used to mimic HIPEC on twelve PDO lines derived from twelve CRCPM patients, using clinically relevant concentrations. After chemotherapeutic interventions, cell viability was assessed with a luminescent assay, and the obtained dose-response curves were used to determine the half-maximal inhibitory concentrations. Also, induction of apoptosis by different HIPEC interventions on PDOs was studied by evaluating CASPASE3 cleavage. RESULTS Response to drug treatments varied considerably among PDOs. The two schemes with better response at clinically relevant concentrations included MMC alone or combined with CDDP. L-OHP showed relative efficacy only when administered at low concentrations over a long perfusion period. PDOs showed that the short course/high dose L-OHP scheme did not appear to be an effective choice for HIPEC in CRCPM. HIPEC administered under hyperthermia conditions enhanced the effect of chemotherapy drugs against cancer cells, affecting PDO viability and apoptosis. Finally, PDO co-cultured with cancer-associated fibroblast impacted HIPEC treatments by increasing PDO viability and reducing CASPASES activity. CONCLUSIONS Our study suggests that PDOs could be a reliable in vitro model to evaluate HIPEC schemes at individual-patient level and to develop more effective treatment strategies for CRCPM.
Collapse
Affiliation(s)
- Luca Varinelli
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Davide Battistessa
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Susanna Zanutto
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Oscar Illescas
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Ewelina J Lorenc
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Federica Pisati
- Cogentech Ltd. Benefit Corporation With a Sole Shareholder, Via Adamello 16, Milan, 20139, Italy
| | - Shigeki Kusamura
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Laura Cattaneo
- Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy
| | - Giovanna Sabella
- Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy
| | - Massimo Milione
- Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy
| | - Alessia Perbellini
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Sara Noci
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Cinzia Paolino
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, 20122, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Margherita Galassi
- Centrale Produzione Farmaci, Hospital Pharmacy, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via G. Venezian 1, Milan, 20133, Italy
| | - Tommaso Cavalleri
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy.
| | - Manuela Gariboldi
- Department of Experimental Oncology, Molecular Epigenomics Unit, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Dario Baratti
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, Milan, 20133, Italy
| |
Collapse
|
147
|
Wehrli M, Guinn S, Birocchi F, Kuo A, Sun Y, Larson RC, Almazan AJ, Scarfò I, Bouffard AA, Bailey SR, Anekal PV, Llopis PM, Nieman LT, Song Y, Xu KH, Berger TR, Kann MC, Leick MB, Silva H, Salas-Benito D, Kienka T, Grauwet K, Armstrong TD, Zhang R, Zhu Q, Fu J, Schmidts A, Korell F, Jan M, Choi BD, Liss AS, Boland GM, Ting DT, Burkhart RA, Jenkins RW, Zheng L, Jaffee EM, Zimmerman JW, Maus MV. Mesothelin CAR T Cells Secreting Anti-FAP/Anti-CD3 Molecules Efficiently Target Pancreatic Adenocarcinoma and its Stroma. Clin Cancer Res 2024; 30:1859-1877. [PMID: 38393682 PMCID: PMC11062832 DOI: 10.1158/1078-0432.ccr-23-3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.
Collapse
Affiliation(s)
- Marc Wehrli
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Samantha Guinn
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Filippo Birocchi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Adam Kuo
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Yi Sun
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Rebecca C. Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Antonio J. Almazan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Amanda A. Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Stefanie R. Bailey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | | | | | - Linda T. Nieman
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Yuhui Song
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Katherine H. Xu
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Trisha R. Berger
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Michael C. Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Mark B. Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Blood and Marrow Transplant Program, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Diego Salas-Benito
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Tamina Kienka
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Korneel Grauwet
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Todd D. Armstrong
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Rui Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Felix Korell
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - Bryan D. Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - Andrew S. Liss
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Genevieve M. Boland
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - David T. Ting
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Richard A. Burkhart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Russell W. Jenkins
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, MD, USA
- Cancer Convergence Institute and Bloomberg Kimmel Institute at Johns Hopkins; University, Baltimore, MD, USA
| | - Marcela V. Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Cancer Center, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
- Blood and Marrow Transplant Program, Massachusetts General Hospital; Harvard Medical School; Boston, MA, USA
| |
Collapse
|
148
|
Ma H, Jia J, Sun Z, Xiao X, Liang S, Zhao L, Zhang Z. The detection of PD-L1 expression on liquid-based cytology in pleural effusion of lung adenocarcinoma and its prognostic evaluation: Between paired liquid-based cytology and cell block samples. Diagn Cytopathol 2024; 52:235-242. [PMID: 38263766 DOI: 10.1002/dc.25276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) expression levels measured by immunohistochemistry have been proven to predict the outcome of immunotherapy in lung adenocarcinoma (LUAD). However, data on PD-L1 expression on liquid-based cytology (LBC) in malignant pleural effusion (MPE) is scarce. METHODS This study cohort included 60 cases with MPE suffering from LUAD. PD-L1 SP263 assay was used for immunocytochemistry (ICC) on LBC and matched cell block (CB) to validate ICC protocols on LBC slides. Clinical outcomes were analyzed based on immunotherapy and PD-L1 tumor proportion scores (TPS) on LBC slides and CBs. RESULTS PD-L1 expression with TPS ≥1% was lower in LBCs than in CBs (33 of 60 [55.0%] vs. 35 of 60 [58.3%]; p = .687). Even with the TPS ≥50% threshold, PD-L1 expression was lower in LBCs (10 of 60 [16.7%] vs. 15 of 60 [25%]; p = .125). Epidermal growth factor receptor (EGFR) exon 20 mutation, tumor cell proportion, and pleural fluid neutrophil-to-lymphocyte ratio were related to PD-L1 expression on CBs (p = .013, p = 0.022, and p = .011), respectively. Patients with subsequent immune checkpoint inhibitor therapy remained a better prognostic in subgroups of PD-L1 positive expression on LBC slides (TPS ≥1%, p = .041). CONCLUSIONS LBC specimens had comparable performance to CBs in PD-L1 assessment and predicting treatment response to PD-L1-defined therapy.
Collapse
Affiliation(s)
- Haiyue Ma
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Jia
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihan Sun
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Xiao
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Liang
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linlin Zhao
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Cytopathology Section, Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
149
|
Kou Z, Liu C, Zhang W, Sun C, Liu L, Zhang Q. Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol 2024; 64:54. [PMID: 38577950 PMCID: PMC11015919 DOI: 10.3892/ijo.2024.5642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.
Collapse
Affiliation(s)
- Zixing Kou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa Island 999078, Macau SAR, P.R. China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
| | - Qiming Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
- Department of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100007, P.R. China
| |
Collapse
|
150
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|