101
|
Zhou Y, Little PJ, Xu S, Kamato D. Curcumin Inhibits Lysophosphatidic Acid Mediated MCP-1 Expression via Blocking ROCK Signalling. Molecules 2021; 26:2320. [PMID: 33923651 PMCID: PMC8073974 DOI: 10.3390/molecules26082320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Curcumin is a natural compound that has been widely used as a food additive and medicine in Asian countries. Over several decades, diverse biological effects of curcumin have been elucidated, such as anti-inflammatory and anti-oxidative activities. Monocyte chemoattractant protein-1 (MCP-1) is a key inflammatory marker during the development of atherosclerosis, and curcumin blocks MCP-1 expression stimulated by various ligands. Hence, we studied the action of curcumin on lysophosphatidic acid (LPA) mediated MCP-1 expression and explored the specific underlying mechanisms. In human vascular smooth muscle cells, LPA induces Rho-associated protein kinase (ROCK) dependent transforming growth factor receptor (TGFBR1) transactivation, leading to glycosaminoglycan chain elongation. We found that LPA also signals via the TGFBR1 transactivation pathway to regulate MCP-1 expression. Curcumin blocks LPA mediated TGFBR1 transactivation and subsequent MCP-1 expression by blocking the ROCK signalling. In the vasculature, ROCK signalling regulates smooth muscle cell contraction, inflammatory cell recruitment, endothelial dysfunction and vascular remodelling. Therefore, curcumin as a ROCK signalling inhibitor has the potential to prevent atherogenesis via multiple ways.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
| | - Peter J. Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230037, China;
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
102
|
Hashemzadeh K, Davoudian N, Jaafari MR, Mirfeizi Z. The Effect of Nanocurcumin in Improvement of Knee Osteoarthritis: A Randomized Clinical Trial. Curr Rheumatol Rev 2021; 16:158-164. [PMID: 31868149 DOI: 10.2174/1874471013666191223152658] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Osteoarthritis is a degenerative disease of the joints. Non-steroidal antiinflammatory drugs (NSAIDs) are being used for the treatment of osteoarthritis. However, their use is limited due to complications, such as gastrointestinal bleeding. Therefore, it is necessary to find alternative treatments for osteoarthritis. Recently, nanomicelle curcumin has been developed to increase the oral bioavailability of curcumin. The aim of this study was to evaluate the effect of nano curcumin on the alleviation of the symptoms of knee osteoarthritis patients. METHODS In this randomized, double-blind controlled trial, the intervention group was administered 40 mg of nanocurcumin capsule every 12 hours over a period of six weeks, and the control group received the placebo (similar components of nanomicelle curcumin capsules yet without curcumin). In the final analysis, 36 patients in the nanocurcumin group and 35 patients in the placebo group were enrolled. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was filled for patients in their first visit and at the end of six weeks. Differences were statistically significant at P-value < 0.05. RESULTS There were no significant differences between the two groups regarding gender, age, Kellgren score, and the duration of the disease before the intervention. A significant decrease was observed in the overall score, along with the scores of pain, stiffness and physical activity subscales of the WOMAC questionnaire in patients of the nano curcumin group compared with the placebo group. CONCLUSION Nanocurcumin significantly improves the symptoms of osteoarthritis patients.
Collapse
Affiliation(s)
- Kamila Hashemzadeh
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Davoudian
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Zahra Mirfeizi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
103
|
Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, Subramaniam K, Radhakrishnan A, Bhojraj S, Kuppusamy G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021; 7:e06350. [PMID: 33655086 PMCID: PMC7899028 DOI: 10.1016/j.heliyon.2021.e06350] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-19 (COVID-19), a devastating respiratory illness caused by SARS-associated coronavirus-2 (SARS-CoV-2), has already affected over 64 million people and caused 1.48 million deaths, just 12 months from the first diagnosis. COVID-19 patients develop serious complications, including severe pneumonia, acute respiratory distress syndrome (ARDS), and or multiorgan failure due to exaggerated host immune response following infection. Currently, drugs that were effective against SARS-CoV are being repurposed for SARS-CoV-2. During this public health emergency, food nutraceuticals could be promising prophylactic therapeutics for COVID-19. Curcumin, a bioactive compound in turmeric, exerts diverse pharmacological activities and is widely used in foods and traditional medicines. This review presents several lines of evidence, which suggest curcumin as a promising prophylactic, therapeutic candidate for COVID-19. First, curcumin exerts antiviral activity against many types of enveloped viruses, including SARS-CoV-2, by multiple mechanisms: direct interaction with viral membrane proteins; disruption of the viral envelope; inhibition of viral proteases; induce host antiviral responses. Second, curcumin protects from lethal pneumonia and ARDS via targeting NF-κB, inflammasome, IL-6 trans signal, and HMGB1 pathways. Third, curcumin is safe and well-tolerated in both healthy and diseased human subjects. In conclusion, accumulated evidence indicates that curcumin may be a potential prophylactic therapeutic for COVID-19 in the clinic and public health settings.
Collapse
Affiliation(s)
- Rajesh K. Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Kiran Kumar Mudnakudu-Nagaraju
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - K.J.Thirumalai Subramaniam
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arun Radhakrishnan
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Gowthamarajan Kuppusamy
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
104
|
Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ. Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radic Biol Med 2021; 163:325-343. [PMID: 33359685 DOI: 10.1016/j.freeradbiomed.2020.12.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Global epidemiological studies reported a shift from maternal/infectious communicable diseases to chronic non-communicable diseases and a major part is attributable to atherosclerosis and metabolic disorders. Accordingly, ischemic heart disease was identified as a leading risk factor for global mortality and morbidity with a prevalence of 128 million people. Almost 9 million premature deaths can be attributed to ischemic heart disease and subsequent acute myocardial infarction and heart failure, also representing a substantial socioeconomic burden. As evidenced by typical oxidative stress markers such as lipid peroxidation products or oxidized DNA/RNA bases, the formation of reactive oxygen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial resperatory chain) plays a central role for the severity of ischemia/reperfusion damage. The underlying mechanisms comprise direct oxidative damage but also adverse redox-regulation of kinase and calcium signaling, inflammation and cardiac remodeling among others. These processes and the role of reactive oxygen species are discussed in the present review. We also present and discuss potential targets for redox-based therapies that are either already established in the clinics (e.g. guanylyl cyclase activators and stimulators) or at least successfully tested in preclinical models of myocardial infarction and heart failure (mitochondria-targeted antioxidants). However, reactive oxygen species have not only detrimental effects but are also involved in essential cellular signaling and may even act protective as seen by ischemic pre- and post-conditioning or eustress - which makes redox therapy quite challenging.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Matthias Oelze
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan.
| |
Collapse
|
105
|
Xi W, Zhai J, Tian L, Zhou S, Zhang Z. Curcumin-Cu2+ complex generated on carbon nanotubes for electrocatalytic application toward electrooxidation of hydroxylamine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
106
|
Curcumin: A Review of Its Effects on Epilepsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:363-373. [PMID: 34331701 DOI: 10.1007/978-3-030-56153-6_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Central nervous system (CNS) diseases pose an enormous healthcare burden, at both an individual and a societal level. Epilepsy has now become one of the most prevalent CNS disorders. Pharmaceutical drugs prescribed for epilepsy often have serious side effects and, for this reason, attention has turned to the use of medicinal plants. Curcumin (diferuloylmethane) is a major component of Curcuma longa and exhibits various pharmacological effects, including anti-inflammatory, antioxidant, and immunoregulatory properties. Here, we have reviewed the literature relating specifically to the antiepileptic effects of curcumin. The evidence suggests a protective effect of curcumin in the control of epileptic seizures, together with a protective effect on the relief of memory impairment, which may stem from its influence on monoamine levels in the brain.
Collapse
|
107
|
Mohammadian Haftcheshmeh S, Khosrojerdi A, Aliabadi A, Lotfi S, Mohammadi A, Momtazi-Borojeni AA. Immunomodulatory Effects of Curcumin in Rheumatoid Arthritis: Evidence from Molecular Mechanisms to Clinical Outcomes. Rev Physiol Biochem Pharmacol 2021; 179:1-29. [PMID: 33404796 DOI: 10.1007/112_2020_54] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disorder characterized by the destruction of the joint and bone resorption. The production of pro-inflammatory cytokines and chemokines, dysregulated functions of three important subtypes of T helper (TH) cells including TH1, TH17, and regulator T (Treg) cells are major causes of the initiation and development of RA. Moreover, B cells as a source of the production of several autoantibodies play key roles in the pathogenesis of RA. The last decades have seen increasingly rapid advances in the field of immunopharmacology using natural origin compounds for the management of various inflammatory diseases. Curcumin, a main active polyphenol compound isolated from turmeric, curcuma longa, possesses a wide range of pharmacologic properties for the treatment of several diseases. This review comprehensively will assess beneficial immunomodulatory effects of curcumin on the production of pro-inflammatory cytokines and also dysregulated functions of immune cells including TH1, TH17, Treg, and B cells in RA. We also seek the clinical efficacy of curcumin for the treatment of RA in several recent clinical trials. In conclusion, curcumin has been found to ameliorate RA complications through modulating inflammatory and autoreactive responses in immune cells and synovial fibroblast cells via inhibiting the expression or function of pro-inflammatory mediators, such as nuclear factor-κB (NF-κB), activated protein-1 (AP-1), and mitogen-activated protein kinases (MAPKs). Of note, curcumin treatment without any adverse effects can attenuate the clinical symptoms of RA patients and, therefore, has therapeutic potential for the treatment of the diseases.
Collapse
Affiliation(s)
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Lotfi
- Department of Medical Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
108
|
Sena-Júnior AS, Aidar FJ, de Oliveira e Silva AM, Estevam CDS, de Oliveira Carvalho CR, Lima FB, dos Santos JL, Marçal AC. Whether or Not the Effects of Curcuma longa Supplementation Are Associated with Physical Exercises in T1DM and T2DM: A Systematic Review. Nutrients 2020; 13:nu13010124. [PMID: 33396291 PMCID: PMC7823559 DOI: 10.3390/nu13010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is one of the most prevalent chronic diseases in the world; one of its main characteristics is chronic hyperglycemia. Pharmacotherapy and other alternatives such as regular exercise are among the therapeutic methods used to control this pathology and participate in glycemic control, as well as the ingestion of plant extracts with antioxidant effects. Among the different plants used for this purpose, curcumin has potential to be used to attenuate the hyperglycemic condition triggered by diabetes mellitus (DM). Some prior studies suggest that this plant has antioxidant and hypoglycemic potential. This review aims to evaluate the antioxidant and hypoglycemic potential of curcumin supplementation in Type 1 DM (T1DM) and Type 2 DM (T2DM). The search considered articles published between 2010 and 2019 in English and Portuguese, and a theoretical survey of relevant information was conducted in the main databases of scientific publications, including the Virtual Health Library and its indexed databases, PubMed, LILACS (Latin American and Caribbean Literature on Health Sciences-Health Information for Latin America and the Caribbean-BIREME/PAHO/WHO), and Scientific Electronic Library Online (SciELO). The associated use of turmeric and physical exercise has demonstrated antioxidant, anti-inflammatory, and hypoglycemic effects, suggesting that these could be used as potential therapeutic methods to improve the quality of life and survival of diabetic patients.
Collapse
Affiliation(s)
- Ailton Santos Sena-Júnior
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
| | - Felipe José Aidar
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
| | - Ana Mara de Oliveira e Silva
- Nutrition Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
- Department of Nutrition, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-100, Brazil
| | - Charles dos Santos Estevam
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil;
- Postgraduate in Biotechnology, Northeast Network in Biotechnology (RENORBIO), Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - Carla Roberta de Oliveira Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo CEP 05508-000, Brazil; (C.R.d.O.C.); (F.B.L.)
| | - Fábio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo CEP 05508-000, Brazil; (C.R.d.O.C.); (F.B.L.)
| | - Jymmys Lopes dos Santos
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports—GEPEPS, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
| | - Anderson Carlos Marçal
- Graduate Program in Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil; (A.S.S.-J.); (F.J.A.); (J.L.d.S.)
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe CEP 49100-000, Brazil
- Correspondence:
| |
Collapse
|
109
|
Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review. Eur J Med Chem 2020; 210:113072. [PMID: 33310285 DOI: 10.1016/j.ejmech.2020.113072] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Curcumin, as a natural compound, extracted from plant Curcuma longa, is abundant in the Indian subcontinent and Southeast Asia, and have been used in a diverse array of pharmacological activities. Although curcumin has some limitations like low stability and low bioavailability, it has been proved that this compound induced apoptosis signaling and is also known to block cell proliferation signaling pathway. Recently, extensive research has been carried out to study the application of curcumin as a health improving agent, and devise new methods to overcome to the curcumin limitations and incorporate this functional ingredient into foods. Combinational chemotherapy is one of the basic strategies is using for 60 years for the treatment of various health problems like cancer, malaria, inflammation, diabetes and etc. Molecular hybridization is another strategy to make multi-pharmacophore or conjugated drugs with more synergistic effect than the parent compounds. The aim of this review is to provide an overview of the pharmacological activity of curcumin and its analogs in combination with other bioactive compounds and cover more recent reports of anti-cancer, anti-malarial, and anti-inflammatory activities of these analogs.
Collapse
|
110
|
Ferguson JJA, Abbott KA, Garg ML. Anti-inflammatory effects of oral supplementation with curcumin: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2020; 79:1043-1066. [PMID: 34378053 DOI: 10.1093/nutrit/nuaa114] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CONTEXT Chronic inflammation is a major contributor to the development of noncommunicable diseases. Curcumin, a bioactive polyphenol from turmeric, is a well-known anti-inflammatory agent in preclinical research. Clinical evidence remains inconclusive because of discrepancies regarding optimal dosage, duration, and formulation of curcumin. OBJECTIVE The aim of this systematic review, conducted and reported in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and checklist, was to evaluate the efficacy of curcumin supplementation on systemic inflammatory mediators, comparing dose, duration, and bioavailability status of interventions. DATA SOURCES The Medline, CINAHL, EMBASE, Scopus, and Cochrane literature databases were searched from 1980 to May-end 2019. Randomized controlled trials investigating effects of dietary curcumin on inflammatory mediators in humans not receiving anti-inflammatory treatment were eligible for inclusion. Two authors independently assessed titles and abstracts of identified articles for potential eligibility and respective, retrieved, full-text articles; disagreements were resolved by a third author. Evidence quality was critically appraised using the Quality Criteria Checklist for Primary Research. DATA EXTRACTION Thirty-two trials (N = 2,038 participants) were included and 28 were meta-analyzed using a random-effects model; effect sizes were expressed as Hedges' g (95%CI). DATA ANALYSIS Pooled data (reported here as weighted mean difference [WMD]; 95%CI) showed a reduction in C-reactive protein (-1.55 mg/L; -1.81 to -1.30), interleukin-6 (-1.69 pg/mL, -2.56 to -0.82), tumor necrosis factor α (-3.13 pg/mL; -4.62 to -1.64), IL-8 (-0.54 pg/mL; -0.82 to -0.28), monocyte chemoattractant protein-1 (-2.48 pg/mL; -3.96 to -1.00), and an increase in IL-10 (0.49 pg/mL; 0.10 to 0.88), with no effect on intracellular adhesion molecule-1. CONCLUSION These findings provide evidence for the anti-inflammatory effects of curcumin and support further investigation to confirm dose, duration, and formulation to optimize anti-inflammatory effects in humans with chronic inflammation. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42019148682.
Collapse
Affiliation(s)
- Jessica J A Ferguson
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Kylie A Abbott
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
111
|
Rolfe V, Mackonochie M, Mills S, MacLennan E. Turmeric / curcumin and health outcomes: A meta-review of systematic reviews. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
112
|
Chen T, Zhu G, Meng X, Zhang X. Recent developments of small molecules with anti-inflammatory activities for the treatment of acute lung injury. Eur J Med Chem 2020; 207:112660. [DOI: 10.1016/j.ejmech.2020.112660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
|
113
|
Kaur H, Moreau R. Curcumin steers THP-1 cells under LPS and mTORC1 challenges toward phenotypically resting, low cytokine-producing macrophages. J Nutr Biochem 2020; 88:108553. [PMID: 33220404 DOI: 10.1016/j.jnutbio.2020.108553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The persistent activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) triggered by mucosal stress has been linked to deregulation of the gut immune response resulting in intestinal inflammation and cell death. The present study investigated the regulatory properties of food-derived mTORC1 modulators, curcumin, and piperine, toward the polarization of stimulated macrophages and the differentiation of monocytes at two mTORC1 activity levels (baseline and elevated). To that end, we created stable human THP-1 monocytes exhibiting normal or constitutively active mTORC1. Curcumin or its combination with piperine, but not piperine alone, suppressed mTORC1 kinase activity, curtailed lipopolysaccharide-mediated inflammatory response of THP-1 macrophages, and repressed macrophage activation by inhibiting signaling pathways involved in M1 (mTORC1) and M2 (mTORC2 and cAMP response element binding protein) polarization. The effects of piperine in the curcumin/piperine combination were modest overall, indicating it was curcumin that modulated differentiating monocytes into acquiring a M0 macrophage phenotype characterized by low inflammatory cytokine output.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
114
|
Bañuls-Mirete M, Ogdie A, Guma M. Micronutrients: Essential Treatment for Inflammatory Arthritis? Curr Rheumatol Rep 2020; 22:87. [PMID: 33104882 PMCID: PMC8078476 DOI: 10.1007/s11926-020-00962-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW Synovial inflammation is characteristic of inflammatory chronic arthropathies and can cause progressive articular damage, chronic pain, and functional loss. Scientific research has increasingly focused on investigating anti-inflammatory micronutrients present in fruits, vegetables, spices, seeds, tea, and wine. This review aims to examine the anti-inflammatory effect of polyphenols (phytonutrients present in plants) and other micronutrients described in randomized clinical trials conducted in patients with chronic inflammatory arthropathies. RECENT FINDINGS There is an increasing evidence that differences in micronutrient intake might play an essential role in pathogenesis, therapeutic response, and remission of synovitis. Randomized clinical trials with specific micronutrient- or nutrient-enriched food intake show improvement of symptoms and modulation of both pro- and anti-inflammatory mediators. We found convincing evidence of the anti-inflammatory effect of several micronutrients in arthritis symptoms and inflammation. Although in clinical practice nutritional recommendations to patients with chronic joint inflammation are not consistently prescribed, the addition of these nutrients to day-to-day eating habits could potentially change the natural history of inflammatory arthritis. Future research is needed for a consensus on the specific nutritional recommendations for patients with chronic synovial inflammation.
Collapse
Affiliation(s)
- Marina Bañuls-Mirete
- Department of Medicine, School of Medicine, University of California, San Diego UCSD, 9500 Gilman Dr. MC 0663, La Jolla, CA, 92093-0663, USA
| | - Alexis Ogdie
- Division of Rheumatology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego UCSD, 9500 Gilman Dr. MC 0663, La Jolla, CA, 92093-0663, USA.
- Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
115
|
Shafabakhsh R, Mobini M, Raygan F, Aghadavod E, Ostadmohammadi V, Amirani E, Mansournia MA, Asemi Z. Curcumin administration and the effects on psychological status and markers of inflammation and oxidative damage in patients with type 2 diabetes and coronary heart disease. Clin Nutr ESPEN 2020; 40:77-82. [PMID: 33183576 DOI: 10.1016/j.clnesp.2020.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/07/2020] [Accepted: 09/18/2020] [Indexed: 01/12/2023]
Abstract
INTRODUCTION This study assessed the effects of curcumin intake on psychological status, markers of inflammation and oxidative damage in patients with type 2 diabetes mellitus (T2DM) and coronary heart disease (CHD). METHOD This randomized, double-blind, placebo-controlled trial was performed in 60 patients with T2DM and CHD, aged 45-85 years with 2- and 3-vessel CHD. Patients were randomized into two groups to receive either 1000 mg/day curcumin (n = 30) or placebo (n = 30) for 12 weeks. Using RT-PCR method, gene expression related to insulin metabolism and inflammatory markers on mononuclear cells from peripheral blood was evaluated. RESULT Curcumin intake significantly decreased Pittsburgh Sleep Quality Index (PSQI) (β -1.27; 95% CI, -2.27, -0.31; P = 0.01) compared to the placebo group. Curcumin intake caused a significant reduction in malondialdehyde (MDA) (β -0.20 μmol/L; 95% CI, -0.36, -0.04; P = 0.01), significant increase in total antioxidant capacity (TAC) (β 75.82 mmol/L; 95% CI, 3.400, 148.25; P = 0.04) and glutathione (GSH) levels (β 63.48 μmol/L; 95% CI, 26.58, 100.37; P = 0.001) when compared with the placebo. Additionally, curcumin intake upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) (P = 0.01). CONCLUSION Curcumin intake for 12 weeks in patients with T2DM and CHD had beneficial effects on PSQI, TAC, GSH, MDA values, and gene expression of PPAR-γ. This study was retrospectively registered in the Iranian website (www.irct.ir) for registration of clinical trials (http://www.irct.ir: IRCT20170513033941N63).
Collapse
Affiliation(s)
- Rana Shafabakhsh
- National Institutes for Medical Research Development (NIMAD), Tehran, Iran.
| | - Moein Mobini
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| | - Fariba Raygan
- Department of Cardiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Esmat Aghadavod
- National Institutes for Medical Research Development (NIMAD), Tehran, Iran.
| | | | - Elaheh Amirani
- National Institutes for Medical Research Development (NIMAD), Tehran, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- National Institutes for Medical Research Development (NIMAD), Tehran, Iran.
| |
Collapse
|
116
|
Zahedi H, Hosseinzadeh-Attar MJ, Sahebkar A, Ranjbar SH, Najafi A, Hosseini S, Qorbani M, Ahmadi A, Ardehali SH, Moravvej H, Pourmand G, Norouzy A, Shadnoush M. Therapeutic effects of supplementation with Curcuminoids in critically ill patients receiving enteral nutrition: a randomized controlled trial protocol. J Diabetes Metab Disord 2020; 19:1609-1614. [PMID: 33553039 DOI: 10.1007/s40200-019-00451-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Background Curcuminoids are dietary polyphenols that can improve health indices through different mechanisms such as anti-inflammatory, antioxidant and immunoregulatory properties. Due to the lack of evidences on the efficacy of curcuminoids in critically ill patients, this study was designed to investigate the effects of short-term curcuminoids supplementation on inflammatory, oxidative stress and adipokine indices as well as nutritional and clinical status in Traumatic Brain Injury (TBI) patients admitted in the Intensive Care Unit (ICU). Methods The present trial will be performed in the ICU of Sina and Shohadaye Tajrish hospitals of Tehran, Iran. Sixty-two critically ill patients with TBI will be enrolled based on the eligibility criteria. The patients will be randomly assigned into two groups. For 7 days, they will received either 500 mg curcuminoids in combination with 5 mg piperine or matched placebo. A general questionnaire, consent form as well as NUTRIC, SOFA and APACHEII scoring system and anthropometrics will be assessed at baseline. The inflammatory markers including TNF-α, IL-6, MCP-1 and CRP, oxidative stress indices (GPx and SOD) and adipokines (leptin and adiponetctin) will be measured at baseline and at the end of the study. In addition, dietary intake, concomitant drugs and laboratory tests will be recorded daily. Discussion To the best of our knowledge, this is the first clinical trial investigating the effect of curcuminoids supplementation in critically ill patient with TBI. The findings of the present study will provide evidence on the efficacy and safety of curcuminoids in these patients. Trial registration number (http://www.irct.ir, identifier: IRCT20180619040151N1), Registration date:18.09.2018.
Collapse
Affiliation(s)
- Hoda Zahedi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No.44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, Iran
| | - Mohammad-Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No.44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Hasani Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Thran University of Medical Sciences, Tehran, Iran
| | - Atabak Najafi
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No.44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Arezoo Ahmadi
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Ardehali
- Department of Anesthesiology and Critical Care, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Pourmand
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Norouzy
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No.44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, Iran
| | - Mahdi Shadnoush
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Department of Clinical Nutrition, Faculty of Nutrition & Food Technology, Shahid Beheshti University of Medical Sciences, Velenjak Street, Shahid Chamran High Way, Tehran, Iran
| |
Collapse
|
117
|
Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: A review of its biological effects. Phytother Res 2020; 35:680-700. [PMID: 32929825 DOI: 10.1002/ptr.6855] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Medicinal plants have been used for years as a source of food, spices, and, in traditional medicine, as a remedy to numerous diseases. Piper nigrum, belonging to the family Piperaceae is one of the most widely used spices all over the world. It has a distinct sharp flavor attributed to the presence of the phytochemical, piperine. Apart from its use as a spice, P. nigrum is frequently used for medicinal, preservation, and perfumery purposes. Black pepper contains 2-7.4% of piperine, varying in content is associated with the pepper plant. Piperine displays numerous pharmacological effects such as antiproliferative, antitumor, antiangiogenesis, antioxidant, antidiabetic, anti-obesity, cardioprotective, antimicrobial, antiaging, and immunomodulatory effects in various in vitro and in vivo experimental trials. Furthermore, piperine has also been documented for its hepatoprotective, anti-allergic, anti-inflammatory, and neuroprotective properties. This review highlights and discusses the medicinal and health-promoting effects of piperine, along with possible mechanisms of its action in health promotion and disease prevention. In addition, the present review summarizes the recent literature related to piperine as a therapeutic agent against several diseases.
Collapse
Affiliation(s)
- Iahtisham-Ul Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, Pakistan
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Tanweer A Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | | |
Collapse
|
118
|
Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic Biol Med 2020; 157:15-37. [PMID: 32131026 DOI: 10.1016/j.freeradbiomed.2020.02.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
According to the latest Global Burden of Disease Study data, non-communicable diseases in general and cardiovascular disease (CVD) in particular are the leading cause of premature death and reduced quality of life. Demographic shifts, unhealthy lifestyles and a higher burden of adverse environmental factors provide an explanation for these findings. The expected growing prevalence of CVD requires enhanced research efforts for identification and characterisation of novel therapeutic targets and strategies. Cardiovascular risk factors including classical (e.g. hypertension, diabetes, hypercholesterolaemia) and non-classical (e.g. environmental stress) factors induce the development of endothelial dysfunction, which is closely associated with oxidant stress and vascular inflammation and results in CVD, particularly in older adults. Most classically successful therapies for CVD display vasoprotective, antioxidant and anti-inflammatory effects, but were originally designed with other therapeutic aims. So far, only a few 'redox drugs' are in clinical use and many antioxidant strategies have not met expectations. With the present review, we summarise the actual knowledge on CVD pathomechanisms, with special emphasis on endothelial dysfunction, adverse redox signalling and oxidative stress, highlighting the preclinical and clinical evidence. In addition, we provide a brief overview of established CVD therapies and their relation to endothelial dysfunction and oxidative stress. Finally, we discuss novel strategies for redox-based CVD therapies trying to explain why, despite a clear link between endothelial dysfunction and adverse redox signalling and oxidative stress, redox- and oxidative stress-based therapies have not yet provided a breakthrough in the treatment of endothelial dysfunction and CVD.
Collapse
Affiliation(s)
- Andreas Daiber
- The Center for Cardiology, Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; The Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Stefan Chlopicki
- The Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
119
|
Shi L, Xun W, Peng W, Hu H, Cao T, Hou G. Effect of the Single and Combined Use of Curcumin and Piperine on Growth Performance, Intestinal Barrier Function, and Antioxidant Capacity of Weaned Wuzhishan Piglets. Front Vet Sci 2020; 7:418. [PMID: 32851010 PMCID: PMC7411177 DOI: 10.3389/fvets.2020.00418] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to evaluate effects of the single and combined use of curcumin (CUR) and piperine (PIP) on performance, intestinal barrier function, and antioxidant capacity of weaned piglets. A total of 50 Wuzhishan piglets weaned at 35 days of age were randomly assigned to five groups receiving a corn–soybean basal diet (CON), the basal diet supplemented with 50 mg/kg piperine, 200 mg/kg curcumin (low-CUR), 200 mg/kg curcumin + 50 mg/kg piperine (PIP + CUR), and 300 mg/kg curcumin (high-CUR), respectively. The results showed that the feed/gain ratio (F/G) and plasma d-lactate and diamine oxidase activity (DAO) of the CUR + PIP and high-CUR groups were lower than those of the CON group (all P < 0.05), while the jejunum and ileum villus height, the villus height/crypt depth ratio, and the messenger RNA (mRNA) expression levels of occludin, claudin-1, and zonula occluden-1 in jejunal and ileal mucosa were higher in the CUR + PIP and high-CUR groups than in the CON group (all P < 0.05). Moreover, the piglets in the CUR + PIP and high-CUR groups had higher serum and intestinal mucosa activity of superoxide dismutase and glutathione peroxidase and lower malonaldehyde concentration than piglets in the CON group (all P < 0.05). The above parameters were not significantly different between the CUR + PIP and high-CUR groups (P > 0.05). In conclusion, the combination of CUR and PIP seemed to be as advantageous as high-CUR to piglets, but it was more effective than the single use of CUR and PIP. These data indicated that the basal diet supplemented with CUR + PIP or high-CUR could improve the intestinal permeability and suppress oxidative stress of weaned Wuzhishan piglets.
Collapse
Affiliation(s)
- Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenjuan Xun
- College of Animal Sciences and Technology, Hainan University, Haikou, China
| | - Weiqi Peng
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haichao Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ting Cao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
120
|
Tabatabaei-Malazy O, Abdollahi M, Larijani B. Beneficial Effects of Anti-Oxidative Herbal Medicines in Diabetic Patients Infected with COVID-19: A Hypothesis. Diabetes Metab Syndr Obes 2020; 13:3113-3116. [PMID: 32943897 PMCID: PMC7467661 DOI: 10.2147/dmso.s264824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
During the pandemic of Coronavirus Disease 2019 (COVID-19), it is critical to introduce potential medical treatments. Anti-oxidative herbal medicines with evidence-based beneficial impacts in the treatment of diabetes mellitus can be suggested as an adjuvant therapy to its conventional treatments in patients infected with COVID-19.
Collapse
Affiliation(s)
- Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
121
|
Júnior ASS, Aidar FJ, Santos JLD, Estevam CDS, Dos Santos JDM, de Oliveira E Silva AM, Lima FB, De Araújo SS, Marçal AC. Effects of resistance training and turmeric supplementation on reactive species marker stress in diabetic rats. BMC Sports Sci Med Rehabil 2020; 12:45. [PMID: 32774865 PMCID: PMC7409633 DOI: 10.1186/s13102-020-00194-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Background Type 1 diabetes mellitus (T1DM) is a metabolic disease characterized by hyperglycemia and excessive generation of reactive oxygen species caused by autoimmune destruction of beta-cells in the pancreas. Among the antioxidant compounds, Curcuma longa (CL) has potential antioxidant effects and may improve hyperglycemia in uncontrolled T1DM/TD1, as well as prevent its complications (higher costs for the maintenance of health per patient, functional disability, cardiovascular disease, and metabolic damage). In addition to the use of compounds to attenuate the effects triggered by diabetes, physical exercise is also essential for glycemic control and the maintenance of skeletal muscles. Our objective is to evaluate the effects of CL supplementation associated with moderate- to high-intensity resistance training on the parameters of body weight recovery, glycemic control, reactive species markers, and tissue damage in rats with T1DM/TD1. Methods Forty male 3-month-old Wistar rats (200–250 g) with alloxan-induced T1DM were divided into 4 groups (n = 7–10): sedentary diabetics (DC); diabetic rats that underwent a 4-week resistance training protocol (TD); CL-supplemented diabetic rats (200 mg/kg body weight, 3x a week) (SD); and supplemented diabetic rats under the same conditions as above and submitted to training (TSD). Body weight, blood glucose, and the following biochemical markers were analyzed: lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid, creatine kinase (CK), lactate dehydrogenase (LDH), and thiobarbituric acid reactive substances (TBARS). Results Compared to the DC group, the TD group showed body weight gain (↑7.99%, p = 0.0153) and attenuated glycemia (↓23.14%, p = 0.0008) and total cholesterol (↓31.72%, p ≤ 0.0041) associated with diminished reactive species markers in pancreatic (↓45.53%, p < 0.0001) and cardiac tissues (↓51.85%, p < 0.0001). In addition, compared to DC, TSD promoted body weight recovery (↑15.44%, p ≤ 0.0001); attenuated glycemia (↓42.40%, p ≤ 0.0001), triglycerides (↓39.96%, p ≤ 0.001), and total cholesterol (↓28.61%, p ≤ 0.05); and attenuated the reactive species markers in the serum (↓26.92%, p ≤ 0.01), pancreas (↓46.22%, p ≤ 0.0001), cardiac (↓55.33%, p ≤ 0.001), and skeletal muscle (↓42.27%, p ≤ 0.001) tissues caused by T1DM. Conclusion Resistance training associated (and/or not) with the use of Curcuma longa attenuated weight loss, the hypoglycemic and hypolipidemic effects, reactive species markers, and T1DM-induced tissue injury.
Collapse
Affiliation(s)
| | - Felipe José Aidar
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil.,Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Jymmys Lopes Dos Santos
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil.,Department of Physiology, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Charles Dos Santos Estevam
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | | | | | - Fábio Bessa Lima
- Department of Physiology and Biophysics, Universidade de São Paulo, São Paulo, Brazil
| | - Silvan Silva De Araújo
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Anderson Carlos Marçal
- Department of Morphology, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| |
Collapse
|
122
|
Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int Immunopharmacol 2020; 85:106607. [DOI: 10.1016/j.intimp.2020.106607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
|
123
|
Gómez-Téllez A, Sierra-Puente D, Muñoz-Gómez R, Ibarra-Pitts A, Guevara-Cruz M, Hernández-Ortega M, Gutiérrez-Salmeán G. Effects of a Low-Dose Spirulina/Turmeric Supplement on Cardiometabolic and Antioxidant Serum Markers of Patients With Abdominal Obesity. Front Nutr 2020; 7:65. [PMID: 32509796 PMCID: PMC7248216 DOI: 10.3389/fnut.2020.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 01/20/2023] Open
Abstract
Obesity is one of the greatest public health problems worldwide. It is associated with underlying low-grade inflammation, thus is a risk factor for the development of cardiometabolic alterations. Functional foods, such as spirulina and turmeric, in the form of nutraceutics have been considered to exert not only an antioxidant effect but also modulate mechanisms in the metabolic pathways underlying cardiometabolic disruptions. We aimed to study the effectiveness of supplementation with a Spirulina maxima/Turmeric longa mixture (266 mg/156.6 mg) on body composition, lipemic, and antioxidant status in patients with abdominal obesity. To achieve this, 43 patients were included (control group, n = 21, and experimental, n = 22), in a double-blind randomized controlled trial. Both groups were daily supplemented, orally, for 12 weeks. After 3-month supplementation (altogether with individualized dietary management), both groups showed a decrease in body weight, fat mass, and abdominal circumference; however, no intergroup statistical differences were found. The same phenomenon was observed concerning biochemical metabolic markers; nevertheless, an obvious trend favoring spirulina/turmeric supplementation can be appreciated. Finally, both groups significantly increased their serum antioxidant status, although the supplemented groups showed a two-fold accrue vs. placebo.
Collapse
Affiliation(s)
- Arlene Gómez-Téllez
- Facultad de Ciencias de la Salud, Universidad del Valle de Toluca, Mexico City, México.,Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, México
| | - Diego Sierra-Puente
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, México
| | - Regina Muñoz-Gómez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, México
| | - Amelia Ibarra-Pitts
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, México
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Marcela Hernández-Ortega
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, México
| | - Gabriela Gutiérrez-Salmeán
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, México
| |
Collapse
|
124
|
M Luisa DPA, Griselda RM, Valentín ML, Carmina OS, Cristina VM, JJ M, Maykel GT, David QG, Roberto SS, Gerardo LG. Curcumin-loaded poly-ε-caprolactone nanoparticles show antioxidant and cytoprotective effects in the presence of reactive oxygen species. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520921499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interest in novel delivery systems that improve the cytoprotective and antioxidant effects of natural drugs has been explored recently due to the increase in the incidence of chronic diseases in which oxidation mechanisms are involved. Curcumin is a phenolic compound recently shown to be clinically significant due to its anti-inflammatory, anticancer, and antioxidant properties. However, this molecule possesses a low bioavailability and a high degradation rate in the presence of light. Therefore, we prepared nanoparticles of poly-ε-caprolactone and Pluronic® F-68 as a stabilizer and loaded these with curcumin (Cur–PCL nanoparticles) for antioxidant and cytoprotective applications. The nanoparticles did not induce cell death, but they did reduce cell proliferation without affecting cell migration and cell adhesion. Interestingly, Cur–PCL and poly-ε-caprolactone nanoparticles reduced the oxidative stress induced by hydrogen peroxide and presented a cytoprotective effect. Remarkably, poly-ε-caprolactone nanoparticles showed a decrement of 30% in reactive oxygen species presence compared to the positive control. The decrease of reactive oxygen species derived from the administration of poly-ε-caprolactone nanoparticles could be attributed to the presence of Pluronic® F-68. Taken together, these data indicated that these nanoparticles might have a clinical application in disorders related to reactive oxygen species formation.
Collapse
Affiliation(s)
- Del Prado-Audelo M Luisa
- Laboratorio de Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Rodríguez-Martínez Griselda
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Martínez-López Valentín
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
| | - Ortega-Sánchez Carmina
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
| | - Velasquillo-Martínez Cristina
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
| | - Magaña JJ
- Laboratorio de Medicina Genómica, Departamento de Genómica, Centro Nacional de Investigación y Atención de Quemados (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México, Mexico
| | - González-Torres Maykel
- CONACyT – Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Quintanar-Guerrero David
- Laboratorio de Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| | - Sánchez-Sánchez Roberto
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
| | - Leyva-Gómez Gerardo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
125
|
Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12:E1562. [PMID: 32471251 PMCID: PMC7352291 DOI: 10.3390/nu12061562] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus-disease 2019 (COVID-19) was announced as a global pandemic by the World Health Organization. Challenges arise concerning how to optimally support the immune system in the general population, especially under self-confinement. An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay. For example, sufficient protein intake is crucial for optimal antibody production. Low micronutrient status, such as of vitamin A or zinc, has been associated with increased infection risk. Frequently, poor nutrient status is associated with inflammation and oxidative stress, which in turn can impact the immune system. Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors (angiotensin converting enzyme 2), ACE2. Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, has also been shown to produce anti-inflammatory effects. In this review, we highlight the importance of an optimal status of relevant nutrients to effectively reduce inflammation and oxidative stress, thereby strengthening the immune system during the COVID-19 crisis.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Alex Brito
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First Moscow Medical University, Trubetskay Str. 8, 119991 Moscow, Russia
| | - Giulia Dingeo
- Independent Researcher, Val de Marne, 94999 Paris, France;
| | - Sofia Sosa Fernandez Del Campo
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA;
- Center for Health Research, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| |
Collapse
|
126
|
Rutz J, Janicova A, Woidacki K, Chun FKH, Blaheta RA, Relja B. Curcumin-A Viable Agent for Better Bladder Cancer Treatment. Int J Mol Sci 2020; 21:ijms21113761. [PMID: 32466578 PMCID: PMC7312715 DOI: 10.3390/ijms21113761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Although the therapeutic armamentarium for bladder cancer has considerably widened in the last few years, severe side effects and the development of resistance hamper long-term treatment success. Thus, patients turn to natural plant products as alternative or complementary therapeutic options. One of these is curcumin, the principal component of Curcuma longa that has shown chemopreventive effects in experimental cancer models. Clinical and preclinical studies point to its role as a chemosensitizer, and it has been shown to protect organs from toxicity induced by chemotherapy. These properties indicate that curcumin could hold promise as a candidate for additive cancer treatment. This review evaluates the relevance of curcumin as an integral part of therapy for bladder cancer.
Collapse
Affiliation(s)
- Jochen Rutz
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
| | - Andrea Janicova
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| | - Katja Woidacki
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
| | - Roman A. Blaheta
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
- Correspondence:
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| |
Collapse
|
127
|
Wu Q, Zhang X, Zhao Y, Yang X. High l-Carnitine Ingestion Impairs Liver Function by Disordering Gut Bacteria Composition in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5707-5714. [PMID: 32342686 DOI: 10.1021/acs.jafc.9b08313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article studied the effects of high l-carnitine consumption on intestinal microbiota, liver function, and metabolite distribution in mice. 16S rRNA results showed that high l-carnitine supplementation could induce the accumulation of Anaerobiospirillum, Coriobacteriaceae, Akkermansia_muciniphila, and Helicobacter. High intake of l-carnitine also induced liver injury, which was proved by the increases in the serum AST and ALT activities, production of inflammatory liver cytokines (IL-1, IL-6, TNF-α, and TNF-β), lipid metabolism (TC, TG, HDL, and LDL) disorder, and decline in antioxidant ability (SOD, GSH-Px, MDA, and RAHFR). The correlation analysis results showed that Anaerobiospirillum, Akkermansia_muciniphila, and Helicobacter were strongly positively correlated with AST, IL-1, TNF-α, TNF-β, and MDA levels (r > 0.5, p < 0.01 or p < 0.05). All in all, high l-carnitine ingestion could induce a decline in the liver function by disorder in the gut bacteria composition, resulting in an increase in TMAO metabolism.
Collapse
Affiliation(s)
- Qiu Wu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
128
|
The Effect of Polyphenolics in Extracts from Natural Materials on Metabolic Activity of Metastatic Melanoma WM-266-4 Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The importance of natural crops in medicine and pharmacy is growing. Beside bioactive compounds used directly as therapeutic agents, there are also raw materials used for drug synthesis or as a basic model for new biologically active compounds. In this paper, the optimum conditions for material extraction of Curcuma longa, Lycium barbarum, Equisetum arvense, Vitis vinifera, and Rosmarinus officinalis were investigated to achieve high antioxidant levels. The main aim of this study was to verify the correlation between the content of antioxidants, proanthocyanidins and total phenolic substances for certain extracts from the raw materials (Curcuma longa, Lycium barbarum, Equisetum arvense, Vitis vinifera and Rosmarinus officinalis) and the reduction of the metabolic activity of skin cancer cells.
Collapse
|
129
|
Wang L, Cai X, Shi M, Xue L, Kuang S, Xu R, Qi W, Li Y, Ma X, Zhang R, Hong F, Ye H, Chen L. Identification and optimization of piperine analogues as neuroprotective agents for the treatment of Parkinson's disease via the activation of Nrf2/keap1 pathway. Eur J Med Chem 2020; 199:112385. [PMID: 32402936 DOI: 10.1016/j.ejmech.2020.112385] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a slowly progressive and complex neurodegenerative disorder. Up to date, there are no approved drugs that could slow or reverse the neurodegenerative process of PD. Here, we reported the synthesis of series of piperine analogues and the evaluation of their neuroprotective effects against hydrogen peroxide (H2O2) induced damage in the neuron-like PC12 cells. Among these analogues, 3b exhibited the most potent protection effect and its underlying mechanism was further investigated. Further results indicated that the ROS scavenging and cytoprotection effect of 3b might be related to the Nrf2 activation and upregulation of related phase II antioxidant enzymes, such as HO-1 and NQO1. In in vivo study, oral administration (100 mg/kg) of 3b significantly attenuated PD-associated behavioral deficits in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD and protected tyrosine hydroxylase-immunopositive dopaminergic neurons. Our results provided evidence that 3b might be a promising candidate for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaoying Cai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linlin Xue
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Shuang Kuang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ruiling Xu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wenyan Qi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xu Ma
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ruijia Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feng Hong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
130
|
Kadikova RN, Ramazanov IR, Gabdullin AM, Mozgovoj OS, Dzhemilev UM. Synthesis of heteroatom-containing pyrrolidine derivatives based on Ti(O- iPr) 4 and EtMgBr-catalyzed carbocyclization of allylpropargyl amines with Et 2Zn. RSC Adv 2020; 10:17881-17891. [PMID: 35515579 PMCID: PMC9053609 DOI: 10.1039/d0ra02677h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
The Ti(O-iPr)4 and EtMgBr-catalyzed regio and stereoselective carbocyclization of N-allyl-substituted 2-alkynylamines with Et2Zn, followed by deuterolysis or hydrolysis, affords the corresponding methylenepyrrolidine derivatives in high yields. It was found that Ti-Mg-catalyzed carbocyclization of N-allyl-substituted 2-alkynylamines with Et2Zn is equally selective in dichloromethane, hexane, toluene, and diethyl ether. The reaction was tolerant to the presence of aryl, alkyl, trimethylsilyl, methoxymethyl and aminomethyl substituents on the alkyne. A selective method was proposed for the preparation of bis-pyrrolidine derivatives using Ti-Mg-catalyzed carbocyclization of bis-allylpropargyl amines with Et2Zn.
Collapse
Affiliation(s)
- Rita N Kadikova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Ilfir R Ramazanov
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Azat M Gabdullin
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Oleg S Mozgovoj
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Usein M Dzhemilev
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| |
Collapse
|
131
|
Rainha J, Gomes D, Rodrigues LR, Rodrigues JL. Synthetic Biology Approaches to Engineer Saccharomyces cerevisiae towards the Industrial Production of Valuable Polyphenolic Compounds. Life (Basel) 2020; 10:life10050056. [PMID: 32370107 PMCID: PMC7281501 DOI: 10.3390/life10050056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Polyphenols are plant secondary metabolites with diverse biological and potential therapeutic activities such as antioxidant, anti-inflammatory and anticancer, among others. However, their extraction from the native plants is not enough to satisfy the increasing demand for this type of compounds. The development of microbial cell factories to effectively produce polyphenols may represent the most attractive solution to overcome this limitation and produce high amounts of these bioactive molecules. With the advances in the synthetic biology field, the development of efficient microbial cell factories has become easier, largely due to the development of the molecular biology techniques and by the identification of novel isoenzymes in plants or simpler organisms to construct the heterologous pathways. Furthermore, efforts have been made to make the process more profitable through improvements in the host chassis. In this review, advances in the production of polyphenols by genetically engineered Saccharomyces cerevisiae as well as by synthetic biology and metabolic engineering approaches to improve the production of these compounds at industrial settings are discussed.
Collapse
|
132
|
Alidadi M, Jamialahmadi T, Cicero AF, Bianconi V, Pirro M, Banach M, Sahebkar A. The potential role of plant-derived natural products in improving arterial stiffness: A review of dietary intervention studies. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
133
|
Kuszewski JC, Wong RHX, Wood LG, Howe PRC. Effects of fish oil and curcumin supplementation on cerebrovascular function in older adults: A randomized controlled trial. Nutr Metab Cardiovasc Dis 2020; 30:625-633. [PMID: 32127335 DOI: 10.1016/j.numecd.2019.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Chronic conditions such as obesity, which contribute to endothelial dysfunction in older adults, can cause impairments in cerebrovascular perfusion, which is associated with accelerated cognitive decline. Supplementing the diet with bioactive nutrients that can enhance endothelial function, such as fish oil or curcumin, may help to counteract cerebrovascular dysfunction. METHODS AND RESULTS A 16-week double-blind, randomized placebo-controlled trial was undertaken in 152 older sedentary overweight/obese adults (50-80 years, body mass index: 25-40 kg/m2) to investigate effects of fish oil (2000 mg docosahexaenoic acid + 400 mg eicosapentaenoic acid/day), curcumin (160 mg/day) or a combination of both on cerebrovascular function (measured by Transcranial Doppler ultrasound), systemic vascular function (blood pressure, heart rate and arterial compliance) and cardiometabolic (fasting glucose and blood lipids) and inflammatory (C-reactive protein) biomarkers. The primary outcome, cerebrovascular responsiveness to hypercapnia, was not affected by the interventions. However, cerebral artery stiffness was significantly reduced in males following fish oil supplementation (P = 0.007). Furthermore, fish oil reduced heart rate (P = 0.038) and serum triglycerides (P = 0.006) and increased HDL cholesterol (P = 0.002). Curcumin did not significantly affect these outcomes either alone or in combination with fish oil. CONCLUSION Regular supplementation with fish oil but not curcumin improved biomarkers of cardiovascular and cerebrovascular function. The combined supplementation did not result in additional benefits. Further studies are warranted to identify an efficacious curcumin dose and to characterize (in terms of sex, BMI, cardiovascular and metabolic risk factors) populations whose cerebrovascular and cognitive functions might benefit from either intervention. CLINICAL TRIAL REGISTRATION ACTRN12616000732482p.
Collapse
Affiliation(s)
- Julia C Kuszewski
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Rachel H X Wong
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia; Institute for Resilient Regions, University of Southern Queensland, Springfield Central, Australia
| | - Lisa G Wood
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | - Peter R C Howe
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia; Institute for Resilient Regions, University of Southern Queensland, Springfield Central, Australia.
| |
Collapse
|
134
|
Zhang L, Wang P, Yang Z, Du F, Li Z, Wu C, Fang A, Xu X, Zhou G. Molecular dynamics simulation exploration of the interaction between curcumin and myosin combined with the results of spectroscopy techniques. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105455] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
135
|
Jahandideh F, Wu J. Perspectives on the Potential Benefits of Antihypertensive Peptides towards Metabolic Syndrome. Int J Mol Sci 2020; 21:E2192. [PMID: 32235782 PMCID: PMC7139547 DOI: 10.3390/ijms21062192] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to the regulation of blood pressure, the renin-angiotensin system (RAS) also plays a key role in the onset and development of insulin resistance, which is central to metabolic syndrome (MetS). Due to the interplay between RAS and insulin resistance, antihypertensive compounds may exert beneficial effects in the management of MetS. Food-derived bioactive peptides with RAS blocking properties can potentially improve adipose tissue dysfunction, glucose intolerance, and insulin resistance involved in the pathogenesis of MetS. This review discusses the pathophysiology of hypertension and the association between RAS and pathogenesis of the MetS. The effects of bioactive peptides with RAS modulating effects on other components of the MetS are discussed. While the in vivo reports on the effectiveness of antihypertensive peptides against MetS are encouraging, the exact mechanism by which these peptides infer their effects on glucose and lipid handling is mostly unknown. Therefore, careful design of experiments along with standardized physiological models to study the effect of antihypertensive peptides on insulin resistance and obesity could help to clarify this relationship.
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
136
|
Smilkov K, Ackova DG, Cvetkovski A, Ruskovska T, Vidovic B, Atalay M. Piperine: Old Spice and New Nutraceutical? Curr Pharm Des 2020; 25:1729-1739. [PMID: 31267856 DOI: 10.2174/1381612825666190701150803] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/19/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Many of the activities associated with pepper fruits have been attributed to piperine, the most active compound present in these spices. OBJECTIVE This paper aims to provide an overview of the known properties of piperine, i.e. piperine's chemistry, its physiological activity, documented interactions as a bioenhancer and reported data concerning its toxicity, antioxidant properties and anticancer activity. DISCUSSION It is known that piperine possesses several properties. In its interaction with other drugs, it can act as a bioavailability enhancer; this effect is also manifested in combination with other nutraceuticals, e.g. with curcumin, i.e. piperine can modify curcumin's antioxidant, anti-inflammatory, antimicrobial and anticancer effects. Piperine displays significant immunomodulating, antioxidant, chemopreventive and anticancer activity; these effects have been shown to be dose-dependent and tissue-specific. However, the main limitation associated with piperine seems to be its low bioavailability, a disadvantage that innovative formulations are overcoming. CONCLUSION It is predicted that an increasing number of studies will focus on piperine, especially those directed towards unraveling its properties at molecular level. The current knowledge about the action of piperine will form a foundation for ways to improve piperine's bioavailability e.g. exploitation of different carrier systems. The therapeutical applications of this compound will be clarified, and piperine will be recognized as an important nutraceutical.
Collapse
Affiliation(s)
- Katarina Smilkov
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Darinka G Ackova
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Aleksandar Cvetkovski
- Department of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Tatjana Ruskovska
- Department of General Medicine, Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Bojana Vidovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mustafa Atalay
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
137
|
Shahcheraghi SH, Zangui M, Lotfi M, Ghayour-Mobarhan M, Ghorbani A, Jaliani HZ, Sadeghnia HR, Sahebkar A. Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme. Curr Pharm Des 2020; 25:333-342. [PMID: 30864499 DOI: 10.2174/1381612825666190313123704] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor. Despite standard multimodality treatment, the highly aggressive nature of GBM makes it one of the deadliest human malignancies. The anti-cancer effects of dietary phytochemicals like curcumin provide new insights to cancer treatment. Evaluation of curcumin's efficacy against different malignancies including glioblastoma has been a motivational research topic and widely studied during the recent decade. In this review, we discuss the recent observations on the potential therapeutic effects of curcumin against glioblastoma. Curcumin can target multiple signaling pathways involved in developing aggressive and drug-resistant features of glioblastoma, including pathways associated with glioma stem cell activity. Notably, combination therapy with curcumin and chemotherapeutics like temozolomide, the GBM standard therapy, as well as radiotherapy has shown synergistic response, highlighting curcumin's chemo- and radio-sensitizing effect. There are also multiple reports for curcumin nanoformulations and targeted forms showing enhanced therapeutic efficacy and passage through blood-brain barrier, as compared with natural curcumin. Furthermore, in vivo studies have revealed significant anti-tumor effects, decreased tumor size and increased survival with no notable evidence of systemic toxicity in treated animals. Finally, a pharmacokinetic study in patients with GBM has shown a detectable intratumoral concentration, thereby suggesting a potential for curcumin to exert its therapeutic effects in the brain. Despite all the evidence in support of curcumin's potential therapeutic efficacy in GBM, clinical reports are still scarce. More studies are needed to determine the effects of combination therapies with curcumin and importantly to investigate the potential for alleviating chemotherapy- and radiotherapy-induced adverse effects.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Modern Sciences & Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahtab Zangui
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Zarei Jaliani
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
138
|
Bustamante MF, Agustín-Perez M, Cedola F, Coras R, Narasimhan R, Golshan S, Guma M. Design of an anti-inflammatory diet (ITIS diet) for patients with rheumatoid arthritis. Contemp Clin Trials Commun 2020; 17:100524. [PMID: 32025586 PMCID: PMC6997513 DOI: 10.1016/j.conctc.2020.100524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved treatment of RA, patients with RA often inquire about dietary interventions to improve RA symptoms, as they perceive rapid changes in their symptoms after consumption of certain foods. There is evidence that some ingredients have pro- or anti-inflammatory effects. In addition, recent literature has shown a link between diet and microbiome changes. Both diet and the gut microbiome are linked to circulating metabolites that may modulate inflammation. However, evidence of the effects of an anti-inflammatory and probiotic-rich diet in patients with RA is scarce. There is also a need for biological data to support its anti-inflammatory effects. Methods The main goal of this study is to delineate the design process for a diet tailored to our RA population. To achieve this goal, we collected information on diet, supplements, cooking methods, and intake of different ingredients for each patient. Different groups were interviewed, and their feedback was assessed to design a diet that incorporates suggested anti-inflammatory ingredients in a manner that was easy for patients to adopt based on their lifestyles and backgrounds. Results We designed a diet that includes a high intake of potential anti-inflammatory ingredients. Feedback from highly motivated patients was critical in constructing an anti-inflammatory diet (ITIS diet) with elevated adherence. Conclusion In order to tailor our diet, we surveyed our patients on several different parameters. We obtained important feedback on how feasible our ITIS diet is for RA patients. Using this feedback, we made minor improvements and finalized the design of the ITIS diet. This diet is being used in an on-going pilot study to determine their anti-inflammatory effect in pain and joint swelling in RA patients. Trial registration Not applicable.
Collapse
Affiliation(s)
- Marta F Bustamante
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Francesca Cedola
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Roxana Coras
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| | - Rekha Narasimhan
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Shahrokh Golshan
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, San Diego, CA, USA.,Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
139
|
|
140
|
Tsai SW, Huang CC, Hsu YJ, Chen CJ, Lee PY, Huang YH, Lee MC, Chiu YS, Tung YT. Accelerated Muscle Recovery After In Vivo Curcumin Supplementation. Nat Prod Commun 2020; 15. [DOI: 10.1177/1934578x20901898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The currently available treatment options for muscle injuries are suboptimal and often delay muscle recovery. In this study, the effects of curcumin on inflammation and skeletal muscle regeneration after contusion-induced injury in mice were investigated. The mice were randomly assigned to 4 groups, namely normal control (NC), with induced injury (mass-drop injury, MDI) and without treatment (MDI [M]), with induced injury and diclofenac (DCF) treatment (MDI + DCF [M + D]), and with induced injury and curcumin treatment (MDI + curcumin [M + C]). Contusion-induced injury was inflicted on the left gastrocnemius muscle, and DCF or curcumin was orally administered after injury once per day for 7 days. The M group exhibited significantly higher lipid peroxidation, myeloperoxidase (MPO), and desmin than the NC group. The M + D and M + C groups have lower lipid peroxidation and neutrophils (decrease in MPO protein) and higher muscle satellite cell regeneration (increase in desmin protein) than the M group. Additionally, for the contusion-induced muscle injury, curcumin could affect the specific proteins of inflammation, neutrophils, and differentiation of satellite cells, including Ikk-α/ß, MPO, and myogenin. In conclusion, curcumin potentially accelerates muscle recovery; therefore, it may be a potential candidate for further research as an effective treatment to enhance muscle repair.
Collapse
Affiliation(s)
- Sen-Wei Tsai
- Department of Physical Medicine and Rehabilitation, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City
- Department of Physical Medicine and Rehabilitation, School of Medicine, Tzu Chi University, Hualien
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan
| | - Chun-Jung Chen
- Department of Medical and Research, Taichung Veterans General Hospital, Taichung
| | - Po-Ying Lee
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei
| | - Yu-Hui Huang
- Department of Physical Medicine & Rehabilitation, Chung Shan Medical University Hospital, Taichung
- School of Medicine, Chung Shan Medical University, Taichung
- School of Physical Therapy, Chung Shan Medical University, Taichung
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan
| | - Yen-Shuo Chiu
- Department of Orthopedic Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City
| | - Yu-Tang Tung
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei
- Nutrition Research Center, Taipei Medical University Hospital, Taipei City
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei
| |
Collapse
|
141
|
Osali A. Aerobic exercise and nano-curcumin supplementation improve inflammation in elderly females with metabolic syndrome. Diabetol Metab Syndr 2020; 12:26. [PMID: 32256716 PMCID: PMC7106798 DOI: 10.1186/s13098-020-00532-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/15/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Aging, inflammation, oxidative stress, and metabolic syndrome are the main important factors in brain-derived neurotrophic factor (BDNF) level. AIM The aim of this research was to investigate the effect of 6-week aerobic exercise with moderate intensity and consumption of nano-curcumin on IL-6, IL-10 and BDNF in 60-65 year females with metabolic syndrome (MS). MATERIALS AND METHODS Forty-four women with metabolic syndrome (Mets) voluntarily took part in the present study. Participants were randomly divided into 4 groups of MetS exercise + Nano-Curcumin (MENC), MetS exercise (ME), MetS Nano-Curcumin (MNC), MetS control (MC). During the first week, MENC and ME groups participated in three sets of 10-min aerobic exercise training (AT) with a treadmill with 5-min rest parts between the sets. One minute was added to the duration of exercise sets weekly. Blood samples were collected before and after 6 weeks. IL-6, IL-10 and BDNF levels were measured by ELISA method. To analyze the data, Paired-samples t-test with the significance level of (P ≤ 0.05). RESULTS IL-10 and BDNF concentrations significantly increased after a 6-week intervention (P ≤ 0.05). Also, IL-6 serum levels significantly decreased (P ≤ 0.05). Besides, the results of the present study suggested that nano-curcumin supplementation significantly decreases serum concentrations of malondialdehyde (MDA), and hs-CRP in subjects with metabolic syndrome. In addition, the results of the present study suggested that nano-curcumin supplementation significantly increases serum concentrations of BDNF, IL-10, and total antioxidant capacity (TAC) in subjects with metabolic syndrome. CONCLUSION Findings show that both of the regular exercise and consumption of NanoCurcumin for 6 weeks reduce inflammation. Combination of these two leads to even more reduction of inflammation. The regular exercise led to a decrease at the fat percentage, which deceased IL-6 level and increased IL-10 level. So, this change led to increasing BDNF's levels.Trial registration IRCT2017082335857N1 Registered 2017-11-16, https://en.irct.ir/trial/26971.
Collapse
Affiliation(s)
- Ali Osali
- Department of General Courses, University of Bonab, Bonab, Iran
| |
Collapse
|
142
|
Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46:5-20. [PMID: 31580521 DOI: 10.1002/biof.1566] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) result from progressive deterioration of selectively susceptible neuron populations in different central nervous system (CNS) regions. NDs are classified in accordance with the primary clinical manifestations (e.g., parkinsonism, dementia, or motor neuron disease), the anatomic basis of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), and fundamental molecular abnormalities (e.g., mutations, mitochondrial dysfunction, and its related molecular alterations). NDs include the Alzheimer disease and Parkinson disease, among others. There is a growing evidence that mitochondrial dysfunction and its related mutations in the form of oxidative/nitrosative stress and neurotoxic compounds play major roles in the pathogenesis of various NDs. Curcumin, a polyphenol and nontoxic compound, obtained from turmeric, has been shown to have a therapeutic beneficial effect in various disorders especially on the CNS cells. It has been shown that curcumin has considerable neuro- and mitochondria-protective properties against broad-spectrum neurotoxic compounds and diseases/injury-associating NDs. In this article, we have reviewed the various effects of curcumin on mitochondrial dysfunction in NDs.
Collapse
Affiliation(s)
- Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rouhullah Rafiee
- Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
143
|
|
144
|
Shi J, Hu H, Harnett J, Zheng X, Liang Z, Wang YT, Ung COL. An evaluation of randomized controlled trials on nutraceuticals containing traditional Chinese medicines for diabetes management: a systematic review. Chin Med 2019; 14:54. [PMID: 31798675 PMCID: PMC6884840 DOI: 10.1186/s13020-019-0276-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Nutraceuticals containing traditional Chinese medicine (TCM) are promoted for use in the management of diabetes. The evidence to support such use is largely unknown. This study aimed to summarise and evaluate the literature reporting the results of randomized controlled trials (RCTs) investigating the effects of nutraceuticals in people living with diabetes. METHODS Literature from four electronic databases (PubMed, Scopus, CINAHL and Web of Science) was searched following PRISMA guidelines to yield RCT publications on nutraceutical for diabetes management published since 2009. The quality of reporting was assessed using the CONSORT 2010 checklist statement. Risk-of-bias for each study was assessed using the Cochrane risk of bias tool. RESULTS Out of 1978 records identified in the initial search, 24 randomized, double/triple-blinded, controlled trials that investigated the effect of nutraceuticals covering 17 different TCM herbs for diabetes management were selected. Participants included people who were diabetic (n = 16), pre-diabetic (n = 3) or predisposed to diabetes (n = 5). Sample sizes ranged between 23 and 117 for 2 arms, or 99-165 for 3 arms. Comparisons were made against placebo (n = 22), conventional medicine (n = 1), or regular diet (n = 1) for a duration between 4 and 24 weeks. All but one study tested the effect on fasting blood glucose levels (n = 23) or glycated haemoglobin levels (n = 18), and/or postprandial 2-h blood glucose levels (n = 4) as the primary outcomes. Nineteen studies reported some statistically significant reductions in the respective measures while 5 studies showed no effect on primary or secondary outcomes. None of the included studies met all the criteria for the CONSORT guidelines. Incomplete reporting about randomization and blinding, and a lack of ancillary analyses to explore other influential factors and potential harms associated with the use were repeatedly noted. Based on the Cochrane risk-of-bias tool, 19 studies were deemed to have a high risk of bias mainly attributed to sponsor bias. CONCLUSIONS There is some evidence to suggest positive clinical outcomes in response to the administration of a range of nutraceuticals containing TCM in the management of diabetes. However, these results must be interpreted with caution due to the overall low quality of the trials.
Collapse
Affiliation(s)
- Junnan Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Joanna Harnett
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Xiaoting Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Zuanji Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
- The University of Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| |
Collapse
|
145
|
Alizadeh M, Kheirouri S. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions: a comprehensive meta-analysis of randomized controlled trials. Biomedicine (Taipei) 2019; 9:23. [PMID: 31724938 PMCID: PMC6855189 DOI: 10.1051/bmdcn/2019090423] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Objective: This systematic review and meta-analysis was conducted to collate the effects of curcumin on MDA and antioxidant markers in individuals with diseased conditions. In this study the research question was “does curcumin supplementation improves oxidative stress and antioxidant defense enzymes in human subjects compared to a group without curcumin supplementation? Methods: This research included randomized controlled trials published in English in any year, in which intervention with curcumin was compared to either placebo, or standard of care or no intervention. Pubmed, Embase, Cochrane Central, Scopus and Google Scholar were searched. Meta-analysis was performed using RevMan (version 5.3), with standardized mean differences (SMD) and random-effects models. Results: One hundred twenty-seven titles and abstracts were identified which 17 articles were included for final analysis. The number of participants ranged from 22 to 160 across the included studies. The duration of intervention, dose of curcumin and location of outcomes measurements varied across the studies. Curcumin significantly reduced MDA [SMD −0.46 (95% CI: −0.68 to −0.25)] and increased superoxide dismutase (SOD) [0.82 (0.27 to 1.38)], catalase [10.26 (0.92 to 19.61)], and glutathione peroxidase [8.90 (6.62 to 11.19)] when compared with control group. Subgroup analyses displayed that curcumin could significantly reduce MDA levels with or without use of piperine, however it could increase SOD level in presence of piperine. Conclusions: These findings suggest that curcumin may be used as an adjunct therapy in individuals with oxidative stress. The administration of piperine with curcumin may enhance the efficacy of curcumin on antioxidant defense system.
Collapse
Affiliation(s)
- Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
146
|
Stojanović-Radić Z, Pejčić M, Dimitrijević M, Aleksić A, V. Anil Kumar N, Salehi B, C. Cho W, Sharifi-Rad J. Piperine-A Major Principle of Black Pepper: A Review of Its Bioactivity and Studies. APPLIED SCIENCES 2019; 9:4270. [DOI: 10.3390/app9204270] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Piperine is the main compound present in black pepper, and is the carrier of its specific pungent taste, which is responsible for centuries of human dietary utilization and worldwide popularity as a food ingredient. Along with the application as a food ingredient and food preservative, it is used in traditional medicine for many purposes, which has in most cases been justified by modern scientific studies on its biological effects. It has been confirmed that piperine has many bioactive effects, such as antimicrobial action, as well as many physiological effects that can contribute to general human health, including immunomodulatory, hepatoprotective, antioxidant, antimetastatic, antitumor, and many other activities. Clinical studies demonstrated remarkable antioxidant, antitumor, and drug availability-enhancing characteristics of this compound, together with immunomodulatory potential. All these facts point to the therapeutic potential of piperine and the need to incorporate this compound into general health-enhancing medical formulations, as well as into those that would be used as adjunctive therapy in order to enhance the bioavailability of various (chemo)therapeutic drugs.
Collapse
Affiliation(s)
- Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Milica Pejčić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
| |
Collapse
|
147
|
Farzaei MH, Singh AK, Kumar R, Croley CR, Pandey AK, Coy-Barrera E, Kumar Patra J, Das G, Kerry RG, Annunziata G, Tenore GC, Khan H, Micucci M, Budriesi R, Momtaz S, Nabavi SM, Bishayee A. Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. Int J Mol Sci 2019; 20:4957. [PMID: 31597283 PMCID: PMC6801776 DOI: 10.3390/ijms20194957] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran.
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, India.
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, India.
| | - Courtney R Croley
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad 211 002, India.
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea.
| | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Korea.
| | - Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751 004, Odisha, India.
| | - Giuseppe Annunziata
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Matteo Micucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Karaj 141554364, Iran.
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran 141556451, Iran.
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
148
|
Park HJ, Lee CK, Song SH, Yun JH, Lee A, Park HJ. Highly bioavailable curcumin powder suppresses articular cartilage damage in rats with mono-iodoacetate (MIA)-induced osteoarthritis. Food Sci Biotechnol 2019; 29:251-263. [PMID: 32064134 DOI: 10.1007/s10068-019-00679-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
This study was performed to investigate the effects of highly bioavailable curcumin as Theracurmin® (TC) in rats with monosodium iodoacetate (MIA)-induced osteoarthritis (OA). Seventy-seven male Wistar rats were divided into six groups: normal, negative control (MIA only), positive control (Cerebrex), and three experimental groups treated with 500, 1300, or 2600 mg/kg of TC for 5 weeks. MIA injection-induced OA caused 30% weight-bearing imbalance whereas weight bearing imbalance was significantly improved in the TC groups. Mankin scores revealed TC treatment had significantly ameliorated cartilage damage and chondrocyte decrease. The expressions of nitrotyrosine, tumor necrosis factor-α, phosphorylated nuclear factor kappa B cells, and cleaved caspase-3 were markedly increased in rat with MIA-induced OA, but the TC-treated groups exhibited a significant reduction in the number of immunoreactive cells in a dose-dependent manner. In conclusion, administration of TC contributes to the anti-arthritic effect in rat with MIA-induced OA.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Gyeonggi Bio Research Center, Chemon Inc., Gwanggyo-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16229 Korea
| | - Chul-Kyu Lee
- Gyeonggi Bio Research Center, Chemon Inc., Gwanggyo-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16229 Korea
| | - Si-Hwan Song
- Gyeonggi Bio Research Center, Chemon Inc., Gwanggyo-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16229 Korea
| | - Jee-Hye Yun
- 2Handok Inc., 132 Teheran Street, Gangnam-gu, Seoul, 06235 Korea
| | - Ahsa Lee
- 2Handok Inc., 132 Teheran Street, Gangnam-gu, Seoul, 06235 Korea
| | - Hee-Jung Park
- 3Department of Food and Nutrition, Yuhan University, 590 Gyeongin-ro, Bucheon-si, Gyeonggi-do 14780 Korea
| |
Collapse
|
149
|
Buonomo AR, Scotto R, Nappa S, Arcopinto M, Salzano A, Marra AM, D’Assante R, Zappulo E, Borgia G, Gentile I. The role of curcumin in liver diseases. Arch Med Sci 2019; 15:1608-1620. [PMID: 31749891 PMCID: PMC6855174 DOI: 10.5114/aoms.2018.73596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/20/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Riccardo Scotto
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Salvatore Nappa
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Michele Arcopinto
- Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy
| | - Andrea Salzano
- Department of Translational Medical Science, University of Naples “Federico II”, Naples, Italy
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Groby Road, Leicester, UK
| | | | | | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Guglielmo Borgia
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery – Section of Infectious Diseases, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
150
|
Shirmohammadi L, Ghayour-Mobarhan M, Saberi-Karimian M, Iranshahi M, Tavallaie S, Emamian M, Sahebkar A. Effect of Curcumin on Serum Cathepsin D in Patients with Metabolic Syndrome. Cardiovasc Hematol Disord Drug Targets 2019; 20:116-121. [PMID: 31538907 DOI: 10.2174/1871529x19666190919110652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/21/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammation has been shown to accompany Metabolic Syndrome (MetS) and its features. Cathepsin D is one of a proinflammatory mediator. In the current study, we aimed to investigate the effect of curcumin supplementation on serum cathepsin D levels in patients with MetS. METHODS The current study was conducted on 18-65 years old individuals with MetS diagnosed according to the International Diabetes Federation guidelines. A total of 80 participants were randomly divided into treatment and control groups. The first group (n=40) was given 2 capsules containing 500 mg of phosphatidylcholine complex of curcumin, and the other group (n=40) was given two 500 mg placebo capsules for 6 weeks. Before (week 0) and after (week 6) the intervention, anthropometric indices and blood pressure were measured and blood samples were taken. Serum cathepsin D was measured using an ELISA kit. RESULTS There was no significant difference between treatment and control groups in terms of weight, body mass index, waist circumference and serum cathepsin D levels before and after the intervention. In addition, there was no significant difference between pre- and post-trial values of serum cathepsin D. CONCLUSION The present results do not suggest any effect of curcumin on cathepsin D levels in patients with MetS.
Collapse
Affiliation(s)
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Student Research Committee, Iranian UNESCO Center of Excellence for Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaie
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Emamian
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Biotechnology, School of Medicine, Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|