101
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
102
|
Zwartjes MSZ, Gerdes VEA, Nieuwdorp M. The Role of Gut Microbiota and Its Produced Metabolites in Obesity, Dyslipidemia, Adipocyte Dysfunction, and Its Interventions. Metabolites 2021; 11:531. [PMID: 34436472 PMCID: PMC8398981 DOI: 10.3390/metabo11080531] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is becoming an increasing problem worldwide and is often, but not invariably, associated with dyslipidemia. The gut microbiota is increasingly linked to cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes mellitus. However, relatively little focus has been attributed to the role of gut-microbiota-derived metabolites in the development of dyslipidemia and alterations in lipid metabolism. In this review, we discuss current data involved in these processes and point out the therapeutic potentials. We cover the ability of gut microbiota metabolites to alter lipoprotein lipase action, VLDL secretion, and plasma triglyceride levels, and its effects on reverse cholesterol transport, adipocyte dysfunction, and adipose tissue inflammation. Finally, the current intervention strategies for treatment of obesity and dyslipidemia is addressed with emphasis on the role of gut microbiota metabolites and its ability to predict treatment efficacies.
Collapse
Affiliation(s)
- Max S. Z. Zwartjes
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
| | - Victor E. A. Gerdes
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal Medicine, Spaarne Gasthuis, Spaarnepoort 1, 2134 TM Hoofddorp, The Netherlands
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (V.E.A.G.); (M.N.)
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Department of Internal Medicine, Diabetes Center, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
103
|
Witkowski M, Witkowski M, Friebel J, Buffa JA, Li XS, Wang Z, Sangwan N, Li L, DiDonato JA, Tizian C, Haghikia A, Kirchhofer D, Mach F, Räber L, Matter CM, Tang WHW, Landmesser U, Lüscher TF, Rauch U, Hazen SL. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res 2021; 118:2367-2384. [PMID: 34352109 PMCID: PMC9890461 DOI: 10.1093/cvr/cvab263] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
AIMS Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances platelet responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we explore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF. We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo. METHODS AND RESULTS In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial infarction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI), 1.73 (1.25-2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted HR (95% CI) 1.75 (1.25-2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset (n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08-2.69)]. These collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine). CONCLUSION Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by targeted non-lethal inhibition of gut microbial choline TMA-lyase.
Collapse
Affiliation(s)
- Marco Witkowski
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mario Witkowski
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Jennifer A Buffa
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Caroline Tizian
- Department of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - François Mach
- Department of Cardiology, University Hospital Geneva, Rue Gabrielle-Perret-Gentil 4 1205, Geneva, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Freiburgstrasse 18 CH-3010, Bern, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, University Heart Center, University Hospital Zurich, Raemistrasse 100 8091, Zurich, Switzerland
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, 9500 Euclid Ave, Cleveland, OH 44195, USA,Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité Centrum 11, Charité–Universitätsmedizin, Hindenburgdamm 30, 12203, Berlin, Germany,Berlin Institute of Health, Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland,Department of Cardiology, Royal Brompton and Harefield Hospitals, Imperial College, Sydney St, London SW3 6NP, UK
| | - Ursula Rauch
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| | - Stanley L Hazen
- Corresponding author. Tel: +1 216 445 9763; fax: +1 216 444 9404, E-mail: (S.L.H.); Tel: +49 30 8445 2362; fax: +49 30 8445 4648, E-mail: (U.R.)
| |
Collapse
|
104
|
Murphy K, O'Donovan AN, Caplice NM, Ross RP, Stanton C. Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites 2021; 11:metabo11080493. [PMID: 34436434 PMCID: PMC8401482 DOI: 10.3390/metabo11080493] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) has been classified as one of the leading causes of morbidity and mortality worldwide. CVD risk factors include smoking, hypertension, dyslipidaemia, obesity, inflammation and diabetes. The gut microbiota can influence human health through multiple interactions and community changes are associated with the development and progression of numerous disease states, including CVD. The gut microbiota are involved in the production of several metabolites, such as short-chain fatty acids (SCFAs), bile acids and trimethylamine-N-oxide (TMAO). These products of microbial metabolism are important modulatory factors and have been associated with an increased risk of CVD. Due to its association with CVD development, the gut microbiota has emerged as a target for therapeutic approaches. In this review, we summarise the current knowledge on the role of the gut microbiome in CVD development, and associated microbial communities, functions, and metabolic profiles. We also discuss CVD therapeutic interventions that target the gut microbiota such as probiotics and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Aoife N O'Donovan
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| | - Noel M Caplice
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Co. Cork P61 C996, Ireland
| |
Collapse
|
105
|
The Role of Gut Microbiota on Cholesterol Metabolism in Atherosclerosis. Int J Mol Sci 2021; 22:ijms22158074. [PMID: 34360839 PMCID: PMC8347163 DOI: 10.3390/ijms22158074] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hypercholesterolemia plays a causal role in the development of atherosclerosis and is one of the main risk factors for cardiovascular disease (CVD), the leading cause of death worldwide especially in developed countries. Current data show that the role of microbiota extends beyond digestion by being implicated in several metabolic and inflammatory processes linked to several diseases including CVD. Studies have reported associations between bacterial metabolites and hypercholesterolemia. However, such associations remain poorly investigated and characterized. In this review, the mechanisms of microbial derived metabolites such as primary and secondary bile acids (BAs), trimethylamine N-oxide (TMAO), and short-chain fatty acids (SCFAs) will be explored in the context of cholesterol metabolism. These metabolites play critical roles in maintaining cardiovascular health and if dysregulated can potentially contribute to CVD. They can be modulated via nutritional and pharmacological interventions such as statins, prebiotics, and probiotics. However, the mechanisms behind these interactions also remain unclear, and mechanistic insights into their impact will be provided. Therefore, the objectives of this paper are to present current knowledge on potential mechanisms whereby microbial metabolites regulate cholesterol homeostasis and to discuss the feasibility of modulating intestinal microbes and metabolites as a novel therapeutic for hypercholesterolemia.
Collapse
|
106
|
Gut microbiota-generated metabolite, trimethylamine-N-oxide, and subclinical myocardial damage: a multicenter study from Thailand. Sci Rep 2021; 11:14963. [PMID: 34294762 PMCID: PMC8298599 DOI: 10.1038/s41598-021-93803-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Plasma Trimethylamine-N-oxide (TMAO), a gut microbiota metabolite from dietary phosphatidylcholine, is mechanistically linked to cardiovascular disease (CVD) and adverse cardiovascular events. We aimed to examine the relationship between plasma TMAO levels and subclinical myocardial damage using high-sensitivity cardiac troponin-T (hs-cTnT). We studied 134 patients for whom TMAO data were available from the Cohort Of patients at a high Risk of Cardiovascular Events—Thailand (CORE-Thailand) registry, including 123 (92%) patients with established atherosclerotic disease and 11 (8%) with multiple risk factors. Plasma TMAO was measured by NMR spectroscopy. In our study cohort (mean age 64 ± 8.9 years; 61% men), median TMAO was 3.81 μM (interquartile range [IQR] 2.89–5.50 μM), and median hs-cTnT was 15.65 ng/L (IQR 10.17–26.67). Older patients and those with diabetic or hypertension were more likely to have higher TMAO levels. Plasma TMAO levels correlated with those of hs-cTnT (r = 0.54; p < 0.0001) and were significantly higher in patients with subclinical myocardial damage (hs-cTnT ≥ 14 ng/L; 4.48 μM vs 2.98 μM p < 0.0001). After adjusting for traditional risk factors, elevated TMAO levels remained independently associated with subclinical myocardial damage (adjusted odds ratio [OR]: 1.58; 95% CI 1.24–2.08; p = 0.0007). This study demonstrated that plasma TMAO was an independent predictor for subclinical myocardial damage in this study population.
Collapse
|
107
|
Diabetes Mellitus and Cardiovascular Diseases: Nutraceutical Interventions Related to Caloric Restriction. Int J Mol Sci 2021; 22:ijms22157772. [PMID: 34360538 PMCID: PMC8345941 DOI: 10.3390/ijms22157772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2DM) and cardiovascular disease (CVD) are closely associated and represent a key public health problem worldwide. An excess of adipose tissue, NAFLD, and gut dysbiosis establish a vicious circle that leads to chronic inflammation and oxidative stress. Caloric restriction (CR) is the most promising nutritional approach capable of improving cardiometabolic health. However, adherence to CR represents a barrier to patients and is the primary cause of therapeutic failure. To overcome this problem, many different nutraceutical strategies have been designed. Based on several data that have shown that CR action is mediated by AMPK/SIRT1 activation, several nutraceutical compounds capable of activating AMPK/SIRT1 signaling have been identified. In this review, we summarize recent data on the possible role of berberine, resveratrol, quercetin, and L-carnitine as CR-related nutrients. Additionally, we discuss the limitations related to the use of these nutrients in the management of T2DM and CVD.
Collapse
|
108
|
Yang S, Li D, Yu Z, Li Y, Wu M. Multi-Pharmacology of Berberine in Atherosclerosis and Metabolic Diseases: Potential Contribution of Gut Microbiota. Front Pharmacol 2021; 12:709629. [PMID: 34305616 PMCID: PMC8299362 DOI: 10.3389/fphar.2021.709629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS), especially atherosclerotic cardiovascular diseases (ASCVDs), and metabolic diseases (such as diabetes, obesity, dyslipidemia, and nonalcoholic fatty liver disease) are major public health issues worldwide that seriously threaten human health. Exploring effective natural product-based drugs is a promising strategy for the treatment of AS and metabolic diseases. Berberine (BBR), an important isoquinoline alkaloid found in various medicinal plants, has been shown to have multiple pharmacological effects and therapeutic applications. In view of its low bioavailability, increasing evidence indicates that the gut microbiota may serve as a target for the multifunctional effects of BBR. Under the pathological conditions of AS and metabolic diseases, BBR improves intestinal barrier function and reduces inflammation induced by gut microbiota-derived lipopolysaccharide (LPS). Moreover, BBR reverses or induces structural and compositional alterations in the gut microbiota and regulates gut microbe-dependent metabolites as well as related downstream pathways; this improves glucose and lipid metabolism and energy homeostasis. These findings at least partly explain the effect of BBR on AS and metabolic diseases. In this review, we elaborate on the research progress of BBR and its mechanisms of action in the treatment of AS and metabolic diseases from the perspective of gut microbiota, to reveal the potential contribution of gut microbiota to the multifunctional biological effects of BBR.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
109
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
110
|
Ahmadi A, Vahabzadeh Z, Moloudi M, Farhadi L, Shirahmadi S. Contribution of toll-like receptor 2 and nicotinamide adenine dinucleotide phosphate oxidase to the trimethylamine N-oxide-induced inflammatory reactions in U937-derived macrophages. ARYA ATHEROSCLEROSIS 2021; 17:1-7. [PMID: 35685229 PMCID: PMC9137230 DOI: 10.22122/arya.v17i0.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is emerging as a new generation of metabolites related to the activation of inflammatory reactions in the macrophages during atherosclerosis. Stress-activation of cell surface toll-like receptors (TLRs) as well as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) is also assumed to be involved in TMAO-induced inflammatory reaction in the macrophages. To elucidate the possible contribution of TLRs and NOX to the mentioned signaling pathway, we aimed to simultaneously evaluate the expression level of TLR2, TLR6, and NOX2 in TMAO-treated macrophages. METHODS 2.5 × 106 cells of U937-derived macrophages were treated in triplicates with different concentrations (37.5, 75, 150, and 300 μM) of TMAO for 24 hours. The cells were also treated with tunicamycin (TUN), as a positive control of stress. Normal control group (CTR) cells received no treatment. The viability of treated cells was checked by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole (MTT) assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was also used to evaluate the relative expression (fold change) of TLR2, TLR6, and NOX2 at messenger ribonucleic acid (mRNA) levels. One-way analysis of variance (ANOVA) with post-hoc Dunnett's test was performed to compare every mean with that of the control. RESULTS No cell death occurred because of treatments. Dose of 300 μM of TMAO significantly increased the relative expression of both TLR2 and NOX2 compared to the CTR cells (P < 0.001 for both). The elevation of TLR6 was not statistically significant in all groups of TMAO-treated cells (P > 0.050). CONCLUSION Our results provide documentation supporting contribution of TLR2 and NOX2 to previously described inflammatory reactions induced by TMAO in macrophages. In addition, they may clarify the proatherogenic role of TMAO in foam cell formation as well as abnormal activation of macrophages during atherosclerosis.
Collapse
Affiliation(s)
- Abbas Ahmadi
- Assistant Professor, Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zakaria Vahabzadeh
- Assistant Professor, Liver and Digestive Research Center, Research Institute for Health Development AND Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammadraman Moloudi
- Assistant Professor, Liver and Digestive Research Center, Research Institute for Health Development AND Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Farhadi
- PhD Candidate, Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Shirahmadi
- Medical Student, Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
111
|
FMO3-TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection fraction: evidence from an Asian population. Front Med 2021; 16:295-305. [PMID: 34159537 DOI: 10.1007/s11684-021-0857-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
The association among plasma trimethylamine-N-oxide (TMAO), FMO3 polymorphisms, and chronic heart failure (CHF) remains to be elucidated. TMAO is a microbiota-dependent metabolite from dietary choline and carnitine. A prospective study was performed including 955 consecutively diagnosed CHF patients with reduced ejection fraction, with the longest follow-up of 7 years. The concentrations of plasma TMAO and its precursors, namely, choline and carnitine, were determined by liquid chromatography-mass spectrometry, and the FMO3 E158K polymorphisms (rs2266782) were genotyped. The top tertile of plasma TMAO was associated with a significant increment in hazard ratio (HR) for the composite outcome of cardiovascular death or heart transplantation (HR = 1.47, 95% CI = 1.13-1.91, P = 0.004) compared with the lowest tertile. After adjustments of the potential confounders, higher TMAO could still be used to predict the risk of the primary endpoint (adjusted HR = 1.33, 95% CI = 1.01-1.74, P = 0.039). This result was also obtained after further adjustment for carnitine (adjusted HR = 1.33, 95% CI = 1.01-1.74, P = 0.039). The FMO3 rs2266782 polymorphism was associated with the plasma TMAO concentrations in our cohort, and lower TMAO levels were found in the AA-genotype. Thus, higher plasma TMAO levels indicated increased risk of the composite outcome of cardiovascular death or heart transplantation independent of potential confounders, and the FMO3 AA-genotype in rs2266782 was related to lower plasma TMAO levels.
Collapse
|
112
|
Luo Y, Zhao P, Dou M, Mao J, Zhang G, Su Y, Wang Q, Wang Q, Wang Y, Sun R, Liu T, Gong M, Gao Y, Yin X, Song L, Shi H. Exogenous microbiota-derived metabolite trimethylamine N-oxide treatment alters social behaviors: Involvement of hippocampal metabolic adaptation. Neuropharmacology 2021; 191:108563. [PMID: 33887311 DOI: 10.1016/j.neuropharm.2021.108563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that gut microbiota and its metabolites can influence the brain function and the related behaviors. Trimethylamine N-oxide (TMAO), an indirect metabolite of gut microbiota, has been linked to aging, cognitive impairment, and many brain disorders. However, the potential effects of TMAO on social behaviors remain elusive. The present study investigated the effects of early life systemic TMAO exposure and intra-hippocampal TMAO infusion during adulthood on social behaviors in mice. We also analyzed the effects of intra-hippocampus infusion of TMAO during adulthood on levels of metabolites. The results showed that both systemic TMAO exposure in the post-weaning period and intra-hippocampal TMAO infusion during adulthood decreased social rank and reduced sexual preference in adult mice. Data from LC-MS metabolomics analysis showed that intra-hippocampal TMAO infusion induced a total 207 differential metabolites, which belongs to several metabolic or signaling pathways, especially FoxO signaling pathway and retrograde endocannabinoid signaling pathway. These data suggest that TMAO may affect social behaviors by regulating metabolites in the hippocampus, which may provide a new insight into the role of gut microbiota in regulating social behaviors.
Collapse
Affiliation(s)
- Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China; Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengxiao Dou
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiawen Mao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ge Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujiao Su
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingqun Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yurun Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ruoxuan Sun
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tingxuan Liu
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology. Chinese Academy of Medical Sciences, Shijiazhuang, 050017, China.
| |
Collapse
|
113
|
Vangoitsenhoven R, Wilson R, Sharma G, Punchai S, Corcelles R, Froylich D, Mulya A, Schauer PR, Brethauer SA, Kirwan JP, Sangwan N, Brown JM, Aminian A. Metabolic effects of duodenojejunal bypass surgery in a rat model of type 1 diabetes. Surg Endosc 2021; 35:3104-3114. [PMID: 32607903 PMCID: PMC8633809 DOI: 10.1007/s00464-020-07741-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Metabolic surgery has beneficial metabolic effects, including remission of type 2 diabetes. We hypothesized that duodenojejunal bypass (DJB) surgery can protect against development of type 1 diabetes (T1D) by enhancing regulation of cellular and molecular pathways that control glucose homeostasis. METHODS BBDP/Wor rats, which are prone to develop spontaneous autoimmune T1D, underwent loop DJB (n = 15) or sham (n = 15) surgery at a median age of 41 days, before development of diabetes. At T1D diagnosis, a subcutaneous insulin pellet was implanted, oral glucose tolerance test was performed 21 days later, and tissues were collected 25 days after onset of T1D. Pancreas and liver tissues were assessed by histology and RT-qPCR. Fecal microbiota composition was analyzed by 16S V4 sequencing. RESULTS Postoperatively, DJB rats weighed less than sham rats (287.8 vs 329.9 g, P = 0.04). In both groups, 14 of 15 rats developed T1D, at similar age of onset (87 days in DJB vs 81 days in sham, P = 0.17). There was no difference in oral glucose tolerance, fasting and stimulated plasma insulin and c-peptide levels, and immunohistochemical analysis of insulin-positive cells in the pancreas. DJB rats needed 1.3 ± 0.4 insulin implants vs 1.9 ± 0.5 in sham rats (P = 0.002). Fasting and glucose stimulated glucagon-like peptide 1 (GLP-1) secretion was elevated after DJB surgery. DJB rats had reduced markers of metabolic stress in liver. After DJB, the fecal microbiome changed significantly, including increases in Akkermansia and Ruminococcus, while the changes were minimal in sham rats. CONCLUSION DJB does not protect against autoimmune T1D in BBDP/Wor rats, but reduces the need for exogenous insulin and facilitates other metabolic benefits including weight loss, increased GLP-1 secretion, reduced hepatic stress, and altered gut microbiome.
Collapse
Affiliation(s)
- Roman Vangoitsenhoven
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Rickesha Wilson
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gautam Sharma
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suriya Punchai
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Surgery, Khon Kaen University, Khon Kaen, Thailand
| | - Ricard Corcelles
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Dvir Froylich
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of General Surgery, Carmel Medical Center, Haifa, Israel
| | - Anny Mulya
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Philip R Schauer
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Stacy A Brethauer
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Naseer Sangwan
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - J Mark Brown
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ali Aminian
- Department of General Surgery, Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
114
|
Trimethylamine N-Oxide, a Gut Microbiota-Derived Metabolite, Is Associated with Cardiovascular Risk in Psoriasis: A Cross-Sectional Pilot Study. Dermatol Ther (Heidelb) 2021; 11:1277-1289. [PMID: 33983475 PMCID: PMC8322249 DOI: 10.1007/s13555-021-00547-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction Trimethylamine N-oxide (TMAO), a gut microbiota metabolite from dietary phosphatidylcholine, is involved in the pathogenesis of atherosclerosis and cardiovascular diseases. Psoriasis is associated with increased cardiovascular risk that is not captured by traditional biomarkers. The aim of the present study was to assess TMAO concentration in psoriasis and evaluate the relationship between TMAO and cardiovascular risk in psoriatic patients. Methods In 72 patients with psoriasis and 40 age- and sex-matched non-psoriatic controls, we evaluated fasting plasma TMAO, measured by high-performance liquid chromatography, and cardiovascular risk assessed by various scoring systems such as Framingham, QRISK2, AHA/ACC, and Reynolds risk scores. Results In patients with psoriasis, TMAO concentration was significantly higher than in the control group (195.68 [133.54–332.58] ng/ml versus 126.06 [84.29–156.88] ng/ml, respectively; p < 0.001). Plasma TMAO concentration was significantly correlated with age, total cholesterol, triglycerides, systolic and diastolic blood pressure. Furthermore, the receiver-operating characteristic (ROC) and multiple regression analysis showed that TMAO is an independent predictor of cardiovascular risk. Conclusion TMAO is a valuable candidate for biomarker and a translational link between dysbiosis and atherosclerosis in psoriasis.
Collapse
|
115
|
Mo Y, Sun H, Zhang L, Geng W, Wang L, Zou C, Wu Y, Ji C, Liu X, Lu Z. Microbiome-Metabolomics Analysis Reveals the Protection Mechanism of α-Ketoacid on Adenine-Induced Chronic Kidney Disease in Rats. Front Pharmacol 2021; 12:657827. [PMID: 34045965 PMCID: PMC8144710 DOI: 10.3389/fphar.2021.657827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: As nitrogen-free precursors of corresponding essential amino, α-ketoacid have been widely prescribed to end-stage renal disease patients together with a low protein diet However, the impact of α-ketoacid on intestinal microbiota in chronic kidney disease (CKD) individuals is unknown. The study aims at investigating the variation in the intestinal microbiota and metabolic profile in response to α-ketoacid treatment in an adenine-induced CKD rat model. Design: Rats in the treatment groups were given solution of compound α-ketoacid tablets. At the end of the study, blood, feces, colon tissues and kidney tissues were collected and processed for biochemical analyses, histological and western blot analyses, 16S rRNA sequence and untargeted metabolomic analyses. Results: α-Ketoacid treatment reduced serum creatinine, blood urea nitrogen and 24 h urine protein, and alleviated tubular atrophy, glomerulosclerosis and interstitial fibrosis in adenine-induced CKD rats. Moreover, α-ketoacid significantly improved intestinal barrier and increased the abundance of Methanobrevibacter, Akkermansia, Blautia and Anaerositipes while reduced the abundance of Anaerovorax and Coprococcus_3 at the genus level. In addition, our results also demonstrated that α-ketoacid significantly reduced the concentrations of indoxyl sulfate, betaine, choline and cholesterol. Spearman's correlation analysis revealed that the abundance of Coprococcus_3 was positively correlated with serum level of betaine, trimethylamine N-oxide, indoxyl sulfate, cholic acid and deoxycholic acid. Conclusion: α-Ketoacid has a reno-protective effect against adenine-induced CKD, which may be mediated regulation of serum metabolic profiles via affecting intestinal microbial community.
Collapse
Affiliation(s)
- Yenan Mo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huang Sun
- Department of Emergency, TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Geng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixin Wang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuan Zou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchi Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunlan Ji
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhaoyu Lu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
116
|
Kim M, Huda MN, O'Connor A, Albright J, Durbin-Johnson B, Bennett BJ. Hepatic transcriptional profile reveals the role of diet and genetic backgrounds on metabolic traits in female progenitor strains of the Collaborative Cross. Physiol Genomics 2021; 53:173-192. [PMID: 33818129 PMCID: PMC8424536 DOI: 10.1152/physiolgenomics.00140.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mice have provided critical mechanistic understandings of clinical traits underlying metabolic syndrome (MetSyn) and susceptibility to MetSyn in mice is known to vary among inbred strains. We investigated the diet- and strain-dependent effects on metabolic traits in the eight Collaborative Cross (CC) founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Liver transcriptomics analysis showed that both atherogenic diet and host genetics have profound effects on the liver transcriptome, which may be related to differences in metabolic traits observed between strains. We found strain differences in circulating trimethylamine N-oxide (TMAO) concentration and liver triglyceride content, both of which are traits associated with metabolic diseases. Using a network approach, we identified a module of transcripts associated with TMAO and liver triglyceride content, which was enriched in functional pathways. Interrogation of the module related to metabolic traits identified NADPH oxidase 4 (Nox4), a gene for a key enzyme in the production of reactive oxygen species, which showed a strong association with plasma TMAO and liver triglyceride. Interestingly, Nox4 was identified as the highest expressed in the C57BL/6J and NZO/HILtJ strains and the lowest expressed in the CAST/EiJ strain. Based on these results, we suggest that there may be genetic variation in the contribution of Nox4 to the regulation of plasma TMAO and liver triglyceride content. In summary, we show that liver transcriptomic analysis identified diet- or strain-specific pathways for metabolic traits in the Collaborative Cross (CC) founder strains.
Collapse
Affiliation(s)
- Myungsuk Kim
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| | - M Nazmul Huda
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| | - Annalouise O'Connor
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | | | - Brian J Bennett
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| |
Collapse
|
117
|
The Relationship of Large-Artery Atherothrombotic Stroke with Plasma Trimethylamine N-Oxide Level and Blood Lipid-Related Indices: A Cross-Sectional Comparative Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5549796. [PMID: 33977104 PMCID: PMC8087478 DOI: 10.1155/2021/5549796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022]
Abstract
Objective The role of trimethylamine N-oxide (TMAO) in cardiovascular diseases has been highlighted. Nevertheless, the associations of large-artery atherosclerotic (LAA) stroke with TMAO and blood lipid-related indices are little investigated. Methods A cross-sectional comparative study was performed on 50 patients with LAA stroke and 50 healthy controls. Basic demographic data, common vascular risk factors, and blood lipid-related indices were collected. Plasma TMAO was detected through liquid chromatography tandem mass spectrometry. Multivariable unconditional logistic regression analyses were run to assess the associations of LAA stroke with plasma TMAO level and blood lipid-related indices. The area under the curve (AUC) of the receiver operating characteristic (ROC) was computed to assess the diagnostic performance of plasma TMAO level and blood lipid-related indices for LAA stroke. Results Compared with healthy controls, the elevated plasma TMAO level (odds ratio [OR], 7.03; 95% confidence interval [CI], 2.86, 17.25; p < 0.01) and Apo-B (OR, 1.74; 95% CI, 1.06, 2.85; p = 0.03) were observed in LAA stroke patients, while lower Apo-A1 (OR, 0.56; 95% CI, 0.34, 0.91; p = 0.02), Apo-A1 to Apo-B ratio (OR, 0.29; 95% CI, 0.15, 0.56; p < 0.01), and HDL-C (OR, 0.56; 95% CI, 0.35, 0.91; p = 0.02) were found in LAA stroke patients after adjusted for age and gender. Moreover, plasma TMAO (AUC, 0.89; 95% CI, 0.83, 0.95), Apo-A1 (AUC, 0.81; 95% CI, 0.72, 0.89), Apo-B (AUC, 0.81; 95% CI, 0.73, 0.90), Apo-A1 to Apo-B ratio (AUC, 0.85; 95% CI, 0.78, 0.93), and HDL-C (AUC, 0.81; 95% CI, 0.72, 0.89) showed good diagnostic values for LAA stroke in adjusted models. Conclusions The plasma TMAO level, Apo-A1, Apo-B, and HDL-C are important biomarkers for LAA stroke patients.
Collapse
|
118
|
Fu D, Shen J, Li W, Wang Y, Zhong Z, Ye H, Huang N, Fan L, Yang X, Yu X, Zhou Y, Mao H. Elevated Serum Trimethylamine N-Oxide Levels Are Associated with Mortality in Male Patients on Peritoneal Dialysis. Blood Purif 2021; 50:837-847. [PMID: 33596582 DOI: 10.1159/000512962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Elevated levels of serum trimethylamine N-oxide (TMAO) have been previously linked to adverse cardiovascular (CV) and all-cause mortality in hemodialysis patients. However, the clinical significance of serum TMAO levels in patients treated with peritoneal dialysis (PD) is unclear. METHODS A total of 1,032 PD patients with stored serum samples at baseline were enrolled in this prospective study. Serum concentrations of TMAO were quantified by ultra-performance liquid chromatography-tandem mass spectrometry. Cox proportional hazards and competing-risk regression models were performed to examine the association of TMAO levels with all-cause and CV mortality. RESULTS The median level of serum TMAO in our study population was 34.5 (interquartile range (IQR), 19.8-61.0) μM. During a median follow-up of 63.7 months (IQR, 43.9-87.2), 245 (24%) patients died, with 129 (53%) deaths resulting from CV disease. In the entire cohort, we observed an association between elevated serum TMAO levels and all-cause mortality (adjusted subdistributional hazard ratio [SHR], 1.22; 95% confidence interval [95% CI], 1.01-1.48; p = 0.039) but not CV mortality. Further analysis revealed such association differed by sex; the elevation of serum TMAO levels was independently associated with increased risk of both all-cause (SHR, 1.37; 95% CI, 1.07-1.76; p = 0.013) and CV mortality (SHR, 1.41; 95% CI, 1.02-1.94; p = 0.038) in men but not in women. CONCLUSIONS Higher serum TMAO levels were independently associated with all-cause and CV mortality in male patients treated with PD.
Collapse
Affiliation(s)
- Dongying Fu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Jiani Shen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Li
- Department of Nephrology, First People's Hospital of Foshan, Foshan, China
| | - Yating Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Li Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Xuqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,NHC Key Laboratory of Nephrology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China, .,NHC Key Laboratory of Nephrology, Guangzhou, China, .,Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China,
| |
Collapse
|
119
|
Huang S, Howington MB, Dobry CJ, Evans CR, Leiser SF. Flavin-Containing Monooxygenases Are Conserved Regulators of Stress Resistance and Metabolism. Front Cell Dev Biol 2021; 9:630188. [PMID: 33644069 PMCID: PMC7907451 DOI: 10.3389/fcell.2021.630188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/15/2021] [Indexed: 01/14/2023] Open
Abstract
Flavin-Containing Monooxygenases are conserved xenobiotic-detoxifying enzymes. Recent studies have revealed endogenous functions of FMOs in regulating longevity in Caenorhabditis elegans and in regulating aspects of metabolism in mice. To explore the cellular mechanisms of FMO's endogenous function, here we demonstrate that all five functional mammalian FMOs may play similar endogenous roles to improve resistance to a wide range of toxic stresses in both kidney and liver cells. We further find that stress-activated c-Jun N-terminal kinase activity is enhanced in FMO-overexpressing cells, which may lead to increased survival under stress. Furthermore, FMO expression modulates cellular metabolic activity as measured by mitochondrial respiration, glycolysis, and metabolomics analyses. FMO expression augments mitochondrial respiration and significantly changes central carbon metabolism, including amino acid and energy metabolism pathways. Together, our findings demonstrate an important endogenous role for the FMO family in regulation of cellular stress resistance and major cellular metabolic activities including central carbon metabolism.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marshall B. Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| | - Craig J. Dobry
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Charles R. Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Scott F. Leiser
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
120
|
Iglesias-Carres L, Hughes MD, Steele CN, Ponder MA, Davy KP, Neilson AP. Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation. J Nutr Biochem 2021; 91:108600. [PMID: 33577949 DOI: 10.1016/j.jnutbio.2021.108600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Trimethylamine-N-oxide (TMAO) has been reported as a risk factor for atherosclerosis development, as well as for other cardiovascular disease (CVD) pathologies. The objective of this review is to provide a useful summary on the use of phytochemicals as TMAO-reducing agents. This review discusses the main mechanisms by which TMAO promotes CVD, including the modulation of lipid and bile acid metabolism, and the promotion of endothelial dysfunction and oxidative stress. Current knowledge on the available strategies to reduce TMAO formation are discussed, highlighting the effect and potential of phytochemicals. Overall, phytochemicals (i.e., phenolic compounds or glucosinolates) reduce TMAO formation by modulating gut microbiota composition and/or function, inhibiting host's capacity to metabolize TMA to TMAO, or a combination of both. Perspectives for design of future studies involving phytochemicals as TMAO-reducing agents are discussed. Overall, the information provided by this review outlines the current state of the art of the role of phytochemicals as TMAO reducing agents, providing valuable insight to further advance in this field of study.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC
| | - Michael D Hughes
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Cortney N Steele
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Kevin P Davy
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andrew P Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC.
| |
Collapse
|
121
|
Lv Z, Shan X, Tu Q, Wang J, Chen J, Yang Y. Ginkgolide B treatment regulated intestinal flora to improve high-fat diet induced atherosclerosis in ApoE−/− mice. Biomed Pharmacother 2021; 134:111100. [DOI: 10.1016/j.biopha.2020.111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
|
122
|
Liu W, Wang C, Xia Y, Xia W, Liu G, Ren C, Gu Y, Li X, Lu P. Elevated plasma trimethylamine-N-oxide levels are associated with diabetic retinopathy. Acta Diabetol 2021; 58:221-229. [PMID: 33064205 PMCID: PMC7889550 DOI: 10.1007/s00592-020-01610-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 01/11/2023]
Abstract
AIMS To determine the relationship between plasma levels of trimethylamine-N-oxide (TMAO) and odds of diabetic retinopathy (DR). METHODS A cross-sectional study was conducted. Blood samples were obtained from 122 type 2 diabetes mellitus (T2DM) patients with or without DR. Multivariable logistic regression analyses were performed to identify the association between plasma TMAO and DR. The diagnostic value of plasma TMAO was assessed by the area under the receiver operating characteristic curve (AUROC) and integrated discrimination improvement (IDI). RESULTS In the T2DM patients, plasma levels of TMAO were significantly higher in patients with DR compared with those without DR (P = 0.001). As logarithmic (ln) transformation of TMAO increased per standard deviation (SD), there was higher probability to have DR [odds ratio (OR) = 2.31; P = 0.005]. As ln-transformed TMAO increased per SD, the severity of DR was more likely to get worse (OR = 2.05; P = 0.004). In the diagnostic model, the addition of TMAO contributed to the improvement in AUROC from 0.646 to 0.734 (P = 0.043), and the IDI was 10.7% (P < 0.001). CONCLUSION Elevated levels of plasma TMAO were associated with higher odds and worse severity of DR in T2DM patients, and further investigation is required for the causality of this association.
Collapse
Affiliation(s)
- Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Chunmin Wang
- Suzhou Center for Disease Control and Prevention, 72 Sanxiang Road, Suzhou, 215004, People's Republic of China
| | - Yu Xia
- Suzhou Center for Disease Control and Prevention, 72 Sanxiang Road, Suzhou, 215004, People's Republic of China
| | - Wei Xia
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, 215006, People's Republic of China
| | - Chi Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Yu Gu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Xin Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
123
|
Abstract
Historically, the focus of type II diabetes mellitus (T2DM) research has been on host metabolism and hormone action. However, emerging evidence suggests that the gut microbiome, commensal microbes that colonize the gastrointestinal tract, also play a significant role in T2DM pathogenesis. Specifically, gut microbes metabolize what is available to them through the host diet to produce small molecule metabolites that can have endocrine-like effects on human cells. In fact, the meta-organismal crosstalk between gut microbe-generated metabolites and host receptor systems may represent an untapped therapeutic target for those at risk for or suffering from T2DM. Recent evidence suggests that gut microbe-derived metabolites can impact host adiposity, insulin resistance, and hormone secretion to collectively impact T2DM progression. Here we review the current evidence that structurally diverse gut microbe-derived metabolites, including short chain fatty acids, secondary bile acids, aromatic metabolites, trimethylamine-N-oxide, polyamines, and N-acyl amides, that can engage with host receptors in an endocrine-like manner to promote host metabolic disturbance associated with T2DM. Although these microbe-host signaling circuits are not as well understood as host hormonal signaling, they hold untapped potential as new druggable targets to improve T2DM complications. Whether drugs that selectively target meta-organismal endocrinology will be safe and efficacious in treating T2DM is a key new question in the field of endocrinology. Here we discuss the opportunities and challenges in targeting the gut microbial endocrine organ for the treatment of diabetes and potentially many other diseases where diet-microbe-host interactions play a contributory role.
Collapse
Affiliation(s)
- William Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Correspondence: J. Mark Brown, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
124
|
Recent Advances of Microbiome-Associated Metabolomics Profiling in Liver Disease: Principles, Mechanisms, and Applications. Int J Mol Sci 2021; 22:ijms22031160. [PMID: 33503844 PMCID: PMC7865944 DOI: 10.3390/ijms22031160] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in high-throughput screening of metabolic stability in liver and gut microbiota are able to identify and quantify small-molecule metabolites (metabolome) in different cellular microenvironments that are closest to their phenotypes. Metagenomics and metabolomics are largely recognized to be the “-omics” disciplines for clinical therapeutic screening. Here, metabolomics activity screening in liver disease (LD) and gut microbiomes has significantly delivered the integration of metabolomics data (i.e., a set of endogenous metabolites) with metabolic pathways in cellular environments that can be tested for biological functions (i.e., phenotypes). A growing literature in LD and gut microbiomes reports the use of metabolites as therapeutic targets or biomarkers. Although growing evidence connects liver fibrosis, cirrhosis, and hepatocellular carcinoma, the genetic and metabolic factors are still mainly unknown. Herein, we reviewed proof-of-concept mechanisms for metabolomics-based LD and gut microbiotas’ role from several studies (nuclear magnetic resonance, gas/lipid chromatography, spectroscopy coupled with mass spectrometry, and capillary electrophoresis). A deeper understanding of these axes is a prerequisite for optimizing therapeutic strategies to improve liver health.
Collapse
|
125
|
Abstract
Atherosclerotic cardiovascular disease (ASCVD) proceeds through a series of stages: initiation, progression (or regression), and complications. By integrating known biology regarding molecular signatures of each stage with recent advances in high-dimensional molecular data acquisition platforms (to assay the genome, epigenome, transcriptome, proteome, metabolome, and gut microbiome), snapshots of each phase of atherosclerotic cardiovascular disease development can be captured. In this review, we will summarize emerging approaches for assessment of atherosclerotic cardiovascular disease risk in humans using peripheral blood molecular signatures and molecular imaging approaches. We will then discuss the potential (and challenges) for these snapshots to be integrated into a personalized movie providing dynamic readouts of an individual's atherosclerotic cardiovascular disease risk status throughout the life course.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kemar J. Brown
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ramachandran S. Vasan
- Sections of Preventive Medicine & Epidemiology, and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA; Department of Epidemiology, Boston University School of Public Health; Boston University Center for Computing and Data Sciences
| |
Collapse
|
126
|
Yu SY, Xu L. The interplay between host cellular and gut microbial metabolism in NAFLD development and prevention. J Appl Microbiol 2021; 131:564-582. [PMID: 33411984 DOI: 10.1111/jam.14992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Metabolism regulation centred on insulin resistance is increasingly important in nonalcoholic fatty liver disease (NAFLD). This review focuses on the interactions between the host cellular and gut microbial metabolism during the development of NAFLD. The cellular metabolism of essential nutrients, such as glucose, lipids and amino acids, is reconstructed with inflammation, immune mechanisms and oxidative stress, and these alterations modify the intestinal, hepatic and systemic environments, and regulate the composition and activity of gut microbes. Microbial metabolites, such as short-chain fatty acids, secondary bile acids, protein fermentation products, choline and ethanol and bacterial toxicants, such as lipopolysaccharides, peptidoglycans and bacterial DNA, play vital roles in NAFLD. The microbe-metabolite relationship is crucial for the modulation of intestinal microbial composition and metabolic activity. The intestinal microbiota and their metabolites participate in epithelial cell metabolism via a series of cell receptors and signalling pathways and remodel the metabolism of various cells in the liver via the gut-liver axis. Microbial metabolic manipulation is a promising strategy for NAFLD prevention, but larger-sampled clinical trials are required for future application.
Collapse
Affiliation(s)
- S-Y Yu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - L Xu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
127
|
Zhang W, Miikeda A, Zuckerman J, Jia X, Charugundla S, Zhou Z, Kaczor-Urbanowicz KE, Magyar C, Guo F, Wang Z, Pellegrini M, Hazen SL, Nicholas SB, Lusis AJ, Shih DM. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci Rep 2021; 11:518. [PMID: 33436815 PMCID: PMC7804188 DOI: 10.1038/s41598-020-80063-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have elevated circulating levels of trimethylamine N-oxide (TMAO), a metabolite derived from gut microbes and associated with cardiovascular diseases. High circulating levels of TMAO and its dietary precursor, choline, predict increased risk for development of CKD in apparently healthy subjects, and studies in mice fed TMAO or choline suggest that TMAO can contribute to kidney impairment and renal fibrosis. Here we examined the interactions between TMAO, kidney disease, and cardiovascular disease in mouse models. We observed that while female hyperlipidemic apoE KO mice fed a 0.2% adenine diet for 14 weeks developed CKD with elevated plasma levels of TMAO, provision of a non-lethal inhibitor of gut microbial trimethylamine (TMA) production, iodomethylcholine (IMC), significantly reduced multiple markers of renal injury (plasma creatinine, cystatin C, FGF23, and TMAO), reduced histopathologic evidence of fibrosis, and markedly attenuated development of microalbuminuria. In addition, while the adenine-induced CKD model significantly increased heart weight, a surrogate marker for myocardial hypertrophy, this was largely prevented by IMC supplementation. Surprisingly, adenine feeding did not increase atherosclerosis and significantly decreased the expression of inflammatory genes in the aorta compared to the control groups, effects unrelated to TMAO levels. Our data demonstrate that inhibition of TMAO production attenuated CKD development and cardiac hypertrophy in mice, suggesting that TMAO reduction may be a novel strategy in treating CKD and its cardiovascular disease complications.
Collapse
Affiliation(s)
- Wenchao Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Division of Cardiology, Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Aika Miikeda
- Division of Cardiology, Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Jonathan Zuckerman
- Department of Pathology and Laboratory, University of California, Los Angeles, CA, 90095, USA
| | - Xun Jia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sarada Charugundla
- Division of Cardiology, Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Zhiqiang Zhou
- Division of Cardiology, Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Division of Oral Biology and Medicine, Center for the Health Sciences, UCLA School of Dentistry, Center for Oral and Head/Neck Oncology Research, UCLA Section of Oral Biology, University of California, 10833 Le Conte Ave, Box 951668, Los Angeles, CA, 90095, USA.,UCLA Institute for Quantitative and Computational Biosciences, University of California, 611 Charles E. Young Drive Boyer Hall 570, Box 951570, Los Angeles, CA, 90095, USA
| | - Clara Magyar
- Translational Pathology Core Laboratory, University of California, Los Angeles, CA, 90095, USA
| | - Fangfei Guo
- Division of Cardiology, Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Matteo Pellegrini
- Molecular, Cell, & Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Susanne B Nicholas
- Department of Medicine/Division of Nephrology, University of California, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Diana M Shih
- Division of Cardiology, Department of Medicine, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
128
|
Role of Gut Microbiota and Their Metabolites on Atherosclerosis, Hypertension and Human Blood Platelet Function: A Review. Nutrients 2021; 13:nu13010144. [PMID: 33401598 PMCID: PMC7824497 DOI: 10.3390/nu13010144] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging data have demonstrated a strong association between the gut microbiota and the development of cardiovascular disease (CVD) risk factors such as atherosclerosis, inflammation, obesity, insulin resistance, platelet hyperactivity, and plasma lipid abnormalities. Several studies in humans and animal models have demonstrated an association between gut microbial metabolites such as trimethylamine-N-oxide (TMAO), short-chain fatty acids, and bile acid metabolites (amino acid breakdown products) with CVD. Human blood platelets are a critical contributor to the hemostatic process. Besides, these blood cells play a crucial role in developing atherosclerosis and, finally, contribute to cardiac events. Since the TMAO, and other metabolites of the gut microbiota, are asociated with platelet hyperactivity, lipid disorders, and oxidative stress, the diet-gut microbiota interactions have become an important research area in the cardiovascular field. The gut microbiota and their metabolites may be targeted for the therapeutic benefit of CVD from a clinical perspective. This review's main aim is to highlight the complex interactions between microbiota, their metabolites, and several CVD risk factors.
Collapse
|
129
|
Nguyen TT, Kosciolek T, Daly RE, Vázquez-Baeza Y, Swafford A, Knight R, Jeste DV. Gut microbiome in Schizophrenia: Altered functional pathways related to immune modulation and atherosclerotic risk. Brain Behav Immun 2021; 91:245-256. [PMID: 33098964 PMCID: PMC8023565 DOI: 10.1016/j.bbi.2020.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence has linked the gut microbiome changes to schizophrenia. However, there has been limited research into the functional pathways by which the gut microbiota contributes to the phenotype of persons with chronic schizophrenia. We characterized the composition and functional potential of the gut microbiota in 48 individuals with chronic schizophrenia and 48 matched (sequencing plate, age, sex, BMI, and antibiotic use) non-psychiatric comparison subjects (NCs) using 16S rRNA sequencing. Patients with schizophrenia demonstrated significant beta-diversity differences in microbial composition and predicted genetic functional potential compared to NCs. Alpha-diversity of taxa and functional pathways were not different between groups. Random forests analyses revealed that the microbiome predicts differentiation of patients with schizophrenia from NCs using taxa (75% accuracy) and functional profiles (67% accuracy for KEGG orthologs, 70% for MetaCyc pathways). We utilized a new compositionally-aware method incorporating reference frames to identify differentially abundant microbes and pathways, which revealed that Lachnospiraceae is associated with schizophrenia. Functional pathways related to trimethylamine-N-oxide reductase and Kdo2-lipid A biosynthesis were altered in schizophrenia. These metabolic pathways were associated with inflammatory cytokines and risk for coronary heart disease in schizophrenia. Findings suggest potential mechanisms by which the microbiota may impact the pathophysiology of the disease through modulation of functional pathways related to immune signaling/response and lipid and glucose regulation to be further investigated in future studies.
Collapse
Affiliation(s)
- Tanya T Nguyen
- Department of Psychiatry, University of California, San Diego, CA, United States; Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States.
| | - Tomasz Kosciolek
- Department of Pediatrics, University of California, San Diego, CA, United States; Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Rebecca E Daly
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, CA, United States
| | - Yoshiki Vázquez-Baeza
- Center for Microbiome Innovation, University of California, San Diego, CA, United States
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, CA, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, United States; Center for Microbiome Innovation, University of California, San Diego, CA, United States; Department of Computer Science and Engineering, University of California, San Diego, CA, United States; Department of Computer Science and Engineering, University of California, San Diego, CA, United States
| | - Dilip V Jeste
- Department of Psychiatry, University of California, San Diego, CA, United States; Department of Pediatrics, University of California, San Diego, CA, United States; Center for Microbiome Innovation, University of California, San Diego, CA, United States; Department of Neurosciences, University of California, San Diego, CA, United States
| |
Collapse
|
130
|
Ramos LF, Silva CM, Pansa CC, Moraes KCM. Non-alcoholic fatty liver disease: molecular and cellular interplays of the lipid metabolism in a steatotic liver. Expert Rev Gastroenterol Hepatol 2021; 15:25-40. [PMID: 32892668 DOI: 10.1080/17474124.2020.1820321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) affects ~25% of world population and cases have increased in recent decades. These anomalies have several etiologies; however, obesity and metabolic dysfunctions are the most relevant causes. Despite being considered a public health problem, no effective therapeutic approach to treat NAFLD is available. For that, a deep understanding of metabolic routes that support hepatic diseases is needed. AREAS COVERED This review covers aspects of the onset of NAFLD. Thereby, biochemistry routes as well as cellular and metabolic effects of the gut microbiota in body's homeostasis and epigenetics are contextualized. EXPERT OPINION Recently, the development of biological sciences has generated innovative knowledge, bringing new insights and perspectives to clarify the systems biology of liver diseases. A detailed comprehension of epigenetics mechanisms will offer possibilities to develop new therapeutic and diagnostic strategies for NAFLD. Different epigenetic processes have been reported that are modulated by the environment such as gut microbiota, suggesting strong interplays between cellular behavior and pathology. Thus, a more complete description of such mechanisms in hepatic diseases will help to clarify how to control the establishment of fatty liver, and precisely describe molecular interplays that potentially control NAFLD.
Collapse
Affiliation(s)
- Letícia F Ramos
- Molecular Biology Laboratory, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências , Rio Claro, Brazil
| | - Caio M Silva
- Molecular Biology Laboratory, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências , Rio Claro, Brazil
| | - Camila C Pansa
- Molecular Biology Laboratory, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências , Rio Claro, Brazil
| | - Karen C M Moraes
- Molecular Biology Laboratory, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro, Instituto de Biociências , Rio Claro, Brazil
| |
Collapse
|
131
|
Gabr MT, Machalz D, Pach S, Wolber G. A benzoxazole derivative as an inhibitor of anaerobic choline metabolism by human gut microbiota. RSC Med Chem 2020; 11:1402-1412. [PMID: 34095847 PMCID: PMC8126876 DOI: 10.1039/d0md00218f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
Metabolic pathways mediated by human gut bacteria have emerged as potential therapeutic targets because of their association with the pathophysiology of various human diseases. The anaerobic transformation of choline into trimethylamine (TMA) by gut microbiota is directly linked to type 2 diabetes, fatty liver disease, and cardiovascular diseases. Structural analogs of choline have been developed as competitive inhibitors of choline TMA-lyase (CutC), a key enzyme for the conversion of choline to TMA. However, weak to moderate CutC inhibitory profiles of the choline analogs limit their further advancement into clinical translation. In this study, we introduce a glycomimetic-based approach for the identification of CutC inhibitors with intestinal metabolic stability. Our workflow started with screening of a small library of glycomimetics for metabolic stability in the presence of human intestinal S9 fraction. Further screening using an in vitro CutC inhibitory assay identified a benzoxazole ligand (BO-I) as a CutC inhibitor with an IC50 value of 2.4 ± 0.3 μM. Kinetic analysis revealed that BO-I functions as a non-competitive inhibitor of CutC. Interestingly, BO-I reduced the production of TMA in whole cell assays of multiple bacterial strains as well as in complex biological environments. Therefore, structural optimization of BO-I holds promise for the development of efficient gut microbiota-targeted small molecules.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Radiology, Stanford University School of Medicine Stanford CA 94305 USA
| | - David Machalz
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design) Berlin Germany
| | - Szymon Pach
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design) Berlin Germany
| | - Gerhard Wolber
- Freie Universitaet Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design) Berlin Germany
| |
Collapse
|
132
|
Zhao X, Oduro PK, Tong W, Wang Y, Gao X, Wang Q. Therapeutic potential of natural products against atherosclerosis: Targeting on gut microbiota. Pharmacol Res 2020; 163:105362. [PMID: 33285231 DOI: 10.1016/j.phrs.2020.105362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/08/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Gut microbiota (GM) has emerged as an essential and integral factor for maintaining human health and affecting pathological outcomes. Metagenomics and metabolomics characterization have furthered gut metagenome's understanding and unveiled that deviation of specific GM community members and GM-dependent metabolites imbalance orchestrate metabolic or cardiovascular diseases (CVDs). Restoring GM ecosystem with nutraceutical supplements keenly prebiotics and probiotics relatively decreases CVDs incidence and overall mortality. In Atherosclerosis, commensal and pathogenic gut microbes correlate with atherogenesis events. GM-dependent metabolites-trimethylamine N-oxide and short-chain fatty acids regulate atherosclerosis-related metabolic processes in opposite patterns to affect atherosclerosis outcomes. Therefore, GM might be a potential therapeutic target for atherosclerosis. In atherogenic animal models, natural products with cardioprotective properties could modulate the GM ecosystem by revitalizing healthier GM phylotypes and abrogating proatherogenic metabolites, paving future research paths for clinical therapeutics.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanyu Tong
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuefei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China
| | - Xiumei Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China.
| |
Collapse
|
133
|
Gabr M, Świderek K. Discovery of a Histidine-Based Scaffold as an Inhibitor of Gut Microbial Choline Trimethylamine-Lyase. ChemMedChem 2020; 15:2273-2279. [PMID: 32827245 DOI: 10.1002/cmdc.202000571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 01/07/2023]
Abstract
Anaerobic choline metabolism by human gut microbiota to produce trimethylamine (TMA) has recently evolved as a potential therapeutic target because of its association with chronic kidney disease and increased cardiovascular risks. Limited examples of choline analogues have been reported as inhibitors of bacterial enzyme choline TMA-lyase (CutC), a key enzyme regulating choline anaerobic metabolism. We used a new workflow to discover CutC inhibitors based on focused screening of a diversified library of small molecules for intestinal metabolic stability followed by in vitro CutC inhibitory assay. This workflow identified a histidine-based scaffold as a CutC inhibitor with an IC50 value of 1.9±0.2 μM. Remarkably, the identified CutC inhibitor was able to reduce the production of TMA in whole-cell assays using various bacterial strains as well as in complex gut microbiota environment. The improved efficiency of the new scaffold identified in this study in comparison to previously reported CutC inhibitors would enable optimization of potential leads for in vivo screening and clinical translation. Finally, docking studies and molecular-dynamic simulations were used to predict putative interactions created between inhibitor and CutC.
Collapse
Affiliation(s)
- Moustafa Gabr
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071, Castellón, Spain
| |
Collapse
|
134
|
Steinke I, Ghanei N, Govindarajulu M, Yoo S, Zhong J, Amin RH. Drug Discovery and Development of Novel Therapeutics for Inhibiting TMAO in Models of Atherosclerosis and Diabetes. Front Physiol 2020; 11:567899. [PMID: 33192565 PMCID: PMC7658318 DOI: 10.3389/fphys.2020.567899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus exists as a comorbidity with congestive heart failure (CHF). However, the exact molecular signaling mechanism linking CHF as the major form of mortality from diabetes remains unknown. Type 2 diabetic patients display abnormally high levels of metabolic products associated with gut dysbiosis. One such metabolite, trimethylamine N-oxide (TMAO), has been observed to be directly related with increased incidence of cardiovascular diseases (CVD) in human patients. TMAO a gut-liver metabolite, comes from the metabolic degenerative product trimethylamine (TMA) that is produced from gut microbial metabolism. Elevated levels of TMAO in diabetics and obese patients are observed to have a direct correlation with increased risk for major adverse cardiovascular events. The pro-atherogenic effect of TMAO is attributed to enhancing inflammatory pathways with cholesterol and bile acid dysregulation, promoting foam cell formation. Recent studies have revealed several potential therapeutic strategies for reducing TMAO levels and will be the central focus for the current review. However, few have focused on developing rational drug therapeutics and may be due to the gaps in knowledge for understanding the mechanism by which microbial TMA producing enzymes and hepatic flavin-containing monoxygenase (FMO) can work together in preventing elevation of TMAO levels. Therefore, it is critical to understand the advantages of developing a novel rational drug design strategy that manipulates FMO production of TMAO and TMA production by microbial enzymes. This review will focus on the inspection of FMO manipulation, as well as gut microbiota dysbiosis and its influence on metabolic disorders including cardiovascular disease and describe novel potential pharmacological therapeutic development.
Collapse
Affiliation(s)
- Ian Steinke
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Nila Ghanei
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Manoj Govindarajulu
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Sieun Yoo
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Rajesh H Amin
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| |
Collapse
|
135
|
Trimethylamine N-oxide and the reverse cholesterol transport in cardiovascular disease: a cross-sectional study. Sci Rep 2020; 10:18675. [PMID: 33122777 PMCID: PMC7596051 DOI: 10.1038/s41598-020-75633-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The early atherosclerotic lesions develop by the accumulation of arterial foam cells derived mainly from cholesterol-loaded macrophages. Therefore, cholesterol and cholesteryl ester transfer protein (CETP) have been considered as causative in atherosclerosis. Moreover, recent studies indicate the role of trimethylamine N-oxide (TMAO) in development of cardiovascular disease (CVD). The current study aimed to investigate the association between TMAO and CETP polymorphisms (rs12720922 and rs247616), previously identified as a genetic determinant of circulating CETP, in a population of coronary artery disease (CAD) patients (n = 394) and control subjects (n = 153). We also considered age, sex, trimethylamine (TMA) levels and glomerular filtration rate (GFR) as other factors that can potentially play a role in this complex picture. We found no association of TMAO with genetically determined CETP in a population of CAD patients and control subjects. Moreover, we noticed no differences between CAD patients and control subjects in plasma TMAO levels. On the contrary, lower levels of TMA in CAD patients respect to controls were observed. Our results indicated a significant correlation between GFR and TMAO, but not TMA. The debate whether TMAO can be a harmful, diagnostic or protective marker in CVD needs to be continued.
Collapse
|
136
|
Impact of gut microbiota: How it could play roles beyond the digestive system on development of cardiovascular and renal diseases. Microb Pathog 2020; 152:104583. [PMID: 33164814 DOI: 10.1016/j.micpath.2020.104583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
In recent years, a significant interest in gut microbiota-host crosstalk has increased due to the involvement of gut bacteria on host health and diseases. Gut dysbiosis, a change in the gut microbiota composition alters host-microbiota interactions and induces gut immune dysregulation that have been associated with pathogenesis of several diseases, including cardiovascular diseases (CVD) and chronic kidney diseases (CKD). Gut microbiota affect the host, mainly through the immunological and metabolism-dependent and metabolism-independent pathways. In addition to these, the production of trimethylamine (TMA)/trimethylamine N-oxide (TMAO), uremic toxins and lipopolysaccharides (LPS) by gut microbiota are involved in the pathogenesis of CVD and CKD. Given the current approaches and challenges that can reshape the bacterial composition by restoring the balance between host and microbiota. In this review, we discuss the complex interplay between the gut microbiota, and the heart and the kidney, and explain the gut-cardiovascular axis and gut-kidney axis on the development and progression of cardiovascular diseases and chronic kidney diseases. In addition, we discuss the interplay between gut and kidney on hypertension or cardiovascular pathology.
Collapse
|
137
|
Desmarchelier C, Wolff E, Defoort C, Nowicki M, Morange P, Alessi M, Valéro R, Nicolay A, Lairon D, Borel P. A Combination of Single Nucleotide Polymorphisms is Associated with the Interindividual Variability of Cholesterol Bioavailability in Healthy Adult Males. Mol Nutr Food Res 2020; 64:e2000480. [DOI: 10.1002/mnfr.202000480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Indexed: 01/05/2023]
Affiliation(s)
| | - Estelle Wolff
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Catherine Defoort
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Marion Nowicki
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | | | | | - René Valéro
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
- APHM, CHU Conception Department of Nutrition Metabolic Diseases and Endocrinology 13005 Marseille France
| | - Alain Nicolay
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Denis Lairon
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| | - Patrick Borel
- Aix‐Marseille University, INRAE, INSERM, C2VN 13005 Marseille France
| |
Collapse
|
138
|
Vitamin D Decreases Plasma Trimethylamine-N-oxide Level in Mice by Regulating Gut Microbiota. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9896743. [PMID: 33083493 PMCID: PMC7558778 DOI: 10.1155/2020/9896743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
As a metabolite generated by gut microbiota, trimethylamine-N-oxide (TMAO) has been proven to promote atherosclerosis and is a novel potential risk factor for cardiovascular disease (CVD). The objective of this study was to examine whether regulating gut microbiota by vitamin D supplementation could reduce the plasma TMAO level in mice. For 16 weeks, C57BL/6J mice were fed a chow (C) or high-choline diet (HC) without or with supplementation of vitamin D3 (CD3 and HCD3) or a high-choline diet with vitamin D3 supplementation and antibiotics (HCD3A). The results indicate that the HC group exhibited higher plasma trimethylamine (TMA) and TMAO levels, lower richness of gut microbiota, and significantly increased Firmicutes and decreased Bacteroidetes as compared with group C. Vitamin D supplementation significantly reduced plasma TMA and TMAO levels in mice fed a high-choline diet. Furthermore, gut microbiota composition was regulated, and the Firmicutes/Bacteroidetes ratio was reduced by vitamin D. Spearman correlation analysis indicated that Bacteroides and Akkermansia were negatively correlated with plasma TMAO in the HC and HCD3 groups. Our study provides a novel avenue for the prevention and treatment of CVD with vitamin D.
Collapse
|
139
|
Bjørnestad EØ, Olset H, Dhar I, Løland K, Pedersen EKR, Svingen GFT, Svardal A, Berge RK, Ueland PM, Tell GS, Nilsen DWT, Nordrehaug JE, Nygaard E, Nygård O. Circulating trimethyllysine and risk of acute myocardial infarction in patients with suspected stable coronary heart disease. J Intern Med 2020; 288:446-456. [PMID: 32270523 DOI: 10.1111/joim.13067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The carnitine precursor trimethyllysine (TML) is associated with progression of atherosclerosis, possibly through a relationship with trimethylamine-N-oxide (TMAO). Riboflavin is a cofactor in TMAO synthesis. We examined prospective relationships of circulating TML and TMAO with acute myocardial infarction (AMI) and potential effect modifications by riboflavin status. METHODS By Cox modelling, risk associations were examined amongst 4098 patients (71.8% men) with suspected stable angina pectoris. Subgroup analyses were performed according to median plasma riboflavin. RESULTS During a median follow-up of 4.9 years, 336 (8.2%) patients experienced an AMI. The age- and sex-adjusted hazard ratio (HR) (95% CI) comparing the 4th vs. 1st TML quartile was 2.19 (1.56-3.09). Multivariable adjustment for traditional cardiovascular risk factors and indices of renal function only slightly attenuated the risk estimates [HR (95% CI) 1.79 (1.23-2.59)], which were particularly strong amongst patients with riboflavin levels above the median (Pint = 0.035). Plasma TML and TMAO were strongly correlated (rs = 0.41; P < 0.001); however, plasma TMAO was not associated with AMI risk in adjusted analyses [HR (95% CI) 0.81 (0.58-1.14)]. No interaction between TML and TMAO was observed. CONCLUSION Amongst patients with suspected stable angina pectoris, plasma TML, but not TMAO, independently predicted risk of AMI. Our results motivate further research on metabolic processes determining TML levels and their potential associations with cardiovascular disease. We did not adjust for multiple comparisons, and the subgroup analyses should be interpreted with caution.
Collapse
Affiliation(s)
- E Ø Bjørnestad
- From the, Departments of, Department of, Medicine, Stavanger University Hospital, Stavanger, Norway
| | - H Olset
- Department of, Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - I Dhar
- Department of, Clinical Science, University of Bergen, Bergen, Norway
| | - K Løland
- Department of, Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - E K R Pedersen
- Department of, Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - G F T Svingen
- Department of, Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - A Svardal
- Department of, Clinical Science, University of Bergen, Bergen, Norway
| | - R K Berge
- Department of, Heart Disease, Haukeland University Hospital, Bergen, Norway.,Department of, Clinical Science, University of Bergen, Bergen, Norway
| | - P M Ueland
- Department of, Clinical Science, University of Bergen, Bergen, Norway
| | - G S Tell
- Department of, Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - D W T Nilsen
- Department of, Clinical Science, University of Bergen, Bergen, Norway.,Department of, Cardiology, Stavanger University Hospital, Stavanger, Norway
| | - J E Nordrehaug
- Department of, Clinical Science, University of Bergen, Bergen, Norway
| | - E Nygaard
- Department of, Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - O Nygård
- Department of, Heart Disease, Haukeland University Hospital, Bergen, Norway.,Department of, Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
140
|
Farhangi MA. Gut microbiota-dependent trimethylamine N-oxide and all-cause mortality: Findings from an updated systematic review and meta-analysis. Nutrition 2020; 78:110856. [PMID: 32592979 DOI: 10.1016/j.nut.2020.110856] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
The gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has been regarded as one of the potent risk factors for cardiovascular events and diabetes. In the current meta-analysis we quantitatively summarized and updated the results of studies regarding the association between TMAO and mortality. A systematic search was performed from PubMed, ProQuest, Scopus, and Embase. All of the studies that evaluated the association between TMAO and mortality were included in the systematic review and meta-analysis. Subgroup analysis and meta-regression were performed to identify the source of heterogeneity. There were 31 230 participants included and the results showed that being in the highest category of TMAO increased the hazard ratio (HR) of mortality by 47%. Moreover, there was a non-linear association between increased TMAO concentrations and HR of mortality. In the current dose-response meta-analysis, we revealed a positive association between TMAO and mortality risk among an adult population.
Collapse
Affiliation(s)
- Mahdieh Abbasalizad Farhangi
- Research Center for Evidence Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
141
|
Verhaar BJH, Prodan A, Nieuwdorp M, Muller M. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients 2020; 12:E2982. [PMID: 33003455 PMCID: PMC7601560 DOI: 10.3390/nu12102982] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota and its metabolites such as short chain fatty acids (SCFA), lipopolysaccharides (LPS), and trimethylamine-N-oxide (TMAO) impact cardiovascular health. In this review, we discuss how gut microbiota and gut metabolites can affect hypertension and atherosclerosis. Hypertensive patients were shown to have lower alpha diversity, lower abundance of SCFA-producing microbiota, and higher abundance of gram-negative bacteria, which are a source of LPS. Animal studies point towards a direct role for SCFAs in blood pressure regulation and show that LPS has pro-inflammatory effects. Translocation of LPS into the systemic circulation is a consequence of increased gut permeability. Atherosclerosis, a multifactorial disease, is influenced by the gut microbiota through multiple pathways. Many studies have focused on the pro-atherogenic role of TMAO, however, it is not clear if this is a causal factor. In addition, gut microbiota play a key role in bile acid metabolism and some interventions targeting bile acid receptors tend to decrease atherosclerosis. Concluding, gut microbiota affect hypertension and atherosclerosis through many pathways, providing a wide range of potential therapeutic targets. Challenges ahead include translation of findings and mechanisms to humans and development of therapeutic interventions that target cardiovascular risk by modulation of gut microbes and metabolites.
Collapse
Affiliation(s)
- Barbara J. H. Verhaar
- Department of Internal Medicine, Section Geriatrics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands;
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Andrei Prodan
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal Medicine, Section Vascular Medicine, Universiteit van Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands; (A.P.); (M.N.)
| | - Majon Muller
- Department of Internal Medicine, Section Geriatrics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, 1011-1109 Amsterdam, The Netherlands;
| |
Collapse
|
142
|
Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, Rexrode KM, Manson JE, Qi L. Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk. J Am Coll Cardiol 2020; 75:763-772. [PMID: 32081286 DOI: 10.1016/j.jacc.2019.11.060] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND A gut-microbial metabolite, trimethylamine N-oxide (TMAO), has been associated with coronary atherosclerotic burden. No previous prospective study has addressed associations of long-term changes in TMAO with coronary heart disease (CHD) incidence. OBJECTIVES The purpose of this study was to investigate whether 10-year changes in plasma TMAO levels were significantly associated with CHD incidence. METHODS This prospective nested case-control study included 760 healthy women at baseline. Plasma TMAO levels were measured both at the first (1989 to 1990) and the second (2000 to 2002) blood collections; 10-year changes (Δ) in TMAO were calculated. Incident cases of CHD (n = 380) were identified after the second blood collection through 2016 and were matched to controls (n = 380). RESULTS Regardless of the initial TMAO levels, 10-year increases in TMAO from the first to second blood collection were significantly associated with an increased risk of CHD (relative risk [RR] in the top tertile: 1.58 [95% confidence interval (CI): 1.05 to 2.38]; RR per 1-SD increment: 1.33 [95% CI: 1.06 to 1.67]). Participants with elevated TMAO levels (the top tertile) at both time points showed the highest RR of 1.79 (95% CI: 1.08 to 2.96) for CHD as compared with those with consistently low TMAO levels. Further, we found that the ΔTMAO-CHD relationship was strengthened by unhealthy dietary patterns (assessed by the Alternate Healthy Eating Index) and was attenuated by healthy dietary patterns (p interaction = 0.008). CONCLUSIONS Long-term increases in TMAO were associated with higher CHD risk, and repeated assessment of TMAO over 10 years improved the identification of people with a higher risk of CHD. Diet may modify the associations of ΔTMAO with CHD risk.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kathryn M Rexrode
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - JoAnn E Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
143
|
León-Mimila P, Villamil-Ramírez H, Li XS, Shih DM, Hui ST, Ocampo-Medina E, López-Contreras B, Morán-Ramos S, Olivares-Arevalo M, Grandini-Rosales P, Macías-Kauffer L, González-González I, Hernández-Pando R, Gómez-Pérez F, Campos-Pérez F, Aguilar-Salinas C, Larrieta-Carrasco E, Villarreal-Molina T, Wang Z, Lusis AJ, Hazen SL, Huertas-Vazquez A, Canizales-Quinteros S. Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes. DIABETES & METABOLISM 2020; 47:101183. [PMID: 32791310 DOI: 10.1016/j.diabet.2020.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022]
Abstract
AIMS Trimethylamine N-oxide (TMAO), choline and betaine serum levels have been associated with metabolic diseases including type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). These associations could be mediated by insulin resistance. However, the relationships among these metabolites, insulin resistance and NAFLD have not been thoroughly investigated. Moreover, it has recently been suggested that TMAO could play a role in NAFLD by altering bile acid metabolism. We examined the association between circulating TMAO, choline and betaine levels and NAFLD in obese subjects. METHODS Serum TMAO, choline, betaine and bile acid levels were measured in 357 Mexican obese patients with different grades of NAFLD as determined by liver histology. Associations of NAFLD with TMAO, choline and betaine levels were tested. Moreover, association of TMAO levels with non-alcoholic steatohepatitis (NASH) was tested separately in patients with and without T2D. RESULTS TMAO and choline levels were significantly associated with NAFLD histologic features and NASH risk. While increased serum TMAO levels were significantly associated with NASH in patients with T2D, in non-T2D subjects this association lost significance after adjusting for sex, BMI and HOMA2-IR. Moreover, circulating secondary bile acids were associated both with increased TMAO levels and NASH. CONCLUSIONS In obese patients, circulating TMAO levels were associated with NASH mainly in the presence of T2D. Functional studies are required to evaluate the role of insulin resistance and T2D in this association, both highly prevalent in NASH patients.
Collapse
Affiliation(s)
- P León-Mimila
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, USA; Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | - H Villamil-Ramírez
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | - X S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D M Shih
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - S T Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - E Ocampo-Medina
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | - B López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | - S Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico; Cátedras, CONACyT, Mexico City, Mexico
| | - M Olivares-Arevalo
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | - P Grandini-Rosales
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | - L Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | - I González-González
- Clínica Integral de Cirugía para la Obesidad y Enfermedades Metabólicas, Hospital General Dr. Rubén Lénero, Mexico City, Mexico
| | - R Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - F Gómez-Pérez
- Departamento de Endocrinología, INCMNSZ, Mexico City, Mexico
| | - F Campos-Pérez
- Clínica Integral de Cirugía para la Obesidad y Enfermedades Metabólicas, Hospital General Dr. Rubén Lénero, Mexico City, Mexico
| | - C Aguilar-Salinas
- Departamento de Endocrinología, INCMNSZ, Mexico City, Mexico; Unidad de Investigación en Enfermedades Metabólicas, INCMNSZ, Mexico City, Mexico; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64710, Mexico
| | | | - T Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, INMEGEN, Mexico City, Mexico
| | - Z Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - A J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - S L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - A Huertas-Vazquez
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, USA.
| | - S Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico.
| |
Collapse
|
144
|
Tan Y, Zhou J, Liu C, Zhou P, Sheng Z, Li J, Chen R, Song L, Zhao H, Xu B, Gao R, Yan H. Association Between Plasma Trimethylamine N-oxide and Neoatherosclerosis in Patients With Very Late Stent Thrombosis. Can J Cardiol 2020; 36:1252-1260. [DOI: 10.1016/j.cjca.2019.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
|
145
|
Abstract
Fecal microbial community changes are associated with numerous disease states, including cardiovascular disease (CVD). However, such data are merely associative. A causal contribution for gut microbiota in CVD has been further supported by a multitude of more direct experimental evidence. Indeed, gut microbiota transplantation studies, specific gut microbiota-dependent pathways, and downstream metabolites have all been shown to influence host metabolism and CVD, sometimes through specific identified host receptors. Multiple metaorganismal pathways (involving both microbe and host) both impact CVD in animal models and show striking clinical associations in human studies. For example, trimethylamine N-oxide and, more recently, phenylacetylglutamine are gut microbiota-dependent metabolites whose blood levels are associated with incident CVD risks in large-scale clinical studies. Importantly, a causal link to CVD for these and other specific gut microbial metabolites/pathways has been shown through numerous mechanistic animal model studies. Phenylacetylglutamine, for example, was recently shown to promote adverse cardiovascular phenotypes in the host via interaction with multiple ARs (adrenergic receptors)-a class of key receptors that regulate cardiovascular homeostasis. In this review, we summarize recent advances of microbiome research in CVD and related cardiometabolic phenotypes that have helped to move the field forward from associative to causative results. We focus on microbiota and metaorganismal compounds/pathways, with specific attention paid to short-chain fatty acids, secondary bile acids, trimethylamine N-oxide, and phenylacetylglutamine. We also discuss novel therapeutic strategies for directly targeting the gut microbiome to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Marco Witkowski
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome and Human Health (M.W., S.L.H.), Cleveland Clinic, OH
| | - Taylor L Weeks
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute (S.L.H.), Cleveland Clinic, OH
| | - Stanley L Hazen
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome and Human Health (M.W., S.L.H.), Cleveland Clinic, OH
| |
Collapse
|
146
|
Abstract
We critically review potential involvement of trimethylamine N-oxide (TMAO) as a link between diet, the gut microbiota and CVD. Generated primarily from dietary choline and carnitine by gut bacteria and hepatic flavin-containing mono-oxygenase (FMO) activity, TMAO could promote cardiometabolic disease when chronically elevated. However, control of circulating TMAO is poorly understood, and diet, age, body mass, sex hormones, renal clearance, FMO3 expression and genetic background may explain as little as 25 % of TMAO variance. The basis of elevations with obesity, diabetes, atherosclerosis or CHD is similarly ill-defined, although gut microbiota profiles/remodelling appear critical. Elevated TMAO could promote CVD via inflammation, oxidative stress, scavenger receptor up-regulation, reverse cholesterol transport (RCT) inhibition, and cardiovascular dysfunction. However, concentrations influencing inflammation, scavenger receptors and RCT (≥100 µm) are only achieved in advanced heart failure or chronic kidney disease (CKD), and greatly exceed pathogenicity of <1-5 µm levels implied in some TMAO-CVD associations. There is also evidence that CVD risk is insensitive to TMAO variance beyond these levels in omnivores and vegetarians, and that major TMAO sources are cardioprotective. Assessing available evidence suggests that modest elevations in TMAO (≤10 µm) are a non-pathogenic consequence of diverse risk factors (ageing, obesity, dyslipidaemia, insulin resistance/diabetes, renal dysfunction), indirectly reflecting CVD risk without participating mechanistically. Nonetheless, TMAO may surpass a pathogenic threshold as a consequence of CVD/CKD, secondarily promoting disease progression. TMAO might thus reflect early CVD risk while providing a prognostic biomarker or secondary target in established disease, although mechanistic contributions to CVD await confirmation.
Collapse
|
147
|
Zhai Q, Sun T, Sun C, Yan L, Wang X, Wang Y, Sun J, Zhao Y. High plasma levels of trimethylamine N-oxide are associated with poor outcome in intracerebral hemorrhage patients. Neurol Sci 2020; 42:1009-1016. [PMID: 32705490 DOI: 10.1007/s10072-020-04618-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/19/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS As a gut microbiota-dependent metabolite, trimethylamine N-oxide (TMAO) has been implicated in cardiovascular diseases. We aimed to investigate the relationship between the clinical outcomes and plasma TMAO concentrations in patients with acute intracerebral hemorrhage. METHODS From January 2019 to October 2019, we prospectively enrolled intracerebral hemorrhage patients diagnosed within 6 h of symptoms onset. Plasma TMAO levels was measured for all patients within 24 h after admission. The primary outcome was functional outcome at 3 months. Patients were dichotomized as good (modified Rankin scale 0-3) and poor (modified Rankin scale 4-6). Secondary outcome included early neurological deterioration (END) and hematoma enlargement (HE). RESULTS There were 307 patients (57.7% male) with a mean age of 66.8 years included in the study. The median TMAO levels was 3.2 μmol/L. END, HE, and 3-month poor outcome were detected in 59 (19.2%), 54 (17.6%), and 139 (45.3%) patients, respectively. After adjusting for potential confounders, the odds ratio for the highest quartile of TMAO compared with the lowest quartile was 3.65 (95% confidence interval, 1.43-9.30) for 3-month poor outcome. Furthermore, multiple-adjusted spline regression model showed a linear association between TMAO levels and poor outcome at 3 months (P = 0.013 for linearity). Similar significant findings were observed when functional outcome was analyzed by continuous mRS score. No association was found between TMAO levels and END and HE. CONCLUSIONS The present study demonstrated that increased TMAO levels were independently correlated with 3-month function outcome after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Qijin Zhai
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Taipeng Sun
- Department of Medical Psychology, The Third People's Hospital of Huaian, Huai'an, 223002, Jiangsu, China
| | - Chuanfu Sun
- Department of ICU in Emergency Center, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Luxia Yan
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Xiang Wang
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Yuqian Wang
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China
| | - Junshan Sun
- Department of Neurology, Lianshui people's Hospital Affiliated to Kangda College of Nanjing Medical University, Lianshui, 223400, Jiangsu, China.
| | - Ying Zhao
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, Jiangsu, China.
| |
Collapse
|
148
|
Sun T, Zhang Y, Yin J, Peng X, Zhou L, Huang S, Wen Y, Cao B, Chen L, Li X, Yang W, Tan A, Cheng J, Liu L. Association of Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide with First Ischemic Stroke. J Atheroscler Thromb 2020; 28:320-328. [PMID: 32641646 PMCID: PMC8147013 DOI: 10.5551/jat.55962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM We aimed to investigate the relationship of trimethylamine N-oxide (TMAO) concentrations with ischemic stroke in a large-scale case-control study conducted among the hospital-based general population. METHODS We recruited 953 case-control sex- and age-matched pairs, and cases were confined to first acute ischemic stroke in this study. Fasting plasma TMAO was measured using high-performance liquid chromatography-tandem mass spectroscopy. Conditional logistic regression analysis was conducted to calculate odds ratios (OR) for the association of plasma TMAO with ischemic stroke. RESULTS We found that plasma TMAO concentrations in patients with ischemic stroke were significantly higher than that in the control group (median: 2.85 µmol/L vs. 2.33 µmol/L, P<0.001). In multivariable conditional logistic regression models, higher plasma TMAO concentrations were associated with increased odds of ischemic stroke [fully adjusted OR for highest vs. lowest TMAO quartile: 1.81; 95% confidence interval (CI): 1.27, 2.59; P for trend <0.001]. The multivariable-adjusted OR for ischemic stroke per 1 µmol/L increment of plasma TMAO was 1.05 (95% CI: 1.02, 1.08). Additionally, the positive association also persisted in subgroups stratified by age, sex, body mass index, smoking status, alcohol habits, history of diabetes, and history of hypertension. CONCLUSIONS This study suggested a positive association between plasma TMAO and ischemic stroke. Further studies are required to explore the role of plasma TMAO concentrations in predicting stroke risk.
Collapse
Affiliation(s)
- Taoping Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| | - Yanwei Zhang
- Shenzhen Center for Disease Control and Prevention
| | - Jiawei Yin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| | - Li Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention
| | - Benfeng Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| | - Aijun Tan
- Zhuhai Center for Disease Control and Prevention
| | | | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
149
|
Marzullo P, Di Renzo L, Pugliese G, De Siena M, Barrea L, Muscogiuri G, Colao A, Savastano S, on behalf of Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group. From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2020; 10:35-49. [PMID: 32714511 PMCID: PMC7371682 DOI: 10.1038/s41367-020-0017-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The co-existence of humans and gut microbiota started millions of years ago. Until now, a balance gradually developed between gut bacteria and their hosts. It is now recognized that gut microbiota are key to form adequate immune and metabolic functions and, more in general, for the maintenance of good health. Gut microbiota are established before birth under the influence of maternal nutrition and metabolic status, which can impact the future metabolic risk of the offspring in terms of obesity, diabetes, and cardiometabolic disorders during the lifespan. Obesity and diabetes are prone to disrupt the gut microbiota and alter the gut barrier permeability, leading to metabolic endotoxaemia with its detrimental consequences on health. Specific bacterial sequences are now viewed as peculiar signatures of the metabolic syndrome across life stages in each individual, and are linked to pathogenesis of cardiovascular diseases (CVDs) via metabolic products (metabolites) and immune modulation. These mechanisms have been linked, in association with abnormalities in microbial richness and diversity, to an increased risk of developing arterial hypertension, systemic inflammation, nonalcoholic fatty liver disease, coronary artery disease, chronic kidney disease, and heart failure. Emerging strategies for the manipulation of intestinal microbiota represent a promising therapeutic option for the prevention and treatment of CVD especially in individuals prone to CV events.
Collapse
Affiliation(s)
- Paolo Marzullo
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, 28923 Piancavallo, Verbania Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00136 Rome, Italy
| | - Gabriella Pugliese
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Martina De Siena
- Division of Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luigi Barrea
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Annamaria Colao
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Silvia Savastano
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - on behalf of Obesity Programs of nutrition, Education, Research and Assessment (OPERA) Group
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Division of General Medicine, IRCCS Istituto Auxologico Italiano, 28923 Piancavallo, Verbania Italy
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00136 Rome, Italy
- Unit of Endocrinology, Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
- Division of Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
150
|
Organ CL, Li Z, Sharp TE, Polhemus DJ, Gupta N, Goodchild TT, Tang WHW, Hazen SL, Lefer DJ. Nonlethal Inhibition of Gut Microbial Trimethylamine N-oxide Production Improves Cardiac Function and Remodeling in a Murine Model of Heart Failure. J Am Heart Assoc 2020; 9:e016223. [PMID: 32390485 PMCID: PMC7660847 DOI: 10.1161/jaha.119.016223] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Patients at increased risk for coronary artery disease and adverse prognosis during heart failure exhibit increased levels of circulating trimethylamine N‐oxide (TMAO), a metabolite formed in the metabolism of dietary phosphatidylcholine. We investigated the efficacy of dietary withdrawal of TMAO as well as use of a gut microbe‐targeted inhibitor of TMAO production, on cardiac function and structure during heart failure. Methods and Results Male C57BLK/6J mice were fed either control diet, a diet containing TMAO (0.12% wt/wt), a diet containing choline (1% wt/wt), or a diet containing choline (1% wt/wt) plus a microbial choline trimethylamine lyase inhibitor, iodomethylcholine (0.06% wt/wt), starting 3 weeks before transverse aortic constriction. At 6 weeks after transverse aortic constriction, a subset of animals in the TMAO group were switched to a control diet for the remainder of the study. Left ventricular structure and function were monitored at 3‐week intervals. Withdrawal of TMAO from the diet attenuated adverse ventricular remodeling and improved cardiac function compared with the TMAO group. Similarly, inhibiting gut microbial conversion of choline to TMAO with a choline trimethylamine lyase inhibitor, iodomethylcholine, improved remodeling and cardiac function compared with the choline‐fed group. Conclusions These experimental findings are clinically relevant, and they demonstrate that TMAO levels are modifiable following long‐term exposure periods with either dietary withdrawal of TMAO or gut microbial blockade of TMAO generation. Furthermore, these therapeutic strategies to reduce circulating TMAO levels mitigate the negative effects of dietary choline and TMAO in heart failure.
Collapse
Affiliation(s)
- Chelsea L Organ
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Zhen Li
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Thomas E Sharp
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - David J Polhemus
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - Nilaksh Gupta
- Center for Microbiome and Human Health Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH
| | - Traci T Goodchild
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| | - W H Wilson Tang
- Center for Microbiome and Human Health Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute Cleveland Clinic Cleveland OH
| | - Stanley L Hazen
- Center for Microbiome and Human Health Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute Cleveland Clinic Cleveland OH
| | - David J Lefer
- Cardiovascular Center of Excellence Louisiana State University Health Sciences Center New Orleans LA
| |
Collapse
|