101
|
Ambrose C, Wasteneys GO. Microtubule initiation from the nuclear surface controls cortical microtubule growth polarity and orientation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:1636-45. [PMID: 25008974 PMCID: PMC4160572 DOI: 10.1093/pcp/pcu094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 06/25/2014] [Indexed: 05/19/2023]
Abstract
The nuclear envelope in plant cells has long been known to be a microtubule organizing center (MTOC), but its influence on microtubule organization in the cell cortex has been unclear. Here we show that nuclear MTOC activity favors the formation of longitudinal cortical microtubule (CMT) arrays. We used green fluorescent protein (GFP)-tagged gamma tubulin-complex protein 2 (GCP2) to identify nuclear MTOC activity and GFP-tagged End-Binding Protein 1b (EB1b) to track microtubule growth directions. We found that microtubules initiate from nuclei and enter the cortex in two directions along the long axis of the cell, creating bipolar longitudinal CMT arrays. Such arrays were observed in all cell types showing nuclear MTOC activity, including root hairs, recently divided cells in root tips, and the leaf epidermis. In order to confirm the causal nature of nuclei in bipolar array formation, we displaced nuclei by centrifugation, which generated a corresponding shift in the bipolarity split point. We also found that bipolar CMT arrays were associated with bidirectional trafficking of vesicular components to cell ends. Together, these findings reveal a conserved function of plant nuclear MTOCs and centrosomes/spindle pole bodies in animals and fungi, wherein all structures serve to establish polarities in microtubule growth.
Collapse
Affiliation(s)
- Chris Ambrose
- Department of Botany, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Geoffrey O Wasteneys
- Department of Botany, The University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
102
|
Peña EJ, Ferriol I, Sambade A, Buschmann H, Niehl A, Elena SF, Rubio L, Heinlein M. Experimental virus evolution reveals a role of plant microtubule dynamics and TORTIFOLIA1/SPIRAL2 in RNA trafficking. PLoS One 2014; 9:e105364. [PMID: 25133612 PMCID: PMC4136834 DOI: 10.1371/journal.pone.0105364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 01/12/2023] Open
Abstract
The cytoskeleton is a dynamic network composed of filamentous polymers and regulatory proteins that provide a flexible structural scaffold to the cell and plays a fundamental role in developmental processes. Mutations that alter the spatial orientation of the cortical microtubule (MT) array of plants are known to cause important changes in the pattern of cell wall synthesis and developmental phenotypes; however, the consequences of such alterations on other MT-network-associated functions in the cytoplasm are not known. In vivo observations suggested a role of cortical MTs in the formation and movement of Tobacco mosaic virus (TMV) RNA complexes along the endoplasmic reticulum (ER). Thus, to probe the significance of dynamic MT behavior in the coordination of MT-network-associated functions related to TMV infection and, thus, in the formation and transport of RNA complexes in the cytoplasm, we performed an evolution experiment with TMV in Arabidopsis thaliana tor1/spr2 and tor2 mutants with specific defects in MT dynamics and asked whether TMV is sensitive to these changes. We show that the altered cytoskeleton induced genetic changes in TMV that were correlated with efficient spread of infection in the mutant hosts. These observations demonstrate a role of dynamic MT rearrangements and of the MT-associated protein TORTIFOLIA1/SPIRAL2 in cellular functions related to virus spread and indicate that MT dynamics and MT-associated proteins represent constraints for virus evolution and adaptation. The results highlight the importance of the dynamic plasticity of the MT network in directing cytoplasmic functions in macromolecular assembly and trafficking and illustrate the value of experimental virus evolution for addressing the cellular functions of dynamic, long-range order systems in multicellular organisms.
Collapse
Affiliation(s)
- Eduardo José Peña
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Strasbourg, France
| | - Inmaculada Ferriol
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Adrián Sambade
- Department of Comparative Neurobiology, Institut Cavanilles de Biodiversitat i Biologia Evolutiva CIBERNED, Universidad de Valencia, Valencia, Spain
| | - Henrik Buschmann
- Institute for Botany, University of Osnabrück, Osnabrück, Germany
| | - Annette Niehl
- Department of Environmental Sciences, Plant Physiology, University of Basel, Basel, Switzerland
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Luis Rubio
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
- * E-mail: (LR); (MH)
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Strasbourg, France
- Department of Environmental Sciences, Plant Physiology, University of Basel, Basel, Switzerland
- * E-mail: (LR); (MH)
| |
Collapse
|
103
|
Retzer K, Butt H, Korbei B, Luschnig C. The far side of auxin signaling: fundamental cellular activities and their contribution to a defined growth response in plants. PROTOPLASMA 2014; 251:731-46. [PMID: 24221297 PMCID: PMC4059964 DOI: 10.1007/s00709-013-0572-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 05/04/2023]
Abstract
Recent years have provided us with spectacular insights into the biology of the plant hormone auxin, leaving the impression of a highly versatile molecule involved in virtually every aspect of plant development. A combination of genetics, biochemistry, and cell biology has established auxin signaling pathways, leading to the identification of two distinct modes of auxin perception and downstream regulatory cascades. Major targets of these signaling modules are components of the polar auxin transport machinery, mediating directional distribution of the phytohormone throughout the plant body, and decisively affecting plant development. Alterations in auxin transport, metabolism, or signaling that occur as a result of intrinsic as well as environmental stimuli, control adjustments in morphogenetic programs, giving rise to defined growth responses attributed to the activity of the phytohormone. Some of the results obtained from the analysis of auxin, however, do not fit coherently into a picture of highly specific signaling events, but rather suggest mutual interactions between auxin and fundamental cellular pathways, like the control of intracellular protein sorting or translation. Crosstalk between auxin and these basic determinants of cellular activity and how they might shape auxin effects in the control of morphogenesis are the subject of this review.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Haroon Butt
- Department of Biological Sciences, Forman Christian College, Ferozepur Road, Lahore, 54600 Pakistan
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|
104
|
Habets MEJ, Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. THE NEW PHYTOLOGIST 2014; 203:362-377. [PMID: 24863651 DOI: 10.1111/nph.12831] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/01/2014] [Indexed: 05/21/2023]
Abstract
Plants master the art of coping with environmental challenges in two ways: on the one hand, through their extensive defense systems, and on the other, by their developmental plasticity. The plant hormone auxin plays an important role in a plant's adaptations to its surroundings, as it specifies organ orientation and positioning by regulating cell growth and division in response to internal and external signals. Important in auxin action is the family of PIN-FORMED (PIN) auxin transport proteins that generate auxin maxima and minima by driving polar cell-to-cell transport of auxin through their asymmetric subcellular distribution. Here, we review how regulatory proteins, the cytoskeleton, and membrane trafficking affect PIN expression and localization. Transcriptional regulation of PIN genes alters protein abundance, provides tissue-specific expression, and enables feedback based on auxin concentrations and crosstalk with other hormones. Post-transcriptional modification, for example by PIN phosphorylation or ubiquitination, provides regulation through protein trafficking and degradation, changing the direction and quantity of the auxin flow. Several plant hormones affect PIN abundance, resulting in another means of crosstalk between auxin and these hormones. In conclusion, PIN proteins are instrumental in directing plant developmental responses to environmental and endogenous signals.
Collapse
Affiliation(s)
- Myckel E J Habets
- Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Remko Offringa
- Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
105
|
Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc Natl Acad Sci U S A 2014; 111:10377-82. [PMID: 24982173 DOI: 10.1073/pnas.1401680111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The plant hormone auxin plays a central role in plant growth and development. Auxin transport and signaling depend on actin organization. Despite its functional importance, the mechanistic link between actin filaments (F-actin) and auxin intracellular signaling remains unclear. Here, we report that the actin-organizing protein Rice Morphology Determinant (RMD), a type II formin from rice (Oryza sativa), provides a key link. Mutants lacking RMD display abnormal cell growth and altered configuration of F-actin array direction. The rmd mutants also exhibit an inhibition of auxin-mediated cell elongation, decreased polar auxin transport, altered auxin distribution gradients in root tips, and suppression of plasma membrane localization of auxin transporters O. sativa PIN-FORMED 1b (OsPIN1b) and OsPIN2 in root cells. We demonstrate that RMD is required for endocytosis, exocytosis, and auxin-mediated OsPIN2 recycling to the plasma membrane. Moreover, RMD expression is directly regulated by heterodimerized O. sativa auxin response factor 23 (OsARF23) and OsARF24, providing evidence that auxin modulates the orientation of F-actin arrays through RMD. In support of this regulatory loop, osarf23 and lines with reduced expression of both OsARF23 and OsARF24 display reduced RMD expression, disrupted F-actin organization and cell growth, less sensitivity to auxin response, and altered auxin distribution and OsPIN localization. Our findings establish RMD as a crucial component of the auxin-actin self-organizing regulatory loop from the nucleus to cytoplasm that controls rice cell growth and morphogenesis.
Collapse
|
106
|
Pietra S, Gustavsson A, Kiefer C, Kalmbach L, Hörstedt P, Ikeda Y, Stepanova AN, Alonso JM, Grebe M. Arabidopsis SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity. Nat Commun 2014; 4:2779. [PMID: 24240534 PMCID: PMC3868209 DOI: 10.1038/ncomms3779] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/16/2013] [Indexed: 01/14/2023] Open
Abstract
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes.
Collapse
Affiliation(s)
- Stefano Pietra
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Ivanov R, Brumbarova T, Blum A, Jantke AM, Fink-Straube C, Bauer P. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1. THE PLANT CELL 2014; 26:1294-307. [PMID: 24596241 PMCID: PMC4001385 DOI: 10.1105/tpc.113.116244] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 05/18/2023]
Abstract
Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery.
Collapse
Affiliation(s)
- Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
- Address correspondence to
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | - Ailisa Blum
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | - Anna-Maria Jantke
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
108
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
109
|
Bloch D, Yalovsky S. Cell polarity signaling. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:734-42. [PMID: 24238831 DOI: 10.1016/j.pbi.2013.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 05/10/2023]
Abstract
Cell polarity is a fundamental entity of living organisms. Cells must receive accurate decisions where to divide and along which plane, along which axis to grow, where to grow structures like flagellum or filopodium and how to differentially respond to external stimuli. In multicellular organisms cell polarity also regulates cell-cell communication, pattern formation and cell identity. In eukaryotes the RHO family of small G proteins have emerged as central regulators of cell polarity signaling. It is by now well established that ROPs, the plant specific RHO subfamily members, affect cell polarization. Work carried out over the last several years is beginning to reveal how ROPs are activated, how their activity is spatially regulated, through which effectors they regulate cell polarity and how they interact with hormonal signaling and other polarity determinants. The emerging picture is that while the mechanisms of cell polarity signaling are often unique to plants, the principles that govern cell polarization signaling can be similar. In this review, we provide an updated view of polarity signaling in plants, primarily focusing on the function of ROPs and how they interact with and coordinate different polarity determinants.
Collapse
Affiliation(s)
- Daria Bloch
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
110
|
Peña EJ, Heinlein M. Cortical microtubule-associated ER sites: organization centers of cell polarity and communication. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:764-73. [PMID: 24269577 DOI: 10.1016/j.pbi.2013.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/24/2013] [Accepted: 10/01/2013] [Indexed: 05/21/2023]
Abstract
Anisotropic cell growth and the ability of plant cells to communicate within and across the borders of cellular and supracellular domains depends on the ability of the cells to dynamically establish polarized networks able to deliver structural and informational macromolecules to distinct cellular sites. Studies of organelle movements and transport of endogenous and viral proteins suggest that organelle and macromolecular trafficking pathways involve transient or stable interactions with cortical microtubule-associated endoplasmic reticulum sites (C-MERs). The observations suggest that C-MERs may function as cortical hubs that organize cargo exchange between organelles and allow the recruitment, assembly, and subsequently site-specific delivery of macromolecular complexes. We propose that viruses interact with such hubs for replication and intercellular spread.
Collapse
Affiliation(s)
- Eduardo José Peña
- Institut de Biologie Moléculaire des Plantes, UPR 2357, Centre National de la Recherche Scientifique, Strasbourg 67084, France
| | | |
Collapse
|
111
|
Shaw SL. Reorganization of the plant cortical microtubule array. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:693-7. [PMID: 24446545 DOI: 10.1016/j.pbi.2013.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interphase microtubule arrays in flowering plant cells assemble at the cell cortex into patterns that affect cellular morphogenesis. A decade of live cell imaging studies has provided significant information about the in vivo properties of the microtubule polymers. Efforts to extrapolate individual properties to larger roles in organizing or patterning the microtubule array have produced models focused on self-organization and local levels of biological control. Recent studies looking at cortical microtubule arrays as they transition from an existing pattern to a new pattern have re-emerged as a testbed for examining these models and the molecular hypotheses underpinning them. The evidence suggests that microtubule patterning is locally controlled on the scale of a cell face, using or circumventing self-organizating properties as necessary.
Collapse
|
112
|
Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O, Kwiatkowska D. A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5753-67. [PMID: 24153420 PMCID: PMC3871827 DOI: 10.1093/jxb/ert352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cortical microtubules (CMTs) are often aligned in a particular direction in individual cells or even in groups of cells and play a central role in the definition of growth anisotropy. How the CMTs themselves are aligned is not well known, but two hypotheses have been proposed. According to the first hypothesis, CMTs align perpendicular to the maximal growth direction, and, according to the second, CMTs align parallel to the maximal stress direction. Since both hypotheses were formulated on the basis of mainly qualitative assessments, the link between CMT organization, organ geometry, and cell growth is revisited using a quantitative approach. For this purpose, CMT orientation, local curvature, and growth parameters for each cell were measured in the growing shoot apical meristem (SAM) of Arabidopsis thaliana. Using this approach, it has been shown that stable CMTs tend to be perpendicular to the direction of maximal growth in cells at the SAM periphery, but parallel in the cells at the boundary domain. When examining the local curvature of the SAM surface, no strict correlation between curvature and CMT arrangement was found, which implies that SAM geometry, and presumed geometry-derived stress distribution, is not sufficient to prescribe the CMT orientation. However, a better match between stress and CMTs was found when mechanical stress derived from differential growth was also considered.
Collapse
Affiliation(s)
- Agata Burian
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Michał Ludynia
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Magalie Uyttewaal
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, France
- Laboratoire Joliot Curie, CNRS, ENS Lyon, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, France
- Laboratoire Joliot Curie, CNRS, ENS Lyon, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Dorota Kwiatkowska
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
113
|
Offringa R, Huang F. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:789-808. [PMID: 23945267 DOI: 10.1111/jipb.12096] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/02/2013] [Indexed: 05/27/2023]
Abstract
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.
Collapse
Affiliation(s)
- Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
114
|
Brandizzi F, Wasteneys GO. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:339-49. [PMID: 23647215 DOI: 10.1111/tpj.12227] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 05/07/2023]
Abstract
Movement of secretory organelles is a fascinating yet largely mysterious feature of eukaryotic cells. Microtubule-based endomembrane and organelle motility utilizing the motor proteins dynein and kinesin is commonplace in animal cells. In contrast, it has been long accepted that intracellular motility in plant cells is predominantly driven by myosin motors dragging organelles and endomembrane-bounded cargo along actin filament bundles. Consistent with this, defects in the acto-myosin cytoskeleton compromise plant growth and development. Recent findings, however, challenge the actin-centric view of the motility of critical secretory organelles and distribution of associated protein machinery. In this review, we provide an overview of the current knowledge on actin-mediated organelle movement within the secretory pathway of plant cells, and report on recent and exciting findings that support a critical role of microtubules in plant cell development, in fine-tuning the positioning of Golgi stacks, as well as their involvement in cellulose synthesis and auxin polar transport. These emerging aspects of the biology of microtubules highlight adaptations of an ancestral machinery that plants have specifically evolved to support the functioning of the acto-myosin cytoskeleton, and mark new trends in our global appreciation of the complexity of organelle movement within the plant secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-Department of Energy-Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
115
|
Abstract
The role, if any, of microtubules in auxin transport is poorly understood in plant biology. In this issue of Developmental Cell, Ambrose et al. (2013) show that the microtubule binding protein CLASP regulates PIN2 auxin transporter trafficking and stability via Sorting Nexin1, a component of the retromer complex.
Collapse
Affiliation(s)
- Chunhua Zhang
- Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
116
|
Cao L, Wang L, Zheng M, Cao H, Ding L, Zhang X, Fu Y. Arabidopsis AUGMIN subunit8 is a microtubule plus-end binding protein that promotes microtubule reorientation in hypocotyls. THE PLANT CELL 2013; 25:2187-201. [PMID: 23735294 PMCID: PMC3723620 DOI: 10.1105/tpc.113.113472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plant cells, cortical microtubules provide tracks for cellulose-synthesizing enzymes and regulate cell division, growth, and morphogenesis. The role of microtubules in these essential cellular processes depends on the spatial arrangement of the microtubules. Cortical microtubules are reoriented in response to changes in cell growth status and cell shape. Therefore, an understanding of the mechanism that underlies the change in microtubule orientation will provide insight into plant cell growth and morphogenesis. This study demonstrated that AUGMIN subunit8 (AUG8) in Arabidopsis thaliana is a novel microtubule plus-end binding protein that participates in the reorientation of microtubules in hypocotyls when cell elongation slows down. AUG8 bound to the plus ends of microtubules and promoted tubulin polymerization in vitro. In vivo, AUG8 was recruited to the microtubule branch site immediately before nascent microtubules branched out. It specifically associated with the plus ends of growing cortical microtubules and regulated microtubule dynamics, which facilitated microtubule reorientation when microtubules changed their growth trajectory or encountered obstacle microtubules during microtubule reorientation. This study thus reveals a novel mechanism underlying microtubule reorientation that is critical for modulating cell elongation in Arabidopsis.
Collapse
Affiliation(s)
- Lingyan Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Linhai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lian Ding
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Address correspondence to
| |
Collapse
|