101
|
Converting Adult Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. Cell Metab 2017; 25:622-634. [PMID: 28215845 PMCID: PMC5358097 DOI: 10.1016/j.cmet.2017.01.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/21/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
Insulin-producing pancreatic β cells in mice can slowly regenerate from glucagon-producing α cells in settings like β cell loss, but the basis of this conversion is unknown. Moreover, it remains unclear if this intra-islet cell conversion is relevant to diseases like type 1 diabetes (T1D). We show that the α cell regulators Aristaless-related homeobox (Arx) and DNA methyltransferase 1 (Dnmt1) maintain α cell identity in mice. Within 3 months of Dnmt1 and Arx loss, lineage tracing and single-cell RNA sequencing revealed extensive α cell conversion into progeny resembling native β cells. Physiological studies demonstrated that converted α cells acquire hallmark β cell electrophysiology and show glucose-stimulated insulin secretion. In T1D patients, subsets of glucagon-expressing cells show loss of DNMT1 and ARX and produce insulin and other β cell factors, suggesting that DNMT1 and ARX maintain α cell identity in humans. Our work reveals pathways regulated by Arx and Dnmt1 that are sufficient for achieving targeted generation of β cells from adult pancreatic α cells.
Collapse
|
102
|
Dnmt1 activity is dispensable in δ-cells but is essential for α-cell homeostasis. Int J Biochem Cell Biol 2017; 88:226-235. [PMID: 28119131 DOI: 10.1016/j.biocel.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 01/17/2023]
Abstract
In addition to β-cells, pancreatic islets contain α- and δ-cells, which respectively produce glucagon and somatostatin. The reprogramming of these two endocrine cell types into insulin producers, as observed after a massive β-cell ablation in mice, may help restoring a functional β-cell mass in type 1 diabetes. Yet, the spontaneous α-to-β and δ-to-β conversion processes are relatively inefficient in adult animals and the underlying epigenetic mechanisms remain unclear. Several studies indicate that the conserved chromatin modifiers DNA methyltransferase 1 (Dnmt1) and Enhancer of zeste homolog 2 (Ezh2) are important for pancreas development and restrict islet cell plasticity. Here, to investigate the role of these two enzymes in α- and δ-cell development and fate maintenance, we genetically inactivated them in each of these two cell types. We found that loss of Dnmt1 does not enhance the conversion of α- or δ-cells toward a β-like fate. In addition, while Dnmt1 was dispensable for the development of these two cell types, we noticed a gradual loss of α-, but not δ-cells in adult mice. Finally, we found that Ezh2 inactivation does not enhance α-cell plasticity, and, contrary to what is observed in β-cells, does not impair α-cell proliferation. Our results indicate that both Dnmt1 and Ezh2 play distinct roles in the different islet cell types.
Collapse
|
103
|
Dalgaard LT, Eliasson L. An 'alpha-beta' of pancreatic islet microribonucleotides. Int J Biochem Cell Biol 2017; 88:208-219. [PMID: 28122254 DOI: 10.1016/j.biocel.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are cellular, short, non-coding ribonucleotides acting as endogenous posttranscriptional repressors following incorporation in the RNA-induced silencing complex. Despite being chemically and mechanistically very similar, miRNAs exert a multitude of different cellular effects by acting on mRNA species, whose gene-products partake in a wide array of processes. Here, the aim was to review the knowledge of miRNA expression and action in the islet of Langerhans. We have focused on: 1) physiological consequences of islet or beta cell specific inhibition of miRNA processing, 2) mechanisms regulating processing of miRNAs in islet cells, 3) presence and function of miRNAs in alpha versus beta cells - the two main cell types of islets, and 4) miRNA mediators of beta cell decompensation. It is clear that miRNAs regulate pancreatic islet development, maturation, and function in vivo. Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding miRNA expression and function in pancreatic alpha cells. Progress in this area would be enhanced by improved in vitro alpha cell models and better tools for islet cell sorting.
Collapse
Affiliation(s)
| | - Lena Eliasson
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, CRC, SUS, Malmö, Sweden.
| |
Collapse
|
104
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
105
|
Sommese L, Zullo A, Mancini FP, Fabbricini R, Soricelli A, Napoli C. Clinical relevance of epigenetics in the onset and management of type 2 diabetes mellitus. Epigenetics 2017; 12:401-415. [PMID: 28059593 DOI: 10.1080/15592294.2016.1278097] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetics is involved in the altered expression of gene networks that underlie insulin resistance and insufficiency. Major genes controlling β-cell differentiation and function, such as PAX4, PDX1, and GLP1 receptor, are epigenetically controlled. Epigenetics can cause insulin resistance through immunomediated pro-inflammatory actions related to several factors, such as NF-kB, osteopontin, and Toll-like receptors. Hereafter, we provide a critical and comprehensive summary on this topic with a particular emphasis on translational and clinical aspects. We discuss the effect of epigenetics on β-cell regeneration for cell replacement therapy, the emerging bioinformatics approaches for analyzing the epigenetic contribution to type 2 diabetes mellitus (T2DM), the epigenetic core of the transgenerational inheritance hypothesis in T2DM, and the epigenetic clinical trials on T2DM. Therefore, prevention or reversion of the epigenetic changes occurring during T2DM development may reduce the individual and societal burden of the disease.
Collapse
Affiliation(s)
- Linda Sommese
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy.,b Department of Experimental Medicine , Second University of Naples , Italy
| | - Alberto Zullo
- c Department of Sciences and Technologies , University of Sannio , Benevento , Italy.,d CEINGE-Advanced Biotechnologies , Naples , Italy
| | | | - Rossella Fabbricini
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy
| | - Andrea Soricelli
- e IRCCS Research Institute SDN , Naples , Italy.,f Department of Studies of Institutions and Territorial Systems , University of Naples Parthenope , Naples , Italy
| | - Claudio Napoli
- a U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology , Department of Internal and Specialty Medicine , Azienda Ospedaliera Universitaria (AOU), Università degli Studi della Campania "Luigi Vanvitelli ," Italy.,e IRCCS Research Institute SDN , Naples , Italy.,g Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , Second University of Naples , Italy
| |
Collapse
|
106
|
Bernstein D, Golson ML, Kaestner KH. Epigenetic control of β-cell function and failure. Diabetes Res Clin Pract 2017; 123:24-36. [PMID: 27918975 PMCID: PMC5250585 DOI: 10.1016/j.diabres.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is a highly heritable disease, but only ∼15% of this heritability can be explained by known genetic variant loci. In fact, body mass index is more predictive of diabetes than any of the common risk alleles identified by genome-wide association studies. This discrepancy may be explained by epigenetic inheritance, whereby changes in gene regulation can be passed along to offspring. Epigenetic changes throughout an organism's lifetime, based on environmental factors such as chemical exposures, diet, physical activity, and age, can also affect gene expression and susceptibility to diabetes. Recently, novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics, epigenetics, and the environment interact in the development and inheritance of diabetes.
Collapse
Affiliation(s)
- Diana Bernstein
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
107
|
Abstract
The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.
Collapse
|
108
|
Yang YP, Magnuson MA, Stein R, Wright CVE. The mammal-specific Pdx1 Area II enhancer has multiple essential functions in early endocrine cell specification and postnatal β-cell maturation. Development 2016; 144:248-257. [PMID: 27993987 DOI: 10.1242/dev.143123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023]
Abstract
The transcription factor Pdx1 is required for multiple aspects of pancreatic organogenesis. It remains unclear to what extent Pdx1 expression and function depend upon trans-activation through 5' conserved cis-regulatory regions and, in particular, whether the mammal-specific Area II (-2139 to -1958 bp) affects minor or major aspects of organogenesis. We show that Area II is a primary effector of endocrine-selective transcription in epithelial multipotent cells, nascent endocrine progenitors, and differentiating and mature β cells in vivo Pdx1ΔAREAII/- mice exhibit a massive reduction in endocrine progenitor cells and progeny hormone-producing cells, indicating that Area II activity is fundamental to mounting an effective endocrine lineage-specification program within the multipotent cell population. Creating an Area II-deleted state within already specified Neurog3-expressing endocrine progenitor cells increased the proportion of glucagon+ α relative to insulin+ β cells, associated with the transcriptional and epigenetic derepression of the α-cell-determining Arx gene in endocrine progenitors. There were also glucagon and insulin co-expressing cells, and β cells that were incapable of maturation. Creating the Pdx1ΔAREAII state after cells entered an insulin-expressing stage led to immature and dysfunctional islet β cells carrying abnormal chromatin marking in vital β-cell-associated genes. Therefore, trans-regulatory integration through Area II mediates a surprisingly extensive range of progenitor and β-cell-specific Pdx1 functions.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Roland Stein
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA .,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
109
|
Thompson P, Bhushan A. β Cells led astray by transcription factors and the company they keep. J Clin Invest 2016; 127:94-97. [PMID: 27941244 DOI: 10.1172/jci91304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pancreatic β cells have one of the highest protein secretion burdens in the body, as these cells must synthesize and secrete insulin in proportion to postprandial rises in blood glucose. Remarkably, it is now becoming clear that adult β cells retain plasticity and can dedifferentiate into embryonic fates or adopt alternate islet endocrine cell identities. This property is especially important, because changes in cell fate alter β cell function and could form the basis for defects in insulin secretion that occur early in the pathogenesis of the most prevalent form of β cell dysfunction, type 2 diabetes. In this issue, three different studies provide complementary perspectives on how the transcription factors NK2 homeobox 2 (NKX2.2), paired box 6 (PAX6), and LIM domain-binding protein 1 (LDB1) serve to maintain mature adult β cell identity, revealing clues as to how adult β cells can partially dedifferentiate or become reprogrammed into other islet endocrine cells.
Collapse
|
110
|
Jeffery N, Harries LW. β-cell differentiation status in type 2 diabetes. Diabetes Obes Metab 2016; 18:1167-1175. [PMID: 27550203 DOI: 10.1111/dom.12778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) affects 415 million people worldwide and is characterized by chronic hyperglycaemia and insulin resistance, progressing to insufficient insulin production, as a result of β-cell failure. Over time, chronic hyperglycaemia can ultimately lead to loss of β-cell function, leaving patients insulin-dependent. Until recently the loss of β-cell mass seen in T2D was considered to be the result of increased rates of apoptosis; however, it has been proposed that apoptosis alone cannot account for the extent of β-cell mass loss seen in the disease, and that a loss of function may also occur as a result of changes in β-cell differentiation status. In the present review, we consider current knowledge of determinants of β-cell fate in the context of understanding its relevance to disease process in T2D, and also the impact of a diabetogenic environment (hyperglycaemia, hypoxia, inflammation and dyslipidaemia) on the expression of genes involved in maintenance of β-cell identity. We describe current knowledge of the impact of the diabetic microenvironment on gene regulatory processes such alternative splicing, the expression of disallowed genes and epigenetic modifications. Elucidating the molecular mechanisms that underpin changes to β-cell differentiation status and the concomitant β-cell failure offers potential treatment targets for the future management of patients with T2D.
Collapse
Affiliation(s)
- Nicola Jeffery
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Lorna W Harries
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| |
Collapse
|
111
|
Becker SF, Jarriault S. Natural and induced direct reprogramming: mechanisms, concepts and general principles-from the worm to vertebrates. Curr Opin Genet Dev 2016; 40:154-163. [PMID: 27690213 DOI: 10.1016/j.gde.2016.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Elucidating the mechanisms underlying cell fate determination, cell identity maintenance and cell reprogramming in vivo is one of the main challenges in today's science. Such knowledge of fundamental importance will further provide new leads for early diagnostics and targeted therapy approaches both in regenerative medicine and cancer research. This review focuses on recent mechanistic findings and factors that influence the differentiated state of cells in direct reprogramming events, aka transdifferentiation. In particular, we will look at the mechanistic and conceptual advances brought by the use of the nematode Caenorhabditis elegans and highlight common themes across phyla.
Collapse
Affiliation(s)
- Sarah F Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Cu Strasbourg, France
| | - Sophie Jarriault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U964, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Cu Strasbourg, France.
| |
Collapse
|
112
|
Spaeth JM, Walker EM, Stein R. Impact of Pdx1-associated chromatin modifiers on islet β-cells. Diabetes Obes Metab 2016; 18 Suppl 1:123-7. [PMID: 27615141 PMCID: PMC5918695 DOI: 10.1111/dom.12730] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus arises from insufficient insulin secretion from pancreatic islet β-cells. In type 2 diabetes (T2D), β-cell dysfunction is associated with inactivation and/or loss of transcription factor (TF) activity, including Pdx1. Notably, this particular TF is viewed as a master regulator of pancreas development and islet β-cell formation, identity and function. TFs, like Pdx1, recruit coregulators to transduce activating and/or repressing signals to the general transcriptional machinery for controlling gene expression, including modifiers of DNA, histones and nucleosome architecture. These coregulators impart a secondary layer of control that can be exploited to modulate TF activity. In this review, we describe Pdx1-recruited coregulators that impact chromatin structure, consequently influencing normal β-cell function and likely Pdx1 activity in pathophysiological settings.
Collapse
Affiliation(s)
- J M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - E M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - R Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
113
|
Cigliola V, Thorel F, Chera S, Herrera PL. Stress-induced adaptive islet cell identity changes. Diabetes Obes Metab 2016; 18 Suppl 1:87-96. [PMID: 27615136 PMCID: PMC5021189 DOI: 10.1111/dom.12726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas.
Collapse
Affiliation(s)
- V Cigliola
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - F Thorel
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - S Chera
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - P L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
114
|
Coskun AF, Eser U, Islam S. Cellular identity at the single-cell level. MOLECULAR BIOSYSTEMS 2016; 12:2965-79. [PMID: 27460751 DOI: 10.1039/c6mb00388e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A single cell creates surprising heterogeneity in a multicellular organism. While every organismal cell shares almost an identical genome, molecular interactions in cells alter the use of DNA sequences to modulate the gene of interest for specialization of cellular functions. Each cell gains a unique identity through molecular coding across the DNA, RNA, and protein conversions. On the other hand, loss of cellular identity leads to critical diseases such as cancer. Most cell identity dissection studies are based on bulk molecular assays that mask differences in individual cells. To probe cell-to-cell variability in a population, we discuss single cell approaches to decode the genetic, epigenetic, transcriptional, and translational mechanisms for cell identity formation. In combination with molecular instructions, the physical principles behind cell identity determination are examined. Deciphering and reprogramming cellular types impact biology and medicine.
Collapse
Affiliation(s)
- Ahmet F Coskun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, California, USA.
| | | | | |
Collapse
|
115
|
Lemaire K, Thorrez L, Schuit F. Disallowed and Allowed Gene Expression: Two Faces of Mature Islet Beta Cells. Annu Rev Nutr 2016; 36:45-71. [DOI: 10.1146/annurev-nutr-071715-050808] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lieven Thorrez
- Gene Expression Unit, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven B3000, Belgium; , ,
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven B3000, Belgium; , ,
| |
Collapse
|
116
|
Abstract
The recent recognition of the clinical association between type 2 diabetes (T2D) and several types of human cancer has been further highlighted by reports of antidiabetic drugs treating or promoting cancer. At the cellular level, a plethora of molecules operating within distinct signaling pathways suggests cross-talk between the multiple pathways at the interface of the diabetes–cancer link. Additionally, a growing body of emerging evidence implicates homeostatic pathways that may become imbalanced during the pathogenesis of T2D or cancer or that become chronically deregulated by prolonged drug administration, leading to the development of cancer in diabetes and vice versa. This notion underscores the importance of combining clinical and basic mechanistic studies not only to unravel mechanisms of disease development but also to understand mechanisms of drug action. In turn, this may help the development of personalized strategies in which drug doses and administration durations are tailored to individual cases at different stages of the disease progression to achieve more efficacious treatments that undermine the diabetes–cancer association.
Collapse
Affiliation(s)
- Slavica Tudzarova
- Wolfson Institute for Biomedical Research, University College London, London WC1E6BT, UK
| | - Mahasin A Osman
- Department of Molecular Physiology, Pharmacology and Biotechnology, Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912 Department of Chemistry and Forensic Sciences, College of Sciences and Technology, Savannah State University, Savannah, GA 41404
| |
Collapse
|
117
|
Lima MJ, Muir KR, Docherty HM, McGowan NWA, Forbes S, Heremans Y, Heimberg H, Casey J, Docherty K. Generation of Functional Beta-Like Cells from Human Exocrine Pancreas. PLoS One 2016; 11:e0156204. [PMID: 27243814 PMCID: PMC4887015 DOI: 10.1371/journal.pone.0156204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022] Open
Abstract
Transcription factor mediated lineage reprogramming of human pancreatic exocrine tissue could conceivably provide an unlimited supply of islets for transplantation in the treatment of diabetes. Exocrine tissue can be efficiently reprogrammed to islet-like cells using a cocktail of transcription factors: Pdx1, Ngn3, MafA and Pax4 in combination with growth factors. We show here that overexpression of exogenous Pax4 in combination with suppression of the endogenous transcription factor ARX considerably enhances the production of functional insulin-secreting β-like cells with concomitant suppression of α-cells. The efficiency was further increased by culture on laminin-coated plates in media containing low glucose concentrations. Immunocytochemistry revealed that reprogrammed cultures were composed of ~45% islet-like clusters comprising >80% monohormonal insulin+ cells. The resultant β-like cells expressed insulin protein levels at ~15–30% of that in adult human islets, efficiently processed proinsulin and packaged insulin into secretory granules, exhibited glucose responsive insulin secretion, and had an immediate and prolonged effect in normalising blood glucose levels upon transplantation into diabetic mice. We estimate that approximately 3 billion of these cells would have an immediate therapeutic effect following engraftment in type 1 diabetes patients and that one pancreas would provide sufficient tissue for numerous transplants.
Collapse
Affiliation(s)
- Maria J. Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
- * E-mail:
| | - Kenneth R. Muir
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Hilary M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Neil W. A. McGowan
- Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, EH16 4SU, United Kingdom
| | - Shareen Forbes
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Yves Heremans
- Diabetes Research Centre, Vrije Universiteit Brussel, B1090 Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Centre, Vrije Universiteit Brussel, B1090 Brussels, Belgium
| | - John Casey
- Department of Surgery, University of Edinburgh, Edinburgh Royal Infirmary, Edinburgh, EH16 4SU, United Kingdom
| | - Kevin Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
118
|
Jiang FX, Morahan G. Insulin-secreting β cells require a post-genomic concept. World J Diabetes 2016; 7:198-208. [PMID: 27226815 PMCID: PMC4873311 DOI: 10.4239/wjd.v7.i10.198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 03/18/2016] [Indexed: 02/05/2023] Open
Abstract
Pancreatic insulin-secreting β cells are essential in maintaining normal glucose homeostasis accomplished by highly specialized transcription of insulin gene, of which occupies up to 40% their transcriptome. Deficiency of these cells causes diabetes mellitus, a global public health problem. Although tremendous endeavors have been made to generate insulin-secreting cells from human pluripotent stem cells (i.e., primitive cells capable of giving rise to all cell types in the body), a regenerative therapy to diabetes has not yet been established. Furthermore, the nomenclature of β cells has become inconsistent, confusing and controversial due to the lack of standardized positive controls of developmental stage-matched in vivo cells. In order to minimize this negative impact and facilitate critical research in this field, a post-genomic concept of pancreatic β cells might be helpful. In this review article, we will briefly describe how β cells were discovered and islet lineage is developed that may help understand the cause of nomenclatural controversy, suggest a post-genomic definition and finally provide a conclusive remark on future research of this pivotal cell.
Collapse
|
119
|
Dhawan S, Dirice E, Kulkarni RN, Bhushan A. Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication. Diabetes 2016; 65:1208-18. [PMID: 26936960 PMCID: PMC4839200 DOI: 10.2337/db15-1331] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Diabetes is associated with loss of functional pancreatic β-cells, and restoration of β-cells is a major goal for regenerative therapies. Endogenous regeneration of β-cells via β-cell replication has the potential to restore cellular mass; however, pharmacological agents that promote regeneration or expansion of endogenous β-cells have been elusive. The regenerative capacity of β-cells declines rapidly with age, due to accumulation of p16(INK4a), resulting in limited capacity for adult endocrine pancreas regeneration. Here, we show that transforming growth factor-β (TGF-β) signaling via Smad3 integrates with the trithorax complex to activate and maintain Ink4a expression to prevent β-cell replication. Importantly, inhibition of TGF-β signaling can result in repression of the Ink4a/Arf locus, resulting in increased β-cell replication in adult mice. Furthermore, small molecule inhibitors of the TGF-β pathway promote β-cell replication in human islets transplanted into NOD-scid IL-2Rg(null) mice. These data reveal a novel role for TGF-β signaling in the regulation of the Ink4a/Arf locus and highlight the potential of using small molecule inhibitors of TGF-β signaling to promote human β-cell replication.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p16/agonists
- Cyclin-Dependent Kinase Inhibitor p16/antagonists & inhibitors
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Dioxoles/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Humans
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Islets of Langerhans Transplantation/physiology
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Receptors, Transforming Growth Factor beta/agonists
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/metabolism
- Regeneration/drug effects
- Signal Transduction/drug effects
- Smad3 Protein/metabolism
- Tissue Banks
- Transforming Growth Factor beta1/antagonists & inhibitors
- Transforming Growth Factor beta1/metabolism
- Transplantation, Heterologous
- Transplantation, Heterotopic
Collapse
Affiliation(s)
- Sangeeta Dhawan
- Division of Endocrinology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
120
|
Epigenetic changes in diabetes. Neurosci Lett 2016; 625:64-9. [PMID: 27130819 DOI: 10.1016/j.neulet.2016.04.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
The incidence of diabetes is increasing worldwide. Diabetes is quickly becoming one of the leading causes of death. Diabetes is a genetic disease; however, the environment plays critical roles in its development and progression. Epigenetic changes often translate environmental stimuli to changes in gene expression. Changes in epigenetic marks and differential regulation of epigenetic modulators have been observed in different models of diabetes and its associated complications. In this minireview, we will focus DNA methylation, Histone acetylation and methylation and their roles in the pathogenesis of diabetes.
Collapse
|
121
|
Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 2016; 17:413-25. [PMID: 26979497 DOI: 10.1038/nrm.2016.24] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response. Recent studies have highlighted the extent to which cell plasticity contributes to tissue homeostasis, findings that have implications for cell-based therapy.
Collapse
|
122
|
Zhou Y, Wang L, Vaseghi HR, Liu Z, Lu R, Alimohamadi S, Yin C, Fu JD, Wang GG, Liu J, Qian L. Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell 2016; 18:382-95. [PMID: 26942853 PMCID: PMC4779178 DOI: 10.1016/j.stem.2016.02.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/01/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
Direct reprogramming of induced cardiomyocytes (iCMs) suffers from low efficiency and requires extensive epigenetic repatterning, although the underlying mechanisms are largely unknown. To address these issues, we screened for epigenetic regulators of iCM reprogramming and found that reducing levels of the polycomb complex gene Bmi1 significantly enhanced induction of beating iCMs from neonatal and adult mouse fibroblasts. The inhibitory role of Bmi1 in iCM reprogramming is mediated through direct interactions with regulatory regions of cardiogenic genes, rather than regulation of cell proliferation. Reduced Bmi1 expression corresponded with increased levels of the active histone mark H3K4me3 and reduced levels of repressive H2AK119ub at cardiogenic loci, and de-repression of cardiogenic gene expression during iCM conversion. Furthermore, Bmi1 deletion could substitute for Gata4 during iCM reprogramming. Thus, Bmi1 acts as a critical epigenetic barrier to iCM production. Bypassing this barrier simplifies iCM generation and increases yield, potentially streamlining iCM production for therapeutic purposes.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haley Ruth Vaseghi
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sahar Alimohamadi
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chaoying Yin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ji-Dong Fu
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109, USA
| | - Greg G Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
123
|
Campbell SA, Hoffman BG. Chromatin Regulators in Pancreas Development and Diabetes. Trends Endocrinol Metab 2016; 27:142-152. [PMID: 26783078 DOI: 10.1016/j.tem.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022]
Abstract
The chromatin landscape of a cell is dynamic and can be altered by chromatin regulators that control nucleosome placement and DNA or histone modifications. Together with transcription factors, these complexes help dictate the transcriptional output of a cell and, thus, balance cell proliferation and differentiation while restricting tissue-specific gene expression. In this review, we describe current research on chromatin regulators and their roles in pancreas development and the maintenance of mature β cell function, which, once elucidated, will help us better understand how β cell differentiation occurs and is maintained. These studies have so far implicated proteins from several complexes that regulate DNA methylation, nucleosome remodeling, and histone acetylation and methylation that could become promising targets for diabetes therapy and stem cell differentiation.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Histones/genetics
- Histones/metabolism
- Humans
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Islets of Langerhans/cytology
- Islets of Langerhans/growth & development
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Models, Biological
- Nucleosomes/metabolism
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
- Stephanie A Campbell
- Child and Family Research Institute, British Columbia Children's Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Brad G Hoffman
- Child and Family Research Institute, British Columbia Children's Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, BC, V5Z 4H4, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4E3, Canada.
| |
Collapse
|
124
|
Are epigenetic drugs for diabetes and obesity at our door step? Drug Discov Today 2016; 21:499-509. [DOI: 10.1016/j.drudis.2015.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023]
|
125
|
Kim HS, Lee MK. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas. J Diabetes Investig 2016; 7:286-96. [PMID: 27330712 PMCID: PMC4847880 DOI: 10.1111/jdi.12475] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β‐cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β‐cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin‐producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β‐cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β‐cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin‐producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin‐producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin‐producing cells, especially duct and acinar cells.
Collapse
Affiliation(s)
- Hyo-Sup Kim
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| |
Collapse
|
126
|
β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development. PLoS One 2016; 11:e0150010. [PMID: 26901059 PMCID: PMC4763111 DOI: 10.1371/journal.pone.0150010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/08/2016] [Indexed: 01/20/2023] Open
Abstract
The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of β-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of β-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key β-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the β-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous β-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas.
Collapse
|
127
|
Ackermann AM, Wang Z, Schug J, Naji A, Kaestner KH. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab 2016; 5:233-244. [PMID: 26977395 PMCID: PMC4770267 DOI: 10.1016/j.molmet.2016.01.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 01/20/2023] Open
Abstract
Objective Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. Methods We sorted human α- and β-cells and performed the “Assay for Transposase-Accessible Chromatin with high throughput sequencing” (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. Results We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The “group specific protein” (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. Conclusions We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion. Defined open chromatin regions in sorted human α- and β-cells using ATAC-seq. Detected type 2 diabetes-associated risk loci in human α- and β-cell open chromatin. Classified human α- and β-cell-specific transcripts using mRNA-seq. Discovered novel human α- and β-cell signature proteins. Identified potential gene regulatory regions by integrating ATAC- and mRNA-seq data.
Collapse
Key Words
- ARX, aristaless related homeobox
- ATAC-seq, Assay for Transposase-Accessible Chromatin with high throughput sequencing
- Alpha cell
- Beta cell
- CHODL, chondrolectin
- ChIP-seq, Chromatin Immunoprecipitation followed by high throughput sequencing
- DAPI, 4′,6-diamidino-2-phenylindole
- DPP4, dipeptidyl-peptidase 4
- Diabetes
- Epigenetics
- FACS, fluorescence-activated cell sorting
- FAIRE-seq, Formaldehyde-Assisted Isolation of Regulatory Elements followed by high throughput sequencing
- GC, group-specific protein
- GCG, glucagon
- GHRL, ghrelin
- IGF2, insulin like growth factor 2
- INS, insulin
- IRX2, iroquois homeobox 2
- Islet
- MAFA, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A
- NEUROD1, neuronal differentiation 1
- Open chromatin
- PP, pancreatic polypeptide
- SNP, single nucleotide polymorphism
- SST, somatostatin
Collapse
Affiliation(s)
- Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Zhiping Wang
- Institute for Biomedical Informatics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Jonathan Schug
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Department of Genetics, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Department of Genetics, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| |
Collapse
|
128
|
ActivinB Is Induced in Insulinoma To Promote Tumor Plasticity through a β-Cell-Induced Dedifferentiation. Mol Cell Biol 2015; 36:756-64. [PMID: 26711255 DOI: 10.1128/mcb.00930-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/13/2015] [Indexed: 12/19/2022] Open
Abstract
Loss of pancreatic β-cell maturity occurs in diabetes and insulinomas. Although both physiological and pathological stresses are known to promote β-cell dedifferentiation, little is known about the molecules involved in this process. Here we demonstrate that activinB, a transforming growth factor β (TGF-β)-related ligand, is upregulated during tumorigenesis and drives the loss of insulin expression and β-cell maturity in a mouse insulinoma model. Our data further identify Pax4 as a previously unknown activinB target and potent contributor to the observed β-cell dedifferentiation. More importantly, using compound mutant mice, we found that deleting activinB expression abolishes tumor β-cell dedifferentiation and, surprisingly, increases survival without significantly affecting tumor growth. Hence, this work reveals an unexpected role for activinB in the loss of β-cell maturity, islet plasticity, and progression of insulinoma through its participation in β-cell dedifferentiation.
Collapse
|
129
|
Abstract
The direct lineage reprogramming of one specialized cell type into another using defined factors has fundamentally re-shaped traditional concepts regarding the epigenetic stability of differentiated cells. With the rapid increase in cell types generated through direct conversion in recent years, this strategy has become a promising approach for producing functional cells. Here, we review recent advances in lineage reprogramming, including the identification of novel reprogramming factors, underlying molecular mechanisms, strategies for generating functionally mature cells, and assays for characterizing induced cells. We also discuss progress toward the application of lineage reprogramming and the major future challenges for this strategy.
Collapse
|
130
|
Abstract
Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Evans Quilichini
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France
| | - Cécile Haumaitre
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France; Institut National de la Santé et de la Recherche Médicale (INSERM), France.
| |
Collapse
|
131
|
Abstract
The alpha cells that co-occupy the islets in association with beta cells have been long recognized as the source of glucagon, a hyperglycemia-producing and diabetogenic hormone. Although the mechanisms that control the functions of alpha cells, glucagon secretion, and the role of glucagon in diabetes have remained somewhat enigmatic over the fifty years since their discovery, seminal findings during the past few years have moved alpha cells into the spotlight of scientific discovery. These findings obtained largely from studies in mice are: Alpha cells have the capacity to trans-differentiate into insulin-producing beta cells. Alpha cells contain a GLP-1 generating system that produces GLP-1 locally for paracrine actions within the islets that likely promotes beta cell growth and survival and maintains beta cell mass. Impairment of glucagon signaling both prevents the occurrence of diabetes in conditions of the near absence of insulin and expands alpha cell mass. Alpha cells appear to serve as helper cells or guardians of beta cells to ensure their health and well-being. Of potential relevance to the possibility of promoting the transformation of alpha to beta cells is the observation that impairment of glucagon signaling leads to a marked increase in alpha cell mass in the islets. Such alpha cell hyperplasia provides an increased supply of alpha cells for their transdifferentiation into new beta cells. In this review we discuss these recent discoveries from the perspective of their potential relevance to the treatment of diabetes.
Collapse
Affiliation(s)
- Violeta Stanojevic
- Laboratory of Molecular Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joel F Habener
- Laboratory of Molecular Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
132
|
Çelik S, Li Y, O’Neill C. The effect of DNA damage on the pattern of immune-detectable DNA methylation in mouse embryonic fibroblasts. Exp Cell Res 2015; 339:20-34. [DOI: 10.1016/j.yexcr.2015.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/31/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022]
|
133
|
Blodgett DM, Nowosielska A, Afik S, Pechhold S, Cura AJ, Kennedy NJ, Kim S, Kucukural A, Davis RJ, Kent SC, Greiner DL, Garber MG, Harlan DM, diIorio P. Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets. Diabetes 2015; 64:3172-81. [PMID: 25931473 PMCID: PMC4542439 DOI: 10.2337/db15-0039] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022]
Abstract
Understanding distinct gene expression patterns of normal adult and developing fetal human pancreatic α- and β-cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase β-cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify α-, β-, and δ-cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the subpopulations by flow cytometry, and, using next-generation RNA sequencing, we report the detailed transcriptomes of fetal and adult α- and β-cells. We observed that human islet composition was not influenced by age, sex, or BMI, and transcripts for inflammatory gene products were noted in fetal β-cells. In addition, within highly purified adult glucagon-expressing α-cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet α- and β-cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- David M Blodgett
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Anetta Nowosielska
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Shaked Afik
- Program in Molecular Medicine, Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA
| | - Susanne Pechhold
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Anthony J Cura
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Soyoung Kim
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Alper Kucukural
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, and Howard Hughes Medical Institute, Worcester, MA
| | - Sally C Kent
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Manuel G Garber
- Program in Molecular Medicine, Program in Bioinformatics, University of Massachusetts Medical School, Worcester, MA
| | - David M Harlan
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| | - Philip diIorio
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
134
|
Dayeh T, Ling C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol 2015; 93:511-21. [PMID: 26369706 DOI: 10.1139/bcb-2015-0057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.
Collapse
Affiliation(s)
- Tasnim Dayeh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| |
Collapse
|
135
|
Pax4 acts as a key player in pancreas development and plasticity. Semin Cell Dev Biol 2015; 44:107-14. [DOI: 10.1016/j.semcdb.2015.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/05/2015] [Accepted: 08/22/2015] [Indexed: 11/19/2022]
|
136
|
Affiliation(s)
- Alexandra E Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sangeeta Dhawan
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
137
|
Nishimura W, Ishibashi N, Eto K, Funahashi N, Udagawa H, Miki H, Oe S, Noda Y, Yasuda K. Demethylation of the MafB promoter in a compromised β-cell model. J Mol Endocrinol 2015; 55:31-40. [PMID: 26108485 DOI: 10.1530/jme-15-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 11/08/2022]
Abstract
Recent studies suggest that dedifferentiation of pancreatic β-cells is involved in compromised β-cell function in diabetes mellitus. We have previously shown that the promoter activity of MafB, which is expressed in α-cells of adult islets and immature β-cells in embryonic pancreas but not in mature β-cells in mice, is increased in compromised β-cells of diabetic model mice. Here, we investigated a rat β-cell line of INS1 cells with late-passage numbers, which showed extremely low expression of MafA and insulin, as an in vitro model of compromised β-cells. In these INS1 cells, the mRNA expression and the promoter activity of MafB were upregulated compared with the early-passage ('conventional') INS1 cells. Analysis of the MafB promoter in these late-passage INS1 cells revealed that specific CpG sites in the MafB promoter were partially demethylated. The reporter assay revealed that the unmethylated promoter activity of the 373 bp region containing these CpG sites was higher than the in vitro methylated promoter activity. These results suggest that the chronic culture of the rat β-cell line resulted in partial DNA demethylation of the MafB promoter, which may have a role in MafB promoter activation and possible dedifferentiation in our compromised β-cell model.
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Naoko Ishibashi
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Koki Eto
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Nobuaki Funahashi
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Haruhide Udagawa
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Harukata Miki
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Souichi Oe
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Yasuko Noda
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Kazuki Yasuda
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
138
|
Abstract
Pancreatic β cells support glucose homeostasis with great precision by matching insulin release to the metabolic needs of the moment. Previous gene-expression analysis indicates that adult β cells not only produce cell-specific proteins, but also repress a small set of housekeeping genes - such as those encoding lactate dehydrogenase A (LDHA), solute transporter MCT1, and hexokinase 1 (HK1) - that would otherwise interfere with normal β cell function. In this issue of the JCI, Dhawan et al. elucidate a molecular mechanism involved in β cell-specific repression of Ldha and Hk1 that is mediated by induction of the de novo DNA methyltransferase DNMT3A during the first weeks after birth. Failure to induce DNMT3A-dependent methylation disrupts normal glucose-induced insulin release in adult life. The results of this study reinforce the idea that the phenotype of adult β cells has two faces and that failure to achieve selective gene repression undermines β cell support of normal glucose homeostasis.
Collapse
|
139
|
Dhawan S, Tschen SI, Zeng C, Guo T, Hebrok M, Matveyenko A, Bhushan A. DNA methylation directs functional maturation of pancreatic β cells. J Clin Invest 2015; 125:2851-60. [PMID: 26098213 DOI: 10.1172/jci79956] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Pancreatic β cells secrete insulin in response to postprandial increases in glucose levels to prevent hyperglycemia and inhibit insulin secretion under fasting conditions to protect against hypoglycemia. β cells lack this functional capability at birth and acquire glucose-stimulated insulin secretion (GSIS) during neonatal life. Here, we have shown that during postnatal life, the de novo DNA methyltransferase DNMT3A initiates a metabolic program by repressing key genes, thereby enabling the coupling of insulin secretion to glucose levels. In a murine model, β cell-specific deletion of Dnmt3a prevented the metabolic switch, resulting in loss of GSIS. DNMT3A bound to the promoters of the genes encoding hexokinase 1 (HK1) and lactate dehydrogenase A (LDHA) - both of which regulate the metabolic switch - and knockdown of these two key DNMT3A targets restored the GSIS response in islets from animals with β cell-specific Dnmt3a deletion. Furthermore, DNA methylation-mediated repression of glucose-secretion decoupling genes to modulate GSIS was conserved in human β cells. Together, our results reveal a role for DNA methylation to direct the acquisition of pancreatic β cell function.
Collapse
|
140
|
Röhrig T, Pihlajoki M, Ziegler R, Cochran RS, Schrade A, Schillebeeckx M, Mitra RD, Heikinheimo M, Wilson DB. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue. Mol Cell Endocrinol 2015; 408:165-77. [PMID: 25498963 PMCID: PMC4417465 DOI: 10.1016/j.mce.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epigenetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed.
Collapse
Affiliation(s)
- Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Ricarda Ziegler
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim - University of Applied Sciences, Mannheim 68163, Germany
| | - Rebecca S Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
141
|
Jiang W, Liu Y, Liu R, Zhang K, Zhang Y. The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Rep 2015; 11:137-148. [PMID: 25843708 PMCID: PMC7721200 DOI: 10.1016/j.celrep.2015.03.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/12/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate diverse biological processes, including cell lineage specification. Here, we report transcriptome profiling of human endoderm and pancreatic cell lineages using purified cell populations. Analysis of the data sets allows us to identify hundreds of lncRNAs that exhibit differentiation-stage-specific expression patterns. As a first step in characterizing these lncRNAs, we focus on an endoderm-specific lncRNA, definitive endoderm-associated lncRNA1 (DEANR1), and demonstrate that it plays an important role in human endoderm differentiation. DEANR1 contributes to endoderm differentiation by positively regulating expression of the endoderm factor FOXA2. Importantly, overexpression of FOXA2 is able to rescue endoderm differentiation defects caused by DEANR1 depletion. Mechanistically, DEANR1 facilitates FOXA2 activation by facilitating SMAD2/3 recruitment to the FOXA2 promoter. Thus, our study not only reveals a large set of differentiation-stage-specific lncRNAs but also characterizes a functional lncRNA that is important for endoderm differentiation.
Collapse
Affiliation(s)
- Wei Jiang
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Yuting Liu
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Rui Liu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
142
|
van der Meulen T, Huising MO. Role of transcription factors in the transdifferentiation of pancreatic islet cells. J Mol Endocrinol 2015; 54:R103-17. [PMID: 25791577 PMCID: PMC4373662 DOI: 10.1530/jme-14-0290] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The α and β cells act in concert to maintain blood glucose. The α cells release glucagon in response to low levels of glucose to stimulate glycogenolysis in the liver. In contrast, β cells release insulin in response to elevated levels of glucose to stimulate peripheral glucose disposal. Despite these opposing roles in glucose homeostasis, α and β cells are derived from a common progenitor and share many proteins important for glucose sensing and hormone secretion. Results from recent work have underlined these similarities between the two cell types by revealing that β-to-α as well as α-to-β transdifferentiation can take place under certain experimental circumstances. These exciting findings highlight unexpected plasticity of adult islets and offer hope of novel therapeutic paths to replenish β cells in diabetes. In this review, we focus on the transcription factor networks that establish and maintain pancreatic endocrine cell identity and how they may be perturbed to facilitate transdifferentiation.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| | - Mark O Huising
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
143
|
Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet 2015; 31:290-9. [PMID: 25812926 DOI: 10.1016/j.tig.2015.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/29/2023]
Abstract
Insulin-producing β cells within the pancreatic islet of Langerhans are responsible for maintaining glucose homeostasis; the loss or malfunction of β cells results in diabetes mellitus. Recent advances in cell purification strategies and sequencing technologies as well as novel molecular tools have revealed that epigenetic modifications and long noncoding RNAs (lncRNAs) represent an integral part of the transcriptional mechanisms regulating pancreas development and β cell function. Importantly, these findings have uncovered a new layer of gene regulation in the pancreas that can be exploited to enhance the restoration and/or repair of β cells to treat diabetes.
Collapse
|
144
|
McKenna B, Guo M, Reynolds A, Hara M, Stein R. Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet β cells. Cell Rep 2015; 10:2032-42. [PMID: 25801033 DOI: 10.1016/j.celrep.2015.02.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 02/03/2023] Open
Abstract
Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.
Collapse
Affiliation(s)
- Brian McKenna
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
145
|
|
146
|
Nishimura W, Takahashi S, Yasuda K. MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia 2015; 58:566-74. [PMID: 25500951 DOI: 10.1007/s00125-014-3464-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The plasticity of adult somatic cells allows for their dedifferentiation or conversion to different cell types, although the relevance of this to disease remains elusive. Perturbation of beta cell identity leading to dedifferentiation may be implicated in the compromised functions of beta cells in diabetes, which is a current topic of islet research. This study aims to investigate whether or not v-Maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA), a mature beta cell marker, is involved in maintaining mature beta cell phenotypes. METHODS The fate and gene expression of beta cells were analysed in Mafa knockout (KO) mice and mouse models of diabetes in which the expression of MafA was reduced in the majority of beta cells. RESULTS Loss of MafA reduced the beta to alpha cell ratio in pancreatic islets without elevating blood glucose to diabetic levels. Lineage tracing analyses showed reduced/lost expression of insulin in most beta cells, with a minority of the former beta cells converted to glucagon-expressing cells in Mafa KO mice. The upregulation of genes that are normally repressed in mature beta cells or transcription factors that are transiently expressed in endocrine progenitors was identified in Mafa KO islets as a hallmark of dedifferentiation. The compromised beta cells in db/db and multiple low-dose streptozotocin mice underwent similar dedifferentiation with expression of Mafb, which is expressed in immature beta cells. CONCLUSIONS/INTERPRETATION The maturation factor MafA is critical for the homeostasis of mature beta cells and regulates cell plasticity. The loss of MafA in beta cells leads to a deeper loss of cell identity, which is implicated in diabetes pathology.
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Metabolic Disorders, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan,
| | | | | |
Collapse
|
147
|
Xie R, Carrano AC, Sander M. A systems view of epigenetic networks regulating pancreas development and β-cell function. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:1-11. [PMID: 25644779 DOI: 10.1002/wsbm.1287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
The development of the pancreas and determination of endocrine cell fate are controlled by a highly complex interplay of signaling events and transcriptional networks. It is now known that an interconnected epigenetic program is also required to drive these processes. Recent studies using genome-wide approaches have implicated epigenetic regulators, such as DNA and histone-modifying enzymes and noncoding RNAs, to play critical roles in pancreas development and the maintenance of cell identity and function. Furthermore, genome-wide analyses have implicated epigenetic changes as a casual factor in the pathogenesis of diabetes. In the future, genomic approaches to further our understanding of the role of epigenetics in endocrine cell development and function will be useful for devising strategies to produce or manipulate β-cells for therapies of diabetes.
Collapse
Affiliation(s)
- Ruiyu Xie
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California - San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
148
|
Schillebeeckx M, Pihlajoki M, Gretzinger E, Yang W, Thol F, Hiller T, Löbs AK, Röhrig T, Schrade A, Cochran R, Jay PY, Heikinheimo M, Mitra RD, Wilson DB. Novel markers of gonadectomy-induced adrenocortical neoplasia in the mouse and ferret. Mol Cell Endocrinol 2015; 399:122-30. [PMID: 25289806 PMCID: PMC4262703 DOI: 10.1016/j.mce.2014.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 07/18/2014] [Accepted: 09/29/2014] [Indexed: 12/25/2022]
Abstract
Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Transcriptome analysis and DNA methylation mapping were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated using a combination of laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry. Microarray expression profiling of whole adrenal mRNA from ovariectomized vs. intact mice demonstrated selective upregulation of gonadal-like genes including Spinlw1 and Insl3 in GDX-induced adrenocortical tumors of the mouse. A complementary candidate gene approach identified Foxl2 as another gonadal-like marker expressed in GDX-induced neoplasms of the mouse and ferret. That both "male-specific" (Spinlw1) and "female-specific" (Foxl2) markers were identified is noteworthy and implies that the neoplasms exhibit mixed characteristics of male and female gonadal somatic cells. Genome-wide methylation analysis showed that two genes with hypomethylated promoters, Igfbp6 and Foxs1, are upregulated in GDX-induced adrenocortical neoplasms. These new genetic and epigenetic markers may prove useful for studies of steroidogenic cell development and for diagnostic testing.
Collapse
Affiliation(s)
- Maximiliaan Schillebeeckx
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Elisabeth Gretzinger
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Franziska Thol
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Theresa Hiller
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Ann-Kathrin Löbs
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Hochschule Mannheim, University of Applied Sciences, Mannheim 68163, Germany
| | - Anja Schrade
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Rebecca Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Patrick Y Jay
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
149
|
Yang Y, Chan L. Gene Therapy for Diabetes. TRANSLATING GENE THERAPY TO THE CLINIC 2015:115-128. [DOI: 10.1016/b978-0-12-800563-7.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
150
|
Li F, Su Y, Cheng Y, Jiang X, Peng Y, Li Y, Lu J, Gu Y, Zhang C, Cao Y, Wang W, Ning G. Conditional deletion of Men1 in the pancreatic β-cell leads to glucagon-expressing tumor development. Endocrinology 2015; 156:48-57. [PMID: 25343275 DOI: 10.1210/en.2014-1433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tumor suppressor menin is recognized as a key regulator of β-cell proliferation. To induce tumorigenesis within the pancreatic β-cells, floxed alleles of Men1 were selectively ablated using Cre-recombinase driven by the insulin promoter. Despite the β-cell specificity of the RipCre, glucagon-expressing tumors as well as insulinomas developed in old mutant mice. These glucagon-expressing tumor cells were menin deficient and expressed the mature α-cell-specific transcription factors Brain-specific homeobox POU domain protein 4 (Brn4) and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB). Moreover, the inactivation of β-cell-specific transcription factors was observed in mutant β-cells. Our work shows that Men1 ablation in the pancreatic β-cells leads to the inactivation of specific transcription factors, resulting in glucagon-expressing tumor development, which sheds light on the mechanisms of islet tumorigenesis.
Collapse
Affiliation(s)
- Feng Li
- Department of Endocrinology and Metabolism (F.L., Y.S., Y.Ch., X.J., Y.P., Y.L., J.L., Y.G., Y.Ca., W.W., G.N.), Shanghai Clinical Center for Endocrine and Metabolic Diseases and Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Laboratoire Génétique Moléculaire, Signalisation et Cancer (C.Z.), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5201, Faculté de Médecine, Université Claude Bernard Lyon, Centre Leon-Berard, Lyon69366, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|