101
|
Abou Elazab MF, Inoue Y, Kamei H, Horiuchi H, Furusawa S. Zymosan A enhances humoral immune responses to soluble protein in chickens. J Vet Med Sci 2017; 79:1335-1341. [PMID: 28652560 PMCID: PMC5573818 DOI: 10.1292/jvms.16-0636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vaccination is the most effective method for controlling the infectious diseases that
threaten the poultry industry worldwide. The use of adjuvants or immunostimulants is often
necessary to improve vaccine efficacy, particularly for vaccines based on recombinant
protein or inactivated pathogens. The adjuvant effects of zymosan A on antigen-specific
antibody production were investigated in chickens. First, the optimal adjuvant dose of
zymosan A was determined. Chicks were immunized with dinitrophenyl-keyhole limpet
hemocyanin (DNP-KLH) at a dosage of 2 mg/kg body weight (BW) with or without zymosan A (at
a dosage of 0.5 mg/kg BW) co-administration at 4, 5 and 6 weeks of age. Different routes
of immunization (oral, intranasal (i.n.), intraocular (i.o.), subcutaneous (s.c.),
intramuscular (i.m.) and intraperitoneal (i.p.) were tested. Anti-DNP IgY and IgA
concentrations in serum samples from all chicks were measured by an enzyme-linked
immunosorbent assay. The results revealed that co-administration of zymosan A with DNP-KLH
significantly increased anti-DNP IgY concentrations in chicks immunized by the oral and
s.c. routes of administration when compared with control groups. In addition,
co-administration of zymosan A with DNP-KLH significantly increased anti-DNP IgA
concentrations in chicks immunized by the oral, i.o. and s.c. routes compared with control
groups. In conclusion, zymosan A is a useful immune-potentiator adjuvant in chickens, and
its co-administration with vaccine antigens enhances humoral immune responses.
Collapse
Affiliation(s)
- Mohamed Fahmy Abou Elazab
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan.,Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Elgiesh Street, Kafr Elsheikh, Egypt
| | - Yoshiaki Inoue
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Hisakazu Kamei
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Shuichi Furusawa
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
102
|
Chattopadhyay S, Chen JY, Chen HW, Hu CMJ. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics 2017; 1:244-260. [PMID: 29071191 PMCID: PMC5646730 DOI: 10.7150/ntno.19796] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Synthetic nanoparticles play an increasingly significant role in vaccine design and development as many nanoparticle vaccines show improved safety and efficacy over conventional formulations. These nanoformulations are structurally similar to viruses, which are nanoscale pathogenic organisms that have served as a key selective pressure driving the evolution of our immune system. As a result, mechanisms behind the benefits of nanoparticle vaccines can often find analogue to the interaction dynamics between the immune system and viruses. This review covers the advances in vaccine nanotechnology with a perspective on the advantages of virus mimicry towards immune potentiation. It provides an overview to the different types of nanomaterials utilized for nanoparticle vaccine development, including functionalization strategies that bestow nanoparticles with virus-like features. As understanding of human immunity and vaccine mechanisms continue to evolve, recognizing the fundamental semblance between synthetic nanoparticles and viruses may offer an explanation for the superiority of nanoparticle vaccines over conventional vaccines and may spur new design rationales for future vaccine research. These nanoformulations are poised to provide solutions towards pressing and emerging human diseases.
Collapse
Affiliation(s)
- Saborni Chattopadhyay
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| |
Collapse
|
103
|
Comparison of gene expression of Toll-like receptors and cytokines between Piau and Commercial line (Landrace×Large White crossbred) pigs vaccinated against Pasteurella multocida type D. Res Vet Sci 2017; 114:273-280. [PMID: 28554143 DOI: 10.1016/j.rvsc.2017.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 01/24/2023]
Abstract
We aimed to compare Toll-like receptors (TLR) and cytokines expression in local Piau breed and a Commercial line (Landrace×Large White crossbred) pigs in response to vaccination against Pasteurella multocida type D. Seronegative gilts for Pasteurella multocida type D and Mycoplasma hyopneumoniae were used, from which peripheral blood mononuclear cells (PBMC) were collected in four time points (T0, T1, T2 and T3; before and after each vaccination dose). For bronchoalveolar lavage fluid cells (BALF), we set groups of vaccinated and unvaccinated animals for both genetic groups. Gene expression was evaluated on PBMC and BALF. In PBMC, when we analyzed time points within breeds, significant differences in expression for TLRs and cytokines, except TGFβ, were observed for Commercial animals. For the Piau pigs, only TGFβ showed differential expression. Comparing the expression among genetic groups, the Commercial pigs showed higher expression for TLRs after first vaccination dose, while for IL2, IL6, IL12 and IL13, higher expression was also observed in T3 and IL8 and IL10, in T1 and T3. Still comparing the breeds, the crossbred animals showed higher expression for TNFα in T1 and T2, while for TGFβ only in T2. For gene expression in BALF, vaccinated Commercial pigs showed higher expression of TLR6, TLR10, IL6, IL8, IL10, TNFα and TGFβ genes than vaccinated Piau pigs. The Commercial line pigs showed higher sensitivity to vaccination, while in local Piau breed lower responsiveness, which may partly explain genetic variability in immune response and will let us better understand the tolerance/susceptibility for pasteurellosis.
Collapse
|
104
|
Mosaheb MM, Reiser ML, Wetzler LM. Toll-Like Receptor Ligand-Based Vaccine Adjuvants Require Intact MyD88 Signaling in Antigen-Presenting Cells for Germinal Center Formation and Antibody Production. Front Immunol 2017; 8:225. [PMID: 28316602 PMCID: PMC5334362 DOI: 10.3389/fimmu.2017.00225] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 01/22/2023] Open
Abstract
Vaccines are critical in the fight against infectious diseases, and immune-stimulating adjuvants are essential for enhancing vaccine efficacy. However, the precise mechanisms of action of most adjuvants are unknown. There is an urgent need for customized and adjuvant formulated vaccines against immune evading pathogens that remain a risk today. Understanding the specific role of various cell types in adjuvant-induced protective immune responses is vital for an effective vaccine design. We have investigated the role of cell-specific MyD88 signaling in vaccine adjuvant activity in vivo, using Neisserial porin B (PorB), a TLR2 ligand-based adjuvant, compared with an endosomal TLR9 ligand (CpG) and toll-like receptor (TLR)-independent (alum, MF59) adjuvants. We found that intact MyD88 signaling is essential, separately, in all three antigen-presenting cell types [B cells, macrophages, and dendritic cells (DCs)] for optimal TLR ligand-based adjuvant activity. The role of MyD88 signaling in B cell and DC in vaccine adjuvant has been previously investigated. In this study, we now demonstrate that the immune response was also reduced in mice with macrophage-specific MyD88 deletion (Mac-MyD88-/-). We demonstrate that TLR-dependent adjuvants are potent inducers of germinal center (GC) responses, but GCs are nearly absent in Mac-MyD88-/- mice following immunization with TLR-dependent adjuvants PorB or CpG, but not with TLR-independent adjuvants MF59 or alum. Our findings reveal a unique and here-to-for unrecognized importance of intact MyD88 signaling in macrophages, to allow for a robust vaccine-induced immune responses when TLR ligand-based adjuvants are used.
Collapse
Affiliation(s)
- Munir M. Mosaheb
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L. Reiser
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA
| | - Lee M. Wetzler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
105
|
Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol 2017; 91:JVI.01844-16. [PMID: 27928002 DOI: 10.1128/jvi.01844-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). IMPORTANCE The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed.
Collapse
|
106
|
Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:35-59. [PMID: 29549634 PMCID: PMC7120739 DOI: 10.1007/978-3-319-72077-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
107
|
Keener AB, Thurlow LT, Kang S, Spidale NA, Clarke SH, Cunnion KM, Tisch R, Richardson AR, Vilen BJ. Staphylococcus aureus Protein A Disrupts Immunity Mediated by Long-Lived Plasma Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:1263-1273. [PMID: 28031339 DOI: 10.4049/jimmunol.1600093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023]
Abstract
Infection with Staphylococcus aureus does not induce long-lived protective immunity for reasons that are not completely understood. Human and murine vaccine studies support a role for Abs in protecting against recurring infections, but S. aureus modulates the B cell response through expression of staphylococcus protein A (SpA), a surface protein that drives polyclonal B cell expansion and induces cell death in the absence of costimulation. In this murine study, we show that SpA altered the fate of plasmablasts and plasma cells (PCs) by enhancing the short-lived extrafollicular response and reducing the pool of bone marrow (BM)-resident long-lived PCs. The absence of long-lived PCs was associated with a rapid decline in Ag-specific class-switched Ab. In contrast, when previously inoculated mice were challenged with an isogenic SpA-deficient S. aureus mutant, cells proliferated in the BM survival niches and sustained long-term Ab titers. The effects of SpA on PC fate were limited to the secondary response, because Ab levels and the formation of B cell memory occurred normally during the primary response in mice inoculated with wild-type or SpA-deficient S. aureus mutant. Thus, failure to establish long-term protective Ab titers against S. aureus was not a consequence of diminished formation of B cell memory; instead, SpA reduced the proliferative capacity of PCs that entered the BM, diminishing the number of cells in the long-lived pool.
Collapse
Affiliation(s)
- Amanda B Keener
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lance T Thurlow
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15260
| | - SunAh Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicholas A Spidale
- Department of Pathology, Massachusetts Medical School, Worcester, MA 01655
| | - Stephen H Clarke
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kenji M Cunnion
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507; and.,Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Roland Tisch
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15260
| | - Barbara J Vilen
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
108
|
Huang Y, Qin T, Huang Y, Liu Z, Bo R, Hu Y, Liu J, Wu Y, Wang D. Rehmannia glutinosa polysaccharide liposome as a novel strategy for stimulating an efficient immune response and their effects on dendritic cells. Int J Nanomedicine 2016; 11:6795-6808. [PMID: 28008254 PMCID: PMC5167497 DOI: 10.2147/ijn.s119108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nanomedicine, the medical application of nanotechnology, promises a seemingly limitless range of applications from drug delivery to adjuvants and therapeutics. Our current research is focused on natural polymer-based liposome adjuvants. With the aim of inducing protective and long-lasting immunity, the immunological adjuvant activity of Rehmannia glutinosa polysaccharide liposome (RGPL) was investigated. In vivo, the splenic lymphocyte proliferation ratios and ovalbumin-specific immunoglobulin G titers of ovalbumin-RGPL-vaccinated mice were significantly upregulated. In draining lymph nodes, the expression of MHC II+CD11c+ and CD86+CD11c+ was increased by RGPL; in addition, the percentages of central memory cells (TCM) and effector memory cells (TEM) were also elevated. RGPL could effectively provide adequate antigen exposure in lymph nodes. In vitro, RGPL could promote dendritic cell maturation and enhance dendritic cell functions, such as the mixed lymphocyte reaction and antigen presentation. Overall, the results demonstrated that RGPL has the potential to act as an effective controlled release vaccine adjuvant.
Collapse
Affiliation(s)
- Yee Huang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Tao Qin
- College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Yifan Huang
- College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Zhenguang Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Ruonan Bo
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Yuanliang Hu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Jiaguo Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Yi Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing
| | - Deyun Wang
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing; College of Animal Science and Veterinary Medicine, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| |
Collapse
|
109
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
110
|
Wahid B, Ali A, Idrees M, Rafique S. Immunotherapeutic strategies for sexually transmitted viral infections: HIV, HSV and HPV. Cell Immunol 2016; 310:1-13. [PMID: 27514252 PMCID: PMC7124316 DOI: 10.1016/j.cellimm.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
More than 1 million sexually transmitted infections (STIs) are acquired each day globally. Etiotropic drugs cannot effectively control infectious diseases therefore, there is a dire need to explore alternative strategies especially those based on the regulation of immune system. The review discusses all rational approaches to develop better understanding towards immunotherapeutic strategies based on modulation of immune system in an attempt to curb the elevating risk of infectious diseases such as HIV, HPV and HSV because of their high prevalence. Development of monoclonal antibodies, vaccines and several other immune based treatments are promising alternative strategies that are offering new opportunities to eradicate pathogens.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University Mansehra, Pakistan.
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
111
|
Ko EJ, Lee YT, Kim KH, Lee Y, Jung YJ, Kim MC, Lee YN, Kang T, Kang SM. Roles of Aluminum Hydroxide and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency To Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine. THE JOURNAL OF IMMUNOLOGY 2016; 198:279-291. [PMID: 27881702 DOI: 10.4049/jimmunol.1600173] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
Abstract
Vaccine adjuvant effects in the CD4-deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and aluminum hydroxide (Alum) adjuvant (MPL+Alum) in inducing immunity after immunization of CD4 knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched Abs, IgG-secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from Alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHC class II KO mice suggest that MHC class II+ APCs contribute to providing alternative B cell help in the CD4-deficient condition in the context of MPL+Alum-adjuvanted vaccination.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Youri Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Yu-Jin Jung
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.,Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yu-Na Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.,Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Taeuk Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| |
Collapse
|
112
|
Abstract
Susceptibility to infection and response to vaccination differ between populations and as a function of age. The underlying mechanisms for this age- and population-dependent variation are not known. Specifically, it is unclear if these variations are due to differences in genetically encoded host programs or driven by environmental influences or a combination of both. To address the relationship between gene and environment regarding immune ontogeny, we determined the innate cytokine responses following PRR stimulation of blood mononuclear cells at birth, 1, and 2 yr of age in infants from Caucasian vs . Asian parents and were raised in the same city. At birth, we found that innate cytokine responses were significantly elevated in Asian compared with Caucasian infants. However, these differences waned and responses became more similar over the course of 1-2 yr of living in a similar environment. Our observations that innate response differences present at birth subsequently equalized rather than diverged suggest a key role for environmental effects common to both racial groups in shaping the innate immune responses early in life. Delineating the underlying environmental factors that modulate innate immune responses early in life could provide avenues for targeted beneficial immune modulation.
Collapse
Affiliation(s)
- Mathieu Garand
- 1 Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Bing Cai
- 1 Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Tobias R Kollmann
- 1 Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada.,2 Vaccine Evaluation Centre, Child and Family Research Institute, Vancouver, BC, Canada
| |
Collapse
|
113
|
Amini Y, Moradi B, Fasihi-Ramandi M. Aluminum hydroxide nanoparticles show strong activity to stimulate Th-1 immune response against tuberculosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1331-1335. [PMID: 27647321 DOI: 10.1080/21691401.2016.1233111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Many materials such as aluminum hydroxide have been tried as adjuvants to compensate low inherent immunogenicity of subunit vaccines. The aim of this study was to evaluate the specific immune response following the administration of aluminum hydroxide nanoparticles with EsxV antigen. The physiochemical properties of the nanoparticle were characterized in vitro. After subcutaneous immunization, cytokine secretion patterns including IFN-gama,IL-4, and TGF-beta levels were measured by indirect enzyme linked immunosorbent assay (ELISA). Aluminum hydroxide-NPs were demonstrated excellent effects to raise of IFN-γ secretion in compare to EsxV alone. Administration of aluminum hydroxide nanoparticles stimulates strong cellular immune response and could be considered as appropriate adjuvant against TB infection.
Collapse
Affiliation(s)
- Yousef Amini
- a Molecular Biology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Bagher Moradi
- b Esfarayen Faculty of Medical Sciences , Esfarayen , Iran
| | - Mahdi Fasihi-Ramandi
- a Molecular Biology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
114
|
Lee SH, Lee I, Kim MH, Go JS, Lee SH, Hwang HJ, Hyun SK, Kang KH, Kim BW, Kim CM, Chung KT, Lee JH. An extract ofUlmus macrocarpaimproves cellular immunity in immuno-suppressed models. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1230556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
115
|
Abstract
Immunomics is a relatively new field of research which integrates the disciplines of immunology, genomics, proteomics, transcriptomics and bioinformatics to characterize the host-pathogen interface. Herein, we discuss how rapid advances in molecular immunology, sophisticated tools and molecular databases are facilitating in-depth exploration of the immunome. In our opinion, an immunomics-based approach presides over traditional antigen and vaccine discovery methods that have proved ineffective for highly complex pathogens such as the causative agents of malaria, tuberculosis and schistosomiasis that have evolved genetic and immunological host-parasite adaptations over time. By using an integrative multidisciplinary approach, immunomics offers enormous potential to advance 21st century antigen discovery and rational vaccine design against complex pathogens such as the Plasmodium parasite.
Collapse
|
116
|
Abstract
Vaccination is a biological process that administrates antigenic materials to stimulate an individual's immune system to develop immunity to a specific pathogen. It is the most effective tool to prevent illness and death from infectious diseases or diseases leading to cancers. Because many recombinant and synthetic antigens are poorly immunogenic, adjuvant is essentially added to vaccine formula that can potentiate the immune responses, offer better protection against pathogens and reduce the amount of antigens needed for protective immunity. To date, there are nearly 100 different types of adjuvants associated with about 400 vaccines that are either commercially available or under development. Among these adjuvants, many of them are particulates and nano-scale in nature. Nanoparticles represent a wide range of materials with novel physicochemical properties that exhibit immunostimulatory effects. However, the mechanistic understandings on how their physicochemical properties affect immunopotentiation remain elusive. In this article, we aim to review current development status of nanomaterial-based vaccine adjuvants, and further discuss their acting mechanisms, understanding of which will benefit the rational design of effective vaccine adjuvants with improved immunogenicity for prevention of infectious disease as well as therapeutic cancer treatment.
Collapse
Affiliation(s)
- Bingbing Sun
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; University of California, Los Angeles, California, 90095, United States
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095, United States
| |
Collapse
|
117
|
Formulation of the respiratory syncytial virus fusion protein with a polymer-based combination adjuvant promotes transient and local innate immune responses and leads to improved adaptive immunity. Vaccine 2016; 34:5114-5124. [PMID: 27591951 DOI: 10.1016/j.vaccine.2016.08.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes serious upper and lower respiratory tract infections in newborns and infants. Presently, there is no licensed vaccine against RSV. We previously reported the safety and efficacy of a novel vaccine candidate (ΔF/TriAdj) in rodent and lamb models following intranasal immunization. However, the effects of the vaccine on the innate immune system in the upper and lower respiratory tracts, when delivered intranasally, have not been characterized. In the present study, we found that ΔF/TriAdj triggered transient production of chemokines, cytokines and interferons in the nasal tissues and lungs of BALB/c mice. The types of chemokines produced were consistent with the populations of immune cells recruited, i.e. dendritic cells, macrophages and neutrophils, in the nose-associated lymphoid tissue (NALT), lung and their draining lymph nodes of the ΔF/TriAdj-immunized group. In addition, ΔF/TriAdj stimulated cellular activation with generation of mucosal and systemic antibody responses, and conferred complete protection from viral infection in the lungs upon RSV challenge. The effect of ΔF/TriAdj was short-lived in the nasal tissues and more prolonged in the lungs. In addition, both innate and adaptive immune responses were lower when mice were immunized with ΔF alone. These results suggest that ΔF/TriAdj modulates the innate mucosal environment in both upper and lower respiratory tracts, which contributes to robust adaptive immune responses and long-term protective efficacy of this novel vaccine formulation.
Collapse
|
118
|
Zhu L, Zhang F, Yang LJ, Ge Y, Wei QF, Ou Y. EPSAH, an exopolysaccharide from Aphanothece halophytica GR02, improves both cellular and humoral immunity as a novel polysaccharide adjuvant. Chin J Nat Med 2016; 14:541-8. [PMID: 27507205 DOI: 10.1016/s1875-5364(16)30064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/17/2022]
Abstract
EPSAH is an exopolysaccharide from Aphanothece halophytica GR02. The present study was designed to evaluate its toxicity and adjuvant potential in the specific cellular and humoral immune responses in ovalbumin (OVA) in mice. EPSAH did not cause any mortality and side effects when the mice were administered subcutaneously twice at the dose of 50 mg·kg(-1). Hemolytic activity in vitro indicated that EPSAH was non-hemolytic. Splenocyte proliferation in vitro was assayed with different concentrations of EPSAH. The mice were immunized subcutaneously with OVA 0.1 mg alone or with OVA 0.1 mg dissolved in saline containing Alum (0.2 mg) or EPSAH (0.2, 0.4, or 0.8 mg) on Day 1 and 15. Two weeks later, splenocyte proliferation, natural killer (NK) cell activity, production of cytokines IL-2 from splenocytes, and serum OVA-specific antibody titers were measured. Phagocytic activity, production of pro-inflammatory cytokines IL-1 and IL-12 in mice peritoneal macrophages were also determined. EPSAH showed a dose-dependent stimulating effect on mitogen-induced proliferation. The Con A-, LPS-, and OVA-induced splenocyte proliferation and the serum OVA-specific IgG, IgG1, and IgG2a antibody titers in the immunized mice were significantly enhanced. EPSAH also significantly promoted the production of Th1 cytokine IL-2. Besides, EPSAH remarkably increased the killing activities of NK cells from splenocytes in the immunized mice. In addition, EPSAH enhanced phagocytic activity and the generation of pro-inflammatory cytokines IL-1 and IL-12 in macrophages. These results indicated that EPSAH had a strong potential to increase both cellular and humoral immune responses, particularly promoting the development of Th1 polarization.
Collapse
Affiliation(s)
- Lei Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Li-Jun Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yang Ge
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qing-Fang Wei
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
119
|
Gupta N, Shah K, Singh M. An epitope-imprinted piezoelectric diagnostic tool forNeisseria meningitidisdetection. J Mol Recognit 2016; 29:572-579. [DOI: 10.1002/jmr.2557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/07/2016] [Accepted: 06/25/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Neha Gupta
- Department of Chemistry, MMV; Banaras Hindu University; Varanasi U.P. -221005 India
| | - Kavita Shah
- Institute of Environment and Sustainable Development; Banaras Hindu University; Varanasi U.P. -221005 India
| | - Meenakshi Singh
- Department of Chemistry, MMV; Banaras Hindu University; Varanasi U.P. -221005 India
| |
Collapse
|
120
|
Lebre F, Hearnden CH, Lavelle EC. Modulation of Immune Responses by Particulate Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5525-5541. [PMID: 27167228 DOI: 10.1002/adma.201505395] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Many biomaterials that are in both preclinical and clinical use are particulate in nature and there is a growing appreciation that the physicochemical properties of materials have a significant impact on their efficacy. The ability of particulates to modulate adaptive immune responses has been recognized for the past century but it is only in recent decades that a mechanistic understanding of how particulates can regulate these responses has emerged. It is now clear that particulate characteristics including size, charge, shape and porosity can influence the scale and nature of both the innate and adaptive immune responses. The potential to tailor biomaterials in order to regulate the type of innate immune response induced, offers significant opportunities in terms of designing systems with increased immune-mediated efficacy.
Collapse
Affiliation(s)
- Filipa Lebre
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Claire H Hearnden
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| |
Collapse
|
121
|
Akhmatova NK, Kurbatova EA, Akhmatov EA, Egorova NB, Logunov DY, Gening ML, Sukhova EV, Yashunsky DV, Tsvetkov YE, Nifantiev NE. The Effect of a BSA Conjugate of a Synthetic Hexasaccharide Related to the Fragment of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 on the Activation of Innate and Adaptive Immune Responses. Front Immunol 2016; 7:248. [PMID: 27446078 PMCID: PMC4919334 DOI: 10.3389/fimmu.2016.00248] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/11/2016] [Indexed: 11/13/2022] Open
Abstract
We report the effect of a bovine serum albumin (BSA) conjugate of a synthetic hexasaccharide (HS) related to the fragment of the capsular polysaccharide (PS) of Streptococcus pneumoniae type 14 on the stimulation of innate immune system and the subsequent development of a PS-specific antibody response. Glycoconjugate (GC) in the presence (GC + AL) or absence of aluminum hydroxide was administered to mice twice. GC increased the number of TLR2-expressing cells and induced the maturation of dendritic cells (CD11c(+), CD80(+) and, MHCII(+)), which secreted IL-1β, IL-6, and TNFα into the culture medium. The level of IL-1β, IL-10, IFNγ, and TNFα in the blood increased within 24 h after the single GC administration to mice. On day 7, the numbers of splenic CD4(+) and CD8(+) T lymphocytes and B lymphocytes increased. After the second immunization, the levels of CD4(+) and CD8(+) T lymphocytes were lower than in the control, whereas the B cell, NK cell, and MHC class II-expressing cell numbers remained enhanced. However, of the presence of anti-PS, IgG antibodies were not detected. The addition of aluminum hydroxide to GC stimulated the production of GM-CSF, IL-1β, IL-5, IL-6, IL-10, IL-17, IFNγ, and TNFα. Anti-PS IgG1 antibody titers 7 days after the second immunization were high. During that period, normal levels of splenic CD4(+) T lymphocytes were maintained, whereas reduced CD8(+) T lymphocyte numbers and increased levels of B lymphocytes, NK cells, and MHC class II-expressing cell numbers were observed. Anti-PS IgG levels diminished until day 92. A booster immunization with GC + AL stimulated the production of anti-PS IgG memory antibodies, which were determined within 97 days. The elucidation of specific features of the effect of the synthetic HS conjugate on the stimulation of innate, cell-mediated immunity, and antibody response can favor the optimization of GC vaccine design.
Collapse
Affiliation(s)
- Nelli K. Akhmatova
- Department of Immunology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - Ekaterina A. Kurbatova
- Department of Immunology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - Elvin A. Akhmatov
- Department of Immunology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - Nadezhda B. Egorova
- Department of Immunology, Mechnikov Research Institute for Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russia
| | - Denis Yu. Logunov
- Department of Microbiology, Gamaleya Research Institute for Epidemiology and Microbiology, Russian Ministry of Health, Moscow, Russia
| | - Marina L. Gening
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Sukhova
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Yashunsky
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury E. Tsvetkov
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Department of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
122
|
Kollmann TR, Marchant A. Towards Predicting Protective Vaccine Responses in the Very Young. Trends Immunol 2016; 37:523-534. [PMID: 27344245 DOI: 10.1016/j.it.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 11/30/2022]
Abstract
Infectious diseases remain a major cause of death in infancy. Vaccination is a proven-effective strategy to reduce the risk of infectious diseases. However, important gaps remain in our understanding of vaccine responses in early life. Systems vaccinology has provided new insight into mechanisms and predictors of vaccine responses. However, systems vaccinology has not yet been systematically applied to infants younger than 12 months of age. Here, we review the knowledge gained from systems vaccinology studies of vaccines that are licensed for administration to infants. We propose that systems vaccinology should be applied to age-specific studies focused on protection, to derive the necessary insight for optimal design of vaccines for the very young.
Collapse
Affiliation(s)
- Tobias R Kollmann
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, Canada.
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
123
|
Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance. Clin Immunol 2016; 169:36-46. [PMID: 27327113 DOI: 10.1016/j.clim.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
Abstract
Treatment with soluble myelin peptide can efficiently and specifically induce tolerance to demyelination autoimmune diseases including multiple sclerosis, however the mechanism underlying this therapeutic effect remains to be elucidated. In actively induced mouse model of experimental autoimmune encephalomyelitis (EAE) we analyzed T cell and innate immune cell responses in the central nervous system (CNS) and spleen after intraperitoneal (i.p.) infusion of myelin oligodendrocyte glycoprotein (MOG). We found that i.p. MOG infusion blocked effector T cell recruitment to the CNS and protected mice from EAE and lymphoid organ atrophy. Innate immune CD11b(+) cells preferentially recruited MOG-specific effector T cells, particularly when activated to become competent antigen presenting cells (APCs). During EAE development, mature APCs were enriched in the CNS rather than in the spleen, attracting effector T cells to the CNS. Increased myelin antigen exposure induced CNS-APC maturation, recruiting additional effector T cells to the CNS, causing symptoms of disease. MOG triggered functional maturation of splenic APCs. MOG presenting APCs interacted with MOG-specific T cells in the spleen, aggregating to cluster around CD11b(+) cells, and were trapped in the periphery. This process was MHC II dependent as an MHC II directed antibody blocked CD4(+) T cell cluster formation. These findings highlight the role of myelin peptide-loaded APCs in myelin peptide-induced EAE and immune tolerance.
Collapse
|
124
|
Yang D, Frego L, Lasaro M, Truncali K, Kroe-Barrett R, Singh S. Efficient Qualitative and Quantitative Determination of Antigen-induced Immune Responses. J Biol Chem 2016; 291:16361-74. [PMID: 27288409 PMCID: PMC4965583 DOI: 10.1074/jbc.m116.736660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 12/22/2022] Open
Abstract
To determine the effectiveness of immunization strategies used in therapeutic antibody or vaccine development, it is critical to assess the quality of immunization-induced polyclonal antibody responses. Here, we developed a workflow that uses sensitive methods to quantitatively and qualitatively assess immune responses against foreign antigens with regard to antibody binding affinity and epitope diversity. The application of such detailed assessments throughout an immunization campaign can significantly reduce the resources required to generate highly specific antibodies. Our workflow consists of the following two steps: 1) the use of surface plasmon resonance to quantify antigen-specific antibodies and evaluate their apparent binding affinities, and 2) the recovery of serum IgGs using an automated small scale purification system, followed by the determination of their epitope diversity using hydrogen deuterium exchange coupled with mass spectrometry. We showed that these methods were sensitive enough to detect antigen-specific IgGs in the nanogram/μl range and that they provided information for differentiating the antibody responses of the various immunized animals that could not be obtained by conventional methods. We also showed that this workflow can guide the selection of an animal that produces high affinity antibodies with a desired epitope coverage profile, resulting in the generation of potential therapeutic monoclonal antibody clones with desirable functional profiles. We postulate that this workflow will be an important tool in the development of effective vaccines to combat the highly sophisticated evasion mechanisms of pathogens.
Collapse
Affiliation(s)
- Danlin Yang
- From the Department of Biotherapeutics Discovery, Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Lee Frego
- From the Department of Biotherapeutics Discovery, Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Marcio Lasaro
- From the Department of Biotherapeutics Discovery, Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Kristopher Truncali
- From the Department of Biotherapeutics Discovery, Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Rachel Kroe-Barrett
- From the Department of Biotherapeutics Discovery, Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| | - Sanjaya Singh
- From the Department of Biotherapeutics Discovery, Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877
| |
Collapse
|
125
|
Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines. mBio 2016; 7:mBio.01023-15. [PMID: 27247233 PMCID: PMC4895118 DOI: 10.1128/mbio.01023-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) plays a critical role in the control of Mycobacterium tuberculosis, in part by augmenting T cell responses through promoting macrophage phagolysosomal fusion (thereby optimizing CD4+ T cell immunity by enhancing antigen presentation) and apoptosis (a process that can lead to cross-priming of CD8+ T cells). M. tuberculosis can evade antituberculosis (anti-TB) immunity by inhibiting host cell TNF production via expression of specific mycobacterial components. We hypothesized that M. tuberculosis mutants with an increased capacity to induce host cell TNF production (TNF-enhancing mutants) and thus with enhanced immunogenicity can be useful for vaccine development. To identify mycobacterial genes that regulate host cell TNF production, we used a TNF reporter macrophage clone to screen an H37Rv M. tuberculosis cosmid library constructed in M. smegmatis. The screen has identified a set of TNF-downregulating mycobacterial genes that, when deleted in H37Rv, generate TNF-enhancing mutants. Analysis of mutants disrupted for a subset of TNF-downregulating genes, annotated to code for triacylglycerol synthases and fatty acyl-coenzyme A (acyl-CoA) synthetase, enzymes that concern lipid biosynthesis and metabolism, has revealed that these strains can promote macrophage phagolysosomal fusion and apoptosis better than wild-type (WT) bacilli. Immunization of mice with the TNF-enhancing M. tuberculosis mutants elicits CD4+ and CD8+ T cell responses that are superior to those engendered by WT H37Rv. The results suggest that TNF-upregulating M. tuberculosis genes can be targeted to enhance the immunogenicity of mycobacterial strains that can serve as the substrates for the development of novel anti-TB vaccines. One way to control tuberculosis (TB), which remains a major global public health burden, is by immunization with an effective vaccine. The efficacy of Mycobacterium bovis BCG, the only currently approved TB vaccine, is inconsistent. Tumor necrosis factor alpha (TNF) is a cytokine that plays an important role in controlling TB. M. tuberculosis, the causative agent of TB, can counter this TNF-based defense by decreasing host cell TNF production. This study identified M. tuberculosis genes that can mediate inhibition of TNF production by macrophage (an immune cell critical to the control of TB). We have knocked out a number of these genes to generate M. tuberculosis mutants that can enhance macrophage TNF production. Immunization with these mutants in mice triggered a T cell response stronger than that elicited by the parental bacillus. Since T cell immunity is pivotal in controlling M. tuberculosis, the TNF-enhancing mutants can be used to develop novel TB vaccines.
Collapse
|
126
|
Gao Q, Zhao S, Qin T, Yin Y, Yu Q, Yang Q. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells. Res Vet Sci 2016; 106:149-58. [PMID: 27234553 DOI: 10.1016/j.rvsc.2016.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022]
Abstract
Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity.
Collapse
Affiliation(s)
- Qi Gao
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Shanshan Zhao
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Tao Qin
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Yinyan Yin
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Qinghua Yu
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Qian Yang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, PR China.
| |
Collapse
|
127
|
Gartlan KH, Krashias G, Wegmann F, Hillson WR, Scherer EM, Greenberg PD, Eisenbarth SC, Moghaddam AE, Sattentau QJ. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns. Vaccine 2016; 34:2188-96. [PMID: 27005810 PMCID: PMC4850248 DOI: 10.1016/j.vaccine.2016.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/27/2022]
Abstract
Carbopol induces Th1/IgG2a responses without PRR activation. Carbopol polymer morphology is changed by APC phagocytosis leading to ROS induction. This study highlights a potentially novel mechanism for in vivo cellular activation.
Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition.
Collapse
Affiliation(s)
- Kate H Gartlan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - George Krashias
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Frank Wegmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - William R Hillson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Erin M Scherer
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
128
|
Zhang J, Shao J, Wu X, Mao Q, Wang Y, Gao F, Kong W, Liang Z. Type I interferon related genes are common genes on the early stage after vaccination by meta-analysis of microarray data. Hum Vaccin Immunother 2015; 11:739-45. [PMID: 25839220 DOI: 10.1080/21645515.2015.1008884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to find common immune mechanism across different kinds of vaccines. A meta-analysis of microarray datasets was performed using publicly available microarray Gene Expression Omnibus (GEO) and Array Express data sets of vaccination records. Seven studies (out of 35) were selected for this meta-analysis. A total of 447 chips (145 pre-vaccination and 302 post-vaccination) were included. Significance analysis of microarrays (SAM) program was used for screening differentially expressed genes (DEGs). Functional pathway enrichment for the DEGs was conducted in DAVID Gene Ontology (GO) database. Twenty DEGs were identified, of which 10 up-regulated genes involved immune response. Six of which were type I interferon (IFN) related genes, including LY6E, MX1, OAS3, IFI44L, IFI6 and IFITM3. Ten down-regulated genes mainly mediated negative regulation of cell proliferation and cell motion. Results of a subgroup analysis showed that although the kinds of genes varied widely between days 3 and 7 post vaccination, the pathways between them are basically the same, such as immune response and response to viruses, etc. For an independent verification of these 6 type I IFN related genes, peripheral blood mononuclear cells (PBMCs) were collected at baseline and day 3 after the vaccination from 8 Enterovirus 71(EV71) vaccinees and were assayed by RT-PCR. Results showed that the 6 DEGs were also upregulated in EV71 vaccinees. In summary, meta-analysis methods were used to explore the immune mechanism of vaccines and results indicated that the type I IFN related genes and corresponding pathways were common in early immune responses for different kinds of vaccines.
Collapse
Key Words
- CPE, cytopathogenic effect
- DCs, dendritic cells
- DEGs, differentially expressed genes
- EV71, enterovirus 71
- GEO, Gene Expression Omnibus
- GO, gene ontology
- IFN, interferon
- PBMCs, peripheral blood mononuclear cells
- PRRs, pattern recognition receptors
- SAM, significance analysis of microarrays
- TLRs, Toll-like receptors
- immune mechanism
- meta-analysis
- microarray
- type I interferon
- vaccine
Collapse
Affiliation(s)
- Junnan Zhang
- a National Institutes for Food and Drug Control ; Beijing , P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
129
|
DeBay DR, Brewer KD, LeBlanc SA, Weir GM, Stanford MM, Mansour M, Bowen CV. Using MRI to evaluate and predict therapeutic success from depot-based cancer vaccines. Mol Ther Methods Clin Dev 2015; 2:15048. [PMID: 26730395 PMCID: PMC4685660 DOI: 10.1038/mtm.2015.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 12/16/2022]
Abstract
In the preclinical development of immunotherapy candidates, understanding the mechanism of action and determining biomarkers that accurately characterize the induced host immune responses is critical to improving their clinical interpretation. Magnetic resonance imaging (MRI) was used to evaluate in vivo changes in lymph node size in response to a peptide-based cancer vaccine therapy, formulated using DepoVax (DPX). DPX is a novel adjuvant lipid-in-oil-based formulation that facilitates enhanced immune responses by retaining antigens at the injection site for extended latencies, promoting increased potentiation of immune cells. C57BL/6 mice were implanted with C3 (HPV) tumor cells and received either DPX or control treatments, 5 days post-implantation. Complete tumor eradication occurred in DPX-vaccinated animals and large volumetric increases were observed in the vaccine-draining right inguinal lymph node (VRILN) in DPX mice, likely corresponding to increased localized immune response to the vaccine. Upon evaluating the relative measure of vaccine-potentiated immune activation to tumor-induced immune response (VRILN/VLILN), receiver-operating characteristic (ROC) curves revealed an area under the curve (AUC) of 0.90 (±0.07), indicating high specificity and sensitivity as a predictive biomarker of vaccine efficacy. We have determined that for this tumor model, early MRI lymph node volumetric changes are predictive of depot immunotherapeutic success.
Collapse
Affiliation(s)
- Drew R DeBay
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada
| | - Kimberly D Brewer
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada
- Immunovaccine Inc., Halifax, Nova Scotia, Canada
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarah A LeBlanc
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada
| | | | | | - Marc Mansour
- Immunovaccine Inc., Halifax, Nova Scotia, Canada
| | - Chris V Bowen
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
130
|
Sharifi L, Mirshafiey A, Rezaei N, Azizi G, Magaji Hamid K, Amirzargar AA, Asgardoon MH, Aghamohammadi A. The role of toll-like receptors in B-cell development and immunopathogenesis of common variable immunodeficiency. Expert Rev Clin Immunol 2015; 12:195-207. [PMID: 26654573 DOI: 10.1586/1744666x.2016.1114885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immune deficiency and is characterized by hypogammaglobulinemia, defect in specific antibody response and increased susceptibility to recurrent infections, malignancy and autoimmunity. Patients with CVID often have defects in post-antigenic B-cell differentiation, with fewer memory B cells and impaired isotype switching. Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity. TLR signaling in B cells plays multiple roles in cell differentiation and activation, class-switch recombination and cytokine and antibody production. Moreover, recent studies have shown functional alteration of TLRs responses in CVID patients including poor cell proliferation, impaired upregulation of co-stimulatory molecules and failure in cytokine and immunoglobulin production. The purpose of the present review is to discuss the role of TLRs in B-cell development and function as well as their role in the immunopathogenesis of CVID.
Collapse
Affiliation(s)
- Laleh Sharifi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Imam Hassan Mojtaba Hospital , Alborz University of Medical Sciences , Karaj , Iran
| | - Kabir Magaji Hamid
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran.,e Immunology Department, Faculty of Medical Laboratory Sciences , Usmanu Danfodiyo University , Sokoto , Nigeria
| | - Ali Akbar Amirzargar
- c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Hossein Asgardoon
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
131
|
Replication-Competent Controlled Herpes Simplex Virus. J Virol 2015; 89:10668-79. [PMID: 26269179 DOI: 10.1128/jvi.01667-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of multiple replication-essential genes. By directing activating heat to the region of virus administration, replication is strictly confined to infected cells within this region. The requirement for antiprogestin provides an additional level of safety, ensuring that virus replication cannot be triggered inadvertently. Replication-competent controlled vectors such as HSV-GS3 may have the potential to be superior to conventional attenuated HSV vaccine and oncolytic vectors without sacrificing safety.
Collapse
|
132
|
Liu W, Menoret A, Vella AT. Responses to LPS boost effector CD8 T-cell accumulation outside of signals 1 and 2. Cell Mol Immunol 2015; 14:254-253. [PMID: 26189366 DOI: 10.1038/cmi.2015.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 01/05/2023] Open
Abstract
Immunization with adjuvant plus antigen induces durable T-cell immunity and is a mainstay of vaccines. Here, the consequence of separating antigen stimulation of T cells from the adjuvant response was studied in a re-transfer model. Effector CD8 T cells in recipient mice were exposed to lipopolysaccharide (LPS), the Toll-like receptor 4 (TLR4) ligand, which significantly increased persistence. While accumulation in lymphoid and non-lymphoid organs was evident, this result depended upon the timing of LPS administration and the presence of the TLR4 adaptor TRIF in the recipient mice. Interestingly, there was very little impact of the LPS response on subset differentiation, which rather appeared to be programmed by antigen and costimulation. To discern factors that limit accumulation, interleukin 10 (IL-10) was targeted since it is a product of TLR4 triggering and mitigates inflammation. Blockade of IL-10 increased accumulation even though the effector CD8 T cells were well past the priming phase, but upon recall interferon-γ secretion was not affected as would be expected when IL-10 is present during priming. Thus, the adjuvant-altered microenvironment is effective not only in the presence of antigen but also during a window of effector CD8 T-cell stasis, suggesting that pathogen-associated molecular pattern molecules released during co-infection, or by vaccines, could alter the survival fate of specific effector T cells.Cellular & Molecular Immunology advance online publication, 20 July 2015; doi:10.1038/cmi.2015.69.
Collapse
Affiliation(s)
- Wenhai Liu
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Antoine Menoret
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
133
|
Narayan NR, Méndez-Lagares G, Ardeshir A, Lu D, Van Rompay KKA, Hartigan-O'Connor DJ. Persistent effects of early infant diet and associated microbiota on the juvenile immune system. Gut Microbes 2015; 6:284-9. [PMID: 26177107 PMCID: PMC4615596 DOI: 10.1080/19490976.2015.1067743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Early infant diet has significant impacts on the gut microbiota and developing immune system. We previously showed that breast-fed and formula-fed rhesus macaques develop significantly different gut microbial communities, which in turn are associated with different immune systems in infancy. Breast-fed animals manifested greater T cell activation and proliferation and harbored robust pools of T helper 17 (TH17) cells. These differences were sustained throughout the first year of life. Here we examine groups of juvenile macaques (approximately 3 to 5 y old), which were breast-fed or formula-fed in infancy. We demonstrate that juveniles breast-fed in infancy maintain immunologic differences into the fifth year of life, principally in CD8(+) memory T cell activation. Additionally, long-term correlation networks show that breast-fed animals maintain persistent relationships between immune subsets that are not seen in formula-fed animals. These findings demonstrate that infant feeding practices have continued influence on immunity for up to 3 to 5 y after birth and also reveal mechanisms for microbial modulation of the immune system.
Collapse
Affiliation(s)
- Nicole R Narayan
- California National Primate Research Center; University of California; Davis, CA USA,Department of Medical Microbiology and Immunology; University of California; Davis, CA USA
| | - Gema Méndez-Lagares
- California National Primate Research Center; University of California; Davis, CA USA,Department of Medical Microbiology and Immunology; University of California; Davis, CA USA
| | - Amir Ardeshir
- California National Primate Research Center; University of California; Davis, CA USA
| | - Ding Lu
- California National Primate Research Center; University of California; Davis, CA USA,Department of Medical Microbiology and Immunology; University of California; Davis, CA USA
| | - Koen K A Van Rompay
- California National Primate Research Center; University of California; Davis, CA USA
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center; University of California; Davis, CA USA,Department of Medical Microbiology and Immunology; University of California; Davis, CA USA,Division of Experimental Medicine; Department of Medicine; University of California; San Francisco, CA USA,Correspondence to: Dennis J Hartigan-O'Connor;
| |
Collapse
|
134
|
Page DB, Bourla AB, Daniyan A, Naidoo J, Smith E, Smith M, Friedman C, Khalil DN, Funt S, Shoushtari AN, Overwijk WW, Sharma P, Callahan MK. Tumor immunology and cancer immunotherapy: summary of the 2014 SITC primer. J Immunother Cancer 2015. [PMCID: PMC4469248 DOI: 10.1186/s40425-015-0072-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
135
|
Akalkotkar A, Chablani L, Tawde SA, D'Souza C, D'Souza MJ. Development of a microparticulate prostate cancer vaccine and evaluating the effect of route of administration on its efficacy via the skin. J Microencapsul 2015; 32:281-9. [PMID: 25985824 DOI: 10.3109/02652048.2015.1017615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin has been identified as a promising target to deliver vaccines. In this study, prostate cancer antigens were delivered in a spray-dried microparticulate carrier to a murine model via the transdermal route and the subcutaneous route. There was a significant increase in the humoral responses as determined by the total serum IgG titres (p < 0.05) and the cellular responses as determined by the T- and B-cells sub-population in spleen samples and delay in tumour growth till 8 weeks post-tumour challenge of both vaccinated groups when compared to the controls. The vaccine microparticles administered via the transdermal route induced a Th2-mediated immune response versus a mixed Th1- and Th2-mediated immune response via the subcutaneous route. Thus, the particulate vaccine delivery system proves to be a promising alternative for generation of a robust immune response against prostate cancer via the skin in a murine model.
Collapse
Affiliation(s)
- Archana Akalkotkar
- Department of Bioengineering, University of Louisville , Louisville, KY , USA
| | | | | | | | | |
Collapse
|
136
|
Han S, Zhuang H, Shumyak S, Yang L, Reeves WH. Mechanisms of autoantibody production in systemic lupus erythematosus. Front Immunol 2015; 6:228. [PMID: 26029213 PMCID: PMC4429614 DOI: 10.3389/fimmu.2015.00228] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/28/2015] [Indexed: 01/31/2023] Open
Abstract
Autoantibodies against a panoply of self-antigens are seen in systemic lupus erythematosus, but only a few (anti-Sm/RNP, anti-Ro/La, anti-dsDNA) are common. The common lupus autoantigens are nucleic acid complexes and levels of autoantibodies can be extraordinarily high. We explore why that is the case. Lupus is associated with impaired central or peripheral B-cell tolerance and increased circulating autoreactive B cells. However, terminal differentiation is necessary for autoantibody production. Nucleic acid components of the major lupus autoantigens are immunostimulatory ligands for toll-like receptor (TLR)7 or TLR9 that promote plasma cell differentiation. We show that the levels of autoantibodies against the U1A protein (part of a ribonucleoprotein) are markedly higher than autoantibodies against other antigens, including dsDNA and the non-nucleic acid-associated autoantigens insulin and thyroglobulin. In addition to driving autoantibody production, TLR7 engagement is likely to contribute to the pathogenesis of inflammatory disease in lupus.
Collapse
Affiliation(s)
- Shuhong Han
- Division of Rheumatology and Clinical Immunology, University of Florida , Gainesville, FL , USA
| | - Haoyang Zhuang
- Division of Rheumatology and Clinical Immunology, University of Florida , Gainesville, FL , USA
| | - Stepan Shumyak
- Division of Rheumatology and Clinical Immunology, University of Florida , Gainesville, FL , USA
| | - Lijun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, FL , USA
| | - Westley H Reeves
- Division of Rheumatology and Clinical Immunology, University of Florida , Gainesville, FL , USA
| |
Collapse
|
137
|
Chin'ombe N, Ruhanya V. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies. Pan Afr Med J 2015; 20:386. [PMID: 26185576 PMCID: PMC4499268 DOI: 10.11604/pamj.2015.20.386.4660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| | - Vurayai Ruhanya
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| |
Collapse
|
138
|
Lee J, Martinez N, West K, Kornfeld H. Differential adjuvant activities of TLR7 and TLR9 agonists inversely correlate with nitric oxide and PGE2 production. PLoS One 2015; 10:e0123165. [PMID: 25875128 PMCID: PMC4395302 DOI: 10.1371/journal.pone.0123165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/18/2015] [Indexed: 01/17/2023] Open
Abstract
Activation of different pattern recognition receptors causes distinct profiles of innate immune responses, which in turn dictate the adaptive immune response. We found that mice had higher CD4+ T cell expansion to an immunogen, ovalbumin, when coadministered with CpG than with CL097 in vivo. To account for this differential adjuvanticity, we assessed the activities of CpG and CL097 on antigen-specific CD4+ T cell expansion in vitro using an OT-II CD4+ T cell/bone marrow-derived dendritic cell (DC) co-culture system. Unexpectedly, ovalbumin-stimulated expansion of OT-II CD4+ T cells in vitro was potently suppressed by both TLR agonists, with CL097 being stronger than CpG. The suppression was synergistically reversed by co-inhibition of cyclooxygenases 1 and 2, and inducible nitric oxide (NO) synthase. In addition, stimulation of OT-II CD4+ T cell/DC cultures with CL097 induced higher levels of CD4+ T cell death than stimulation with CpG, and this CD4+ T cell turnover was reversed by NO and PGE2 inhibition. Consistently, the co-cultures stimulated with CL097 produced higher levels of prostaglandin E2 (PGE2) and NO than stimulation with CpG. CL097 induced higher PGE2 production in DC cultures and higher IFN-γ in the OT-II CD4+ T cell/DC cultures, accounting for the high levels of PGE2 and NO. This study demonstrates that the adjuvant activities of immunostimulatory molecules may be determined by differential induction of negative regulators, including NO and PGE2 suppressing clonal expansion and promoting cell death of CD4+ T cells.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| | - Nuria Martinez
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kim West
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
139
|
HIV vaccine research: the challenge and the way forward. J Immunol Res 2015; 2015:503978. [PMID: 25861656 PMCID: PMC4377490 DOI: 10.1155/2015/503978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) is a worldwide epidemic, with over 35 million people infected currently. Therefore, the development of a safe and effective HIV-1 vaccine is on top of the global health priority. In the past few years, there have been many promising advances in the prevention of HIV/AIDS, among which the RV144 Thai trial has been encouraging and suggests optimization of the current vaccine strategies or search for novel strategies. Here we reviewed the brief history of HIV-1 vaccine, analyzed key challenges existing now, and illustrated future research priority/directions for a therapeutic or prophylactic HIV-1 vaccine, with the hope of accelerating the speed of vaccine development. We believe that an effective HIV-1 vaccine, together with other prevention approaches, will bring an end to this epidemic in the near future.
Collapse
|
140
|
Silva-Filho JL, Souza MC, Henriques MG, Morrot A, Savino W, Caruso-Neves C, Pinheiro AAS. Renin-angiotensin system contributes to naive T-cell migration in vivo. Arch Biochem Biophys 2015; 573:1-13. [PMID: 25752953 DOI: 10.1016/j.abb.2015.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/04/2015] [Accepted: 02/28/2015] [Indexed: 01/11/2023]
Abstract
Angiotensin II (Ang II) plays an important role in the regulation of the T-cell response during inflammation. However, the cellular mechanisms underlying the regulation of lymphocytes under physiologic conditions have not yet been studied. Here, we tested the influence of Ang II on T-cell migration using T cells from BALB/c mice. The results obtained in vivo showed that when Ang II production or the AT1 receptor were blocked, T-cell counts were enhanced in blood but decreased in the spleen. The significance of these effects was confirmed by observing that these cells migrate, through fibronectin to Ang II via the AT1 receptor. We also observed a gradient of Ang II from peripheral blood to the spleen, which explains its chemotactic effect on this organ. The following cellular mechanisms were identified to mediate the Ang II effect: upregulation of the chemokine receptor CCR9; upregulation of the adhesion molecule CD62L; increased production of the chemokines CCL19 and CCL25 in the spleen. These results indicate that the higher levels of Ang II in the spleen and AT1 receptor activation contribute to migration of naive T cells to the spleen, which expands our understanding on how the Ang II/AT1 receptor axis contributes to adaptive immunity.
Collapse
Affiliation(s)
- J L Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - M C Souza
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - M G Henriques
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - A Morrot
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - W Savino
- Departamento de Imunologia, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - C Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brazil
| | - A A S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brazil.
| |
Collapse
|
141
|
Voellmy R, Bloom DC, Vilaboa N. A novel approach for addressing diseases not yielding to effective vaccination? Immunization by replication-competent controlled virus. Expert Rev Vaccines 2015; 14:637-51. [PMID: 25676927 DOI: 10.1586/14760584.2015.1013941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccination involves inoculation of a subject with a disabled disease-causing microbe or parts thereof. While vaccination has been highly successful, we still lack sufficiently effective vaccines for important infectious diseases. We propose that a more complete immune response than that elicited from a vaccine may be obtained from immunization with a disease-causing virus modified to subject replication-essential genes to the control of a gene switch activated by non-lethal heat in the presence of a drug-like compound. Upon inoculation, strictly localized replication of the virus would be triggered by a heat dose administered to the inoculation site. Activated virus would transiently replicate with an efficiency approaching that of the disease-causing virus and express all viral antigens. It may also vector heterologous antigens or control co-infecting microbes.
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Physiological Sciences, University of Florida College of Veterinary Sciences, Gainesville, FL, USA
| | | | | |
Collapse
|
142
|
Lee Y, Kim YJ, Jung YJ, Kim KH, Kwon YM, Kim SI, Kang SM. Systems biology from virus to humans. J Anal Sci Technol 2015; 6:3. [PMID: 26269748 PMCID: PMC4527316 DOI: 10.1186/s40543-015-0047-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/19/2022] Open
Abstract
Natural infection and then recovery are considered to be the most effective means for hosts to build protective immunity. Thus, mimicking natural infection of pathogens, many live attenuated vaccines such as influenza virus, and yellow fever vaccine 17D were developed and have been successfully used to induce protective immunity. However, humans fail to generate long-term protective immunity to some pathogens after natural infection such as influenza virus, respiratory syncytial virus (RSV), and human immunodeficiency virus (HIV) even if they survive initial infections. Many vaccines are suboptimal since much mortality is still occurring, which is exampled by influenza and tuberculosis. It is critically important to increase our understanding on protein components of pathogens and vaccines as well as cellular and host responses to infections and vaccinations. Here, we highlight recent advances in gene transcripts and protein analysis results in the systems biology to enhance our understanding of viral pathogens, vaccines, and host cell responses.
Collapse
Affiliation(s)
- Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Yu-Jin Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| | - Seung Il Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon, 305-333 South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
143
|
Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015; 7:1021-36. [PMID: 25658239 PMCID: PMC4344572 DOI: 10.3390/nu7021021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 01/16/2015] [Accepted: 01/26/2015] [Indexed: 01/23/2023] Open
Abstract
Ginseng has been used in humans for thousands of years but its effects on viral infection have not been well understood. We investigated the effects of red ginseng extract (RGE) on respiratory syncytial virus (RSV) infection using in vitro cell culture and in vivo mouse models. RGE partially protected human epithelial (HEp2) cells from RSV-induced cell death and viral replication. In addition, RGE significantly inhibited the production of RSV-induced pro-inflammatory cytokine (TNF-α) in murine dendritic and macrophage-like cells. More importantly, RGE intranasal pre-treatment prevented loss of mouse body weight after RSV infection. RGE treatment improved lung viral clearance and enhanced the production of interferon (IFN-γ) in bronchoalveolar lavage cells upon RSV infection of mice. Analysis of cellular phenotypes in bronchoalveolar lavage fluids showed that RGE treatment increased the populations of CD8+ T cells and CD11c+ dendritic cells upon RSV infection of mice. Taken together, these results provide evidence that ginseng has protective effects against RSV infection through multiple mechanisms, which include improving cell survival, partial inhibition of viral replication and modulation of cytokine production and types of immune cells migrating into the lung.
Collapse
|
144
|
Varela-Calviño R, Cordero OJ. Immunology and Immunotherapy of Colorectal Cancer. CANCER IMMUNOLOGY 2015:217-236. [DOI: 10.1007/978-3-662-46410-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
145
|
Kim SY, Joo HG. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy. J Vet Sci 2014; 16:145-50. [PMID: 25549218 PMCID: PMC4483496 DOI: 10.4142/jvs.2015.16.2.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022] Open
Abstract
Fucoidan is a sulfated polysaccharide derived from brown seaweed, including Fucus vesiculosus. This compound is known to have immunostimulatory effects on various types of immune cells including macrophages and dendritic cells. A recent study described the application of fucoidan as a vaccine adjuvant. Vaccination is regarded as the most efficient prophylactic method for preventing harmful or epidemic diseases. To increase vaccine efficacy, effective adjuvants are needed. In the present study, we determined whether fucoidan can function as an adjuvant using vaccine antigens. Flow cytometric analysis revealed that fucoidan increases the expression of the activation markers major histocompatibility complex class II, cluster of differentiation (CD)25, and CD69 in spleen cells. In combination with Bordetella bronchiseptica antigen, fucoidan increased the viability and tumor necrosis factor-α production of spleen cells. Furthermore, fucoidan increased the in vivo production of antigen-specific antibodies in mice inoculated with Mycoplasma hyopneumoniae antigen. Overall, this study has provided valuable information about the use of fucoidan as a vaccine adjuvant.
Collapse
Affiliation(s)
- Su-Yeon Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Korea
| | | |
Collapse
|
146
|
Zhu W, Zhu N, Bai D, Miao J, Zou S. The crosstalk between Dectin1 and TLR4 via NF-κB subunits p65/RelB in mammary epithelial cells. Int Immunopharmacol 2014; 23:417-25. [DOI: 10.1016/j.intimp.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 01/28/2023]
|
147
|
Li Y, Shen G, Nie W, Li Z, Sang Y, Zhang B, Wei Y. Irradiated tumor cells of lipopolysaccharide stimulation elicit an enhanced anti-tumor immunity. J Cancer Res Clin Oncol 2014; 140:1815-23. [PMID: 24927808 DOI: 10.1007/s00432-014-1721-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/22/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Lipopolysaccharide (LPS) is a major component of the outer surface membrane of Gram-negative bacteria which has been proved an effective immune enhancer. Here, we investigated the anti-tumor effect of irradiated tumor cells that stimulated by LPS in mouse xenografts models. METHODS Tumor cells were irradiated after stimulation with 1 μg/mL LPS for 48 h. The C57BL/6 mice were immunized subcutaneously with irradiated tumor cells. The anti-tumor effect of lymphocytes of immunized mice was investigated. The cytotoxicity of spleen lymphocytes from immunized mice was determined by a standard (51)Cr-release assay. The roles of immune cell subsets in anti-tumor activity were assessed by injected intraperitoneally with monoclonal antibodies. RESULTS We observed that the vaccine of irradiated tumor cell with LPS-stimulated elicited a stronger protective anti-tumor immunity than other controls. Adoptive transfer of lymphocytes of immunized mice showed that the cellular immune response was involved in the anti-tumor effect. And this effect was achieved by activation of antigen-specific CD8(+) T cell response and reduction of myeloid-derived suppressor cells (MDSCs, Gr1(+) CD11b (+) ), which were confirmed by depletion of immune cell subsets and flow cytometry analysis. CONCLUSIONS In summary, our study showed that stimulation of LPS was able to enhance anti-tumor immunity of vaccination with tumor cells after irradiation treatment, which might be a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Yuli Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Gaopeng Street, Keyuan Road 4, Chengdu, 610041, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
148
|
McCullough KC, Milona P, Thomann-Harwood L, Démoulins T, Englezou P, Suter R, Ruggli N. Self-Amplifying Replicon RNA Vaccine Delivery to Dendritic Cells by Synthetic Nanoparticles. Vaccines (Basel) 2014; 2:735-54. [PMID: 26344889 PMCID: PMC4494254 DOI: 10.3390/vaccines2040735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/29/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) play essential roles determining efficacy of vaccine delivery with respect to immune defence development and regulation. This renders DCs important targets for vaccine delivery, particularly RNA vaccines. While delivery of interfering RNA oligonucleotides to the appropriate intracellular sites for RNA-interference has proven successful, the methodologies are identical for RNA vaccines, which require delivery to RNA translation sites. Delivery of mRNA has benefitted from application of cationic entities; these offer value following endocytosis of RNA, when cationic or amphipathic properties can promote endocytic vesicle membrane perturbation to facilitate cytosolic translocation. The present review presents how such advances are being applied to the delivery of a new form of RNA vaccine, replicons (RepRNA) carrying inserted foreign genes of interest encoding vaccine antigens. Approaches have been developed for delivery to DCs, leading to the translation of the RepRNA and encoded vaccine antigens both in vitro and in vivo. Potential mechanisms favouring efficient delivery leading to translation are discussed with respect to the DC endocytic machinery, showing the importance of cytosolic translocation from acidifying endocytic structures. The review relates the DC endocytic pathways to immune response induction, and the potential advantages for these self-replicating RNA vaccines in the near future.
Collapse
Affiliation(s)
| | - Panagiota Milona
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| | | | - Thomas Démoulins
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| | - Pavlos Englezou
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| | - Rolf Suter
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| | - Nicolas Ruggli
- Institute of Virology and Immunology, CH-3147 Mittelhaeusern, Switzerland.
| |
Collapse
|
149
|
Diaz-San Segundo F, Dias CC, Moraes MP, Weiss M, Perez-Martin E, Salazar AM, Grubman MJ, de Los Santos T. Poly ICLC increases the potency of a replication-defective human adenovirus vectored foot-and-mouth disease vaccine. Virology 2014; 468-470:283-292. [PMID: 25216089 DOI: 10.1016/j.virol.2014.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/15/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease of cloven-hoofed animals. We have previously demonstrated that a replication-defective human adenovirus 5 vector carrying the FMDV capsid coding region of serotype A24 Cruzeiro (Ad5-CI-A24-2B) protects swine and cattle against FMDV challenge by 7 days post-vaccination. However, since relatively large amounts of Ad5-CI-A24-2B are required to induce protection this strategy could be costly for livestock production. Poly ICLC is a synthetic double stranded RNA that activates multiple innate and adaptive immune pathways. In this study, we have tested for the first time, the adjuvant effect of poly ICLC in combination with Ad5-CI-A24-2B in swine. We found that the combination resulted in a reduction of the vaccine protective dose by 80-fold. Interestingly, the lowest dose of Ad5-CI-A24-2B plus 1mg of poly ICLC protected animals against challenge even in the absence of detectable FMDV-specific neutralizing antibodies at the time of challenge.
Collapse
Affiliation(s)
- Fayna Diaz-San Segundo
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States
| | - Camila C Dias
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, United States
| | - Mauro P Moraes
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, United States
| | - Marcelo Weiss
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, United States
| | - Eva Perez-Martin
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, United States
| | | | - Marvin J Grubman
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States.
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, United States.
| |
Collapse
|
150
|
Perez-Shibayama C, Gil-Cruz C, Ludewig B. Plasticity and complexity of B cell responses against persisting pathogens. Immunol Lett 2014; 162:53-8. [PMID: 25068435 DOI: 10.1016/j.imlet.2014.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Vaccines against acute infections execute their protective effects almost exclusively via the induction of antibodies. Development of protective vaccines against persisting pathogens lags behind probably because standard immunogens and application regimen do not sufficiently stimulate those circuits in B cell activation that mediate protection. In general, B cell responses against pathogen derived-antigens are generated through complex cellular interactions requiring the coordination of innate and adaptive immune mechanisms. In this review, we summarize recent findings from prototypic infection models to exemplify how generation of protective antibodies against persisting pathogens is imprinted by particular pathogen-derived factors and how distinct CD4(+) T cell populations determine the quality of these antibodies. Clearly, it is the high plasticity of these processes that is instrumental to drive tailored B cell responses that protect the host. In sum, application of novel knowledge on B cell plasticity and complexity can guide the development of rationally designed vaccines that elicit protective antibodies against persisting pathogens.
Collapse
Affiliation(s)
- Christian Perez-Shibayama
- Institute of Immunobiology, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland.
| |
Collapse
|