101
|
Gutiérrez-Martínez A, Sew WQG, Molano-Fernández M, Carretero-Junquera M, Herranz H. Mechanisms of oncogenic cell competition-Paths of victory. Semin Cancer Biol 2019; 63:27-35. [PMID: 31128299 DOI: 10.1016/j.semcancer.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Cancer is a multistep process. In the early phases of this disease, mutations in oncogenes and tumor suppressors are thought to promote clonal expansion. These mutations can increase cell competitiveness, allowing tumor cells to grow within the tissue by eliminating wild type host cells. Recent studies have shown that cell competition can also function in later phases of cancer. Here, we examine the existing evidence linking cell competition and tumorigenesis. We focus on the mechanisms underlying cell competition and their contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-Martínez
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Wei Qi Guinevere Sew
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Maria Carretero-Junquera
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| |
Collapse
|
102
|
Transcriptional versus metabolic control of cell fitness during cell competition. Semin Cancer Biol 2019; 63:36-43. [PMID: 31102668 PMCID: PMC7221347 DOI: 10.1016/j.semcancer.2019.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
The maintenance of tissue homeostasis and health relies on the efficient removal of damaged or otherwise suboptimal cells. One way this is achieved is through cell competition, a fitness quality control mechanism that eliminates cells that are less fit than their neighbours. Through this process, cell competition has been shown to play diverse roles in development and in the adult, including in homeostasis and tumour suppression. However, over the last few years it has also become apparent that certain oncogenic mutations can provide cells with a competitive advantage that promotes their expansion via the elimination of surrounding wild-type cells. Thus, understanding how this process is initiated and regulated will provide important insights with relevance to a number of different research areas. A key question in cell competition is what determines the competitive fitness of a cell. Here, we will review what is known about this question by focussing on two non-mutually exclusive possibilities; first, that the activity of a subset of transcription factors determines competitive fitness, and second, that the outcome of cell competition is determined by the relative cellular metabolic status.
Collapse
|
103
|
Ellis SJ, Gomez NC, Levorse J, Mertz AF, Ge Y, Fuchs E. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature 2019; 569:497-502. [PMID: 31092920 PMCID: PMC6638572 DOI: 10.1038/s41586-019-1199-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Cell competition (CC)—the sensing and elimination of less fit “loser” cells by neighbouring “winner” cells—was first described in Drosophila. Although proposed as a selection mechanism to optimize tissue and organ development, its evolutionary generality remains unclear. Here, by employing live-imaging, lineage-tracing, single cell transcriptomics and genetics, we unearth two intriguing CC mechanisms that sequentially shape and maintain stratified tissue architecture during mouse skin development. In early embryonic epidermis, winner progenitors within the single-layered epithelium kill and clear neighbouring losers by engulfment. Upon stratification and skin barrier formation, the basal layer instead expels losers through a homeostatic upward flux of differentiating progeny. This CC switch is physiologically relevant: when perturbed, so too is barrier formation. Our findings establish CC as a selective force to optimize vertebrate tissue function, and illuminate how a tissue dynamically adjusts CC strategies to preserve fitness as it encounters increased architectural complexity during morphogenesis.
Collapse
Affiliation(s)
- Stephanie J Ellis
- Howard Hughes Medical Institute, Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Nicholas C Gomez
- Howard Hughes Medical Institute, Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - John Levorse
- Howard Hughes Medical Institute, Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Aaron F Mertz
- Howard Hughes Medical Institute, Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Yejing Ge
- Howard Hughes Medical Institute, Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
104
|
Paglia S, Sollazzo M, Di Giacomo S, Strocchi S, Grifoni D. Exploring MYC relevance to cancer biology from the perspective of cell competition. Semin Cancer Biol 2019; 63:49-59. [PMID: 31102666 DOI: 10.1016/j.semcancer.2019.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Cancer has long been regarded and treated as a foreign body appearing by mistake inside a living organism. However, now we know that cancer cells communicate with neighbours, thereby creating modified environments able to support their unusual need for nutrients and space. Understanding the molecular basis of these bi-directional interactions is thus mandatory to approach the complex nature of cancer. Since their discovery, MYC proteins have been showing to regulate a steadily increasing number of processes impacting cell fitness, and are consistently found upregulated in almost all human tumours. Of interest, MYC takes part in cell competition, an evolutionarily conserved fitness comparison strategy aimed at detecting weakened cells, which are then committed to death, removed from the tissue and replaced by fitter neighbours. During physiological development, MYC-mediated cell competition is engaged to eliminate cells with suboptimal MYC levels, so as to guarantee selective growth of the fittest and proper homeostasis, while transformed cells expressing high levels of MYC coopt cell competition to subvert tissue constraints, ultimately disrupting homeostasis. Therefore, the interplay between cells with different MYC levels may result in opposite functional outcomes, depending on the nature of the players. In the present review, we describe the most recent findings on the role of MYC-mediated cell competition in different contexts, with a special emphasis on its impact on cancer initiation and progression. We also discuss the relevance of competition-associated cell death to cancer disease.
Collapse
Affiliation(s)
- Simona Paglia
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Manuela Sollazzo
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Simone Di Giacomo
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Silvia Strocchi
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| | - Daniela Grifoni
- CanceЯEvolutionLab, University of Bologna, Department of Pharmacy and Biotechnology, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
105
|
Becker AM. The flight of the locus of selection: Some intricate relationships between evolutionary elements. Behav Processes 2019; 161:31-44. [DOI: 10.1016/j.beproc.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 01/04/2023]
|
106
|
Shakiba N, Fahmy A, Jayakumaran G, McGibbon S, David L, Trcka D, Elbaz J, Puri MC, Nagy A, van der Kooy D, Goyal S, Wrana JL, Zandstra PW. Cell competition during reprogramming gives rise to dominant clones. Science 2019; 364:science.aan0925. [DOI: 10.1126/science.aan0925] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/02/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
The ability to generate induced pluripotent stem cells from differentiated cell types has enabled researchers to engineer cell states. Although studies have identified molecular networks that reprogram cells to pluripotency, the cellular dynamics of these processes remain poorly understood. Here, by combining cellular barcoding, mathematical modeling, and lineage tracing approaches, we demonstrate that reprogramming dynamics in heterogeneous populations are driven by dominant “elite” clones. Clones arise a priori from a population of poised mouse embryonic fibroblasts derived from Wnt1-expressing cells that may represent a neural crest–derived population. This work highlights the importance of cellular dynamics in fate programming outcomes and uncovers cell competition as a mechanism by which cells with eliteness emerge to occupy and dominate the reprogramming niche.
Collapse
|
107
|
Herrera SC, Bach EA. JAK/STAT signaling in stem cells and regeneration: from Drosophila to vertebrates. Development 2019; 146:dev167643. [PMID: 30696713 PMCID: PMC6361132 DOI: 10.1242/dev.167643] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The JAK/STAT pathway is a conserved metazoan signaling system that transduces cues from extracellular cytokines into transcriptional changes in the nucleus. JAK/STAT signaling is best known for its roles in immunity. However, recent work has demonstrated that it also regulates critical homeostatic processes in germline and somatic stem cells, as well as regenerative processes in several tissues, including the gonad, intestine and appendages. Here, we provide an overview of JAK/STAT signaling in stem cells and regeneration, focusing on Drosophila and highlighting JAK/STAT pathway functions in proliferation, survival and cell competition that are conserved between Drosophila and vertebrates.
Collapse
Affiliation(s)
- Salvador C Herrera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Erika A Bach
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
108
|
Nishio M, Miyachi Y, Otani J, Tane S, Omori H, Ueda F, Togashi H, Sasaki T, Mak TW, Nakao K, Fujita Y, Nishina H, Maehama T, Suzuki A. Hippo pathway controls cell adhesion and context‐dependent cell competition to influence skin engraftment efficiency. FASEB J 2019; 33:5548-5560. [DOI: 10.1096/fj.201802005r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Miki Nishio
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
- Division of Cancer GeneticsDepartment of Molecular GeneticsMedical Institute of BioregulationKyushu University Fukuoka Japan
| | - Yousuke Miyachi
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
- Division of Cancer GeneticsDepartment of Molecular GeneticsMedical Institute of BioregulationKyushu University Fukuoka Japan
| | - Junji Otani
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Shoji Tane
- Division of Cancer GeneticsDepartment of Molecular GeneticsMedical Institute of BioregulationKyushu University Fukuoka Japan
| | - Hirofumi Omori
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Fumihito Ueda
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Hideru Togashi
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Takehiko Sasaki
- Department of Lipid BiologyTokyo Medical and Dental University Tokyo Japan
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer ResearchPrincess Margaret Cancer Centre Toronto Ontario Canada
- Department of Medical BiophysicsUniversity of TorontoUniversity Health Network Toronto Ontario Canada
| | - Kazuwa Nakao
- Medical Innovation CenterGraduate School of MedicineKyoto University Kyoto Japan
| | - Yasuyuki Fujita
- Division of Molecular OncologyInstitute for Genetic MedicineGraduate School of Chemical Sciences and EngineeringHokkaido University Sapporo Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative BiologyMedical Research InstituteTokyo Medical and Dental University Tokyo Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
| | - Akira Suzuki
- Division of Molecular and Cellular BiologyDepartment of Biochemistry and Molecular BiologyKobe University Graduate School of MedicineKobe University Kobe Japan
- Division of Cancer GeneticsDepartment of Molecular GeneticsMedical Institute of BioregulationKyushu University Fukuoka Japan
| |
Collapse
|
109
|
Fahey-Lozano N, La Marca JE, Portela M, Richardson HE. Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:37-64. [PMID: 31520348 DOI: 10.1007/978-3-030-23629-8_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.
Collapse
Affiliation(s)
- Natasha Fahey-Lozano
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
110
|
Sollazzo M, Genchi C, Paglia S, Di Giacomo S, Pession A, de Biase D, Grifoni D. High MYC Levels Favour Multifocal Carcinogenesis. Front Genet 2018; 9:612. [PMID: 30619451 PMCID: PMC6297171 DOI: 10.3389/fgene.2018.00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023] Open
Abstract
The term "field cancerisation" describes the formation of tissue sub-areas highly susceptible to multifocal tumourigenesis. In the earlier stages of cancer, cells may indeed display a series of molecular alterations that allow them to proliferate faster, eventually occupying discrete tissue regions with irrelevant morphological anomalies. This behaviour recalls cell competition, a process based on a reciprocal fitness comparison: when cells with a growth advantage arise in a tissue, they are able to commit wild-type neighbours to death and to proliferate at their expense. It is known that cells expressing high MYC levels behave as super-competitors, able to kill and replace less performant adjacent cells; given MYC upregulation in most human cancers, MYC-mediated cell competition is likely to pioneer field cancerisation. Here we show that MYC overexpression in a sub-territory of the larval wing epithelium of Drosophila is sufficient to trigger a number of cellular responses specific to mammalian pre-malignant tissues. Moreover, following induction of different second mutations, high MYC-expressing epithelia were found to be susceptible to multifocal growth, a hallmark of mammalian pre-cancerous fields. In summary, our study identified an early molecular alteration implicated in field cancerisation and established a genetically amenable model which may help study the molecular basis of early carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniela Grifoni
- Cancer Evolution Laboratory, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
111
|
Tobi EW, van den Heuvel J, Zwaan BJ, Lumey L, Heijmans BT, Uller T. Selective Survival of Embryos Can Explain DNA Methylation Signatures of Adverse Prenatal Environments. Cell Rep 2018; 25:2660-2667.e4. [DOI: 10.1016/j.celrep.2018.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/18/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022] Open
|
112
|
Anand M, Lázár B, Tóth R, Páll E, Patakiné Várkonyi E, Liptói K, Homolya L, Hegyi Z, Hidas A, Gócza E. Enhancement of chicken primordial germ cell in vitro maintenance using an automated cell image analyser. Acta Vet Hung 2018; 66:518-529. [PMID: 30580540 DOI: 10.1556/004.2018.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primordial germ cells (PGCs) were isolated from blood samples of chicken embryos. We established four PGC lines: two males (FS-ZZ-101, GFP-ZZ-4ZP) and two females (FS-ZW-111, GFP-ZW-5ZP). We could not detect a significant difference in the marker expression profile, but there was a remarkable difference between the proliferation rates of these PGC lines. We monitored the number of PGCs throughout a three-day period using a high-content screening cell imaging and analysing system (HCS). We compared three different initial cell concentrations in the wells: ~1000 cells (1×, ~4000 (4× and ~8000 (8×. For the GFPZW- 5ZP, FS-ZZ-101 and FS-ZW-111 PGC lines the lowest doubling time was observed at 4× concentration, while for GFP-ZZ-4ZP we found the lowest doubling time at 1× concentration. At 8× initial concentration, the growth rate was high during the first two days for all cell lines, but this was followed by the appearance of cell aggregates decreasing the cell growth rate. We could conclude that the difference in proliferation rate could mainly be attributed to genotypic variation in the established PGC lines, but external factors such as cell concentration and quality of the culture medium also affect the growth rate of PGCs.
Collapse
Affiliation(s)
- Mahek Anand
- 1 Doctoral School of Animal Husbandry Science, Szent István University, Gödöllő, Hungary
- 2 National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Animal Biotechnology Department, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Bence Lázár
- 3 Research Centre for Farm Animal Gene Conservation, Gödöllő, Hungary
- 2 National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Animal Biotechnology Department, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Roland Tóth
- 1 Doctoral School of Animal Husbandry Science, Szent István University, Gödöllő, Hungary
- 2 National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Animal Biotechnology Department, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| | - Emőke Páll
- 5 Department of Reproduction, Obstetrics and Veterinary Gynaecology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | | | - Krisztina Liptói
- 3 Research Centre for Farm Animal Gene Conservation, Gödöllő, Hungary
| | - László Homolya
- 4 Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Hegyi
- 4 Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Hidas
- 3 Research Centre for Farm Animal Gene Conservation, Gödöllő, Hungary
| | - Elen Gócza
- 2 National Agricultural Research and Innovation Center, Agricultural Biotechnology Institute, Animal Biotechnology Department, Szent-Györgyi Albert u. 4, H-2100 Gödöllő, Hungary
| |
Collapse
|
113
|
Madan E, Gogna R, Moreno E. Cell competition in development: information from flies and vertebrates. Curr Opin Cell Biol 2018; 55:150-157. [DOI: 10.1016/j.ceb.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
114
|
MYC Induces a Hybrid Energetics Program Early in Cell Reprogramming. Stem Cell Reports 2018; 11:1479-1492. [PMID: 30472011 PMCID: PMC6294174 DOI: 10.1016/j.stemcr.2018.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Cell reprogramming is thought to be associated with a full metabolic switch from an oxidative- to a glycolytic-based metabolism. However, neither the dynamics nor the factors controlling this metabolic switch are fully understood. By using cellular, biochemical, protein array, metabolomic, and respirometry analyses, we found that c-MYC establishes a robust bivalent energetics program early in cell reprogramming. Cells prone to undergo reprogramming exhibit high mitochondrial membrane potential and display a hybrid metabolism. We conclude that MYC proteins orchestrate a rewiring of somatic cell metabolism early in cell reprogramming, whereby somatic cells acquire the phenotypic plasticity necessary for their transition to pluripotency in response to either intrinsic or external cues. Endogenous MYC biological activity is necessary for cell reprogramming MYC drives mitochondrial fission early in cell reprogramming MYC establishes a bivalent energetics state necessary for cell reprogramming MYC polarizes mitochondria, poising cells for reprogramming
Collapse
|
115
|
Nagata R, Igaki T. Cell competition: Emerging mechanisms to eliminate neighbors. Dev Growth Differ 2018; 60:522-530. [DOI: 10.1111/dgd.12575] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Rina Nagata
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| | - Tatsushi Igaki
- Laboratory of GeneticsGraduate School of BiostudiesKyoto University Kyoto Japan
| |
Collapse
|
116
|
Akagi K, Wilson KA, Katewa SD, Ortega M, Simons J, Hilsabeck TA, Kapuria S, Sharma A, Jasper H, Kapahi P. Dietary restriction improves intestinal cellular fitness to enhance gut barrier function and lifespan in D. melanogaster. PLoS Genet 2018; 14:e1007777. [PMID: 30383748 PMCID: PMC6233930 DOI: 10.1371/journal.pgen.1007777] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/13/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Loss of gut integrity is linked to various human diseases including inflammatory bowel disease. However, the mechanisms that lead to loss of barrier function remain poorly understood. Using D. melanogaster, we demonstrate that dietary restriction (DR) slows the age-related decline in intestinal integrity by enhancing enterocyte cellular fitness through up-regulation of dMyc in the intestinal epithelium. Reduction of dMyc in enterocytes induced cell death, which leads to increased gut permeability and reduced lifespan upon DR. Genetic mosaic and epistasis analyses suggest that cell competition, whereby neighboring cells eliminate unfit cells by apoptosis, mediates cell death in enterocytes with reduced levels of dMyc. We observed that enterocyte apoptosis was necessary for the increased gut permeability and shortened lifespan upon loss of dMyc. Furthermore, moderate activation of dMyc in the post-mitotic enteroblasts and enterocytes was sufficient to extend health-span on rich nutrient diets. We propose that dMyc acts as a barometer of enterocyte cell fitness impacting intestinal barrier function in response to changes in diet and age.
Collapse
Affiliation(s)
- Kazutaka Akagi
- Aging Homeostasis Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kenneth A. Wilson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Subhash D. Katewa
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mauricio Ortega
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Jesse Simons
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Tyler A. Hilsabeck
- Buck Institute for Research on Aging, Novato, California, United States of America
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Subir Kapuria
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Amit Sharma
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, United States of America
| |
Collapse
|
117
|
Miyazawa H, Aulehla A. Revisiting the role of metabolism during development. Development 2018; 145:145/19/dev131110. [DOI: 10.1242/dev.131110] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
An emerging view emphasizes that metabolism is highly regulated in both time and space. In addition, it is increasingly being recognized that metabolic pathways are tightly connected to specific biological processes such as cell signaling, proliferation and differentiation. As we obtain a better view of this spatiotemporal regulation of metabolism, and of the molecular mechanisms that connect metabolism and signaling, we can now move from largely correlative to more functional studies. It is, therefore, a particularly promising time to revisit how metabolism can affect multiple aspects of animal development. In this Review, we discuss how metabolism is mechanistically linked to cellular and developmental programs through both its bioenergetic and metabolic signaling functions. We highlight how metabolism is regulated across various spatial and temporal scales, and discuss how this regulation can influence cellular processes such as cell signaling, gene expression, and epigenetic and post-translational modifications during embryonic development.
Collapse
Affiliation(s)
- Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| |
Collapse
|
118
|
Paiva RA, Ramos CV, Martins VC. Thymus autonomy as a prelude to leukemia. FEBS J 2018; 285:4565-4574. [DOI: 10.1111/febs.14651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Rafael A. Paiva
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Camila V. Ramos
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Vera C. Martins
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| |
Collapse
|
119
|
Mastromina I, Verrier L, Silva JC, Storey KG, Dale JK. Myc activity is required for maintenance of the neuromesodermal progenitor signalling network and for segmentation clock gene oscillations in mouse. Development 2018; 145:dev161091. [PMID: 30061166 PMCID: PMC6078331 DOI: 10.1242/dev.161091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
Abstract
The Myc transcriptional regulators are implicated in a range of cellular functions, including proliferation, cell cycle progression, metabolism and pluripotency maintenance. Here, we investigated the expression, regulation and function of the Myc family during mouse embryonic axis elongation and segmentation. Expression of both cMyc (Myc - Mouse Genome Informatics) and MycN in the domains in which neuromesodermal progenitors (NMPs) and underlying caudal pre-somitic mesoderm (cPSM) cells reside is coincident with WNT and FGF signals, factors known to maintain progenitors in an undifferentiated state. Pharmacological inhibition of Myc activity downregulates expression of WNT/FGF components. In turn, we find that cMyc expression is WNT, FGF and Notch protein regulated, placing it centrally in the signalling circuit that operates in the tail end that both sustains progenitors and drives maturation of the PSM into somites. Interfering with Myc function in the PSM, where it displays oscillatory expression, delays the timing of segmentation clock oscillations and thus of somite formation. In summary, we identify Myc as a component that links NMP maintenance and PSM maturation during the body axis elongation stages of mouse embryogenesis.
Collapse
Affiliation(s)
- Ioanna Mastromina
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Laure Verrier
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joana Clara Silva
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J Kim Dale
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
120
|
ADAM-like Decysin-1 (ADAMDEC1) is a positive regulator of Epithelial Defense Against Cancer (EDAC) that promotes apical extrusion of RasV12-transformed cells. Sci Rep 2018; 8:9639. [PMID: 29941981 PMCID: PMC6018119 DOI: 10.1038/s41598-018-27469-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/31/2018] [Indexed: 12/28/2022] Open
Abstract
Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelia via cell competition with the surrounding normal epithelial cells. However, it remains unknown whether and how soluble factors are involved in this cancer preventive phenomenon. By performing stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometric analyses, we have identified ADAM-like Decysin-1 (ADAMDEC1) as a soluble protein whose expression is upregulated in the mix culture of normal and RasV12-transformed epithelial cells. Expression of ADAMDEC1 is elevated in normal epithelial cells co-cultured with RasV12 cells. Knockdown of ADAMDEC1 in the surrounding normal cells substantially suppresses apical extrusion of RasV12 cells, suggesting that ADAMDEC1 secreted by normal cells positively regulate the elimination of the neighboring transformed cells. In addition, we show that the metalloproteinase activity of ADAMDEC1 is dispensable for the regulation of apical extrusion. Furthermore, ADAMDEC1 facilitates the accumulation of filamin, a crucial regulator of Epithelial Defense Against Cancer (EDAC), in normal cells at the interface with RasV12 cells. This is the first report demonstrating that an epithelial intrinsic soluble factor is involved in cell competition in mammals.
Collapse
|
121
|
Watanabe H, Ishibashi K, Mano H, Kitamoto S, Sato N, Hoshiba K, Kato M, Matsuzawa F, Takeuchi Y, Shirai T, Ishikawa S, Morioka Y, Imagawa T, Sakaguchi K, Yonezawa S, Kon S, Fujita Y. Mutant p53-Expressing Cells Undergo Necroptosis via Cell Competition with the Neighboring Normal Epithelial Cells. Cell Rep 2018; 23:3721-3729. [DOI: 10.1016/j.celrep.2018.05.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/23/2018] [Accepted: 05/24/2018] [Indexed: 01/19/2023] Open
|
122
|
Bowling S, Di Gregorio A, Sancho M, Pozzi S, Aarts M, Signore M, D Schneider M, Martinez-Barbera JP, Gil J, Rodríguez TA. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat Commun 2018; 9:1763. [PMID: 29720666 PMCID: PMC5932021 DOI: 10.1038/s41467-018-04167-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Ensuring the fitness of the pluripotent cells that will contribute to future development is important both for the integrity of the germline and for proper embryogenesis. Consequently, it is becoming increasingly apparent that pluripotent cells can compare their fitness levels and signal the elimination of those cells that are less fit than their neighbours. In mammals the nature of the pathways that communicate fitness remain largely unknown. Here we identify that in the early mouse embryo and upon exit from naive pluripotency, the confrontation of cells with different fitness levels leads to an inhibition of mTOR signalling in the less fit cell type, causing its elimination. We show that during this process, p53 acts upstream of mTOR and is required to repress its activity. Finally, we demonstrate that during normal development around 35% of cells are eliminated by this pathway, highlighting the importance of this mechanism for embryonic development.
Collapse
Affiliation(s)
- Sarah Bowling
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Aida Di Gregorio
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Margarida Sancho
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sara Pozzi
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Marieke Aarts
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Massimo Signore
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Michael D Schneider
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Newlife Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N, UK
| | - Jesús Gil
- Cell Proliferation Group, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London, W12 0NN, UK.
- Cell Proliferation Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Tristan A Rodríguez
- British Heart Foundation Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
123
|
Ishihara E, Nishina H. The Hippo-YAP Pathway Regulates 3D Organ Formation and Homeostasis. Cancers (Basel) 2018; 10:cancers10040122. [PMID: 29673177 PMCID: PMC5923377 DOI: 10.3390/cancers10040122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
The vertebrate body shape is formed by the specific sizes and shapes of its resident tissues and organs, whose alignments are essential for proper functioning. To maintain tissue and organ shape, and thereby function, it is necessary to remove senescent, transformed, and/or damaged cells, which impair function and can lead to tumorigenesis. However, the molecular mechanisms underlying three-dimensional (3D) organ formation and homeostasis are not fully clear. Yes-associated protein (YAP) is a transcriptional co-activator that is involved in organ size control and tumorigenesis. Recently, we reported that YAP is essential for proper 3D body shape through regulation of cell tension by using a unique medaka fish mutant, hirame (hir). In Madin–Darby canine kidney (MDCK) epithelial cells, active YAP-transformed cells are eliminated apically when surrounded by normal cells. Furthermore, in a mosaic mouse model, active YAP-expressing damaged hepatocytes undergo apoptosis and are eliminated from the liver. Thus, YAP functions in quantitative and quality control in organogenesis. In this review, we describe the various roles of YAP in vertebrates, including in the initiation of liver cancer.
Collapse
Affiliation(s)
- Erika Ishihara
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
124
|
Global Hypertranscription in the Mouse Embryonic Germline. Cell Rep 2018; 19:1987-1996. [PMID: 28591571 DOI: 10.1016/j.celrep.2017.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 11/24/2022] Open
Abstract
Primordial germ cells (PGCs) are vital for inheritance and evolution. Their transcriptional program has been extensively studied and is assumed to be well known. We report here a remarkable global upregulation of the transcriptome of mouse PGCs compared to somatic cells. Using cell-number-normalized genome-wide analyses, we uncover significant transcriptional amplification in PGCs, including mRNAs, rRNA, and transposable elements. Hypertranscription preserves tissue-specific gene expression patterns, correlates with cell size, and can still be detected in E15.5 male germ cells when proliferation has ceased. PGC hypertranscription occurs at the level of nascent transcription, is accompanied by increased translation rates, and is driven by Myc factors n-Myc and l-Myc (but not c-Myc) and by P-TEFb. This study provides a paradigm for transcriptional analyses during development and reveals a major global hyperactivity of the germline transcriptome.
Collapse
|
125
|
Soteriou D, Fuchs Y. A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nat Rev Cancer 2018; 18:187-201. [PMID: 29348578 DOI: 10.1038/nrc.2017.122] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, great strides have been made in our understanding of how stem cells (SCs) govern tissue homeostasis and regeneration. The inherent longevity of SCs raises the possibility that the unique protective mechanisms in these cells might also be involved in tumorigenesis. In this Opinion article, we discuss how SCs are protected throughout their lifespan, focusing on quiescent behaviour, DNA damage response and programmed cell death. We briefly examine the roles of adult SCs and progenitors in tissue repair and tumorigenesis and explore how signals released from dying or dormant cells influence the function of healthy or aberrant SCs. Important insight into the mechanisms that regulate SC death and survival, as well as the 'legacy' imparted by departing cells, may unlock novel avenues for regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Despina Soteriou
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology; the Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology; and the Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology; the Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology; and the Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel
| |
Collapse
|
126
|
Tang PC, MacKay GE, Flockhart JH, Keighren MA, Kopakaki A, West JD. Selection against BALB/c strain cells in mouse chimaeras. Biol Open 2018; 7:7/1/bio030189. [PMID: 29330350 PMCID: PMC5829504 DOI: 10.1242/bio.030189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown previously that BALB/c strain embryos tend to contribute poorly to mouse aggregation chimaeras. In the present study we showed that BALB/c cells were not preferentially allocated to any extraembryonic lineages of mouse aggregation chimaeras, but their contribution decreased during the early postimplantation period and they were significantly depleted by E8.5. The development of BALB/c strain preimplantation embryos lagged behind embryos from some other strains and the contribution that BALB/c and other embryos made to chimaeras correlated with their developmental stage at E2.5. This relationship suggests that the poor contribution of BALB/c embryos to aggregation chimaeras is at least partly a consequence of generalised selection related to slow or delayed preimplantation development. The suitability of BALB/c embryos for maximising the ES cell contribution to mouse ES cell chimaeras is also discussed. Summary: BALB/c strain embryos contributed poorly to mouse aggregation chimaeras by E8.5. Selection appears linked to slow BALB/c development and might also explain the good ES cell contribution in BALB/c↔ES-cell chimaeras.
Collapse
Affiliation(s)
- Pin-Chi Tang
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gillian E MacKay
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Jean H Flockhart
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Margaret A Keighren
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Anna Kopakaki
- Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - John D West
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK .,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
127
|
Kon S. Physiological and pathological relevance of cell competition in fly to mammals. Dev Growth Differ 2017; 60:14-20. [PMID: 29250773 DOI: 10.1111/dgd.12415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
In multicellular organisms, incidentally emerging suboptimal cells are removed to maintain homeostasis of tissues. The unfavorable cells are excluded by a process termed cell competition whereby the resident normal cells actively eliminate the unfit cells of the identical lineage. Although the phenomenon of cell competition was originally discovered in Drosophila, a number of recent studies have provided implications of cell competition in tissue regeneration, development and oncogenesis in mammals. Here the roles of cell competition in fly to mammals are discussed.
Collapse
Affiliation(s)
- Shunsuke Kon
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| |
Collapse
|
128
|
Di Giacomo S, Sollazzo M, de Biase D, Ragazzi M, Bellosta P, Pession A, Grifoni D. Human Cancer Cells Signal Their Competitive Fitness Through MYC Activity. Sci Rep 2017; 7:12568. [PMID: 28974715 PMCID: PMC5626713 DOI: 10.1038/s41598-017-13002-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
MYC-mediated cell competition is a cell-cell interaction mechanism known to play an evolutionary role during development from Drosophila to mammals. Cells expressing low levels of MYC, called losers, are committed to die by nearby cells with high MYC activity, called winners, that overproliferate to compensate for cell loss, so that the fittest cells be selected for organ formation. Given MYC's consolidated role in oncogenesis, cell competition is supposed to be relevant to cancer, but its significance in human malignant contexts is largely uncharacterised. Here we show stereotypical patterns of MYC-mediated cell competition in human cancers: MYC-upregulating cells and apoptotic cells were indeed repeatedly found at the tumour-stroma interface and within the tumour parenchyma. Cell death amount in the stromal compartment and MYC protein level in the tumour were highly correlated regardless of tumour type and stage. Moreover, we show that MYC modulation in heterotypic co-cultures of human cancer cells is sufficient as to subvert their competitive state, regardless of genetic heterogeneity. Altogether, our findings suggest that the innate role of MYC-mediated cell competition in development is conserved in human cancer, with malignant cells using MYC activity to colonise the organ at the expense of less performant neighbours.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Moira Ragazzi
- Pathology Unit, IRCCS Arcispedale Santa Maria Nuova, Via Amendola 2, 42122, Reggio Emilia, Italy
| | - Paola Bellosta
- Center for Integrate Biology (CIBIO), University of Trento, Via Sommarive 9, Povo, (TN), 38123, Italy
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| |
Collapse
|
129
|
Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cells. Dev Cell 2017; 42:585-599.e4. [PMID: 28919206 DOI: 10.1016/j.devcel.2017.08.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
The mammalian epiblast is formed by pluripotent cells able to differentiate into all tissues of the new individual. In their progression to differentiation, epiblast cells and their in vitro counterparts, embryonic stem cells (ESCs), transit from naive pluripotency through a differentiation-primed pluripotent state. During these events, epiblast cells and ESCs are prone to death, driven by competition between Myc-high cells (winners) and Myc-low cells (losers). Using live tracking of Myc levels, we show that Myc-high ESCs approach the naive pluripotency state, whereas Myc-low ESCs are closer to the differentiation-primed state. In ESC colonies, naive cells eliminate differentiating cells by cell competition, which is determined by a limitation in the time losers are able to survive persistent contact with winners. In the mouse embryo, cell competition promotes pluripotency maintenance by elimination of primed lineages before gastrulation. The mechanism described here is relevant to mammalian embryo development and induced pluripotency.
Collapse
|
130
|
Smith A. Formative pluripotency: the executive phase in a developmental continuum. Development 2017; 144:365-373. [PMID: 28143843 PMCID: PMC5430734 DOI: 10.1242/dev.142679] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues. Summary: This Hypothesis article poses that a third state of pluripotency, called formative pluripotency, exists between the naïve and primed states, and is enabling for the execution of pluripotency.
Collapse
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
131
|
Kucinski I, Dinan M, Kolahgar G, Piddini E. Chronic activation of JNK JAK/STAT and oxidative stress signalling causes the loser cell status. Nat Commun 2017; 8:136. [PMID: 28743877 PMCID: PMC5526992 DOI: 10.1038/s41467-017-00145-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/02/2017] [Indexed: 01/27/2023] Open
Abstract
Cell competition is a form of cell interaction that causes the elimination of less fit cells, or losers, by wild-type (WT) cells, influencing overall tissue health. Several mutations can cause cells to become losers; however, it is not known how. Here we show that Drosophila wing disc cells carrying functionally unrelated loser mutations (Minute and mahjong) display the common activation of multiple stress signalling pathways before cell competition and find that these pathways collectively account for the loser status. We find that JNK signalling inhibits the growth of losers, while JAK/STAT signalling promotes competition-induced winner cell proliferation. Furthermore, we show that losers display oxidative stress response activation and, strikingly, that activation of this pathway alone, by Nrf2 overexpression, is sufficient to prime cells for their elimination by WT neighbours. Since oxidative stress and Nrf2 are linked to several diseases, cell competition may occur in a number of pathological conditions.Cell competition causes the removal of less fit cells ('losers') but why some gene mutations turn cells into losers is unclear. Here, the authors show that Drosophila wing disc cells carrying some loser mutations activate Nrf2 and JNK signalling, which contribute to the loser status.
Collapse
Affiliation(s)
- Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Haematology and Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Michael Dinan
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Golnar Kolahgar
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Eugenia Piddini
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
132
|
Maruyama T, Fujita Y. Cell competition in mammals - novel homeostatic machinery for embryonic development and cancer prevention. Curr Opin Cell Biol 2017; 48:106-112. [PMID: 28719866 DOI: 10.1016/j.ceb.2017.06.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/02/2017] [Accepted: 06/23/2017] [Indexed: 01/28/2023]
Abstract
In the multi-cellular community, cells with different properties often compete with each other for survival and space. This process is named cell competition and was originally discovered in Drosophila. Recent studies have revealed that comparable phenomena also occur in mammals under various physiological and pathological conditions. Within the epithelium, normal cells often recognize the presence of the neighboring transformed cells and actively eliminate them from the epithelium; a process termed EDAC (Epithelial Defense Against Cancer). Furthermore, physical force can play a crucial role in the intercellular recognition and elimination of loser cells during cell competition. Further studies are expected to reveal a variety of roles of cell competition in embryonic development and human diseases.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0815, Japan.
| |
Collapse
|
133
|
Lee SW, Morishita Y. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis. PLoS Comput Biol 2017; 13:e1005651. [PMID: 28704373 PMCID: PMC5547694 DOI: 10.1371/journal.pcbi.1005651] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/27/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue "evolution". Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that approximates cell competition dynamics, by which the time evolution of tissue fitness and cellular trait distribution can be predicted without directly simulating a cell-based mechanical model.
Collapse
Affiliation(s)
- Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Quantitative Biology Center, Kobe, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Quantitative Biology Center, Kobe, Japan
- * E-mail:
| |
Collapse
|
134
|
Morgani S, Nichols J, Hadjantonakis AK. The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC DEVELOPMENTAL BIOLOGY 2017; 17:7. [PMID: 28610558 PMCID: PMC5470286 DOI: 10.1186/s12861-017-0150-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
Pluripotency defines the propensity of a cell to differentiate into, and generate, all somatic, as well as germ cells. The epiblast of the early mammalian embryo is the founder population of all germ layer derivatives and thus represents the bona fide in vivo pluripotent cell population. The so-called pluripotent state spans several days of development and is lost during gastrulation as epiblast cells make fate decisions towards a mesoderm, endoderm or ectoderm identity. It is now widely recognized that the features of the pluripotent population evolve as development proceeds from the pre- to post-implantation period, marked by distinct transcriptional and epigenetic signatures. During this period of time epiblast cells mature through a continuum of pluripotent states with unique properties. Aspects of this pluripotent continuum can be captured in vitro in the form of stable pluripotent stem cell types. In this review we discuss the continuum of pluripotency existing within the mammalian embryo, using the mouse as a model, and the cognate stem cell types that can be derived and propagated in vitro. Furthermore, we speculate on embryonic stage-specific characteristics that could be utilized to identify novel, developmentally relevant, pluripotent states.
Collapse
Affiliation(s)
- Sophie Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
135
|
Shakiba N, Zandstra PW. Engineering cell fitness: lessons for regenerative medicine. Curr Opin Biotechnol 2017; 47:7-15. [PMID: 28551499 DOI: 10.1016/j.copbio.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
Abstract
Cell competition results in the loss of weaker cells and the dominance of stronger cells. So-called 'loser' cells are either removed by active elimination or by limiting their access to survival factors. Recently, competition has been shown to serve as a surveillance mechanism against emerging aberrant cells in both the developing and adult organism, contributing to overall organism fitness and survival. Here, we explore the origins and implications of cell competition in development, tissue homeostasis, and in vitro culture. We also provide a forward look on the use of cell competition to interpret multicellular dynamics while offering a perspective on harnessing competition to engineer cells with optimized and controllable fitness characteristics for regenerative medicine applications.
Collapse
Affiliation(s)
- Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario M5S 3E1, Canada; The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario M5S 3E1, Canada; Medicine by Design, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
| |
Collapse
|
136
|
Di Giacomo S, Sollazzo M, Paglia S, Grifoni D. MYC, Cell Competition, and Cell Death in Cancer: The Inseparable Triad. Genes (Basel) 2017; 8:genes8040120. [PMID: 28420161 PMCID: PMC5406867 DOI: 10.3390/genes8040120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
Deregulation of MYC family proteins in cancer is associated with a global reprogramming of gene expression, ultimately promoting glycolytic pathways, cell growth, and proliferation. It is well known that MYC upregulation triggers cell-autonomous apoptosis in normal tissues, while frankly malignant cells develop resistance to apoptotic stimuli, partly resulting from MYC addiction. As well as inducing cell-autonomous apoptosis, MYC upregulation is able to trigger non cell-autonomous apoptotic death through an evolutionarily conserved mechanism known as “cell competition”. With regard to this intimate and dual relationship between MYC and cell death, recent evidence obtained in Drosophila models of cancer has revealed that, in early tumourigenesis, MYC upregulation guides the clonal expansion of mutant cells, while the surrounding tissue undergoes non-cell autonomous death. Apoptosis inhibition in this context was shown to restrain tumour growth and to restore a wild-type phenotype. This suggests that cell-autonomous and non cell-autonomous apoptosis dependent on MYC upregulation may shape tumour growth in different ways, soliciting the need to reconsider the role of cell death in cancer in the light of this new level of complexity. Here we review recent literature about MYC and cell competition obtained in Drosophila, with a particular emphasis on the relevance of cell death to cell competition and, more generally, to cancer. Possible implications of these findings for the understanding of mammalian cancers are also discussed.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Simona Paglia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
137
|
Patel MS, Shah HS, Shrivastava N. c-Myc-Dependent Cell Competition in Human Cancer Cells. J Cell Biochem 2017; 118:1782-1791. [DOI: 10.1002/jcb.25846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Manish S. Patel
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad; Thaltej Ahmedabad 380054 Gujarat India
| | - Heta S. Shah
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad; Thaltej Ahmedabad 380054 Gujarat India
| | - Neeta Shrivastava
- Department of Biotechnology; National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad; Thaltej Ahmedabad 380054 Gujarat India
- Department of Pharmacognosy and Phytochemistry; B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre; Thaltej Ahmedabad 380054 Gujarat India
| |
Collapse
|
138
|
Connexin30.3 is expressed in mouse embryonic stem cells and is responsive to leukemia inhibitory factor. Sci Rep 2017; 7:42403. [PMID: 28205646 PMCID: PMC5304323 DOI: 10.1038/srep42403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/09/2017] [Indexed: 01/08/2023] Open
Abstract
The expression of 19 connexin (Cx) isoforms was observed in the mouse embryonic stem (ES) cell line, EB3. Their expression patterns could be classified into either pluripotent state-specific, differentiating stage-specific, or non-specific Cxs. We focused on Cx30.3 as typical of the first category. Cx30.3 was pluripotent state-specific and upregulated by leukemia inhibitory factor (LIF), a specific cytokine that maintains the pluripotent state of ES cell, via a Jak signaling pathway. Cx30.3 protein was localized to both the cell membrane and cytosol. The dynamic movement of Cx30.3 in the cell membrane was suggested by the imaging analysis by means of overexpressed Cx30.3-EGFP fusion protein. The cytosolic portion was postulated to be a ready-to-use Cx pool. The Cx30.3 expression level in ES cell colonies dramatically decreased immediately after their separation into single cells. It was suggested that mRNA for Cx30.3 and Cx30.3 protein might be decomposed more rapidly than mRNA for Cx43 and Cx43 protein, respectively. These indicate possible involvement of Cx30.3 in the rapid formation and/or decomposition of gap junctions; implying a functional relay between Cx30.3 and other systems such as adhesion proteins.
Collapse
|
139
|
Curtis A, Li DJ, DeVeale B, Onishi K, Kim MY, Blelloch R, Laird DJ, Hui EE. Patterning of sharp cellular interfaces with a reconfigurable elastic substrate. Integr Biol (Camb) 2017; 9:50-57. [PMID: 28001149 DOI: 10.1039/c6ib00203j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micropatterned cocultures are a useful experimental tool for the study of cell-cell interactions. Patterning methods often rely on sequential seeding of different cell types or removal of a barrier separating two populations, but it is difficult to pattern sharp interfaces between pure populations with low cross-contamination when using these approaches. Patterning by the use of reconfigurable substrates can overcome these limitations, but such methods can be costly and challenging to employ in a typical biology laboratory. Here, we describe a low-cost and simple-to-use reconfigurable substrate comprised of a transparent elastic material that is partially cut to form a slit that opens when the device is stretched. The slit seals back up when released, allowing two initially separate, adherent cell populations to be brought together to form a contact interface. Fluorescent imaging of patterned cocultures demonstrates the early establishment of a sharp cellular interface. As a proof of principle, we demonstrate the use of this device to study competition at the interface of two stem cell populations.
Collapse
Affiliation(s)
- Allison Curtis
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| | - David J Li
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| | - Brian DeVeale
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Kento Onishi
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Monica Y Kim
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| | - Robert Blelloch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Diana J Laird
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| | - Elliot E Hui
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2715, USA.
| |
Collapse
|
140
|
Kawamoto Y, Nakajima YI, Kuranaga E. Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors. Int J Mol Sci 2016; 17:ijms17122144. [PMID: 27999411 PMCID: PMC5187944 DOI: 10.3390/ijms17122144] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic cells actively influence the behaviors of surrounding cells, including engulfment, proliferation, and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is non-autonomously induced in a cellular community. Of note, it is becoming evident that active communication between apoptotic cells and living cells contributes to physiological processes during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant to future studies of apoptosis.
Collapse
Affiliation(s)
- Yuhei Kawamoto
- Laboratory for Histogenetic Dynamics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | - Yu-Ichiro Nakajima
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
141
|
Percharde M, Bulut-Karslioglu A, Ramalho-Santos M. Hypertranscription in Development, Stem Cells, and Regeneration. Dev Cell 2016; 40:9-21. [PMID: 27989554 DOI: 10.1016/j.devcel.2016.11.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 11/29/2022]
Abstract
Cells can globally upregulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years but has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration, and cell competition. We review the history, methods for analysis, underlying mechanisms, and biological significance of hypertranscription.
Collapse
Affiliation(s)
- Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
142
|
Affiliation(s)
- Cristina Clavería
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain;
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain;
| |
Collapse
|
143
|
Merino MM, Levayer R, Moreno E. Survival of the Fittest: Essential Roles of Cell Competition in Development, Aging, and Cancer. Trends Cell Biol 2016; 26:776-788. [DOI: 10.1016/j.tcb.2016.05.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
144
|
Abstract
Tissue growth and regeneration are autonomous, stem-cell-mediated processes in which stem cells within the organ self-renew and differentiate to create new cells, leading to new tissue. The processes of growth and regeneration require communication and interplay between neighboring cells. In particular, cell competition, which is a process in which viable cells are actively eliminated by more competitive cells, has been increasingly implicated to play an important role. Here, we discuss the existing literature regarding the current landscape of cell competition, including classical pathways and models, fitness fingerprint mechanisms, and immune system mechanisms of cell competition. We further discuss the clinical relevance of cell competition in the physiological processes of tissue growth and regeneration, highlighting studies in clinically important disease models, including oncological, neurological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Rajan Gogna
- Institut für Zellbiologie, University of Bern, CH-3012 Bern, Switzerland; .,Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire 03766
| | - Kevin Shee
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire 03766
| | - Eduardo Moreno
- Institut für Zellbiologie, University of Bern, CH-3012 Bern, Switzerland;
| |
Collapse
|
145
|
Cell Competition and Its Role in the Regulation of Cell Fitness from Development to Cancer. Dev Cell 2016; 38:621-34. [DOI: 10.1016/j.devcel.2016.08.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 12/26/2022]
|
146
|
Nishikawa S, Takamatsu A, Ohsawa S, Igaki T. Mathematical model for cell competition: Predator–prey interactions at the interface between two groups of cells in monolayer tissue. J Theor Biol 2016; 404:40-50. [DOI: 10.1016/j.jtbi.2016.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/01/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022]
|
147
|
Abstract
The tumour-host microenvironment plays key roles in cancer, but the mechanisms involved are not fully understood. Two new studies provide insight into this problem by showing that through cell competition, a fitness-sensing process that usually eliminates defective cells, pre-cancerous lesions signal the death of surrounding tissue that in turn promotes their neoplastic transformation.
Collapse
Affiliation(s)
- Jesus Gil
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Tristan Rodriguez
- BHF Centre for Research excellence, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
148
|
Chiba T, Ishihara E, Miyamura N, Narumi R, Kajita M, Fujita Y, Suzuki A, Ogawa Y, Nishina H. MDCK cells expressing constitutively active Yes-associated protein (YAP) undergo apical extrusion depending on neighboring cell status. Sci Rep 2016; 6:28383. [PMID: 27324860 PMCID: PMC4914932 DOI: 10.1038/srep28383] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022] Open
Abstract
Cell competition is a cell-cell interaction by which a cell compares its fitness to that of neighboring cells. The cell with the relatively lower fitness level is the "loser" and actively eliminated, while the cell with the relatively higher fitness level is the "winner" and survives. Recent studies have shown that cells with high Yes-associated protein (YAP) activity win cell competitions but the mechanism is unknown. Here, we report the unexpected finding that cells overexpressing constitutively active YAP undergo apical extrusion and are losers, rather than winners, in competitions with normal mammalian epithelial cells. Inhibitors of metabolism-related proteins such as phosphoinositide-3-kinase (PI3K), mammalian target of rapamycin (mTOR), or p70S6 kinase (p70S6K) suppressed this apical extrusion, as did knockdown of vimentin or filamin in neighboring cells. Interestingly, YAP-overexpressing cells switched from losers to winners when co-cultured with cells expressing K-Ras (G12V) or v-Src. Thus, the role of YAP in deciding cell competitions depends on metabolic factors and the status of neighboring cells.
Collapse
Affiliation(s)
- Takanori Chiba
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Erika Ishihara
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Norio Miyamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Rika Narumi
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Mihoko Kajita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
149
|
Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun 2016; 7:11373. [PMID: 27109213 PMCID: PMC4848481 DOI: 10.1038/ncomms11373] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Cell competition is a quality control mechanism that eliminates unfit cells. How cells compete is poorly understood, but it is generally accepted that molecular exchange between cells signals elimination of unfit cells. Here we report an orthogonal mechanism of cell competition, whereby cells compete through mechanical insults. We show that MDCK cells silenced for the polarity gene scribble (scribKD) are hypersensitive to compaction, that interaction with wild-type cells causes their compaction and that crowding is sufficient for scribKD cell elimination. Importantly, we show that elevation of the tumour suppressor p53 is necessary and sufficient for crowding hypersensitivity. Compaction, via activation of Rho-associated kinase (ROCK) and the stress kinase p38, leads to further p53 elevation, causing cell death. Thus, in addition to molecules, cells use mechanical means to compete. Given the involvement of p53, compaction hypersensitivity may be widespread among damaged cells and offers an additional route to eliminate unfit cells. Cell competition is a quality control mechanism to eliminate unfit cells. Here the authors show that physical compaction of less fit cells surrounded by healthy neighbours leads to increased expression of tumour suppressor p53 in the compacted cells, causing cell death.
Collapse
|
150
|
Leclerc C, Haeich J, Aulestia FJ, Kilhoffer MC, Miller AL, Néant I, Webb SE, Schaeffer E, Junier MP, Chneiweiss H, Moreau M. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1447-59. [PMID: 26826650 DOI: 10.1016/j.bbamcr.2016.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 01/06/2023]
Abstract
While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Catherine Leclerc
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| | - Jacques Haeich
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Médalis, UMR 7200 Université de Strasbourg / CNRS, 67412 Illkirch, France
| | - Francisco J Aulestia
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Médalis, UMR 7200 Université de Strasbourg / CNRS, 67412 Illkirch, France
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Isabelle Néant
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Etienne Schaeffer
- IREBS UMR7242 ESBS, Pôle API, Parc d'Innovation d'Illkirch, 67412 Illkirch cedex, France
| | - Marie-Pierre Junier
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), UMR8246, Institut National de la Santé et de la Recherche Medicale (INSERM), U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Team Glial Plasticity, 7/9 Quai St Bernard, Paris, France
| | - Hervé Chneiweiss
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), UMR8246, Institut National de la Santé et de la Recherche Medicale (INSERM), U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Team Glial Plasticity, 7/9 Quai St Bernard, Paris, France
| | - Marc Moreau
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| |
Collapse
|