101
|
Abstract
Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.
Collapse
|
102
|
Ohashi T, Erickson HP. Fibronectin aggregation and assembly: the unfolding of the second fibronectin type III domain. J Biol Chem 2011; 286:39188-99. [PMID: 21949131 DOI: 10.1074/jbc.m111.262337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region ((I)1-9) is commonly accepted as one of the assembly sites. We previously found that (I)1-9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that (I)1-9 bound to the aggregate formed by anastellin and a small FN fragment, (III)1-2. An engineered disulfide bond in (III)2, which stabilizes folding, inhibited aggregation, but a disulfide bond in (III)1 did not. A gelatin precipitation assay showed that (I)1-9 did not interact with anastellin, (III)1, (III)2, (III)1-2, or several (III)1-2 mutants including (III)1-2KADA. (In contrast to previous studies, we found that the (III)1-2KADA mutant was identical in conformation to wild-type (III)1-2.) Because (I)1-9 only bound to the aggregate and the unfolding of (III)2 played a role in aggregation, we generated a (III)2 domain that was destabilized by deletion of the G strand. This mutant bound (I)1-9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in (III)2, (III)3, and (III)11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in (III)2 reduced the FN matrix. These results suggest that the unfolding of (III)2 is one of the key factors for FN aggregation and assembly.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
103
|
To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. FIBROGENESIS & TISSUE REPAIR 2011; 4:21. [PMID: 21923916 PMCID: PMC3182887 DOI: 10.1186/1755-1536-4-21] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/16/2011] [Indexed: 01/01/2023]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes.
Collapse
Affiliation(s)
- Wing S To
- Department of Matrix Biology, Kennedy Institute of Rheumatology Division, Nuffield Department of Orthopedic Rheumatology and Musculoskeletal Sciences, Oxford University, 65 Aspenlea Road, London, W6 8LH, UK.
| | | |
Collapse
|
104
|
Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Curr Opin Genet Dev 2011; 21:664-70. [PMID: 21893407 DOI: 10.1016/j.gde.2011.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 11/20/2022]
Abstract
The importance of mechanical signals during embryogenesis and development, through both intercellular and extracellular signals, is coming into focus. It is widely hypothesized that physical forces help to guide the shape, cellular differentiation and the patterning of tissues. To test these ideas many classical engineering principles and imaging technologies are being adapted. Recent advances in microscopy, mechanical testing and genetic and pharmacological techniques, alongside computational models are helping to dissect the activity of mechanical signals in development at the cellular and molecular level. These inroads are providing maps of mechanical changes in tissue structure and stiffness, and will permit deeper insights into the role of mechanics in both developmental biology and disease.
Collapse
|
105
|
Weber GF, Bjerke MA, DeSimone DW. Integrins and cadherins join forces to form adhesive networks. J Cell Sci 2011; 124:1183-93. [PMID: 21444749 DOI: 10.1242/jcs.064618] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell-cell and cell-extracellular-matrix (cell-ECM) adhesions have much in common, including shared cytoskeletal linkages, signaling molecules and adaptor proteins that serve to regulate multiple cellular functions. The term 'adhesive crosstalk' is widely used to indicate the presumed functional communication between distinct adhesive specializations in the cell. However, this distinction is largely a simplification on the basis of the non-overlapping subcellular distribution of molecules that are involved in adhesion and adhesion-dependent signaling at points of cell-cell and cell-substrate contact. The purpose of this Commentary is to highlight data that demonstrate the coordination and interdependence of cadherin and integrin adhesions. We describe the convergence of adhesive inputs on cell signaling pathways and cytoskeletal assemblies involved in regulating cell polarity, migration, proliferation and survival, differentiation and morphogenesis. Cell-cell and cell-ECM adhesions represent highly integrated networks of protein interactions that are crucial for tissue homeostasis and the responses of individual cells to their adhesive environments. We argue that the machinery of adhesion in multicellular tissues comprises an interdependent network of cell-cell and cell-ECM interactions and signaling responses, and not merely crosstalk between spatially and functionally distinct adhesive specializations within cells.
Collapse
Affiliation(s)
- Gregory F Weber
- Department of Cell Biology, School of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
106
|
Leckband DE, le Duc Q, Wang N, de Rooij J. Mechanotransduction at cadherin-mediated adhesions. Curr Opin Cell Biol 2011; 23:523-30. [PMID: 21890337 DOI: 10.1016/j.ceb.2011.08.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/21/2011] [Accepted: 08/08/2011] [Indexed: 01/30/2023]
Abstract
Cell-to-cell junctions are crucial mechanical and signaling hubs that connect cells within tissues and probe the mechanics of the surrounding environment. Although the capacity of cell-to-extracellular-matrix (ECM) adhesions to sense matrix mechanics and proportionally modify cell functions is well established, cell-cell adhesions only recently emerged as a new class of force sensors. This finding exposes new pathways through which force can instruct cell functions. This review highlights recent findings, which demonstrate that protein complexes associated with classical cadherins, the principal architectural proteins at cell-cell junctions in all soft tissues, are mechanosensors. We further discuss the current understanding of the rudiments of a cadherin-based mechanosensing and transduction pathway, which is distinct from the force sensing machinery of cell-ECM adhesions.
Collapse
Affiliation(s)
- Deborah E Leckband
- School of Chemical Sciences, University of Illinois, Urbana, IL 61822, USA.
| | | | | | | |
Collapse
|
107
|
Sirour C, Hidalgo M, Bello V, Buisson N, Darribère T, Moreau N. Dystroglycan is involved in skin morphogenesis downstream of the Notch signaling pathway. Mol Biol Cell 2011; 22:2957-69. [PMID: 21680717 PMCID: PMC3154890 DOI: 10.1091/mbc.e11-01-0074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/18/2011] [Accepted: 06/09/2011] [Indexed: 01/18/2023] Open
Abstract
Dystroglycan (Dg) is a transmembrane protein involved both in the assembly and maintenance of basement membrane structures essential for tissue morphogenesis, and the transmission of signals across the plasma membrane. We used a morpholino knockdown approach to investigate the function of Dg during Xenopus laevis skin morphogenesis. The loss of Dg disrupts epidermal differentiation by affecting the intercalation of multiciliated cells, deposition of laminin, and organization of fibronectin in the extracellular matrix (ECM). Depletion of Dg also affects cell-cell adhesion, as shown by the reduction of E-cadherin expression at the intercellular contacts, without affecting the distribution of β(1) integrins. This was associated with a decrease of cell proliferation, a disruption of multiciliated-cell intercalation, and the down-regulation of the transcription factor P63, a marker of differentiated epidermis. In addition, we demonstrated that inhibition or activation of the Notch pathway prevents and promotes transcription of X-dg. Our study showed for the first time in vivo that Dg, in addition to organizing laminin in the ECM, also acts as a key signaling component in the Notch pathway.
Collapse
Affiliation(s)
- Cathy Sirour
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Magdalena Hidalgo
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
- Laboratoire Réponses Cellulaires et Fonctionnelles à l'Hypoxie, Université Paris13, EA2363, 93017 Bobigny Cedex, France
| | - Valérie Bello
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Nicolas Buisson
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Thierry Darribère
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| | - Nicole Moreau
- Laboratoire de Biologie du Développement, Université Pierre et Marie Curie, Sorbonne Universités, UMR CNRS 7622, 75252 Paris Cedex 05, France
| |
Collapse
|
108
|
Abstract
All cells exist within the context of a three-dimensional microenvironment in which they are exposed to mechanical and physical cues. These cues can be disrupted through perturbations to mechanotransduction, from the nanoscale-level to the tissue-level, which compromises tensional homeostasis to promote pathologies such as cardiovascular disease and cancer. The mechanisms of such perturbations suggest that a complex interplay exists between the extracellular microenvironment and cellular function. Furthermore, sustained disruptions in tensional homeostasis can be caused by alterations in the extracellular matrix, allowing it to serve as a mechanically based memory-storage device that can perpetuate a disease or restore normal tissue behaviour.
Collapse
|
109
|
Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker's guide to mechanobiology. Dev Cell 2011; 21:35-47. [PMID: 21763607 PMCID: PMC3155761 DOI: 10.1016/j.devcel.2011.06.015] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 01/27/2023]
Abstract
More than a century ago, it was proposed that mechanical forces could drive tissue formation. However, only recently with the advent of enabling biophysical and molecular technologies are we beginning to understand how individual cells transduce mechanical force into biochemical signals. In turn, this knowledge of mechanotransduction at the cellular level is beginning to clarify the role of mechanics in patterning processes during embryonic development. In this perspective, we will discuss current mechanotransduction paradigms, along with the technologies that have shaped the field of mechanobiology.
Collapse
Affiliation(s)
- Jeroen Eyckmans
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
110
|
Schwarzbauer JE, DeSimone DW. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005041. [PMID: 21576254 DOI: 10.1101/cshperspect.a005041] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN-FN and cell-FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
111
|
Chambers KF, Pearson JF, Aziz N, O'Toole P, Garrod D, Lang SH. Stroma regulates increased epithelial lateral cell adhesion in 3D culture: a role for actin/cadherin dynamics. PLoS One 2011; 6:e18796. [PMID: 21533155 PMCID: PMC3078910 DOI: 10.1371/journal.pone.0018796] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 03/20/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cell shape and tissue architecture are controlled by changes to junctional proteins and the cytoskeleton. How tissues control the dynamics of adhesion and cytoskeletal tension is unclear. We have studied epithelial tissue architecture using 3D culture models and found that adult primary prostate epithelial cells grow into hollow acinus-like spheroids. Importantly, when co-cultured with stroma the epithelia show increased lateral cell adhesions. To investigate this mechanism further we aimed to: identify a cell line model to allow repeatable and robust experiments; determine whether or not epithelial adhesion molecules were affected by stromal culture; and determine which stromal signalling molecules may influence cell adhesion in 3D epithelial cell cultures. METHODOLOGY/PRINCIPAL FINDINGS The prostate cell line, BPH-1, showed increased lateral cell adhesion in response to stroma, when grown as 3D spheroids. Electron microscopy showed that 9.4% of lateral membranes were within 20 nm of each other and that this increased to 54% in the presence of stroma, after 7 days in culture. Stromal signalling did not influence E-cadherin or desmosome RNA or protein expression, but increased E-cadherin/actin co-localisation on the basolateral membranes, and decreased paracellular permeability. Microarray analysis identified several growth factors and pathways that were differentially expressed in stroma in response to 3D epithelial culture. The upregulated growth factors TGFβ2, CXCL12 and FGF10 were selected for further analysis because of previous associations with morphology. Small molecule inhibition of TGFβ2 signalling but not of CXCL12 and FGF10 signalling led to a decrease in actin and E-cadherin co-localisation and increased paracellular permeability. CONCLUSIONS/SIGNIFICANCE In 3D culture models, paracrine stromal signals increase epithelial cell adhesion via adhesion/cytoskeleton interactions and TGFβ2-dependent mechanisms may play a key role. These findings indicate a role for stroma in maintaining adult epithelial tissue morphology and integrity.
Collapse
Affiliation(s)
- Karen F. Chambers
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Joanna F. Pearson
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Naveed Aziz
- Genomics Lab, Technology Facility, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Peter O'Toole
- Imaging and Cytometry Lab, Technology Facility, Department of Biology, University of York, Heslington, York, United Kingdom
| | - David Garrod
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- King Saud University, Riyadh, Saudi Arabia
| | - Shona H. Lang
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
112
|
Kresh JY, Chopra A. Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Arch 2011; 462:75-87. [PMID: 21437600 DOI: 10.1007/s00424-011-0954-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 01/17/2023]
Abstract
Adult cardiomyocytes are terminally differentiated with minimal replicative capacity. Therefore, long-term preservation or enhancement of cardiac function depends on structural adaptation. Myocytes interact with the extracellular matrix, fibroblasts, and vascular cells and with each other (end to end; side to side). We review the current understanding of the mechanical determinants and environmental sensing systems that modulate and regulate myocyte molecular machinery and its structural organization. We feature the design and application of engineered cellular microenvironments to demonstrate the ability of cardiac cells to remodel their cytoskeletal organization and shape, including sarcomere/myofibrillar architectural topography. Cell shape-dependent functions result from complex mechanical interactions between the cytoskeleton architecture and external conditions, be they cell-cell or cell-extracellular matrix (ECM) adhesion contact-mediated. This mechanobiological perspective forms the basis for viewing the cardiomyocyte as a mechanostructural anisotropic continuum, exhibiting constant mechanosensory-driven self-regulated adjustment of the cytoskeleton through tight interplay between its force generation activity and concurrent cytoarchitectural remodeling. The unifying framework guiding this perspective is the observation that these emerging events and properties are initiated by and respond to cytoskeletal reorganization, regulated by cell-cell and cell-ECM adhesion and its corresponding (mutually interactive) signaling machinery. It is important for future studies to elucidate how cross talk between these mechanical signals is coordinated to control myocyte structure and function. Ultimately, understanding how the highly interactive mechanical signaling can give rise to phenotypic changes is critical for targeting the underlying pathways that contribute to cardiac remodeling associated with various forms of dilated and hypertrophic myopathies, myocardial infarction, heart failure, and reverse remodeling.
Collapse
Affiliation(s)
- J Yasha Kresh
- Department of Cardiothoracic Surgery, Drexel University College of Medicine, 245 North 15th Street, MS 111, Philadelphia, PA 19102, USA.
| | | |
Collapse
|
113
|
Rohani N, Canty L, Luu O, Fagotto F, Winklbauer R. EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLoS Biol 2011; 9:e1000597. [PMID: 21390298 PMCID: PMC3046958 DOI: 10.1371/journal.pbio.1000597] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 01/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The primordial organization of the metazoan body is achieved during gastrulation by the establishment of the germ layers. Adhesion differences between ectoderm, mesoderm, and endoderm cells could in principle be sufficient to maintain germ layer integrity and prevent intermixing. However, in organisms as diverse as fly, fish, or amphibian, the ectoderm-mesoderm boundary not only keeps these germ layers separated, but the ectoderm also serves as substratum for mesoderm migration, and the boundary must be compatible with repeated cell attachment and detachment. PRINCIPAL FINDINGS We show that localized detachment resulting from contact-induced signals at the boundary is at the core of ectoderm-mesoderm segregation. Cells alternate between adhesion and detachment, and detachment requires ephrinB/EphB signaling. Multiple ephrinB ligands and EphB receptors are expressed on each side of the boundary, and tissue separation depends on forward signaling across the boundary in both directions, involving partially redundant ligands and receptors and activation of Rac and RhoA. CONCLUSION This mechanism differs from a simple differential adhesion process of germ layer formation. Instead, it involves localized responses to signals exchanged at the tissue boundary and an attachment/detachment cycle which allows for cell migration across a cellular substratum.
Collapse
Affiliation(s)
- Nazanin Rohani
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura Canty
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - François Fagotto
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
114
|
Kim HY, Davidson LA. Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway. J Cell Sci 2011; 124:635-46. [PMID: 21266466 PMCID: PMC3031374 DOI: 10.1242/jcs.067579] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 12/18/2022] Open
Abstract
Actomyosin networks linked to the micro-environment through the plasma membrane are thought to be key players in regulating cell behaviors within multicellular tissues, such as converging and extending mesoderm. Here, we observe the dynamics of actin contractions called 'punctuated actin contractions' in the mid-cell body of embryonic mesenchymal cells in the mesoderm. These contraction dynamics are a common feature of Xenopus embryonic tissues and are important for cell shape changes during morphogenesis. Quantitative morphological analysis of these F-actin dynamics indicates that frequent and aligned movements of multiple actin contractions accompany mesoderm cells as they intercalate and elongate. Using inhibitors combined with fluorescence recovery after photobleaching (FRAP) analysis, we find that the dynamics of actin contractions are regulated by both myosin contractility and F-actin polymerization. Furthermore, we find that the non-canonical Wnt-signaling pathway permissively regulates levels of punctuated actin contractions. Overexpression of Xfz7 (Fzd7) can induce early maturation of actin contractions in mesoderm and produce mesoderm-like actin contractions in ectoderm cells. By contrast, expression of the dominant-negative Xenopus disheveled construct Xdd1 blocks the progression of actin contractions into their late mesoderm dynamics but has no effect in ectoderm. Our study reveals punctuated actin contractions within converging and extending mesoderm and uncovers a permissive role for non-canonical Wnt-signaling, myosin contractility and F-actin polymerization in regulating these dynamics.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
115
|
Marjoram L, Wright C. Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus. Development 2011; 138:475-85. [PMID: 21205792 DOI: 10.1242/dev.056010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spatiotemporally dynamic distribution of instructive ligands within embryonic tissue, and their feedback antagonists, including inherent stabilities and rates of clearance, are affected by interactions with cell surfaces or extracellular matrix (ECM). Nodal (here, Xnr1 or Nodal1 in Xenopus) and Lefty interact in a cross-regulatory relationship in mesendoderm induction, and are the conserved instructors of left-right (LR) asymmetry in early somitogenesis stage embryos. By expressing Xnr1 and Lefty proproteins that produce mature functional epitope-tagged ligands in vivo, we found that ECM is a principal surface of Nodal and Lefty accumulation. We detected Lefty moving faster than Nodal, with evidence that intact sulfated proteoglycans in the ECM facilitate the remarkable long distance movement of Nodal. We propose that Nodal autoregulation substantially aided by rapid ligand transport underlies the anteriorward shift of Nodal expression in the left LPM (lateral plate mesoderm), and speculate that the higher levels of chondroitin-sulfate proteoglycan (CSPG) in more mature anterior regions provide directional transport cues. Immunodetection and biochemical analysis showed transfer of Lefty from left LPM to right LPM, providing direct evidence that left-side-derived Lefty is a significant influence in ensuring the continued suppression of right-sided expression of Nodal, maintaining unilateral expression of this conserved determinant of asymmetry.
Collapse
Affiliation(s)
- Lindsay Marjoram
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | |
Collapse
|
116
|
Lefort CT, Wojciechowski K, Hocking DC. N-cadherin cell-cell adhesion complexes are regulated by fibronectin matrix assembly. J Biol Chem 2011; 286:3149-60. [PMID: 21084302 PMCID: PMC3024807 DOI: 10.1074/jbc.m110.115733] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 11/08/2010] [Indexed: 01/16/2023] Open
Abstract
Fibronectin is a principal component of the extracellular matrix. Soluble fibronectin molecules are assembled into the extracellular matrix as insoluble, fibrillar strands via a cell-dependent process. In turn, the interaction of cells with the extracellular matrix form of fibronectin stimulates cell functions critical for tissue repair. Cross-talk between cell-cell and cell-extracellular matrix adhesion complexes is essential for the organization of cells into complex, functional tissue during embryonic development and tissue remodeling. Here, we demonstrate that fibronectin matrix assembly affects the organization, composition, and function of N-cadherin-based adherens junctions. Using fibronectin-null mouse embryonic myofibroblasts, we identified a novel quaternary complex composed of N-cadherin, β-catenin, tensin, and actin that exists in the absence of a fibronectin matrix. In the absence of fibronectin, homophilic N-cadherin ligation recruited both tensin and α5β1 integrins into nascent cell-cell adhesions. Initiation of fibronectin matrix assembly disrupted the association of tensin and actin with N-cadherin, released α5β1 integrins and tensin from cell-cell contacts, stimulated N-cadherin reorganization into thin cellular protrusions, and decreased N-cadherin adhesion. Fibronectin matrix assembly has been shown to recruit α5β1 integrins and tensin into fibrillar adhesions. Taken together, these studies suggest that tensin serves as a common cytoskeletal link for integrin- and cadherin-based adhesions and that the translocation of α5β1 integrins from cell-cell contacts into fibrillar adhesions during fibronectin matrix assembly is a novel mechanism by which cell-cell and cell-matrix adhesions are coordinated.
Collapse
Affiliation(s)
| | - Katherine Wojciechowski
- Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Denise C. Hocking
- From the Departments of Biomedical Engineering and
- Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
117
|
Chopra A, Tabdanov E, Patel H, Janmey PA, Kresh JY. Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. Am J Physiol Heart Circ Physiol 2011; 300:H1252-66. [PMID: 21257918 DOI: 10.1152/ajpheart.00515.2010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.
Collapse
Affiliation(s)
- Anant Chopra
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|
118
|
Abstract
Biochemical patterning and morphogenetic movements coordinate the design of embryonic development. The molecular processes that pattern and closely control morphogenetic movements are today becoming well understood. Recent experimental evidence demonstrates that mechanical cues generated by morphogenesis activate mechanotransduction pathways, which in turn regulate cytoskeleton remodeling, cell proliferation, tissue differentiation. From Drosophila oocytes and embryos to Xenopus and mouse embryos and Arabidopsis meristem, here we review the developmental processes known to be activated in vivo by the mechanical strains associated to embryonic multicellular tissue morphogenesis. We describe the genetic, mechanical, and magnetic tools that have allowed the testing of mechanical induction in development by a step-by-step uncoupling of genetic inputs from mechanical inputs in embryogenesis. We discuss the known underlying molecular mechanisms involved in such mechanotransduction processes, including the Armadillo/β-catenin activation of Twist and the Fog-dependent stabilization of Myosin-II. These mechanotransduction processes are associated with a variety of physiological functions, such as mid-gut differentiation, mesoderm invagination and skeletal joint differentiation in embryogenesis, cell migration and internal pressure regulation during oogenesis, and meristem morphogenesis. We describe how the conservation of associated mechanosensitive pathways in embryonic and adult tissues opens new perspectives on mechanical involvement, potentially in evolution, and in cancer progression.
Collapse
Affiliation(s)
- Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, Paris, France
| |
Collapse
|
119
|
Maurer LM, Tomasini-Johansson BR, Ma W, Annis DS, Eickstaedt NL, Ensenberger MG, Satyshur KA, Mosher DF. Extended binding site on fibronectin for the functional upstream domain of protein F1 of Streptococcus pyogenes. J Biol Chem 2010; 285:41087-99. [PMID: 20947497 PMCID: PMC3003407 DOI: 10.1074/jbc.m110.153692] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/23/2010] [Indexed: 01/14/2023] Open
Abstract
The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by β-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel β-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.
Collapse
Affiliation(s)
- Lisa M. Maurer
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Wenjiang Ma
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Douglas S. Annis
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathan L. Eickstaedt
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Martin G. Ensenberger
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Kenneth A. Satyshur
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Deane F. Mosher
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
120
|
Abstract
In the process of matrix assembly, multivalent extracellular matrix (ECM) proteins are induced to self-associate and to interact with other ECM proteins to form fibrillar networks. Matrix assembly is usually initiated by ECM glycoproteins binding to cell surface receptors, such as fibronectin (FN) dimers binding to α5ß1 integrin. Receptor binding stimulates FN self-association mediated by the N-terminal assembly domain and organizes the actin cytoskeleton to promote cell contractility. FN conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. Once assembled, the FN matrix impacts tissue organization by contributing to the assembly of other ECM proteins. Here, we describe the major steps, molecular interactions, and cellular mechanisms involved in assembling FN dimers into fibrillar matrix while highlighting important issues and major questions that require further investigation.
Collapse
Affiliation(s)
- Purva Singh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
121
|
Papusheva E, Heisenberg CP. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J 2010; 29:2753-68. [PMID: 20717145 DOI: 10.1038/emboj.2010.182] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/09/2010] [Indexed: 12/17/2022] Open
Abstract
Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis.
Collapse
|
122
|
Skoglund P, Keller R. Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan. Curr Opin Cell Biol 2010; 22:589-96. [PMID: 20739170 DOI: 10.1016/j.ceb.2010.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/20/2010] [Accepted: 07/26/2010] [Indexed: 11/16/2022]
Abstract
The shaping of the vertebrate embryonic body plan depends heavily on the narrowing and lengthening (convergence and extension) of embryonic tissues by cell intercalation, a process by which cells actively crawl between one another along the axis of convergence to produce a narrower, longer array. We discuss recent evidence that the vertebrate non-canonical Wnt/Planar Cell Polarity (PCP) pathway, known to directly function in polarizing the movements of intercalating cells, is also involved in the localized assembly of extracellular matrix (ECM). These cell-ECM interactions, in turn, are necessary for expression of the oriented, polarized cell intercalation. The mechanism of PCP/ECM interactions, their molecular signaling, and their mechanical consequences for morphogenesis are discussed with the goal of identifying important unsolved issues.
Collapse
Affiliation(s)
- Paul Skoglund
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
123
|
Zhou J, Kim HY, Wang JHC, Davidson LA. Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin. Development 2010; 137:2785-94. [PMID: 20630946 PMCID: PMC2910388 DOI: 10.1242/dev.045997] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2010] [Indexed: 11/20/2022]
Abstract
During morphogenesis, forces generated by cells are coordinated and channeled by the viscoelastic properties of the embryo. Microtubules and F-actin are considered to be two of the most important structural elements within living cells accounting for both force production and mechanical stiffness. In this paper, we investigate the contribution of microtubules to the stiffness of converging and extending dorsal tissues in Xenopus laevis embryos using cell biological, biophysical and embryological techniques. Surprisingly, we discovered that depolymerizing microtubules stiffens embryonic tissues by three- to fourfold. We attribute tissue stiffening to Xlfc, a previously identified RhoGEF, which binds microtubules and regulates the actomyosin cytoskeleton. Combining drug treatments and Xlfc activation and knockdown lead us to the conclusion that mechanical properties of tissues such as viscoelasticity can be regulated through RhoGTPase pathways and rule out a direct contribution of microtubules to tissue stiffness in the frog embryo. We can rescue nocodazole-induced stiffening with drugs that reduce actomyosin contractility and can partially rescue morphogenetic defects that affect stiffened embryos. We support these conclusions with a multi-scale analysis of cytoskeletal dynamics, tissue-scale traction and measurements of tissue stiffness to separate the role of microtubules from RhoGEF activation. These findings suggest a re-evaluation of the effects of nocodazole and increased focus on the role of Rho family GTPases as regulators of the mechanical properties of cells and their mechanical interactions with surrounding tissues.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Bioengineering, Biomedical Science Tower 3-5059, 3051 Fifth Avenue, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hye Young Kim
- Department of Bioengineering, Biomedical Science Tower 3-5059, 3051 Fifth Avenue, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James H.-C. Wang
- Departments of Orthopedic Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lance A. Davidson
- Department of Bioengineering and Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
124
|
Caicedo-Carvajal CE, Shinbrot T, Foty RA. Alpha5beta1 integrin-fibronectin interactions specify liquid to solid phase transition of 3D cellular aggregates. PLoS One 2010; 5:e11830. [PMID: 20686611 PMCID: PMC2912296 DOI: 10.1371/journal.pone.0011830] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/30/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin alpha5beta1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin alpha5beta1 and sFN and its influence on tissue mechanical properties and cell sorting behavior. METHODOLOGY/PRINCIPAL FINDINGS We generated a series of cell lines varying in alpha5beta1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin alpha5beta1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as alpha5beta1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high alpha5beta1 levels. We also show that differential expression of alpha5beta1 integrin can promote phase-separation between cells. CONCLUSIONS/SIGNIFICANCE The interplay between alpha5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level of control between integrins and the ECM that can influence tissue cohesion and other mechanical properties, which may translate to the specification of tissue structure and function. These studies provide insights into important biological processes such as embryonic development, wound healing, and for tissue engineering applications.
Collapse
Affiliation(s)
- Carlos E. Caicedo-Carvajal
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Troy Shinbrot
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ramsey A. Foty
- Department of Surgery, University of Medicine and Dentistry, New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
125
|
Du J, Takeuchi H, Leonhard-Melief C, Shroyer KR, Dlugosz M, Haltiwanger RS, Holdener BC. O-fucosylation of thrombospondin type 1 repeats restricts epithelial to mesenchymal transition (EMT) and maintains epiblast pluripotency during mouse gastrulation. Dev Biol 2010; 346:25-38. [PMID: 20637190 DOI: 10.1016/j.ydbio.2010.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/09/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
Thrombospondin type 1 repeat (TSR) superfamily members regulate diverse biological activities ranging from cell motility to inhibition of angiogenesis. In this study, we verified that mouse protein O-fucosyltransferase-2 (POFUT2) specifically adds O-fucose to TSRs. Using two Pofut2 gene-trap lines, we demonstrated that O-fucosylation of TSRs was essential for restricting epithelial to mesenchymal transition in the primitive streak, correct patterning of mesoderm, and localization of the definitive endoderm. Although Pofut2 mutant embryos established anterior/posterior polarity, they underwent extensive mesoderm differentiation at the expense of maintaining epiblast pluripotency. Moreover, mesoderm differentiation was biased towards the vascular endothelial cell lineage. Localization of Foxa2 and Cer1 expressing cells within the interior of Pofut2 mutant embryos suggested that POFUT2 activity was also required for the displacement of the primitive endoderm by definitive endoderm. Notably, Nodal, BMP4, Fgf8, and Wnt3 expression were markedly elevated and expanded in Pofut2 mutants, providing evidence that O-fucose modification of TSRs was essential for modulation of growth factor signaling during gastrulation. The ability of Pofut2 mutant embryos to form teratomas comprised of tissues from all three germ layer origins suggested that defects in Pofut2 mutant embryos resulted from abnormalities in the extracellular environment. This prediction is consistent with the observation that POFUT2 targets are constitutive components of the extracellular matrix (ECM) or associate with the ECM. For this reason, the Pofut2 mutants represent a valuable tool for studying the role of O-fucosylation in ECM synthesis and remodeling, and will be a valuable model to study how post-translational modification of ECM components regulates the formation of tissue boundaries, cell movements, and signaling.
Collapse
Affiliation(s)
- Jianguang Du
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Saez A, Anon E, Ghibaudo M, du Roure O, Di Meglio JM, Hersen P, Silberzan P, Buguin A, Ladoux B. Traction forces exerted by epithelial cell sheets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:194119. [PMID: 21386442 DOI: 10.1088/0953-8984/22/19/194119] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.
Collapse
Affiliation(s)
- A Saez
- Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057 and Université Paris Diderot, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Spicer E, Suckert C, Al-Attar H, Marsden M. Integrin alpha5beta1 function is regulated by XGIPC/kermit2 mediated endocytosis during Xenopus laevis gastrulation. PLoS One 2010; 5:e10665. [PMID: 20498857 PMCID: PMC2871791 DOI: 10.1371/journal.pone.0010665] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/19/2010] [Indexed: 12/17/2022] Open
Abstract
During Xenopus gastrulation α5β1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the α5 subunit and regulates the activity of α5β1 integrin. The interaction of kermit2 with α5β1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates α5β1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the α5β1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the α5β1 integrin through receptor endocytosis.
Collapse
Affiliation(s)
- Erin Spicer
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Catherine Suckert
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Hyder Al-Attar
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mungo Marsden
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
128
|
Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mège RM. Strength dependence of cadherin-mediated adhesions. Biophys J 2010; 98:534-42. [PMID: 20159149 DOI: 10.1016/j.bpj.2009.10.044] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/09/2009] [Accepted: 10/29/2009] [Indexed: 01/16/2023] Open
Abstract
Traction forces between adhesive cells play an important role in a number of collective cell processes. Intercellular contacts, in particular cadherin-based intercellular junctions, are the major means of transmitting force within tissues. We investigated the effect of cellular tension on the formation of cadherin-cadherin contacts by spreading cells on substrates with tunable stiffness coated with N-cadherin homophilic ligands. On the most rigid substrates, cells appear well-spread and present cadherin adhesions and cytoskeletal organization similar to those classically observed on cadherin-coated glass substrates. However, when cells are cultured on softer substrates, a change in morphology is observed: the cells are less spread, with a more disorganized actin network. A quantitative analysis of the cells adhering on the cadherin-coated surfaces shows that forces are correlated with the formation of cadherin adhesions. The stiffer the substrates, the larger are the average traction forces and the more developed are the cadherin adhesions. When cells are treated with blebbistatin to inhibit myosin II, the forces decrease and the cadherin adhesions disappear. Together, these findings are consistent with a mechanosensitive regulation of cadherin-mediated intercellular junctions through the cellular contractile machinery.
Collapse
Affiliation(s)
- Benoit Ladoux
- Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7057, Université Paris Diderot, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
|
130
|
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126-40. [PMID: 19854168 PMCID: PMC2854274 DOI: 10.1016/j.ydbio.2009.10.026] [Citation(s) in RCA: 952] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
131
|
Brodland GW, Chen X, Lee P, Marsden M. From genes to neural tube defects (NTDs): insights from multiscale computational modeling. HFSP JOURNAL 2010; 4:142-52. [PMID: 21119766 DOI: 10.2976/1.3338713] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/05/2010] [Indexed: 12/21/2022]
Abstract
The morphogenetic movements, and the embryonic phenotypes they ultimately produce, are the consequence of a series of events that involve signaling pathways, cytoskeletal components, and cell- and tissue-level mechanical interactions. In order to better understand how these events work together in the context of amphibian neurulation, an existing multiscale computational model was augmented. Geometric data for this finite element-based mechanical model were obtained from 3D surface reconstructions of live axolotl embryos and serial sections of fixed specimens. Tissue mechanical properties were modeled using cell-based constitutive equations that include internal force generation and cell rearrangement, and equation parameters were adjusted manually to reflect biochemical changes including alterations in Shroom or the planar-cell-polarity pathway. The model indicates that neural tube defects can arise when convergent extension of the neural plate is reduced by as little as 20%, when it is eliminated on one side of the embryo, when neural ridge elevation is disrupted, when tension in the non-neural ectoderm is increased, or when the ectoderm thickness is increased. Where comparable conditions could be induced in Xenopus embryos, good agreement was found, an important step in model validation. The model reveals the neurulating embryo to be a finely tuned biomechanical system.
Collapse
|
132
|
Tay HG, Ng YW, Manser E. A vertebrate-specific Chp-PAK-PIX pathway maintains E-cadherin at adherens junctions during zebrafish epiboly. PLoS One 2010; 5:e10125. [PMID: 20405038 PMCID: PMC2853574 DOI: 10.1371/journal.pone.0010125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/13/2010] [Indexed: 11/25/2022] Open
Abstract
Background In early vertebrate development, embryonic tissues modulate cell adhesiveness and acto-myosin contractility to correctly orchestrate the complex processes of gastrulation. E-cadherin (E-cadh) is the earliest expressed cadherin and is needed in the mesendodermal progenitors for efficient migration [1], [2]. Regulatory mechanisms involving directed E-cadh trafficking have been invoked downstream of Wnt11/5 signaling [3]. This non-canonical Wnt pathway regulates RhoA-ROK/DAAM1 to control the acto-myosin network. However, in this context nothing is known of the intracellular signals that participate in the correct localization of E-cadh, other than a need for Rab5c signaling [3]. Methodology/Principal Findings By studying loss of Chp induced by morpholino-oligonucleotide injection in zebrafish, we find that the vertebrate atypical Rho-GTPase Chp is essential for the proper disposition of cells in the early embryo. The underlying defect is not leading edge F-actin assembly (prominent in the cells of the envelope layer), but rather the failure to localize E-cadh and β-catenin at the adherens junctions. Loss of Chp results in delayed epiboly that can be rescued by mRNA co-injection, and phenocopies zebrafish E-cadh mutants [4], [5]. This new signaling pathway involves activation of an effector kinase PAK, and involvement of the adaptor PAK-interacting exchange factor PIX. Loss of signaling by any of the three components results in similar underlying defects, which is most prominent in the epithelial-like envelope layer. Conclusions/Significance Our current study uncovers a developmental pathway involving Chp/PAK/PIX signaling, which helps co-ordinate E-cadh disposition to promote proper cell adhesiveness, and coordinate movements of the three major cell layers in epiboly. Our data shows that without Chp signaling, E-cadh shifts to intracellular vesicles rather than the adhesive contacts needed for directed cell movement. These events may mirror the requirement for PAK2 signaling essential for the proper formation of the blood-brain barrier [6], [7].
Collapse
Affiliation(s)
- Hwee Goon Tay
- RGS (Rho GTPases in Stem Cells) Group, Institute of Medical Biology (IMB), Singapore, Singapore
| | - Yuen Wai Ng
- sGSK (Small G-Protein Signaling and Kinases) Group, Institute of Molecular and Cell Biology (IMCB), Neuroscience Research Partnership, Singapore, Singapore
| | - Ed Manser
- RGS (Rho GTPases in Stem Cells) Group, Institute of Medical Biology (IMB), Singapore, Singapore
- sGSK (Small G-Protein Signaling and Kinases) Group, Institute of Molecular and Cell Biology (IMCB), Neuroscience Research Partnership, Singapore, Singapore
- * E-mail:
| |
Collapse
|
133
|
Abstract
Together with cell growth, division and death, changes in cell shape are of central importance for tissue morphogenesis during development. Cell shape is the product of a cell's material and active properties balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of intracellular mechanics and the cell's physical interaction with its environment. In this review, we first discuss the biological and physical mechanisms of cell shape control. We next examine a number of developmental processes in which cell shape change - either individually or in a coordinated manner - drives embryonic morphogenesis and discuss how cell shape is controlled in these processes. Finally, we emphasize that cell shape control during tissue morphogenesis can only be fully understood by using a combination of cellular, molecular, developmental and biophysical approaches.
Collapse
Affiliation(s)
- Ewa Paluch
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
134
|
Shindo A, Hara Y, Yamamoto TS, Ohkura M, Nakai J, Ueno N. Tissue-tissue interaction-triggered calcium elevation is required for cell polarization during Xenopus gastrulation. PLoS One 2010; 5:e8897. [PMID: 20126393 PMCID: PMC2814847 DOI: 10.1371/journal.pone.0008897] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 01/03/2010] [Indexed: 11/30/2022] Open
Abstract
The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium.
Collapse
Affiliation(s)
- Asako Shindo
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yusuke Hara
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Takamasa S. Yamamoto
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Masamichi Ohkura
- Saitama University Brain Science Institute, Saitama, Saitama, Japan
| | - Junichi Nakai
- Saitama University Brain Science Institute, Saitama, Saitama, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
135
|
Fernandez-Sanchez ME, Serman F, Ahmadi P, Farge E. Mechanical induction in embryonic development and tumor growth integrative cues through molecular to multicellular interplay and evolutionary perspectives. Methods Cell Biol 2010; 98:295-321. [PMID: 20816239 DOI: 10.1016/s0091-679x(10)98012-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Embryonic development is a coordination of multicellular biochemical patterning and morphogenetic movements. Last decades revealed the close control of myosin-II-dependent biomechanical morphogenesis by patterning gene expression, with constant progress in the understanding of the underlying molecular mechanisms. Reversed control of developmental gene expression and of myosin-II patterning by the mechanical strains developed by morphogenetic movements was recently revealed at Drosophila gastrulation, through mechanotransduction processes involving the Armadillo/beta-catenin and the downstream of Fog Rho pathways. Here, we present the theoretical (simulations integrating the accumulated knowledge in the genetics of early embryonic development and morphogenesis) and the experimental (genetic and biophysical control of morphogenetic movements) tools having allowed the uncoupling of pure genetic inputs from pure mechanical inputs in the regulation of gene expression and myosin-II patterning. Specifically, we describe the innovative magnetic tweezers tools we have set up to measure and apply physiological strains and forces in vivo, from the inside of the tissue, to modulate and mimic morphogenetic movements in living embryos. We discuss mechanical induction incidence in tumor development and perspective in evolution.
Collapse
Affiliation(s)
- Maria-Elena Fernandez-Sanchez
- Mechanics and Genetics of Embryonic and Tumoral Development group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | | | | | | |
Collapse
|
136
|
Daley WP, Gulfo KM, Sequeira SJ, Larsen M. Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis. Dev Biol 2009; 336:169-82. [PMID: 19804774 PMCID: PMC3183484 DOI: 10.1016/j.ydbio.2009.09.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/07/2009] [Accepted: 09/23/2009] [Indexed: 12/21/2022]
Abstract
Cleft formation is the initial step in submandibular salivary gland (SMG) branching morphogenesis, and may result from localized actomyosin-mediated cellular contraction. Since ROCK regulates cytoskeletal contraction, we investigated the effects of ROCK inhibition on mouse SMG ex vivo organ cultures. Pharmacological inhibitors of ROCK, isoform-specific ROCK I but not ROCK II siRNAs, as well as inhibitors of myosin II activity stalled clefts at initiation. This finding implies the existence of a mechanochemical checkpoint regulating the transition of initiated clefts into progression-competent clefts. Downstream of the checkpoint, clefts are rendered competent through localized assembly of fibronectin promoted by ROCK I/myosin II. Cleft progression is primarily mediated by ROCK I/myosin II-stimulated cell proliferation with a contribution from cellular contraction. Furthermore, we demonstrate that FN assembly itself promotes epithelial proliferation and cleft progression in a ROCK-dependent manner. ROCK also stimulates a proliferation-independent negative feedback loop to prevent further cleft initiations. These results reveal that cleft initiation and progression are two physically and biochemically distinct processes.
Collapse
Affiliation(s)
- William P Daley
- Graduate program in Molecular, Cellular, Developmental, and Neural Biology, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | | | | |
Collapse
|
137
|
Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10:778-90. [PMID: 19851336 DOI: 10.1038/nrm2786] [Citation(s) in RCA: 1480] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases.
Collapse
|
138
|
Davidson L, von Dassow M, Zhou J. Multi-scale mechanics from molecules to morphogenesis. Int J Biochem Cell Biol 2009; 41:2147-62. [PMID: 19394436 PMCID: PMC2753763 DOI: 10.1016/j.biocel.2009.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/31/2009] [Accepted: 04/15/2009] [Indexed: 01/02/2023]
Abstract
Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis.
Collapse
Affiliation(s)
- Lance Davidson
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, 5059-BST3, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
139
|
Roszko I, Sawada A, Solnica-Krezel L. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 2009; 20:986-97. [PMID: 19761865 DOI: 10.1016/j.semcdb.2009.09.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 12/18/2022]
Abstract
Vertebrate gastrulation entails massive cell movements that establish and shape the germ layers. During gastrulation, the individual cell behaviors are strictly coordinated in time and space by various signaling pathways. These pathways instruct the cells about proliferation, shape, fate and migration into proper location. Convergence and extension (C&E) movements during vertebrate gastrulation play a major role in the shaping of the embryonic body. In vertebrates, the Wnt/Planar Cell Polarity (Wnt/PCP) pathway is a key regulator of C&E movements, essential for several polarized cell behaviors, including directed cell migration, and mediolateral and radial cell intercalation. However, the molecular mechanisms underlying the acquisition of Planar Cell Polarity by highly dynamic mesenchymal cells engaged in C&E are still not well understood. Here we review new evidence implicating the Wnt/PCP pathway in specific cell behaviors required for C&E during zebrafish gastrulation, in comparison to other vertebrates. We also discuss findings on the molecular regulation and the interaction of the Wnt/PCP pathway with other signaling pathways during gastrulation movements.
Collapse
Affiliation(s)
- Isabelle Roszko
- Vanderbilt University, Department of Biological Sciences, VU Station B #351634, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
140
|
Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T. Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 2009; 17:175-86. [PMID: 19686679 PMCID: PMC2747264 DOI: 10.1016/j.devcel.2009.06.017] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/01/2009] [Accepted: 06/30/2009] [Indexed: 01/17/2023]
Abstract
Dysfunction of lymphatic valves underlies human lymphedema, yet the process of valve morphogenesis is poorly understood. Here, we show that during embryogenesis, lymphatic valve leaflet formation is initiated by upregulation of integrin-alpha9 expression and deposition of its ligand fibronectin-EIIIA (FN-EIIIA) in the extracellular matrix. Endothelial cell-specific deletion of Itga9 (encoding integrin-alpha9) in mouse embryos results in the development of rudimentary valve leaflets characterized by disorganized FN matrix, short cusps, and retrograde lymphatic flow. Similar morphological and functional defects are observed in mice lacking the EIIIA domain of FN. Mechanistically, we demonstrate that in primary human lymphatic endothelial cells, the integrin-alpha9-EIIIA interaction directly regulates FN fibril assembly, which is essential for the formation of the extracellular matrix core of valve leaflets. Our findings reveal an important role for integrin-alpha9 signaling during lymphatic valve morphogenesis and implicate it as a candidate gene for primary lymphedema caused by valve defects.
Collapse
Affiliation(s)
- Eleni Bazigou
- Lymphatic Development Laboratory, Cancer Research UK London
Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United
Kingdom
| | - Sherry Xie
- Lymphatic Development Laboratory, Cancer Research UK London
Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United
Kingdom
| | - Chun Chen
- Lung Biology Center, UCSF, San Francisco CA 94143-2922, USA
| | - Anne Weston
- Electron Microscopy Unit, Cancer Research UK London Research
Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of
Medicine, Hamamatsu 431-3192, Japan
| | - Lydia Sorokin
- Institute for Physiological Chemistry and Pathobiochemistry,
Münster University, 48149 Münster, Germany
| | - Ralf Adams
- Vascular Development Laboratory, Cancer Research UK London Research
Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
- Max–Planck–Institute for Molecular Biomedicine,
Department of Tissue Morphogenesis, and University of Münster, Faculty of
Medicine, 48149 Münster, Germany
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology,
34012 Trieste, Italy
| | - Dean Sheppard
- Lung Biology Center, UCSF, San Francisco CA 94143-2922, USA
| | - Taija Makinen
- Lymphatic Development Laboratory, Cancer Research UK London
Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United
Kingdom
| |
Collapse
|
141
|
Jülich D, Mould AP, Koper E, Holley SA. Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development 2009; 136:2913-21. [PMID: 19641014 DOI: 10.1242/dev.038935] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs) coat and subdivide animal tissues, but it is unclear how ECM formation is restricted to tissue surfaces and specific cell interfaces. During zebrafish somite morphogenesis, segmental assembly of an ECM composed of Fibronectin (FN) depends on the FN receptor Integrin alpha5beta1. Using in vivo imaging and genetic mosaics, our studies suggest that incipient Itgalpha5 clustering along the nascent border precedes matrix formation and is independent of FN binding. Integrin clustering can be initiated by Eph/Ephrin signaling, with Ephrin reverse signaling being sufficient for clustering. Prior to activation, Itgalpha5 expressed on adjacent cells reciprocally and non-cell-autonomously inhibits spontaneous Integrin clustering and assembly of an ECM. Surface derepression of this inhibition provides a self-organizing mechanism for the formation and maintenance of ECM along the tissue surface. Within the tissue, interplay between Eph/Ephrin signaling, ligand-independent Integrin clustering and reciprocal Integrin inhibition restricts de novo ECM production to somite boundaries.
Collapse
Affiliation(s)
- Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
142
|
Abstract
Fibronectin extracellular matrix is assembled and remodeled throughout embryogenesis and plays key roles in early vertebrate development. In this issue of Developmental Cell, Dzamba et al. reveal, through their studies of Xenopus embryos, a novel mechanism for regulating fibronectin matrix assembly through Wnt signaling and cadherin-mediated cell-cell adhesion.
Collapse
Affiliation(s)
- Geoffrey C Hunt
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
143
|
Rozario T, Dzamba B, Weber GF, Davidson LA, DeSimone DW. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev Biol 2009; 327:386-98. [PMID: 19138684 PMCID: PMC2829434 DOI: 10.1016/j.ydbio.2008.12.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/01/2008] [Accepted: 12/19/2008] [Indexed: 01/16/2023]
Abstract
This study demonstrates that proper spatiotemporal expression and the physical assembly state of fibronectin (FN) matrix play key roles in the regulation of morphogenetic cell movements in vivo. We examine the progressive assembly and 3D fibrillar organization of FN and its role in regulating cell and tissue movements in Xenopus embryos. Expression of the 70 kD N-terminal fragment of FN blocks FN fibril assembly at gastrulation but not initial FN binding to integrins at the cell surface. We find that fibrillar FN is necessary to maintain cell polarity through oriented cell division and to promote epiboly, possibly through maintenance of tissue-surface tension. In contrast, FN fibrils are dispensable for convergence and extension movements required for axis elongation. Closure of the migratory mesendodermal mantle was accelerated in the absence of a fibrillar matrix. Thus, the macromolecular assembly of FN matrices may constitute a general regulatory mechanism for coordination of distinct morphogenetic movements.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908
| | - Bette Dzamba
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908
| | - Gregory F. Weber
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Bioscience Tower 3-5059, 3501 Fifth Avenue, Pittsburgh, PA 15260
| | - Douglas W. DeSimone
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
144
|
|