101
|
Chernov AV, Remacle AG, Hullugundi SK, Cieplak P, Angert M, Dolkas J, Shubayev VI, Strongin AY. Amino acid sequence conservation of the algesic fragment of myelin basic protein is required for its interaction with CDK5 and function in pain. FEBS J 2018; 285:3485-3502. [PMID: 30079618 DOI: 10.1111/febs.14623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/19/2018] [Accepted: 08/02/2018] [Indexed: 01/08/2023]
Abstract
Neurotrauma frequently results in neuropathic pain. Our earlier studies revealed that peripheral neurotrauma-induced fragmentation of the myelin basic protein (MBP), a major component of the myelin sheath formed by Schwann cells, initiates a pain response from light touch stimuli (mechanical allodynia) in rodents. Here, we identified the cyclin-dependent kinase 5 (CDK5), as an intracellular interactor of MBP in Schwann cells. The algesic peptide fragment of MBP directly associated with CDK5. When complexed with its p25 coactivator, CDK5 phosphorylated the conserved MBP sequence. The expressed MBP fragment colocalized with CDK5 in Schwann cell protrusions. Roscovitine, an ATP-competitive CDK5 inhibitor, disrupted localization of the expressed MBP peptide. Mutations in the evolutionary conserved MBP algesic sequence resulted in the interference with intracellular trafficking of the MBP fragment and kinase activity of CDK5 and diminished pain-like behavior in rodents. Our findings show that MBP fragment amino acid sequence conservation determines its interactions, trafficking, and pronociceptive activity. Because CDK5 activity controls both neurogenesis and nociception, the algesic MBP fragment may be involved in the regulation of the CDK5 functionality in pain signaling and postinjury neurogenesis in vertebrates. DATABASE The novel RNA-seq datasets were deposited in the GEO database under the accession number GSE107020.
Collapse
Affiliation(s)
- Andrei V Chernov
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Albert G Remacle
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Piotr Cieplak
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, USA
| | - Alex Y Strongin
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
102
|
Boyd MA, Kamat NP. Visualizing Tension and Growth in Model Membranes Using Optical Dyes. Biophys J 2018; 115:1307-1315. [PMID: 30219285 DOI: 10.1016/j.bpj.2018.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
Cells dynamically regulate their membrane surface area during a variety of processes critical to their survival. Recent studies with model membranes have pointed to a general mechanism for surface area regulation under tension in which cell membranes unfold or take up lipid to accommodate membrane strain. Yet we lack robust methods to simultaneously measure membrane tension and surface area changes in real time. Using lipid vesicles that contain two dyes isolated to spatially distinct parts of the membrane, we introduce, to our knowledge, a new method to monitor the processes of membrane stretching and lipid uptake in model membranes. Laurdan, located within the bilayer membrane, and Förster resonance energy transfer dyes, localized to the membrane exterior, act in concert to report changes in membrane tension and lipid uptake during osmotic stress. We use these dyes to show that membranes under tension take up lipid more quickly and in greater amounts compared to their nontensed counterparts. Finally, we show that this technique is compatible with microscopy, enabling real-time analysis of membrane dynamics on a single vesicle level. Ultimately, the combinatorial use of these probes offers a more complete picture of changing membrane morphology. Our optical method allows us to remotely track changes in membrane tension and surface area with model membranes, offering new opportunities to track morphological changes in artificial and biological membranes and providing new opportunities in fields ranging from mechanobiology to drug delivery.
Collapse
Affiliation(s)
- Margrethe A Boyd
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Center for Synthetic Biology, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.
| |
Collapse
|
103
|
Vishwakarma M, Di Russo J, Probst D, Schwarz US, Das T, Spatz JP. Mechanical interactions among followers determine the emergence of leaders in migrating epithelial cell collectives. Nat Commun 2018; 9:3469. [PMID: 30150695 PMCID: PMC6110746 DOI: 10.1038/s41467-018-05927-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023] Open
Abstract
Regulating the emergence of leaders is a central aspect of collective cell migration, but the underlying mechanisms remain ambiguous. Here we show that the selective emergence of leader cells at the epithelial wound-margin depends on the dynamics of the follower cells and is spatially limited by the length-scale of collective force transduction. Owing to the dynamic heterogeneity of the monolayer, cells behind the prospective leaders manifest locally increased traction and monolayer stresses much before these leaders display any phenotypic traits. Followers, in turn, pull on the future leaders to elect them to their fate. Once formed, the territory of a leader can extend only to the length up-to which forces are correlated, which is similar to the length up-to which leader cells can transmit forces. These findings provide mechanobiological insight into the hierarchy in cell collectives during epithelial wound healing. During collective cell migration, how leader cells emerge is poorly understood. Here, the authors find that small groups of mechanically-interacting follower cells pull on the future leaders to stochastically elect them to their fate.
Collapse
Affiliation(s)
- Medhavi Vishwakarma
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany
| | - Jacopo Di Russo
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.,Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany
| | - Dimitri Probst
- Institute for Theoretical Physics and BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Tamal Das
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany. .,Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany. .,TIFR Centre for Interdisciplinary Sciences (TCIS), Tata Institute of Fundamental Research Hyderabad, 500107, Hyderabad, India.
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany. .,Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany.
| |
Collapse
|
104
|
Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 2018; 55:30-35. [PMID: 30006053 PMCID: PMC6284102 DOI: 10.1016/j.ceb.2018.06.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) plays crucial roles during development, and inappropriate activation of EMTs are associated with tumor progression and promoting metastasis. In recent years, increasing studies have identified developmental contexts where cells undergo an EMT and transition to a partial-state, downregulating just a subset of epithelial characteristics and increasing only some mesenchymal traits, such as invasive motility. In parallel, recent studies have shown that EMTs are rarely fully activated in tumor cells, generating a diverse array of transition states. As our appreciation of the full spectrum of intermediate phenotypes and the huge diversity in underlying mechanisms grows, cross-disciplinary collaborations investigating developmental-EMTs and cancer-EMTs will be fundamental in order to achieve a full mechanistic understanding of this complex cell process.
Collapse
Affiliation(s)
- Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
105
|
Huang Y, Winklbauer R. Cell migration in the Xenopus gastrula. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e325. [PMID: 29944210 DOI: 10.1002/wdev.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Xenopus gastrulation movements are in large part based on the rearrangement of cells by differential cell-on-cell migration within multilayered tissues. Different patterns of migration-based cell intercalation drive endoderm and mesoderm internalization and their positioning along their prospective body axes. C-cadherin, fibronectin, integrins, and focal contact components are expressed in all gastrula cells and play putative roles in cell-on-cell migration, but their actual functions in this respect are not yet understood. The gastrula can be subdivided into two motility domains, and in the vegetal, migratory domain, two modes of cell migration are discerned. Vegetal endoderm cells show ingression-type migration, a variant of amoeboid migration characterized by the lack of locomotory protrusions and by macropinocytosis as a mechanism of trailing edge resorption. Mesendoderm and prechordal mesoderm cells use lamellipodia in a mesenchymal mode of migration. Gastrula cell motility can be dissected into traits, such as cell polarity, adhesion, mobility, or protrusive activity, which are controlled separately yet in complex, combinatorial ways. Cells can instantaneously switch between different combinations of traits, showing plasticity as they respond to substratum properties. This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
106
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
107
|
Andriotis OG, Desissaire S, Thurner PJ. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs. ACS NANO 2018; 12:3671-3680. [PMID: 29529373 DOI: 10.1021/acsnano.8b00837] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tissue hydration is well known to influence tissue mechanics and can be tuned via osmotic pressure. Collagen fibrils are nature's nanoscale building blocks to achieve biomechanical function in a broad range of biological tissues and across many species. Intrafibrillar covalent cross-links have long been thought to play a pivotal role in collagen fibril elasticity, but predominantly at large, far from physiological, strains. Performing nanotensile experiments of collagen fibrils at varying hydration levels by adjusting osmotic pressure in situ during atomic force microscopy experiments, we show the power the intrafibrillar noncovalent interactions have for defining collagen fibril tensile elasticity at low fibril strains. Nanomechanical tensile tests reveal that osmotic pressure increases collagen fibril stiffness up to 24-fold in transverse (nanoindentation) and up to 6-fold in the longitudinal direction (tension), compared to physiological saline in a reversible fashion. We attribute the stiffening to the density and strength of weak intermolecular forces tuned by hydration and hence collagen packing density. This reversible mechanism may be employed by cells to alter their mechanical microenvironment in a reversible manner. The mechanism could also be translated to tissue engineering approaches for customizing scaffold mechanics in spatially resolved fashion, and it may help explain local mechanical changes during development of diseases and inflammation.
Collapse
Affiliation(s)
- Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics , Vienna University of Technology , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Sylvia Desissaire
- Institute of Lightweight Design and Structural Biomechanics , Vienna University of Technology , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics , Vienna University of Technology , Getreidemarkt 9 , 1060 Vienna , Austria
| |
Collapse
|
108
|
Jacob JT, Coulombe PA, Kwan R, Omary MB. Types I and II Keratin Intermediate Filaments. Cold Spring Harb Perspect Biol 2018; 10:10/4/a018275. [PMID: 29610398 DOI: 10.1101/cshperspect.a018275] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Keratins-types I and II-are the intermediate-filament-forming proteins expressed in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Here, we review how keratins serve multiple homeostatic and stress-triggered mechanical and nonmechanical functions, including maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications and keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility or altered tissue homeostasis. Furthermore, keratin mutation or misregulation represents risk factors or genetic modifiers for several additional acute and chronic diseases.
Collapse
Affiliation(s)
- Justin T Jacob
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205.,Departments of Biological Chemistry, Dermatology, and Oncology, School of Medicine, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21205
| | - Raymond Kwan
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - M Bishr Omary
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan 48109.,VA Ann Arbor Health Care System, Ann Arbor, Michigan 48105
| |
Collapse
|
109
|
Selvaggi L, Pasakarnis L, Brunner D, Aegerter CM. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:045106. [PMID: 29716356 DOI: 10.1063/1.5010788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic tweezers are mainly divided into two classes depending on the ability of applying torque or forces to the magnetic probe. We focused on the second category and designed a device composed by a single electromagnet equipped with a core having a special asymmetric profile to exert forces as large as 230 pN-2.8 μm Dynabeads at distances in excess of 100 μm from the magnetic tip. Compared to existing solutions our magnetic tweezers overcome important limitations, opening new experimental paths for the study of a wide range of materials in a variety of biophysical research settings. We discuss the benefits and drawbacks of different magnet core characteristics, which led us to design the current core profile. To demonstrate the usefulness of our magnetic tweezers, we determined the microrheological properties inside embryos of Drosophila melanogaster during the syncytial stage. Measurements in different locations along the dorsal-ventral axis of the embryos showed little variation, with a slight increase in cytoplasm viscosity at the periphery of the embryos. The mean cytoplasm viscosity we obtain by active force exertion inside the embryos is comparable to that determined passively using high-speed video microrheology.
Collapse
Affiliation(s)
- L Selvaggi
- Department of Physics, University of Zurich UZH, Zurich, Switzerland
| | - L Pasakarnis
- Institute of Molecular Life Science IMLS, Zurich, Switzerland
| | - D Brunner
- Institute of Molecular Life Science IMLS, Zurich, Switzerland
| | - C M Aegerter
- Department of Physics, University of Zurich UZH, Zurich, Switzerland
| |
Collapse
|
110
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
111
|
Dual role of E-cadherin in the regulation of invasive collective migration of mammary carcinoma cells. Sci Rep 2018; 8:4986. [PMID: 29563585 PMCID: PMC5862898 DOI: 10.1038/s41598-018-22940-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
In this article, we explore a non-canonical form of collective cell migration, displayed by the metastatic murine mammary carcinoma cell line 4T1. We show here that in sparsely plated 4T1 cells, E-cadherin levels are moderately reduced (~50%), leading to the development of collective migration, whereby cells translocate in loose clusters, interconnected by thin membrane tethers. Knocking down E-cadherin blocked tether formation in these cells, leading to enhancement of migration rate and, at the same time, to suppression of lung metastases formation in vivo, and inhibition of infiltration into fibroblast monolayers ex vivo. These findings suggest that the moderate E-cadherin levels present in wild-type 4T1 cells play a key role in promoting cancer invasion and metastasis.
Collapse
|
112
|
Sehgal P, Kong X, Wu J, Sunyer R, Trepat X, Leckband D. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions. J Cell Sci 2018; 131:jcs206656. [PMID: 29487179 PMCID: PMC5897709 DOI: 10.1242/jcs.206656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Poonam Sehgal
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Xinyu Kong
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Jun Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61802, USA
| | - Raimon Sunyer
- Institute for Bioengineering of Catalonia, Barcelona, Spain 08028
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain 08028
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain 08028
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain 08028
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain 08028
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61802, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, IL 61802, USA
- Department of Chemistry, University of Illinois, Urbana-Champaign, IL 61802, USA
| |
Collapse
|
113
|
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 2018; 554:523-527. [PMID: 29443958 PMCID: PMC6013044 DOI: 10.1038/nature25742] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Collective cell migration (CCM) is essential for morphogenesis, tissue remodelling, and cancer invasion1,2. In vivo, groups of cells move in an orchestrated way through tissues. This movement requires forces and involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in CCM is comparatively well understood1,2, how tissue mechanics influence CCM in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion3. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiated an epithelial-to-mesenchymal transition (EMT) in neural crest cells and triggered their collective migration. To detect changes in their mechanical environment, neural crest use integrin/vinculin/talin-mediated mechanosensing. By performing mechanical and molecular manipulations, we showed that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrated that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results unveil a novel role for mesodermal convergent extension as a mechanical coordinator of morphogenesis, and thus reveal a new link between two apparently unconnected processes, gastrulation and neural crest migration, via changes in tissue mechanics. Overall, we provide the first demonstration that changes in substrate stiffness can trigger CCM by promoting EMT in vivo. More broadly, our results raise the exciting idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis4.
Collapse
|
114
|
Hayashi K, Yamamoto TS, Ueno N. Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation. Sci Rep 2018; 8:2433. [PMID: 29402947 PMCID: PMC5799360 DOI: 10.1038/s41598-018-20747-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
During the gastrulation stage in animal embryogenesis, the cells leading the axial mesoderm migrate toward the anterior side of the embryo, vigorously extending cell protrusions such as lamellipodia. It is thought that the leading cells sense gradients of chemoattractants emanating from the ectodermal cells and translate them to initiate and maintain the cell movements necessary for gastrulation. However, it is unclear how the extracellular information is converted to the intracellular chemical reactions that lead to motion. Here we demonstrated that intracellular Ca2+ levels in the protrusion-forming leading cells are markedly higher than those of the following cells and the axial mesoderm cells. We also showed that inhibiting the intracellular Ca2+ significantly retarded the gastrulation cell movements, while increasing the intracellular Ca2+ with an ionophore enhanced the migration. We further found that the ionophore treatment increased the active form of the small GTPase Rac1 in these cells. Our results suggest that transient intracellular Ca2+ signals play an essential role in the active cell migration during gastrulation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takamasa S Yamamoto
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
115
|
Coburn L, Lopez H, Schouwenaar IM, Yap AS, Lobaskin V, Gomez GA. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury. Phys Biol 2018; 15:024001. [PMID: 29091048 DOI: 10.1088/1478-3975/aa976b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.
Collapse
Affiliation(s)
- Luke Coburn
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, United Kingdom. Authors to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
116
|
Putelat T, Recho P, Truskinovsky L. Mechanical stress as a regulator of cell motility. Phys Rev E 2018; 97:012410. [PMID: 29448458 DOI: 10.1103/physreve.97.012410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Indexed: 06/08/2023]
Abstract
The motility of a cell can be triggered or inhibited not only by an applied force but also by a mechanically neutral force couple. This type of loading, represented by an applied stress and commonly interpreted as either squeezing or stretching, can originate from extrinsic interaction of a cell with its neighbors. To quantify the effect of applied stresses on cell motility we use an analytically transparent one-dimensional model accounting for active myosin contraction and induced actin turnover. We show that stretching can polarize static cells and initiate cell motility while squeezing can symmetrize and arrest moving cells. We show further that sufficiently strong squeezing can lead to the loss of cell integrity. The overall behavior of the system depends on the two dimensionless parameters characterizing internal driving (chemical activity) and external loading (applied stress). We construct a phase diagram in this parameter space distinguishing between static, motile, and collapsed states. The obtained results are relevant for the mechanical understanding of contact inhibition and the epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- T Putelat
- DEM, Queen's School of Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom
| | - P Recho
- LIPhy, CNRS-UMR 5588, Université Grenoble Alpes, F-38000 Grenoble, France
| | | |
Collapse
|
117
|
Zhao J, Cao Y, DiPietro LA, Liang J. Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization. J R Soc Interface 2017; 14:rsif.2016.0959. [PMID: 28404867 DOI: 10.1098/rsif.2016.0959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/15/2017] [Indexed: 01/07/2023] Open
Abstract
Computational modelling of cells can reveal insight into the mechanisms of the important processes of tissue development. However, current cell models have limitations and are challenged to model detailed changes in cellular shapes and physical mechanics when thousands of migrating and interacting cells need to be modelled. Here we describe a novel dynamic cellular finite-element model (DyCelFEM), which accounts for changes in cellular shapes and mechanics. It also models the full range of cell motion, from movements of individual cells to collective cell migrations. The transmission of mechanical forces regulated by intercellular adhesions and their ruptures are also accounted for. Intra-cellular protein signalling networks controlling cell behaviours are embedded in individual cells. We employ DyCelFEM to examine specific effects of biochemical and mechanical cues in regulating cell migration and proliferation, and in controlling tissue patterning using a simplified re-epithelialization model of wound tissue. Our results suggest that biochemical cues are better at guiding cell migration with improved directionality and persistence, while mechanical cues are better at coordinating collective cell migration. Overall, DyCelFEM can be used to study developmental processes when a large population of migrating cells under mechanical and biochemical controls experience complex changes in cell shapes and mechanics.
Collapse
Affiliation(s)
- Jieling Zhao
- Department of Bioengineering, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Youfang Cao
- Theoretical Biology and Biophysics (T-6), Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jie Liang
- Department of Bioengineering, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
118
|
Sonavane PR, Wang C, Dzamba B, Weber GF, Periasamy A, DeSimone DW. Mechanical and signaling roles for keratin intermediate filaments in the assembly and morphogenesis of Xenopus mesendoderm tissue at gastrulation. Development 2017; 144:4363-4376. [PMID: 28982683 PMCID: PMC5769636 DOI: 10.1242/dev.155200] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
The coordination of individual cell behaviors is a crucial step in the assembly and morphogenesis of tissues. Xenopus mesendoderm cells migrate collectively along a fibronectin (FN) substrate at gastrulation, but how the adhesive and mechanical forces required for these movements are generated and transmitted is unclear. Traction force microscopy (TFM) was used to establish that traction stresses are limited primarily to leading edge cells in mesendoderm explants, and that these forces are balanced by intercellular stresses in follower rows. This is further reflected in the morphology of these cells, with broad lamellipodial protrusions, mature focal adhesions and a gradient of activated Rac1 evident at the leading edge, while small protrusions, rapid turnover of immature focal adhesions and lack of a Rac1 activity gradient characterize cells in following rows. Depletion of keratin (krt8) with antisense morpholinos results in high traction stresses in follower row cells, misdirected protrusions and the formation of actin stress fibers anchored in streak-like focal adhesions. We propose that maintenance of mechanical integrity in the mesendoderm by keratin intermediate filaments is required to balance stresses within the tissue to regulate collective cell movements.
Collapse
Affiliation(s)
- Pooja R Sonavane
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Chong Wang
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Bette Dzamba
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Gregory F Weber
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Ammasi Periasamy
- Keck Center for Cellular Imaging, Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Douglas W DeSimone
- Department of Cell Biology, School of Medicine, University of Virginia Health System, P.O. Box 800732, Charlottesville, VA 22908, USA
| |
Collapse
|
119
|
Viktorinová I, Henry I, Tomancak P. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations. PLoS Genet 2017; 13:e1007107. [PMID: 29176774 PMCID: PMC5720821 DOI: 10.1371/journal.pgen.1007107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 12/07/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022] Open
Abstract
Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs. Movement of epithelial tissues is essential for organ and body formation as well as function. To facilitate epithelial movements, cells need an internal or external source of mechanical force and a collective decision in which direction to move. However, little is known about the underlying mechanism of collective cell movement in living and moving epithelial tissues. Using high-speed confocal imaging of rotating follicle epithelia in acinar-like Drosophila egg chambers, we find that individual cells polarize their actomyosin network, a potent force-generating source, at their basal surface. We show that the atypical cadherin Fat2, a key regulator of planar cell polarity in Drosophila oogenesis, unifies and amplifies the polarized non-muscle Myosin II of individual follicle cells to break the symmetry of actomyosin contractility at the epithelial level. We propose that this is essential to facilitate epithelial rotation, and thereby directed cell elongation, at the basal surface of follicle cells. In contrast, a lack of unidirectional actomyosin contractility results in disrupted non-muscle Myosin II polarity within follicle cells and causes asynchronous Myosin II pulses that deform follicle cells. This demonstrates the critical function of Fat2, in the planar symmetry breaking of actomyosin, in epithelial motility, and potentially in organ development.
Collapse
Affiliation(s)
- Ivana Viktorinová
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
120
|
|
121
|
Venhuizen JH, Zegers MM. Making Heads or Tails of It: Cell-Cell Adhesion in Cellular and Supracellular Polarity in Collective Migration. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027854. [PMID: 28246177 DOI: 10.1101/cshperspect.a027854] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Collective cell migration is paramount to morphogenesis and contributes to the pathogenesis of cancer. To migrate directionally and reach their site of destination, migrating cells must distinguish a front and a rear. In addition to polarizing individually, cell-cell interactions in collectively migrating cells give rise to a higher order of polarity, which allows them to move as a supracellular unit. Rather than just conferring adhesion, emerging evidence indicates that cadherin-based adherens junctions intrinsically polarize the cluster and relay mechanical signals to establish both intracellular and supracellular polarity. In this review, we discuss the various functions of adherens junctions in polarity of migrating cohorts.
Collapse
Affiliation(s)
- Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Mirjam M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
122
|
Monzel C, Vicario C, Piehler J, Coppey M, Dahan M. Magnetic control of cellular processes using biofunctional nanoparticles. Chem Sci 2017; 8:7330-7338. [PMID: 29163884 PMCID: PMC5672790 DOI: 10.1039/c7sc01462g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
Remote control of cellular functions is a key challenge in biomedical research. Only a few tools are currently capable of manipulating cellular events at distance, at spatial and temporal scales matching their naturally active range. A promising approach, often referred to as 'magnetogenetics', is based on the use of magnetic fields, in conjunction with targeted biofunctional magnetic nanoparticles. By triggering molecular stimuli via mechanical, thermal or biochemical perturbations, magnetic actuation constitutes a highly versatile tool with numerous applications in fundamental research as well as exciting prospects in nano- and regenerative medicine. Here, we highlight recent studies, comment on the advancement of magnetic manipulation, and discuss remaining challenges.
Collapse
Affiliation(s)
- Cornelia Monzel
- Institut Curie , PSL Research University , Laboratoire Physico Chimie , CNRS UMR168 , UPMC , F-75005 Paris , France .
| | - Chiara Vicario
- Institut Curie , PSL Research University , Laboratoire Physico Chimie , CNRS UMR168 , UPMC , F-75005 Paris , France .
| | - Jacob Piehler
- University of Osnabrück , Department of Biology/Chemistry , Division of Biophysics , 49076 Osnabrück , Germany
| | - Mathieu Coppey
- Institut Curie , PSL Research University , Laboratoire Physico Chimie , CNRS UMR168 , UPMC , F-75005 Paris , France .
| | - Maxime Dahan
- Institut Curie , PSL Research University , Laboratoire Physico Chimie , CNRS UMR168 , UPMC , F-75005 Paris , France .
| |
Collapse
|
123
|
Blanch-Mercader C, Casademunt J. Hydrodynamic instabilities, waves and turbulence in spreading epithelia. SOFT MATTER 2017; 13:6913-6928. [PMID: 28825077 DOI: 10.1039/c7sm01128h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a hydrodynamic model of spreading epithelial monolayers described as polar viscous fluids, with active contractility and traction on a substrate. The combination of both active forces generates an instability that leads to nonlinear traveling waves, which propagate in the direction of polarity with characteristic time scales that depend on contact forces. Our viscous fluid model provides a comprehensive understanding of a variety of observations on the slow dynamics of epithelial monolayers, remarkably those that seemed to be characteristic of elastic media. The model also makes simple predictions to test the non-elastic nature of the mechanical waves, and provides new insights into collective cell dynamics, explaining plithotaxis as a result of strong flow-polarity coupling, and quantifying the non-locality of force transmission. In addition, we study the nonlinear regime of waves deriving an exact map of the model into the complex Ginzburg-Landau equation, which provides a complete classification of possible nonlinear scenarios. In particular, we predict the transition to different forms of weak turbulence, which in turn could explain the chaotic dynamics often observed in epithelia.
Collapse
Affiliation(s)
- C Blanch-Mercader
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain. and Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, 26 rue d' Ulm, 75005 Paris, France
| | - J Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain. and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
124
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
125
|
Cheng F, Eriksson JE. Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harb Perspect Biol 2017; 9:9/9/a022046. [PMID: 28864602 DOI: 10.1101/cshperspect.a022046] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SUMMARYIntermediate filaments (IFs) comprise a diverse group of flexible cytoskeletal structures, the assembly, dynamics, and functions of which are regulated by posttranslational modifications. Characteristically, the expression of IF proteins is specific for tissues, differentiation stages, cell types, and functional contexts. Recent research has rapidly expanded the knowledge of IF protein functions. From being regarded as primarily structural proteins, it is now well established that IFs act as powerful modulators of cell motility and migration, playing crucial roles in wound healing and tissue regeneration, as well as inflammatory and immune responses. Although many of these IF-associated functions are essential for tissue repair, the involvement of IF proteins has been established in many additional facets of tissue healing and regeneration. Here, we review the recent progress in understanding the multiple functions of cytoplasmic IFs that relate to cell motility in the context of wound healing, taking examples from studies on keratin, vimentin, and nestin. Wound healing and regeneration include orchestration of a broad range of cellular processes, including regulation of cell attachment and migration, proliferation, differentiation, immune responses, angiogenesis, and remodeling of the extracellular matrix. In this respect, IF proteins now emerge as multifactorial and tissue-specific integrators of tissue regeneration, thereby acting as essential guardian biopolymers at the interface between health and disease, the failing of which contributes to a diverse range of pathologies.
Collapse
Affiliation(s)
- Fang Cheng
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| |
Collapse
|
126
|
Abstract
Collective cell migration plays a pivotal role in the formation of organs, tissue regeneration, wound healing and many disease processes, including cancer. Despite the considerable existing knowledge on the molecular control of cell movements, it is unclear how the different observed modes of collective migration, especially for small groups of cells, emerge from the known behaviors of individual cells. Here we derive a physical description of collective cellular movements from first principles, while accounting for known phenomenological cell behaviors, such as contact inhibition of locomotion and force-induced cell repolarization. We show that this theoretical description successfully describes the motion of groups of cells of arbitrary numbers, connecting single cell behaviors and parameters (e.g., adhesion and traction forces) to the collective migration of small groups of cells and the expansion of large cell colonies. Specifically, using a common framework, we explain how cells characterized by contact inhibition of locomotion can display coherent collective behavior when in groups, even in the absence of biochemical signaling. We find an optimal group size leading to maximal group persistence and show that cell proliferation prevents the buildup of intercellular forces within cell colonies, enabling their expansion.
Collapse
|
127
|
Au SH, Edd J, Haber DA, Maheswaran S, Stott SL, Toner M. Clusters of Circulating Tumor Cells: a Biophysical and Technological Perspective. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 3:13-19. [PMID: 29226271 DOI: 10.1016/j.cobme.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vast majority of cancer associated deaths result from metastasis, yet the behaviors of its most potent cellular driver, circulating tumor cell clusters, are only beginning to be revealed. This review highlights recent advances to our understanding of tumor cell clusters with emphasis on enabling technologies. The importance of intercellular adhesions among cells in clusters have begun to be unraveled with the aid of promising microfluidic strategies for isolating clusters from patient blood. Due to their metastatic potency, the utility of circulating tumor cell clusters for cancer diagnosis, drug screening, precision oncology and as targets of antimetastatic therapeutics are being explored. The continued development of tools for exploring circulating tumor cell clusters will enhance our fundamental understanding of the metastatic process and may be instrumental in devising new strategies to suppress and eliminate metastasis.
Collapse
Affiliation(s)
- Sam H Au
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Department of Bioengineering, Imperial College London, London, UK SW7 2AZ
| | - Jon Edd
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Daniel A Haber
- Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Howard Hughes Medical Institute, Bethesda, MD, 20815
| | - Shyamala Maheswaran
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129
| | - Shannon L Stott
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Massachusetts General Hospital Center for Cancer Research, Harvard Medical School, Charlestown, MA 02129.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Mehmet Toner
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.,Shriners Hospital for Children, Boston, MA, 02114
| |
Collapse
|
128
|
Raghunathan R, Zhang J, Wu C, Rippy J, Singh M, Larin KV, Scarcelli G. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-6. [PMID: 28861955 PMCID: PMC5582619 DOI: 10.1117/1.jbo.22.8.086013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 05/19/2023]
Abstract
Embryogenesis is regulated by numerous changes in mechanical properties of the cellular microenvironment. Thus, studying embryonic mechanophysiology can provide a more thorough perspective of embryonic development, potentially improving early detection of congenital abnormalities as well as evaluating and developing therapeutic interventions. A number of methods and techniques have been used to study cellular biomechanical properties during embryogenesis. While some of these techniques are invasive or involve the use of external agents, others are compromised in terms of spatial and temporal resolutions. We propose the use of Brillouin microscopy in combination with optical coherence tomography (OCT) to measure stiffness as well as structural changes in a developing embryo. While Brillouin microscopy assesses the changes in stiffness among different organs of the embryo, OCT provides the necessary structural guidance.
Collapse
Affiliation(s)
- Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Jitao Zhang
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Chen Wu
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Justin Rippy
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Address all correspondence to: Kirill V. Larin, E-mail: ; Giuliano Scarcelli, E-mail:
| | - Giuliano Scarcelli
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
- Address all correspondence to: Kirill V. Larin, E-mail: ; Giuliano Scarcelli, E-mail:
| |
Collapse
|
129
|
Collins C, Denisin AK, Pruitt BL, Nelson WJ. Changes in E-cadherin rigidity sensing regulate cell adhesion. Proc Natl Acad Sci U S A 2017; 114:E5835-E5844. [PMID: 28674019 PMCID: PMC5530647 DOI: 10.1073/pnas.1618676114] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Aleksandra K Denisin
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Beth L Pruitt
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305;
| |
Collapse
|
130
|
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017; 28:1833-1846. [PMID: 28684609 PMCID: PMC5541834 DOI: 10.1091/mbc.e17-03-0134] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell-ECM and cell-cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration.
Collapse
Affiliation(s)
- Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
- UPMC Université Paris 06, IFD, Sorbonne Universités, 75252 Paris Cedex 05, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
| |
Collapse
|
131
|
Pickett MA, Dush MK, Nascone-Yoder NM. Acetylcholinesterase plays a non-neuronal, non-esterase role in organogenesis. Development 2017; 144:2764-2770. [PMID: 28684626 DOI: 10.1242/dev.149831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023]
Abstract
Acetylcholinesterase (AChE) is crucial for degrading acetylcholine at cholinergic synapses. In vitro studies suggest that, in addition to its role in nervous system signaling, AChE can also modulate non-neuronal cell properties, although it remains controversial whether AChE functions in this capacity in vivo Here, we show that AChE plays an essential non-classical role in vertebrate gut morphogenesis. Exposure of Xenopus embryos to AChE-inhibiting chemicals results in severe defects in intestinal development. Tissue-targeted loss-of-function assays (via microinjection of antisense morpholino or CRISPR-Cas9) confirm that AChE is specifically required in the gut endoderm tissue, a non-neuronal cell population, where it mediates adhesion to fibronectin and regulates cell rearrangement events that drive gut lengthening and digestive epithelial morphogenesis. Notably, the classical esterase activity of AChE is dispensable for this activity. As AChE is deeply conserved, widely expressed outside of the nervous system, and the target of many environmental chemicals, these results have wide-reaching implications for development and toxicology.
Collapse
Affiliation(s)
- Melissa A Pickett
- Department of Biology, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, NC 27606, USA
| | - Michael K Dush
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette M Nascone-Yoder
- Department of Biology, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, NC 27606, USA .,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
132
|
Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol 2017; 9:9/7/a023234. [PMID: 28679638 DOI: 10.1101/cshperspect.a023234] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites.
Collapse
Affiliation(s)
- Alexia I Bachir
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - Alan Rick Horwitz
- Protein and Cell Analysis, Biosciences Division, Thermo Fisher Scientific, Eugene, Oregon 97402
| | - W James Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| | - Julie M Bianchini
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
133
|
Quantitative modelling of epithelial morphogenesis: integrating cell mechanics and molecular dynamics. Semin Cell Dev Biol 2017; 67:153-160. [DOI: 10.1016/j.semcdb.2016.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/28/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
|
134
|
Zaritsky A, Tseng YY, Rabadán MA, Krishna S, Overholtzer M, Danuser G, Hall A. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration. J Cell Biol 2017; 216:1543-1556. [PMID: 28512143 PMCID: PMC5461017 DOI: 10.1083/jcb.201609095] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Efficient collective migration depends on a balance between contractility and cytoskeletal rearrangements, adhesion, and mechanical cell-cell communication, all controlled by GTPases of the RHO family. By comprehensive screening of guanine nucleotide exchange factors (GEFs) in human bronchial epithelial cell monolayers, we identified GEFs that are required for collective migration at large, such as SOS1 and β-PIX, and RHOA GEFs that are implicated in intercellular communication. Down-regulation of the latter GEFs differentially enhanced front-to-back propagation of guidance cues through the monolayer and was mirrored by down-regulation of RHOA expression and myosin II activity. Phenotype-based clustering of knockdown behaviors identified RHOA-ARHGEF18 and ARHGEF3-ARHGEF28-ARHGEF11 clusters, indicating that the latter may signal through other RHO-family GTPases. Indeed, knockdown of RHOC produced an intermediate between the two phenotypes. We conclude that for effective collective migration, the RHOA-GEFs → RHOA/C → actomyosin pathways must be optimally tuned to compromise between generation of motility forces and restriction of intercellular communication.
Collapse
Affiliation(s)
- Assaf Zaritsky
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yun-Yu Tseng
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - M Angeles Rabadán
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Shefali Krishna
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Alan Hall
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
135
|
Abstract
Tumours are highly complex and contain multiple cell types. Cancer-associated fibroblasts are now shown to have a critical role in directly leading cancer cell invasion. This intercellular interaction relies on a mechanically active cadherin-based junction, and CAF-led invasion is demonstrated to require E-cadherin in the cancer cell.
Collapse
Affiliation(s)
- Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
136
|
Hatzfeld M, Keil R, Magin TM. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. Cold Spring Harb Perspect Biol 2017; 9:a029157. [PMID: 28096266 PMCID: PMC5453391 DOI: 10.1101/cshperspect.a029157] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
137
|
|
138
|
Horne-Badovinac S. Fat-like cadherins in cell migration-leading from both the front and the back. Curr Opin Cell Biol 2017; 48:26-32. [PMID: 28551508 DOI: 10.1016/j.ceb.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/15/2023]
Abstract
When cells migrate through the body, their motility is continually influenced by interactions with other cells. The Fat-like cadherins are cell-cell signaling proteins that promote migration in multiple cell types. Recent studies suggest, however, that Fat-like cadherins influence motility differently in mammals versus Drosophila, with the cadherin acting at the leading edge of mammalian cells and the trailing edge of Drosophila cells. As opposed to this being a difference between organisms, it is more likely that the Fat-like cadherins are highly versatile proteins that can interact with the migration machinery in multiple ways. Here, I review what is known about how Fat-like cadherins promote migration, and then explore where conserved features may be found between the mammalian and Drosophila models.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
139
|
Davidson LA. Mechanical design in embryos: mechanical signalling, robustness and developmental defects. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150516. [PMID: 28348252 PMCID: PMC5379024 DOI: 10.1098/rstb.2015.0516] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
Embryos are shaped by the precise application of force against the resistant structures of multicellular tissues. Forces may be generated, guided and resisted by cells, extracellular matrix, interstitial fluids, and how they are organized and bound within the tissue's architecture. In this review, we summarize our current thoughts on the multiple roles of mechanics in direct shaping, mechanical signalling and robustness of development. Genetic programmes of development interact with environmental cues to direct the composition of the early embryo and endow cells with active force production. Biophysical advances now provide experimental tools to measure mechanical resistance and collective forces during morphogenesis and are allowing integration of this field with studies of signalling and patterning during development. We focus this review on concepts that highlight this integration, and how the unique contributions of mechanical cues and gradients might be tested side by side with conventional signalling systems. We conclude with speculation on the integration of large-scale programmes of development, and how mechanical responses may ensure robust development and serve as constraints on programmes of tissue self-assembly.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
140
|
Ohashi K, Fujiwara S, Mizuno K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem 2017; 161:245-254. [PMID: 28082721 DOI: 10.1093/jb/mvw082] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
All cells sense and respond to various mechanical forces in and mechanical properties of their environment. To respond appropriately, cells must be able to sense the location, direction, strength and duration of these forces. Recent progress in mechanobiology has provided a better understanding of the mechanisms of mechanoresponses underlying many cellular and developmental processes. Various roles of mechanoresponses in development and tissue homeostasis have been elucidated, and many molecules involved in mechanotransduction have been identified. However, the whole picture of the functions and molecular mechanisms of mechanotransduction remains to be understood. Recently, novel mechanisms for sensing and transducing mechanical stresses via the cytoskeleton, cell-substrate and cell-cell adhesions and related proteins have been identified. In this review, we outline the roles of the cytoskeleton, cell-substrate and cell-cell adhesions, and related proteins in mechanosensing and mechanotransduction. We also describe the roles and regulation of Rho-family GTPases in mechanoresponses.
Collapse
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Sachiko Fujiwara
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.,Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan Osaka
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
141
|
Timonen JVI, Grzybowski BA. Tweezing of Magnetic and Non-Magnetic Objects with Magnetic Fields. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603516. [PMID: 28198579 DOI: 10.1002/adma.201603516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Although strong magnetic fields cannot be conveniently "focused" like light, modern microfabrication techniques enable preparation of microstructures with which the field gradients - and resulting magnetic forces - can be localized to very small dimensions. This ability provides the foundation for magnetic tweezers which in their classical variant can address magnetic targets. More recently, the so-called negative magnetophoretic tweezers have also been developed which enable trapping and manipulations of completely nonmagnetic particles provided that they are suspended in a high-magnetic-susceptibility liquid. These two modes of magnetic tweezing are complimentary techniques tailorable for different types of applications. This Progress Report provides the theoretical basis for both modalities and illustrates their specific uses ranging from the manipulation of colloids in 2D and 3D, to trapping of living cells, control of cell function, experiments with single molecules, and more.
Collapse
Affiliation(s)
- Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Espoo, 02150, Finland
| | - Bartosz A Grzybowski
- Center for Soft and Living Matter, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| |
Collapse
|
142
|
Jackson TR, Kim HY, Balakrishnan UL, Stuckenholz C, Davidson LA. Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Formation and Function. Curr Biol 2017; 27:1326-1335. [PMID: 28434863 DOI: 10.1016/j.cub.2017.03.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
During early cardiogenesis, bilateral fields of mesenchymal heart progenitor cells (HPCs) move from the anterior lateral plate mesoderm to the ventral midline, undergoing a mesenchymal-to-epithelial transition (MET) en route to forming a single epithelial sheet. Through tracking of tissue-level deformations in the heart-forming region (HFR) as well as movement trajectories and traction generation of individual HPCs, we find that the onset of MET correlates with a peak in mechanical stress within the HFR and changes in HPC migratory behaviors. Small-molecule inhibitors targeting actomyosin contractility reveal a temporally specific requirement of bulk tissue compliance to regulate heart development and MET. Targeting mutant constructs to modulate contractility and compliance in the underlying endoderm, we find that MET in HPCs can be accelerated in response to microenvironmental stiffening and can be inhibited by softening. To test whether MET in HPCs was responsive to purely physical mechanical cues, we mimicked a high-stress state by injecting an inert oil droplet to generate high strain in the HFR, demonstrating that exogenously applied stress was sufficient to drive MET. MET-induced defects in anatomy result in defined functional lesions in the larval heart, implicating mechanical signaling and MET in the etiology of congenital heart defects. From this integrated analysis of HPC polarity and mechanics, we propose that normal heart development requires bilateral HPCs to undergo a critical behavioral and phenotypic transition on their way to the ventral midline, and that this transition is driven in response to the changing mechanical properties of their endoderm substrate.
Collapse
Affiliation(s)
- Timothy R Jackson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hye Young Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Uma L Balakrishnan
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carsten Stuckenholz
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lance A Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
143
|
Abstract
Cell polarization is a key step in the migration, development, and organization of eukaryotic cells, both at the single cell and multicellular level. Research on the mechanisms that give rise to polarization of a given cell, and organization of polarity within a tissue has led to new understanding across cellular and developmental biology. In this review, we describe some of the history of theoretical and experimental aspects of the field, as well as some interesting questions and challenges for the future.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, USA
| | | |
Collapse
|
144
|
Ferreira RR, Vermot J. The balancing roles of mechanical forces during left-right patterning and asymmetric morphogenesis. Mech Dev 2017; 144:71-80. [DOI: 10.1016/j.mod.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
|
145
|
Smutny M, Ákos Z, Grigolon S, Shamipour S, Ruprecht V, Čapek D, Behrndt M, Papusheva E, Tada M, Hof B, Vicsek T, Salbreux G, Heisenberg CP. Friction forces position the neural anlage. Nat Cell Biol 2017; 19:306-317. [PMID: 28346437 PMCID: PMC5635970 DOI: 10.1038/ncb3492] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/17/2017] [Indexed: 12/23/2022]
Abstract
During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.
Collapse
Affiliation(s)
- Michael Smutny
- Institute of Science and Technology Austria, Am Campus 1,
A-3400 Klosterneuburg, Austria
| | - Zsuzsa Ákos
- Department of Biological Physics, Eötvös
University, Pázmány Péter sétány 1A, Budapest
H-1117, Hungary
| | - Silvia Grigolon
- The Francis Crick Institute, 1 Midland Road, London NW1
1AT, UK
| | - Shayan Shamipour
- Institute of Science and Technology Austria, Am Campus 1,
A-3400 Klosterneuburg, Austria
| | - Verena Ruprecht
- Centre for Genomic Regulation (CRG), The Barcelona
Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona,
Spain
| | - Daniel Čapek
- Institute of Science and Technology Austria, Am Campus 1,
A-3400 Klosterneuburg, Austria
| | - Martin Behrndt
- Institute of Science and Technology Austria, Am Campus 1,
A-3400 Klosterneuburg, Austria
| | - Ekaterina Papusheva
- Institute of Science and Technology Austria, Am Campus 1,
A-3400 Klosterneuburg, Austria
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University
College London, Gower Street, London, WC1E 6BT, UK
| | - Björn Hof
- Institute of Science and Technology Austria, Am Campus 1,
A-3400 Klosterneuburg, Austria
| | - Tamás Vicsek
- Department of Biological Physics, Eötvös
University, Pázmány Péter sétány 1A, Budapest
H-1117, Hungary
| | | | | |
Collapse
|
146
|
Intermediate filament reorganization dynamically influences cancer cell alignment and migration. Sci Rep 2017; 7:45152. [PMID: 28338091 PMCID: PMC5364536 DOI: 10.1038/srep45152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an increasing amount of investigation. The role of the intermediate filament keratin in cancer has also been coming into focus of late, but more research is needed to understand how this piece fits in the puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more ‘mobile’- exhibiting faster and more directed migration and orientation in response to external stimuli. By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight the key elements facilitating cancer cell-ECM interactions.
Collapse
|
147
|
Actomyosin-generated tension on cadherin is similar between dividing and non-dividing epithelial cells in early Xenopus laevis embryos. Sci Rep 2017; 7:45058. [PMID: 28327558 PMCID: PMC5361196 DOI: 10.1038/srep45058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/20/2017] [Indexed: 12/18/2022] Open
Abstract
Epithelia represent a unique situation where polarized cells must maintain sufficiently strong cell-cell contacts to guarantee the epithelial integrity indispensable for barrier functions. Nevertheless, epithelia must also keep sufficient plasticity which is crucial during development and morphogenesis. Adherens junctions and mechanical forces produced by the actomyosin cytoskeleton are major players for epithelial integrity maintenance and plasticity regulations. To understand how the epithelium is able to meet such a challenge, it is indispensable to determine how cellular junctions and mechanical forces acting at adherens junctions are regulated. Here, we investigate the tensile forces acting on adherens junctions via cadherin during cell division in the Xenopus embryos epithelium. Using the recently developed E-cadherin FRET tension sensor and a fastFLIM prototype microscope, we were able to measure mechanical forces applied on cadherin at cell-cell junctions. We have shown that the Xenopus epithelium is under tension, approximately 3 pN which remains stable, indicating that tensile forces acting on cadherin at the adherens junction are at equilibrium. Unexpectedly, mechanical tension across cadherin was similar between dividing and non-dividing epithelial cells.
Collapse
|
148
|
Labernadie A, Kato T, Brugués A, Serra-Picamal X, Derzsi S, Arwert E, Weston A, González-Tarragó V, Elosegui-Artola A, Albertazzi L, Alcaraz J, Roca-Cusachs P, Sahai E, Trepat X. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 2017; 19:224-237. [PMID: 28218910 PMCID: PMC5831988 DOI: 10.1038/ncb3478] [Citation(s) in RCA: 557] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023]
Abstract
Cancer-associated fibroblasts (CAFs) promote tumour invasion and metastasis. We show that CAFs exert a physical force on cancer cells that enables their collective invasion. Force transmission is mediated by a heterophilic adhesion involving N-cadherin at the CAF membrane and E-cadherin at the cancer cell membrane. This adhesion is mechanically active; when subjected to force it triggers β-catenin recruitment and adhesion reinforcement dependent on α-catenin/vinculin interaction. Impairment of E-cadherin/N-cadherin adhesion abrogates the ability of CAFs to guide collective cell migration and blocks cancer cell invasion. N-cadherin also mediates repolarization of the CAFs away from the cancer cells. In parallel, nectins and afadin are recruited to the cancer cell/CAF interface and CAF repolarization is afadin dependent. Heterotypic junctions between CAFs and cancer cells are observed in patient-derived material. Together, our findings show that a mechanically active heterophilic adhesion between CAFs and cancer cells enables cooperative tumour invasion.
Collapse
Affiliation(s)
- Anna Labernadie
- Institute for Bioengineering of Catalonia, Barcelona 08028,
Spain
| | - Takuya Kato
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT,
UK
| | - Agustí Brugués
- Institute for Bioengineering of Catalonia, Barcelona 08028,
Spain
| | - Xavier Serra-Picamal
- Institute for Bioengineering of Catalonia, Barcelona 08028,
Spain
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina,
Universitat de Barcelona, Barcelona 08036, Spain
| | - Stefanie Derzsi
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT,
UK
| | - Esther Arwert
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT,
UK
| | - Anne Weston
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT,
UK
| | | | | | | | - Jordi Alcaraz
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina,
Universitat de Barcelona, Barcelona 08036, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, Barcelona 08028,
Spain
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina,
Universitat de Barcelona, Barcelona 08036, Spain
| | - Erik Sahai
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT,
UK
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028,
Spain
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina,
Universitat de Barcelona, Barcelona 08036, Spain
- Institució Catalana de Recerca i Estudis Avançats
(ICREA), Barcelona 08010, Spain
- Centro de Investigación Biomédica en Red en
Bioingeniería, Biomateriales y Nanomedicina, Barcelona 08028, Spain
| |
Collapse
|
149
|
BMP signaling controls buckling forces to modulate looping morphogenesis of the gut. Proc Natl Acad Sci U S A 2017; 114:2277-2282. [PMID: 28193855 DOI: 10.1073/pnas.1700307114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth-driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution.
Collapse
|
150
|
Blanch-Mercader C, Vincent R, Bazellières E, Serra-Picamal X, Trepat X, Casademunt J. Effective viscosity and dynamics of spreading epithelia: a solvable model. SOFT MATTER 2017; 13:1235-1243. [PMID: 28098306 DOI: 10.1039/c6sm02188c] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Collective cell migration in spreading epithelia in controlled environments has become a landmark in our current understanding of fundamental biophysical processes in development, regeneration, wound healing or cancer. Epithelial monolayers are treated as thin layers of a viscous fluid that exert active traction forces on the substrate. The model is exactly solvable and shows a broad range of applicabilities for the quantitative analysis and interpretation of force microscopy data of monolayers from a variety of experiments and cell lines. In addition, the proposed model provides physical insights into how the biological regulation of the tissue is encoded in a reduced set of time-dependent physical parameters. In particular the temporal evolution of the effective viscosity entails a mechanosensitive regulation of adhesion. Besides, the observation of an effective elastic tensile modulus can be interpreted as an emergent phenomenon in an active fluid.
Collapse
Affiliation(s)
- C Blanch-Mercader
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain. and Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, 26 rue d' Ulm, 75005 Paris, France
| | - R Vincent
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - E Bazellières
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - X Serra-Picamal
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain and Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain
| | - X Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain and Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain and Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - J Casademunt
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain. and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|