101
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
102
|
Regulatory T cells in skeletal muscle repair and regeneration: recent insights. Cell Death Dis 2022; 13:680. [PMID: 35931697 PMCID: PMC9356005 DOI: 10.1038/s41419-022-05142-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023]
Abstract
Skeletal muscle repair and regeneration after injury is a multi-stage process, involving a dynamic inflammatory microenvironment consisting of a complex network formed by the interaction of immune cells and their secreted cytokines. The homeostasis of the inflammatory microenvironment determines whether skeletal muscle repair tissues will ultimately form scar tissue or regenerative tissue. Regulatory T cells (Tregs) regulate homeostasis within the immune system and self-immune tolerance, and play a crucial role in skeletal muscle repair and regeneration. Dysregulated Tregs function leads to abnormal repair. In this review, we discuss the role and mechanisms of Tregs in skeletal muscle repair and regeneration after injury and provide new strategies for Treg immunotherapy in skeletal muscle diseases.
Collapse
|
103
|
Daneshvar N, Anderson JE. Preliminary Study of S100B and Sema3A Expression Patterns in Regenerating Muscle Implicates P75-Expressing Terminal Schwann Cells and Muscle Satellite Cells in Neuromuscular Junction Restoration. Front Cell Dev Biol 2022; 10:874756. [PMID: 35923848 PMCID: PMC9340223 DOI: 10.3389/fcell.2022.874756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Terminal Schwann cells (TSCs) help regulate the formation, maintenance, function, and repair of neuromuscular junctions (NMJs) and axon guidance after muscle injury. Premature activation of muscle satellite cells (SCs), induced by isosorbide dinitrate (ISDN) before injury, accelerates myogenic regeneration, disrupts NMJ remodeling and maturation, decreases Sema3A protein-induced neuro-repulsion, and is accompanied by time-dependent changes in S100B protein levels. Here, to study the effects of premature SC activation on TSCs and SCs, both expressing P75 nerve growth-factor receptor, in situ hybridization was used to identify transcripts of S100B and Sema3A, and the number, intensity, and diameter of expression sites were analyzed. The number of sites/fields expressing S100B and Sema3A increased with regeneration time (both p < 0.001). Expression-site intensity (S100B) and diameter (S100B and Sema3A) decreased during regeneration (p = 0.005; p < 0.05, p = 0.006, respectively). P75 protein colocalized with a subset of S100B and Sema3A expression sites. Principal component analyses of gene expression, protein levels, and histological variables (fiber diameter, vascular density) in control and ISDN-pretreated groups explained 83% and 64% of the dataset variance, respectively. A very strong loading coefficient for colocalization of P75 protein with S100B and Sema3A mRNAs (0.91) in control regenerating muscle dropped markedly during regeneration disrupted by premature SC activation (-0.10 in Factor 1 to 0.55 in Factor 3). These findings strongly implicate the triple-expression profile by TSCs and/or SCs as a strong correlate of the important synchrony of muscle and nerve regeneration after muscle tissue injury. The results have the potential to focus future research on the complex interplay of TSCs and SCs in neuromuscular tissue repair and help promote effective function after traumatic muscle injury.
Collapse
Affiliation(s)
| | - Judy E. Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
104
|
Ogawa-Wong A, Carmody C, Le K, Marschner RA, Larsen PR, Zavacki AM, Wajner SM. Modulation of Deiodinase Types 2 and 3 during Skeletal Muscle Regeneration. Metabolites 2022; 12:metabo12070612. [PMID: 35888735 PMCID: PMC9323706 DOI: 10.3390/metabo12070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The muscle stem-cell niche comprises numerous cell types, which coordinate the regeneration process after injury. Thyroid hormones are one of the main factors that regulate genes linked to skeletal muscle. In this way, deiodinase types 2 and 3 are responsible for the fine-tuning regulation of the local T3 amount. Although their expression and activity have already been identified during muscle regeneration, it is of utmost importance to identify the cell type and temporal pattern of expression after injury to thoroughly comprehend their therapeutic potential. Here, we confirmed the expression of Dio2 and Dio3 in the whole tibialis anterior muscle. We identified, on a single-cell basis, that Dio2 is present in paired box 7 (PAX7)-positive cells starting from day 5 after injury. Dio2 is present in platelet derived growth factor subunit A (PDGFA)-expressing fibro-adipogenic progenitor cells between days 7 and 14 after injury. Dio3 is detected in myogenic differentiation (MYOD)-positive stem cells and in macrophages immediately post injury and thereafter. Interestingly, Dio2 and Dio3 RNA do not appear to be present in the same type of cell throughout the process. These results provide further insight into previously unseen aspects of the crosstalk and synchronized regulation of T3 in injured muscle mediated by deiodinases. The set of findings described here further define the role of deiodinases in muscle repair, shedding light on potential new forms of treatment for sarcopenia and other muscular diseases.
Collapse
Affiliation(s)
- Ashley Ogawa-Wong
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Colleen Carmody
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Katherine Le
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Rafael Aguiar Marschner
- Endocrine Division, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 9000335, Brazil;
| | - P. Reed Larsen
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Ann Marie Zavacki
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
| | - Simone Magagnin Wajner
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.O.-W.); (C.C.); (K.L.); (P.R.L.); (A.M.Z.)
- Endocrine Division, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 9000335, Brazil;
- Correspondence:
| |
Collapse
|
105
|
Stengaard K, Hejbøl EK, Jensen PT, Degn M, Ta TML, Stensballe A, Andersen DC, Schrøder HD, Lambertsen KL, Frich LH. Early-stage inflammation changes in supraspinatus muscle after rotator cuff tear. J Shoulder Elbow Surg 2022; 31:1344-1356. [PMID: 35150831 DOI: 10.1016/j.jse.2021.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/12/2021] [Accepted: 12/25/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff (RC) tendon tear leads to impaired shoulder function and pain. The supraspinatus (SS) tendon is most often affected, but the biological response of the SS muscle to SS tendon tear is largely unknown. This study aimed to investigate time-dependent muscle inflammation, degeneration, fatty infiltration, and regeneration in experimental SS tear conditions. METHODS Forty-five C57BL/6 mice were subjected to SS tendon tear and allowed to recover for 1, 3, 5, 7, 14, or 28 days. The extent of muscle damage was examined using histologic, flow cytometric, proteomic, and chemiluminescence analyses. RESULTS We found that muscle inflammation peaked around day 5 with increased monocyte infiltration and increased cytokine levels in the ipsilateral compared to the contralateral SS muscle. Bioinformatics analysis of proteomics on mice that survived 5 days after RC tendon tear revealed upregulated proteins involved in "neutrophil activation involved in immune response" and "extracellular matrix organization," whereas "skeletal muscle tissue development and contraction" and "respiratory electron transport chain" were among the most downregulated. Histologic analysis of collagen showed increased collagen accumulation and fatty infiltration of the ipsilateral SS over time. Finally, we observed time- and lesion-dependent changes in satellite cell and fibro-adipogenic progenitor populations. CONCLUSION Altogether, we demonstrate that the SS muscle shows severe signs of acute inflammation, early degeneration, and fatty infiltration, as well as reduced regenerative potential following SS tendon tear.
Collapse
Affiliation(s)
- Kira Stengaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Eva Kildall Hejbøl
- Department of Orthopedics, Hospital Sønderjylland, Region of Southern Denmark, Denmark
| | - Peter Toft Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thi My Linh Ta
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ditte Caroline Andersen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Institute of Clinical Research, University of Southern, Denmark
| | | | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Neurology, Odense University Hospital, Odense, Denmark; BRIDGE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lars Henrik Frich
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Orthopedics, Hospital Sønderjylland, Region of Southern Denmark, Denmark; Orthopedic Research Unit, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
106
|
Gerassimov N, Crain C, Bilyeu C, Jacob A, Fan CM. Examining the lineage autonomous role of β3-integrin in muscle regeneration. FASEB J 2022; 36:e22385. [PMID: 35734962 PMCID: PMC9236161 DOI: 10.1096/fj.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscles can regenerate over the lifetime from resident muscle stem cells (MuSCs). Interactions between MuSCs and extracellular matrix (ECM) proteins are essential for muscle regeneration. The best‐known receptors for ECM proteins are integrins, a family composed of twenty‐some heterodimeric combinations of an α‐ and a β‐subunit. β1‐integrin (encoded by Itgb1) is required for quiescence, proliferation, migration, and fusion of Pax7+ MuSCs in the mouse model. β3‐integrin (encoded by Itgb3) has been reported to be critical for the myogenic differentiation of C2C12 myoblasts, and Itgb3 germline mutant mice were shown to regenerate few if any myofibers after injury. To investigate the autonomous role of Itgb3 in the myogenic lineage in vivo, we conditionally inactivated a floxed Itgb3 allele (Itgb3F) by constitutive Pax7‐Cre and tamoxifen‐inducible Pax7‐CreERT2 drivers. Unexpectedly, we found no defects in muscle regeneration in both conditional knockout models. In vitro studies using Itgb3 mutant myoblasts or RNAi knockdown of Itgb3 in myoblasts also did not reveal a role for myogenic differentiation. As β1‐ and β3‐integrins share ECM ligands and downstream signaling effectors, we further examined Itgb3's role in a Itgb1 haploid background. Still, we found no evidence for an autonomous role of Itgb3 in muscle regeneration in vivo. Thus, while Itgb3 is critical for the differentiation of C2C12 cells, the regenerative defects reported for the Itgb3 germline mutant are not due to its role in the MuSC. We conclude that if β3‐integrin does have a role in Pax7+ MuSCs, it is compensated by β1‐ and/or another β‐integrin(s).
Collapse
Affiliation(s)
- Nathalie Gerassimov
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Colt Crain
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA.,Department of Cell, Molecular and Developmental Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Colin Bilyeu
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | | | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA.,Department of Cell, Molecular and Developmental Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
107
|
Chen W, Chen Y, Liu Y, Wang X. Autophagy in muscle regeneration: potential therapies for myopathies. J Cachexia Sarcopenia Muscle 2022; 13:1673-1685. [PMID: 35434959 PMCID: PMC9178153 DOI: 10.1002/jcsm.13000] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Its biological functions include metabolic stress adaptation, stem cell differentiation, immunomodulation and diseases regulation, and so on. Current researches have proved that autophagy dysfunction may contribute to the pathogenesis of some myopathies through impairment of myofibres regeneration. Studies of autophagy inhibition also indicate the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. In this review, we aim to report the mechanisms of action of autophagy on muscle regeneration to provide relevant references for the treatment of regenerating defective myopathies by regulating autophagy. Results have shown that one key mechanism of autophagy regulating the muscle regeneration is to affect the differentiation fate of muscle stem cells (MuSCs), including quiescence maintenance, activation and differentiation. The roles of autophagy (organelle/protein degradation, energy facilitation, and/or other) vary at different myogenic stages of the repair process. When the muscle is in homeostasis, basal autophagy can maintain the quiescence state and stemness of MuSCs by renewing organelle and protein. After injury, the increased autophagy flux contributes to meet biological energy demand of MuSCs during activation and proliferation. By mitochondrial remodelling, autophagy during differentiation can promote the metabolic transformation and balance mitochondrial-mediated apoptosis signals in myoblasts. Autophagy in mature myofibres is also essential for the degradation of necrotic myofibres, and may affect the dynamics of MuSCs by affecting the secretion spectrum of myofibres or the recruitment of supporting cells. Except for myogenic cells, autophagy also plays an important role in regulating the function of non-myogenic cells in the muscle microenvironment, which is also essential for successful muscle recovery. Autophagy can regulate the immune microenvironment during muscle regeneration through the recruitment and polarization of macrophages, while autophagy in endothelial cells can regulate muscle regeneration in an angiogenic or angiogenesis-independent manner. Drug or nutrition targeted autophagy has been preliminarily proved to restore muscle function in myopathies by promoting muscle regeneration, and further understanding the role and mechanism of autophagy in various cell types during muscle regeneration will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
108
|
Kim JH, Kang JS, Yoo K, Jeong J, Park I, Park JH, Rhee J, Jeon S, Jo YW, Hann SH, Seo M, Moon S, Um SJ, Seong RH, Kong YY. Bap1/SMN axis in Dpp4+ skeletal muscle mesenchymal cells regulates the neuromuscular system. JCI Insight 2022; 7:158380. [PMID: 35603786 PMCID: PMC9220848 DOI: 10.1172/jci.insight.158380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The survival of motor neuron (SMN) protein is a major component of the pre-mRNA splicing machinery and is required for RNA metabolism. Although SMN has been considered a fundamental gene for the central nervous system, due to its relationship with neuromuscular diseases, such as spinal muscular atrophy, recent studies have also revealed the requirement of SMN in non-neuronal cells in the peripheral regions. Here, we report that the fibro-adipogenic progenitor subpopulation expressing Dpp4 (Dpp4+ FAPs) is required for the neuromuscular system. Furthermore, we also reveal that BRCA1-associated protein-1 (Bap1) is crucial for the stabilization of SMN in FAPs by preventing its ubiquitination-dependent degradation. Inactivation of Bap1 in FAPs decreased SMN levels and accompanied degeneration of the neuromuscular junction, leading to loss of motor neurons and muscle atrophy. Overexpression of the ubiquitination-resistant SMN variant, SMNK186R, in Bap1-null FAPs completely prevented neuromuscular degeneration. In addition, transplantation of Dpp4+ FAPs, but not Dpp4– FAPs, completely rescued neuromuscular defects. Our data reveal the crucial role of Bap1-mediated SMN stabilization in Dpp4+ FAPs for the neuromuscular system and provide the possibility of cell-based therapeutics to treat neuromuscular diseases.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jinguk Jeong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jong Ho Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Shin Jeon
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Minji Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Seungtae Moon
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Rho Hyun Seong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
109
|
Development of a histopathological index for skeletal muscle analysis in Rattus norvegicus (Rodentia: Muridae). Acta Histochem 2022; 124:151892. [PMID: 35421662 DOI: 10.1016/j.acthis.2022.151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle histopathological changes induced or caused by pathologies in animal models, can impair functionality, being the main focus of therapeutic studies. This study aimed to propose a histopathological index to assess, in a quantitative manner, skeletal muscle changes induced by experimental protocols for Rodentia's models. For the development, evaluation of fit and parsimony, replicability, and sensitivity index, Wistar rats from experiments with the same experimental design, but with different variation factors, were used to achieve different levels of damage. The anterior tibial muscle of these animals was collected, processed histologically, and stained with hematoxylin and eosin. The adjustment and parsimony of the index were availed through Confirmatory Factor Analysis, reproducibility for evaluation of three people trained through the Intra-Class Correlation, and the discrimination capacity through a one-way ANOVA Test. We pointed out the adjustment for the proposed index while the ICC showed high reproducibility (n = 56; k = 3; ICC = 0.9790) and differences in the extent of damage between groups, following the hierarchical association promoted by experimental model stresses. The results show that the proposed index has a good fit and parsimony (χ2 = 426.34; p < 0.0001), in addition to being easily replicable by other researchers who know the morphology of muscle tissue and its morphological changes. It is worth mentioning that the development of tools that facilitate histopathological analysis, and that can quantitatively express the findings, are of great importance for the studies of regenerative science, reinforcing the relevance of this study.
Collapse
|
110
|
Asakura A, Kikyo N. Immunofluorescence analysis of myogenic differentiation. Methods Cell Biol 2022; 170:117-125. [PMID: 35811095 PMCID: PMC9699006 DOI: 10.1016/bs.mcb.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Skeletal muscle is a highly regenerative tissue that can efficiently recover from various damages caused by injuries and excessive exercises. In adult muscle, stem cells termed satellite cells are mitotically quiescent but activated upon muscle damages to enter the cell cycle as myogenic precursor cells or myoblasts. After several rounds of cell cycles, they exist the cycle and fuse to each other to form multinucleated myotubes, and eventually mature to become contractile myofibers. Satellite cells can be readily isolated from mouse skeletal muscle with enzymatic digestion and magnetic separation with antibodies against specific surface markers. C2C12 cells are an immortalized mouse myoblast cell line that is commercially available and more readily expandable than primary myoblasts. Both primary myoblasts and C2C12 cells have been extensively used as useful in vitro models for myogenic differentiation. Proper examination of this process requires monitoring specific protein expression in subcellular compartments, which can be accomplished through immunofluorescence staining. This chapter describes the workflow for the isolation of satellite cells from mouse skeletal muscle and subsequent immunofluorescence staining to assess the proliferation and differentiation of primary myoblasts and C2C12 cells.
Collapse
Affiliation(s)
- Atsushi Asakura
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States; Department of Neurology, University of Minnesota, Minneapolis, MN, United States.
| | - Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
111
|
Hu X, Liu W, Sun L, Xu S, Wang T, Meng J, Wen T, Liu Q, Liu J, Xu H. Magnetic Nanofibrous Scaffolds Accelerate the Regeneration of Muscle Tissue in Combination with Extra Magnetic Fields. Int J Mol Sci 2022; 23:ijms23084440. [PMID: 35457258 PMCID: PMC9025939 DOI: 10.3390/ijms23084440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/27/2022] Open
Abstract
The reversal of loss of the critical size of skeletal muscle is urgently required using biomaterial scaffolds to guide tissue regeneration. In this work, coaxial electrospun magnetic nanofibrous scaffolds were fabricated, with gelatin (Gel) as the shell of the fiber and polyurethane (PU) as the core. Iron oxide nanoparticles (Mag) of 10 nm diameter were added to the shell and core layer. Myoblast cells (C2C12) were cultured on the magnetic scaffolds and exposed to the applied magnetic fields. A mouse model of skeletal muscle injury was used to evaluate the repair guided by the scaffolds under the magnetic fields. It was shown that VEGF secretion and MyoG expression for the myoblast cells grown on the magnetic scaffolds under the magnetic fields were significantly increased, while, the gene expression of Myh4 was up-regulated. Results from an in vivo study indicated that the process of skeletal muscle regeneration in the mouse muscle injury model was accelerated by using the magnetic actuated strategy, which was verified by histochemical analysis, immunofluorescence staining of CD31, electrophysiological measurement and ultrasound imaging. In conclusion, the integration of a magnetic scaffold combined with the extra magnetic fields enhanced myoblast differentiation and VEGF secretion and accelerated the defect repair of skeletal muscle in situ.
Collapse
Affiliation(s)
- Xuechun Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Wenhao Liu
- Peking Union Medical College, Beijing 100073, China;
| | - Lihong Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Shilin Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Tao Wen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Qingqiao Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
- Correspondence: (J.L.); (H.X.); Tel.: +86-10-6915-6437 (H.X.)
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; (X.H.); (L.S.); (S.X.); (T.W.); (J.M.); (T.W.); (Q.L.)
- Correspondence: (J.L.); (H.X.); Tel.: +86-10-6915-6437 (H.X.)
| |
Collapse
|
112
|
Regenerating Skeletal Muscle Compensates for the Impaired Macrophage Functions Leading to Normal Muscle Repair in Retinol Saturase Null Mice. Cells 2022; 11:cells11081333. [PMID: 35456012 PMCID: PMC9028072 DOI: 10.3390/cells11081333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle repair is initiated by local inflammation and involves the engulfment of dead cells (efferocytosis) by infiltrating macrophages at the injury site. Macrophages orchestrate the whole repair program, and efferocytosis is a key event not only for cell clearance but also for triggering the timed polarization of the inflammatory phenotype of macrophages into the healing one. While pro-inflammatory cytokines produced by the inflammatory macrophages induce satellite cell proliferation and differentiation into myoblasts, healing macrophages initiate the resolution of inflammation, angiogenesis, and extracellular matrix formation and drive myoblast fusion and myotube growth. Therefore, improper efferocytosis results in impaired muscle repair. Retinol saturase (RetSat) initiates the formation of various dihydroretinoids, a group of vitamin A derivatives that regulate transcription by activating retinoid receptors. Previous studies from our laboratory have shown that RetSat-null macrophages produce less milk fat globule-epidermal growth factor-factor-8 (MFG-E8), lack neuropeptide Y expression, and are characterized by impaired efferocytosis. Here, we investigated skeletal muscle repair in the tibialis anterior muscle of RetSat-null mice following cardiotoxin injury. Our data presented here demonstrate that, unexpectedly, several cell types participating in skeletal muscle regeneration compensate for the impaired macrophage functions, resulting in normal muscle repair in the RetSat-null mice.
Collapse
|
113
|
Larouche JA, Fraczek PM, Kurpiers SJ, Yang BA, Davis C, Castor-Macias JA, Sabin K, Anderson S, Harrer J, Hall M, Brooks SV, Jang YC, Willett N, Shea LD, Aguilar CA. Neutrophil and natural killer cell imbalances prevent muscle stem cell-mediated regeneration following murine volumetric muscle loss. Proc Natl Acad Sci U S A 2022; 119:e2111445119. [PMID: 35377804 PMCID: PMC9169656 DOI: 10.1073/pnas.2111445119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Volumetric muscle loss (VML) overwhelms the innate regenerative capacity of mammalian skeletal muscle (SkM), leading to numerous disabilities and reduced quality of life. Immune cells are critical responders to muscle injury and guide tissue resident stem cell– and progenitor-mediated myogenic repair. However, how immune cell infiltration and intercellular communication networks with muscle stem cells are altered following VML and drive pathological outcomes remains underexplored. Herein, we contrast the cellular and molecular mechanisms of VML injuries that result in the fibrotic degeneration or regeneration of SkM. Following degenerative VML injuries, we observed the heightened infiltration of natural killer (NK) cells as well as the persistence of neutrophils beyond 2 wk postinjury. Functional validation of NK cells revealed an antagonistic role in neutrophil accumulation in part via inducing apoptosis and CCR1-mediated chemotaxis. The persistent infiltration of neutrophils in degenerative VML injuries was found to contribute to impairments in muscle stem cell regenerative function, which was also attenuated by transforming growth factor beta 1 (TGFβ1). Blocking TGFβ signaling reduced neutrophil accumulation and fibrosis and improved muscle-specific force. Collectively, these results enhance our understanding of immune cell–stem cell cross talk that drives regenerative dysfunction and provide further insight into possible avenues for fibrotic therapy exploration.
Collapse
Affiliation(s)
- Jacqueline A. Larouche
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Paula M. Fraczek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Sarah J. Kurpiers
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin A. Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Jesus A. Castor-Macias
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
| | - Shannon Anderson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Julia Harrer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Matthew Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Susan V. Brooks
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Young C. Jang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nick Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Carlos A. Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
114
|
Kim I, Ghosh A, Bundschuh N, Hinte L, Petrosyan E, von Meyenn F, Bar-Nur O. Integrative molecular roadmap for direct conversion of fibroblasts into myocytes and myogenic progenitor cells. SCIENCE ADVANCES 2022; 8:eabj4928. [PMID: 35385316 PMCID: PMC8986113 DOI: 10.1126/sciadv.abj4928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Transient MyoD overexpression in concert with small molecule treatment reprograms mouse fibroblasts into induced myogenic progenitor cells (iMPCs). However, the molecular landscape and mechanisms orchestrating this cellular conversion remain unknown. Here, we undertook an integrative multiomics approach to delineate the process of iMPC reprogramming in comparison to myogenic transdifferentiation mediated solely by MyoD. Using transcriptomics, proteomics, and genome-wide chromatin accessibility assays, we unravel distinct molecular trajectories that govern the two processes. Notably, only iMPC reprogramming is characterized by gradual up-regulation of muscle stem cell markers, unique signaling pathways, and chromatin remodelers in conjunction with exclusive chromatin opening in core myogenic promoters. In addition, we determine that the Notch pathway is indispensable for iMPC formation and self-renewal and further use the Notch ligand Dll1 to homogeneously propagate iMPCs. Collectively, this study charts divergent molecular blueprints for myogenic transdifferentiation or reprogramming and underpins the heightened capacity of iMPCs for capturing myogenesis ex vivo.
Collapse
Affiliation(s)
- Inseon Kim
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Adhideb Ghosh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Switzerland
| | - Nicola Bundschuh
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Laura Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Eduard Petrosyan
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
115
|
Rejano-Gordillo C, Ordiales-Talavero A, Nacarino-Palma A, Merino JM, González-Rico FJ, Fernández-Salguero PM. Aryl Hydrocarbon Receptor: From Homeostasis to Tumor Progression. Front Cell Dev Biol 2022; 10:884004. [PMID: 35465323 PMCID: PMC9022225 DOI: 10.3389/fcell.2022.884004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main regulators involved both in different homeostatic cell functions and tumor progression. Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional regulators, this intracellular receptor has become a key member in differentiation, pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of new targets identified in the last decade. Besides this role in tissue homeostasis, one enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor depending on the specific organ, tissue and cell type. Together with its well-known modulation of cell adhesion and migration in a cell-type specific manner in epithelial-mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role in contributing to physiological and homeostatic failures, tumor progression and dissemination. With that firmly in mind, this review will address the remarkable capability of AHR to exert a different function influenced by the phenotype of the target cell and its potential consequences.
Collapse
Affiliation(s)
- Claudia Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Nacarino-Palma
- Chronic Diseases Research Centre (CEDOC), Rua Do Instituto Bacteriológico, Lisboa, Portugal
| | - Jaime M. Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco J. González-Rico
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| |
Collapse
|
116
|
Florio F, Accordini S, Libergoli M, Biressi S. Targeting Muscle-Resident Single Cells Through in vivo Electro-Enhanced Plasmid Transfer in Healthy and Compromised Skeletal Muscle. Front Physiol 2022; 13:834705. [PMID: 35431987 PMCID: PMC9010744 DOI: 10.3389/fphys.2022.834705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle is composed of syncytial muscle fibers, and by various mononucleated cellular types, such as muscle stem cells, immune cells, interstitial and stromal progenitors. These cell populations play a crucial role during muscle regeneration, and alterations of their phenotypic properties have been associated with defective repair and fibrosis in aging and dystrophic muscle. Studies involving in vivo gene modulation are valuable to investigate the mechanisms underlining cell function and dysfunction in complex pathophysiological settings. Electro-enhanced transfer of plasmids using square-wave generating devices represents a cost-effective approach that is widely used to transport DNA to muscle fibers efficiently. Still, it is not clear if this method can also be applied to mononuclear cells present in muscle. We demonstrate here that it is possible to efficiently deliver DNA into different muscle–resident cell populations in vivo. We evaluated the efficiency of this approach not only in healthy muscle but also in muscles of aging and dystrophic animal models. As an exemplificative application of this method, we used a strategy relying on a reporter gene-based plasmid containing regulatory sequences from the collagen 1 locus, and we determined collagen expression in various cell types reportedly involved in the production of fibrotic tissue in the dystrophic settings. The results enclosed in this manuscript reveal the suitability in applying electro-enhanced transfer of plasmid DNA to mononucleated muscle-resident cells to get insights into the molecular events governing diseased muscle physiology.
Collapse
Affiliation(s)
- Francesca Florio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
| | - Silvia Accordini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
- *Correspondence: Stefano Biressi,
| |
Collapse
|
117
|
Yang W, Yang L, Wang J, Zhang Y, Li S, Yin Q, Suo J, Ma R, Ye Y, Cheng H, Li J, Hui J, Hu P. Msi2-mediated MiR7a-1 processing repression promotes myogenesis. J Cachexia Sarcopenia Muscle 2022; 13:728-742. [PMID: 34877814 PMCID: PMC8818652 DOI: 10.1002/jcsm.12882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 10/02/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Most of the microRNAs (MiRs) involved in myogenesis are transcriptional regulated. The role of MiR biogenesis in myogenesis has not been characterized yet. RNA-binding protein Musashi 2 (Msi2) is considered to be one of the major drivers for oncogenesis and stem cell proliferation. The functions of Msi2 in myogenesis have not been explored yet. We sought to investigate Msi2-regulated biogenesis of MiRs in myogenesis and muscle stem cell (MuSC) ageing. METHODS We detected the expression of Msi2 in MuSCs and differentiated myotubes by quantitative reverse transcription PCR (RT-qPCR) and western blot. Msi2-binding partner human antigen R (HuR) was identified by immunoprecipitation followed by mass spectrometry analysis. The cooperative binding of Msi2 and HuR on MiR7a-1 was analysed by RNA immunoprecipitation and electrophoresis mobility shift assays. The inhibition of the processing of pri-MiR7a-1 mediated by Msi2 and HuR was shown by Msi2 and HuR knockdown. Immunofluorescent staining, RT-qPCR and immunoblotting were used to characterize the function of MiR7a-1 in myogenesis. Msi2 and HuR up-regulate cryptochrome circadian regulator 2 (Cry2) via MiR7a-1 was confirmed by the luciferase assay and western blot. The post-transcriptional regulatory cascade was further confirmed by RNAi and overexpressing of Msi2 and HuR in MuSCs, and the in vivo function was characterized by histopathological and molecular biological methods in Msi2 knockout mice. RESULTS We identified a post-transcription regulatory cascade governed by a pair of RNA-binding proteins Msi2 and HuR. Msi2 is enriched in differentiated muscle cells and promotes MuSC differentiation despite its pro-proliferation functions in other cell types. Msi2 works synergistically with another RNA-binding protein HuR to repress the biogenesis of MiR7a-1 in an Msi2 dose-dependent manner to regulate the translation of the key component of the circadian core oscillator complex Cry2. Down-regulation of Cry2 (0.6-fold, vs. control, P < 0.05) mediated by MiR7a-1 represses MuSC differentiation. The disruption of this cascade leads to differentiation defects of MuSCs. In aged muscles, Msi2 (0.3-fold, vs. control, P < 0.01) expression declined, and the Cry2 protein level also decreases (0.5-fold, vs. control, P < 0.05), suggesting that the disruption of the Msi2-mediated post-transcriptional regulatory cascade could attribute to the declined ability of muscle regeneration in aged skeletal muscle. CONCLUSIONS Our findings have identified a new post-transcriptional cascade regulating myogenesis. The cascade is disrupted in skeletal muscle ageing, which leads to declined muscle regeneration ability.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lele Yang
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Jianhua Wang
- Department of Orthopaedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuanyuan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Li
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qi Yin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jinlong Suo
- Department of Orthopedic Surgery and Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth 's Hospital, Shanghai, China
| | - Ruimiao Ma
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Yuzhen Ye
- Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ping Hu
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Guangzhou Laboratory, Guangzhou, China.,Max Planck Center for Tissue Stem Cells and Regenerative Medicine, Bioland Laboratory, Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
118
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
119
|
Philips C, Terrie L, Thorrez L. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials 2022; 283:121436. [DOI: 10.1016/j.biomaterials.2022.121436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
|
120
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
121
|
Dohmen RGJ, Hubalek S, Melke J, Messmer T, Cantoni F, Mei A, Hueber R, Mitic R, Remmers D, Moutsatsou P, Post MJ, Jackisch L, Flack JE. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. NPJ Sci Food 2022; 6:6. [PMID: 35075125 PMCID: PMC8786866 DOI: 10.1038/s41538-021-00122-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cultured meat is an emergent technology with the potential for significant environmental and animal welfare benefits. Accurate mimicry of traditional meat requires fat tissue; a key contributor to both the flavour and texture of meat. Here, we show that fibro-adipogenic progenitor cells (FAPs) are present in bovine muscle, and are transcriptionally and immunophenotypically distinct from satellite cells. These two cell types can be purified from a single muscle sample using a simple fluorescence-activated cell sorting (FACS) strategy. FAPs demonstrate high levels of adipogenic potential, as measured by gene expression changes and lipid accumulation, and can be proliferated for a large number of population doublings, demonstrating their suitability for a scalable cultured meat production process. Crucially, FAPs reach a mature level of adipogenic differentiation in three-dimensional, edible hydrogels. The resultant tissue accurately mimics traditional beef fat in terms of lipid profile and taste, and FAPs thus represent a promising candidate cell type for the production of cultured fat.
Collapse
Affiliation(s)
- Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Sophie Hubalek
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands
| | - Rada Mitic
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Mark J Post
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
122
|
Cheng X, Huang Y, Liu Y, Dou J, Zhao N, Li J, Shi B. Head muscle fibro-adipogenic progenitors account for the tilted regeneration towards fibrosis. Biochem Biophys Res Commun 2022; 589:131-138. [PMID: 34915407 DOI: 10.1016/j.bbrc.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023]
Abstract
Branchiomeric head muscle is ontogenetically and phylogenetically distinct from somitic limb muscle, and they exhibit different regenerative capacity. Unique satellite cell property of head muscle could explain the impaired myofiber formation, but the underlying mechanism for fibrosis is still elusive. In this work, we first established a freezing-induced skeletal muscle regeneration model and made comparisons between the regeneration characteristics in tibialis anterior (TA) muscle and masseter (MAS) muscle. The process of myogenesis and fibrogenesis were investigated by histological, immunohistochemical and cellular analysis, to characterize the role of muscle satellite cell (MuSCs) and fibro-adipogenic progenitors (FAPs) in TA and MAS muscle regeneration. Our results revealed that FAPs infiltrated the fibrotic area during MAS muscle regeneration. In contrast to the rapid rise and fall of FAPs number at the early regeneration stages in TA muscle, the number of MAS FAPs increased to a plateau without descending till 14 days after injury. It is the first time that the pivotal role of FAPs in head muscle regeneration was characterized. The persistence of FAPs without timely clearance in the first two weeks of regeneration could be accountable for the head muscle fibrosis.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Yixuan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Yingmeng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Jinfeng Dou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Ning Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China.
| | - Bing Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, 610041, China; Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, China.
| |
Collapse
|
123
|
Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva. NPJ Regen Med 2022; 7:5. [PMID: 35031614 PMCID: PMC8760285 DOI: 10.1038/s41536-021-00201-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/30/2021] [Indexed: 01/30/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease in which extraskeletal (heterotopic) bone forms within tissues such as skeletal muscles, often in response to injury. Mutations in the BMP type I receptor ACVR1/ALK2 cause FOP by increasing BMP pathway signaling. In contrast to the growing understanding of the inappropriate formation of bone tissue within the muscle in FOP, much is still unknown about the regenerative capacity of adult diseased muscles. Utilizing an inducible ACVR1R206H knock-in mouse, we found that injured Acvr1R206H/+ skeletal muscle tissue regenerates poorly. We demonstrated that while two resident stem cell populations, muscle stem cells (MuSCs) and fibro/adipogenic progenitors (FAPs), have similar proliferation rates after injury, the differentiation potential of mutant MuSCs is compromised. Although MuSC-specific deletion of the ACVR1R206H mutation does not alter the regenerative potential of skeletal muscles in vivo, Acvr1R206H/+ MuSCs form underdeveloped fibers that fail to fuse in vitro. We further determined that FAPs from Acvr1R206H/+ mice repress the MuSC-mediated formation of Acvr1R206H/+ myotubes in vitro. These results identify a previously unrecognized role for ACVR1R206H in myogenesis in FOP, via improper interaction of tissue-resident stem cells during skeletal muscle regeneration.
Collapse
|
124
|
Zong C, Bronckaers A, Vande Velde G, Willems G, Cadenas de Llano‐Pérula M. In Vivo Micro-Computerized Tomography Tracking of Human Periodontal Ligament Stem Cells Labeled with Gold Nanocomplexes. Adv Healthc Mater 2022; 11:e2101133. [PMID: 34704382 DOI: 10.1002/adhm.202101133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Gold nanocomplexes have been proposed as contrast agents for computerized tomography (CT) and cell tracking, which is especially useful in stem cell therapy. However, their potential for long-term in vivo cell detection is still unknown. This study proposes an optimized approach to labeling human periodontal ligament stem cells (hPDLSCs) with gold nanocomplexes to evaluate their detection with micro-CT after transplantation at four different rat tissues. The gold nanocomplexes of 0.05 mg mL-1 do not affect cell viability nor osteogenic differentiation capacity, but render fluorescent and radiopaque hPDLSCs. Excellent linear correlation with the number of labeled cells is shown over a wide range (r = 0.99, P < 0.01), with a detection limit of ≈1.2 × 103 cells/µL. In vivo, strong, and durable detection of transplanted labeled cells within 5 days at all investigated areas is seen by micro-CT and immunohistochemical assay. This approach confirms the potential of gold nanocomplexes in longitudinal in vivo cell tracking, which may facilitate their application in CT image-guided interventions commonly used in oromaxillofacial or systemic applications of stem cell therapy.
Collapse
Affiliation(s)
- Chen Zong
- Department of Oral Health Sciences‐Orthodontics KU Leuven and Dentistry University Hospitals Leuven Leuven 3000 Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute Faculty of Life Sciences University of Hasselt Diepenbeek 3590 Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC) KU Leuven Leuven 3000 Belgium
| | - Guy Willems
- Department of Oral Health Sciences‐Orthodontics KU Leuven and Dentistry University Hospitals Leuven Leuven 3000 Belgium
| | - Maria Cadenas de Llano‐Pérula
- Department of Oral Health Sciences‐Orthodontics KU Leuven and Dentistry University Hospitals Leuven Leuven 3000 Belgium
| |
Collapse
|
125
|
Hogarth MW, Uapinyoying P, Mázala DAG, Jaiswal JK. Pathogenic role and therapeutic potential of fibro-adipogenic progenitors in muscle disease. Trends Mol Med 2022; 28:8-11. [PMID: 34750068 PMCID: PMC11969197 DOI: 10.1016/j.molmed.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Aside from myofibers, numerous mononucleated cells reside in the skeletal muscle. These include the mesenchymal cells called fibro-adipogenic progenitors (FAPs), that support muscle development and regeneration in adult muscles. Recent evidence shows that defects in FAP function contributes to chronic muscle diseases and targeting FAPs offers avenues for treating these diseases.
Collapse
Affiliation(s)
- Marshall W Hogarth
- Children's National Hospital, Center for Genetic Medicine Research, Washington, DC, USA.
| | - Prech Uapinyoying
- Children's National Hospital, Center for Genetic Medicine Research, Washington, DC, USA; Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Davi A G Mázala
- Children's National Hospital, Center for Genetic Medicine Research, Washington, DC, USA; Department of Kinesiology, College of Health Professions, Towson University, Maryland, USA
| | - Jyoti K Jaiswal
- Children's National Hospital, Center for Genetic Medicine Research, Washington, DC, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
126
|
Davies MR, Chi H, Kaur G, Liu M, Ma CB, Kim HT, Liu X, Feeley BT. Rotator Cuff Tear Size Regulates Fibroadipogenic Progenitor Number and Gene Expression Profile in the Supraspinatus Independent of Patient Age. Am J Sports Med 2022; 50:208-215. [PMID: 34779676 PMCID: PMC9280916 DOI: 10.1177/03635465211054512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fatty infiltration of rotator cuff muscle is a limiting factor in the success of repairs. Fibroadipogenic progenitors (FAPs) are a population of stem cells within the rotator cuff that can differentiate into white adipocytes, fibroblasts, and beige adipocytes. The effects of patient age and rotator cuff tendon tear size on the number, differentiation patterns, and gene expression profiles of FAPs have not yet been analyzed. PURPOSE To determine if patient age and rotator cuff tear size independently regulate FAP number, differentiation patterns, and gene expression profiles. STUDY DESIGN Controlled laboratory study. METHODS Supraspinatus muscle samples were collected from 26 patients between the ages of 42 and 76 years with partial- or full-thickness rotator cuff tears. FAPs were quantified using fluorescence-activated cell sorting. Gene expression analysis was performed across a custom 96-gene panel using NanoString. In vitro differentiation assays of FAPs were conducted using adipogenic, fibrogenic, and beige-inducing (amibegron-treated) media, and quantitative polymerase chain reaction was used to assess gene expression differences between adipogenic and amibegron media conditions. Multivariable linear regressions were performed using Stata to independently analyze the effects of age and rotator cuff tear size on FAP number, differentiation, and gene expression. RESULTS Increasing age and tear size were independently correlated with increased FAP number (βage = 0.21, P = .03; βtear size = 3.86, P = .05). There was no clear association between age and gene expression of freshly sorted FAPs. Under adipogenic and fibrogenic media conditions, increasing age and tear size were independently associated with increased adipogenic and fibrogenic differentiation of FAPs. Under amibegron treatment conditions, age positively correlated with increased beige differentiation (β = 1.03; P < .0001), while increasing tear size showed a trend toward decreased beige differentiation (β = -4.87; P = .1). When gene expression patterns between adipogenic and amibegron media conditions were compared, larger tear size strongly inhibited beige gene expression, while advanced age did not. CONCLUSION Patient age and rotator cuff tear size independently regulated FAP number, differentiation, and gene expression. Age and tear size were positively correlated with increased FAP number and fibrogenic/adipogenic differentiation. Advancing patient age did not limit FAP beige differentiation and gene expression, while increasing rotator cuff tear size strongly inhibited these processes.
Collapse
Affiliation(s)
- Michael R. Davies
- Address correspondence to Michael R. Davies, MD, Department of Orthopaedic Surgery, University of California, San Francisco, 1700 Owens St, San Francisco, CA 94158, USA ()
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Loubrie S, Trotier A, Ribot E, Massot P, Lefrançois W, Thiaudière E, Dallaudière B, Miraux S, Bourdel-Marchasson I. New setup for multi-parametric MRI in young and old rat gastrocnemius at 4.7 and 7 T during muscle stimulation. NMR IN BIOMEDICINE 2022; 35:e4620. [PMID: 34585794 DOI: 10.1002/nbm.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
T1 and T2 relaxation times combined with 31 P spectroscopy have been proven efficient for muscular disease characterization as well as for pre- and post-muscle stimulation measurements. Even though 31 P spectroscopy can already be performed during muscle exercise, no method for T1 and T2 measurement enables this possibility. In this project, a complete setup and protocol for multi-parametrical MRI of the rat gastrocnemius before, during and after muscle stimulation at 4.7 and 7 T is presented. The setup is fully MRI compatible and is composed of a cradle, an electro-stimulator and an electronic card in order to synchronize MRI sequences with muscle stimulation. A 2D triggered radial-encoded Look-Locker sequence was developed, and enabled T1 measurements in less than 2 min on stimulated muscle. Also, a multi-slice multi-echo sequence was adapted and synchronized for T2 measurements as well as 31 P spectroscopy acquisitions in less than 4 min in both cases on stimulated muscle. Methods were validated on young rats using different stimulation paradigms. Then they were applied on older rats to compare quantification results, using the different stimulation paradigms, and allowed observation of metabolic changes related to aging with good reproducibility. The robustness of the whole setup shows wide application opportunities.
Collapse
Affiliation(s)
- Stéphane Loubrie
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Aurelien Trotier
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Emeline Ribot
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Philippe Massot
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - William Lefrançois
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Benjamin Dallaudière
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
- Centre d'Imagerie Ostéo-articulaire, Clinique du Sport de Bordeaux-Mérignac, Mérignac, France
| | - Sylvain Miraux
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
| | - Isabelle Bourdel-Marchasson
- Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB)-UMR 5536 CNRS/Université de Bordeaux, Bordeaux, France
- Pôle de gérontologie clinique, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
128
|
Manneken JD, Dauer MVP, Currie PD. Dynamics of muscle growth and regeneration: Lessons from the teleost. Exp Cell Res 2021; 411:112991. [PMID: 34958765 DOI: 10.1016/j.yexcr.2021.112991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
The processes of myogenesis during both development and regeneration share a number of similarities across both amniotes and teleosts. In amniotes, the process of muscle formation is considered largely biphasic, with developmental myogenesis occurring through hyperplastic fibre deposition and postnatal muscle growth driven through hypertrophy of existing fibres. In contrast, teleosts continue generating new muscle fibres during adult myogenesis through a process of eternal hyperplasia using a dedicated stem cell system termed the external cell layer. During developmental and regenerative myogenesis alike, muscle progenitors interact with their niche to receive cues guiding their transition into myoblasts and ultimately mature myofibres. During development, muscle precursors receive input from neighbouring embryological tissues; however, during repair, this role is fulfilled by other injury resident cell types, such as those of the innate immune response. Recent work has focused on the role of macrophages as a pro-regenerative cell type which provides input to muscle satellite cells during regenerative myogenesis. As zebrafish harbour a satellite cell system analogous to that of mammals, the processes of regeneration can be interrogated in vivo with the imaging intensive approaches afforded in the zebrafish system. This review discusses the strengths of zebrafish with a focus on both the similarities and differences to amniote myogenesis during both development and repair.
Collapse
Affiliation(s)
- Jessica D Manneken
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Mervyn V P Dauer
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia; EMBL Australia, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
129
|
Lahmann I, Zhang Y, Baum K, Wolf J, Birchmeier C. An oscillatory network controlling self-renewal of skeletal muscle stem cells. Exp Cell Res 2021; 409:112933. [PMID: 34793773 DOI: 10.1016/j.yexcr.2021.112933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022]
Abstract
The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. Muscle stem cells can proliferate, they can generate differentiating cells, or they self-renew to produce new stem cells. Notch signaling plays a crucial role in this process. Recent studies revealed that expression of the Notch effector HES1 oscillates in activated muscle stem cells. The oscillatory expression of HES1 periodically represses transcription from the genes encoding the myogenic transcription factor MYOD and the Notch ligand DLL1, thereby driving MYOD and DLL1 oscillations. This oscillatory network allows muscle progenitor cells and activated muscle stem cells to remain in a proliferative and 'undecided' state, in which they can either differentiate or self-renew. When HES1 is downregulated, MYOD oscillations become unstable and are replaced by sustained expression, which drives the cells into terminal differentiation. During development and regeneration, proliferating stem cells contact each other and the stability of the oscillatory expression depends on regular DLL1 inputs provided by neighboring cells. In such communities of cells that receive and provide Notch signals, the appropriate timing of DLL1 inputs is important, as sustained DLL1 cannot replace oscillatory DLL1. Thus, in cell communities, DLL1 oscillations ensure the appropriate balance between self-renewal and differentiation. In summary, oscillations in myogenic cells are an important example of dynamic gene expression determining cell fate.
Collapse
Affiliation(s)
- Ines Lahmann
- Neurowissenschaftliches Forschungszentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, 13125, Berlin, Germany
| | - Yao Zhang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, 13125, Berlin, Germany
| | - Katharina Baum
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Mathematical Modelling of Cellular Processes, 13125, Berlin, Germany; New address: Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, 14482, Potsdam, Germany
| | - Jana Wolf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Mathematical Modelling of Cellular Processes, 13125, Berlin, Germany; Free University Berlin, Department of Mathematics and Computer Science, Arnimallee 14, 14195, Berlin, Germany
| | - Carmen Birchmeier
- Neurowissenschaftliches Forschungszentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, 13125, Berlin, Germany.
| |
Collapse
|
130
|
Luo W, Lin Z, Chen J, Chen G, Zhang S, Liu M, Li H, He D, Liang S, Luo Q, Zhang D, Nie Q, Zhang X. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration. J Cachexia Sarcopenia Muscle 2021; 12:1704-1723. [PMID: 34427057 PMCID: PMC8718073 DOI: 10.1002/jcsm.12767] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transmembrane proteins are vital for intercellular signalling and play important roles in the control of cell fate. However, their physiological functions and mechanisms of action in myogenesis and muscle disorders remain largely unexplored. It has been found that transmembrane protein 182 (TMEM182) is dramatically up-regulated during myogenesis, but its detailed functions remain unclear. This study aimed to analyse the function of TMEM182 during myogenesis and muscle regeneration. METHODS RNA sequencing, quantitative real-time polymerase chain reaction, and immunofluorescence approaches were used to analyse TMEM182 expression during myoblast differentiation. A dual-luciferase reporter assay was used to identify the promoter region of the TMEM182 gene, and a chromatin immunoprecipitation assay was used to investigate the regulation TMEM182 transcription by MyoD. We used chickens and TMEM182-knockout mice as in vivo models to examine the function of TMEM182 in muscle growth and muscle regeneration. Chickens and mouse primary myoblasts were used to extend the findings to in vitro effects on myoblast differentiation and fusion. Co-immunoprecipitation and mass spectrometry were used to identify the interaction between TMEM182 and integrin beta 1 (ITGB1). The molecular mechanism by which TMEM182 regulates myogenesis and muscle regeneration was examined by Transwell migration, cell wound healing, adhesion, glutathione-S-transferse pull down, protein purification, and RNA immunoprecipitation assays. RESULTS TMEM182 was specifically expressed in skeletal muscle and adipose tissue and was regulated at the transcriptional level by the myogenic regulatory factor MyoD1. Functionally, TMEM182 inhibited myoblast differentiation and fusion. The in vivo studies indicated that TMEM182 induced muscle fibre atrophy and delayed muscle regeneration. TMEM182 knockout in mice led to significant increases in body weight, muscle mass, muscle fibre number, and muscle fibre diameter. Skeletal muscle regeneration was accelerated in TMEM182-knockout mice. Furthermore, we revealed that the inhibitory roles of TMEM182 in skeletal muscle depend on ITGB1, an essential membrane receptor involved in cell adhesion and muscle formation. TMEM182 directly interacted with ITGB1, and this interaction required an extracellular hybrid domain of ITGB1 (aa 387-470) and a conserved region (aa 52-62) within the large extracellular loop of TMEM182. Mechanistically, TMEM182 modulated ITGB1 activation by coordinating the association between ITGB1 and laminin and regulating the intracellular signalling of ITGB1. Myogenic deletion of TMEM182 increased the binding activity of ITGB1 to laminin and induced the activation of the FAK-ERK and FAK-Akt signalling axes during myogenesis. CONCLUSIONS Our data reveal that TMEM182 is a novel negative regulator of myogenic differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Wen Luo
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China.,Department of Orthaepedics and Traumatology, The Chinese University of Hong Kong, Hongkong
| | - Zetong Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Manqing Liu
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Hongmei Li
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Danlin He
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Shaodong Liang
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Qingbin Luo
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Dexiang Zhang
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
131
|
Kann AP, Hung M, Krauss RS. Cell-cell contact and signaling in the muscle stem cell niche. Curr Opin Cell Biol 2021; 73:78-83. [PMID: 34352725 PMCID: PMC8678169 DOI: 10.1016/j.ceb.2021.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Muscle stem cells (also called satellite cells or SCs) rely on their local niche for regulatory signals during homeostasis and regeneration. While a number of cell types communicate indirectly through secreted factors, here we focus on the significance of direct contact between SCs and their neighbors. During quiescence, SCs reside under a basal lamina and receive quiescence-promoting signals from their adjacent skeletal myofibers. Upon injury, the composition of the niche changes substantially, enabling the formation of new contacts that mediate proliferation, self-renewal, and differentiation. In this review, we summarize the latest work in understanding cell-cell contact within the satellite cell niche and highlight areas of open questions for future studies.
Collapse
Affiliation(s)
- Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
132
|
McKellar DW, Walter LD, Song LT, Mantri M, Wang MFZ, De Vlaminck I, Cosgrove BD. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun Biol 2021; 4:1280. [PMID: 34773081 PMCID: PMC8589952 DOI: 10.1038/s42003-021-02810-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro-adipogenic progenitors defined by functional roles, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem cell quiescence to myofiber maturation, and identified rare, transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. We also used the integrated dataset to explore ligand-receptor co-expression patterns and identify dynamic cell-cell interactions in muscle injury response. We provide a public web tool to enable interactive exploration and visualization of the data. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.
Collapse
Affiliation(s)
- David W McKellar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren D Walter
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Leo T Song
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Madhav Mantri
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael F Z Wang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Benjamin D Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
133
|
Barruet E, Garcia SM, Wu J, Morales BM, Tamaki S, Moody T, Pomerantz JH, Hsiao EC. Modeling the ACVR1 R206H mutation in human skeletal muscle stem cells. eLife 2021; 10:66107. [PMID: 34755602 PMCID: PMC8691832 DOI: 10.7554/elife.66107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormalities in skeletal muscle repair can lead to poor function and complications such as scarring or heterotopic ossification (HO). Here, we use fibrodysplasia ossificans progressiva (FOP), a disease of progressive HO caused by ACVR1R206H (Activin receptor type-1 receptor) mutation, to elucidate how ACVR1 affects skeletal muscle repair. Rare and unique primary FOP human muscle stem cells (Hu-MuSCs) isolated from cadaveric skeletal muscle demonstrated increased extracellular matric (ECM) marker expression, showed skeletal muscle-specific impaired engraftment and regeneration ability. Human induced pluripotent stem cell (iPSC)-derived muscle stem/progenitor cells (iMPCs) single-cell transcriptome analyses from FOP also revealed unusually increased ECM and osteogenic marker expression compared to control iMPCs. These results show that iMPCs can recapitulate many aspects of Hu-MuSCs for detailed in vitro study; that ACVR1 is a key regulator of Hu-MuSC function and skeletal muscle repair; and that ACVR1 activation in iMPCs or Hu-MuSCs may contribute to HO by changing the local tissue environment.
Collapse
Affiliation(s)
- Emilie Barruet
- Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Steven M Garcia
- Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Jake Wu
- Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Blanca M Morales
- Institute for Human Genetics, University of California, San Francisco, San Francisco, United States
| | - Stanley Tamaki
- Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Tania Moody
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Jason H Pomerantz
- Departments of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine Institute for Human Genetics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
134
|
Maehara K, Tomimatsu K, Harada A, Tanaka K, Sato S, Fukuoka M, Okada S, Handa T, Kurumizaka H, Saitoh N, Kimura H, Ohkawa Y. Modeling population size independent tissue epigenomes by ChIL-seq with single thin sections. Mol Syst Biol 2021; 17:e10323. [PMID: 34730297 PMCID: PMC8564819 DOI: 10.15252/msb.202110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Recent advances in genome-wide technologies have enabled analyses using small cell numbers of even single cells. However, obtaining tissue epigenomes with cell-type resolution from large organs and tissues still remains challenging, especially when the available material is limited. Here, we present a ChIL-based approach for analyzing the diverse cellular dynamics at the tissue level using high-depth epigenomic data. "ChIL for tissues" allows the analysis of a single tissue section and can reproducibly generate epigenomic profiles from several tissue types, based on the distribution of target epigenomic states, tissue morphology, and number of cells. The proposed method enabled the independent evaluation of changes in cell populations and gene activation in cells from regenerating skeletal muscle tissues, using a statistical model of RNA polymerase II distribution on gene loci. Thus, the integrative analyses performed using ChIL can elucidate in vivo cell-type dynamics of tissues.
Collapse
Affiliation(s)
- Kazumitsu Maehara
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kosuke Tomimatsu
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Akihito Harada
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kaori Tanaka
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Shoko Sato
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Megumi Fukuoka
- Division of Cancer BiologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Seiji Okada
- Division of PathophysiologyMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Tetsuya Handa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Noriko Saitoh
- Division of Cancer BiologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Hiroshi Kimura
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
135
|
Collins BC, Kardon G. It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration. Development 2021; 148:dev199861. [PMID: 34739030 PMCID: PMC8602941 DOI: 10.1242/dev.199861] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vertebrate skeletal muscle is composed of multinucleate myofibers that are surrounded by muscle connective tissue. Following injury, muscle is able to robustly regenerate because of tissue-resident muscle stem cells, called satellite cells. In addition, efficient and complete regeneration depends on other cells resident in muscle - including fibro-adipogenic progenitors (FAPs). Increasing evidence from single-cell analyses and genetic and transplantation experiments suggests that satellite cells and FAPs are heterogeneous cell populations. Here, we review our current understanding of the heterogeneity of satellite cells, their myogenic derivatives and FAPs in terms of gene expression, anatomical location, age and timing during the regenerative process - each of which have potentially important functional consequences.
Collapse
Affiliation(s)
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
136
|
Wei X, Nicoletti C, Puri PL. Fibro-Adipogenic Progenitors: Versatile keepers of skeletal muscle homeostasis, beyond the response to myotrauma. Semin Cell Dev Biol 2021; 119:23-31. [PMID: 34332886 PMCID: PMC8552908 DOI: 10.1016/j.semcdb.2021.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
While Fibro-Adipogenic Progenitors (FAPs) have been originally identified as muscle-interstitial mesenchymal cells activated in response to muscle injury and endowed with inducible fibrogenic and adipogenic potential, subsequent studies have expanded their phenotypic and functional repertoire and revealed their contribution to skeletal muscle response to a vast range of perturbations. Here we review the emerging contribution of FAPs to skeletal muscle responses to motor neuron injuries and to systemic physiological (e.g., exercise) or pathological metabolic (e.g., diabetes) perturbations. We also provide an initial blueprint of discrete sub-clusters of FAPs that are activated by specific perturbations and discuss their role in muscle adaptation to these conditions.
Collapse
Affiliation(s)
- X Wei
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - C Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - P L Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
137
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
138
|
Zhou M, Li B, Liu C, Hu M, Tang J, Min J, Cheng J, Hong L. M2 Macrophage-derived exosomal miR-501 contributes to pubococcygeal muscle regeneration. Int Immunopharmacol 2021; 101:108223. [PMID: 34634686 DOI: 10.1016/j.intimp.2021.108223] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
Pubococcygeal muscle injury can lead to stress urinary incontinence (SUI). M2 macrophages play a crucial role in myoblast differentiation during injured muscle regeneration. However, the underlying mechanism remains unclear. Recently, exosomes have attracted increasing attention due to their mediation of cell-to-cell communication. In this study, we found that M2 macrophages extensively infiltrated the pubococcygeal muscle on day 5 after injury (VD5) in vivo. Then, C2C12 myoblasts were treated with M2 macrophage-derived exosomes (M2-EXO) and the results revealed that these exosomes could promote myotube formation. MiR-501 was identified as one of the abundant microRNAs (miRNAs) selectively loaded in M2-EXO, and subsequently confirmed to promote C2C12 myoblast differentiation by targeting YY1. Moreover, in vivo experiments showed that M2-EXO improves the inflammatory cell infiltration and have a therapeutic effect on damaged pubococcygeal muscle in SUI models. Collectively, our present results provide new insights into the promyogenic mechanism of M2 macrophages and prove that M2 macrophage exosomal miR-501 may represent a potential therapeutic to promote recovery from diseases caused by muscle injury, including SUI.
Collapse
Affiliation(s)
- Min Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jianhong Cheng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| |
Collapse
|
139
|
Wright A, Hall A, Daly T, Fontelonga T, Potter S, Schafer C, Lindsley A, Hung C, Bodamer O, Gussoni E. Lysine methyltransferase 2D regulates muscle fiber size and muscle cell differentiation. FASEB J 2021; 35:e21955. [PMID: 34613626 PMCID: PMC8500524 DOI: 10.1096/fj.202100823r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Kabuki syndrome (KS) is a rare genetic disorder caused primarily by mutations in the histone modifier genes KMT2D and KDM6A. The genes have broad temporal and spatial expression in many organs, resulting in complex phenotypes observed in KS patients. Hypotonia is one of the clinical presentations associated with KS, yet detailed examination of skeletal muscle samples from KS patients has not been reported. We studied the consequences of loss of KMT2D function in both mouse and human muscles. In mice, heterozygous loss of Kmt2d resulted in reduced neuromuscular junction (NMJ) perimeter, decreased muscle cell differentiation in vitro and impaired myofiber regeneration in vivo. Muscle samples from KS patients of different ages showed presence of increased fibrotic tissue interspersed between myofiber fascicles, which was not seen in mouse muscles. Importantly, when Kmt2d‐deficient muscle stem cells were transplanted in vivo in a physiologic non‐Kabuki environment, their differentiation potential is restored to levels undistinguishable from control cells. Thus, the epigenetic changes due to loss of function of KMT2D appear reversible through a change in milieu, opening a potential therapeutic avenue.
Collapse
Affiliation(s)
- Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tara Daly
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah Potter
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Caitlin Schafer
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Andrew Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Amgen, Thousand Oaks, California, USA
| | - Christina Hung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
140
|
Bohaud C, Contreras-Lopez R, De La Cruz J, Terraza-Aguirre C, Wei M, Djouad F, Jorgensen C. Pro-regenerative Dialogue Between Macrophages and Mesenchymal Stem/Stromal Cells in Osteoarthritis. Front Cell Dev Biol 2021; 9:718938. [PMID: 34604219 PMCID: PMC8485936 DOI: 10.3389/fcell.2021.718938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA), the most common degenerative and inflammatory joint disorder, is multifaceted. Indeed, OA characteristics include cartilage degradation, osteophytes formation, subchondral bone changes, and synovium inflammation. The difficulty in discovering new efficient treatments for OA patients up to now comes from the adoption of monotherapy approaches targeting either joint tissue repair/catabolism or inflammation to address the diverse components of OA. When satisfactory, these approaches only provide short-term beneficial effects, since they only result in the repair and not the full structural and functional reconstitution of the damaged tissues. In the present review, we will briefly discuss the current therapeutic approaches used to repair the damaged OA cartilage. We will highlight the results obtained with cell-based products in clinical trials and demonstrate how the current strategies result in articular cartilage repair showing restricted early-stage clinical improvements. In order to identify novel therapeutic targets and provide to OA patients long-term clinical benefits, herein, we will review the basis of the regenerative process. We will focus on macrophages and their ambivalent roles in OA development and tissue regeneration, and review the therapeutic strategies to target the macrophage response and favor regeneration in OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, Montpellier, France
| |
Collapse
|
141
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
142
|
Function and regulation of muscle stem cells in skeletal muscle development and regeneration: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
143
|
Khuu S, Fernandez JW, Handsfield GG. A Coupled Mechanobiological Model of Muscle Regeneration In Cerebral Palsy. Front Bioeng Biotechnol 2021; 9:689714. [PMID: 34513808 PMCID: PMC8429491 DOI: 10.3389/fbioe.2021.689714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
Cerebral palsy is a neuromusculoskeletal disorder associated with muscle weakness, altered muscle architecture, and progressive musculoskeletal symptoms that worsen with age. Pathological changes at the level of the whole muscle have been shown; however, it is unclear why this progression of muscle impairment occurs at the cellular level. The process of muscle regeneration is complex, and the interactions between cells in the muscle milieu should be considered in the context of cerebral palsy. In this work, we built a coupled mechanobiological model of muscle damage and regeneration to explore the process of muscle regeneration in typical and cerebral palsy conditions, and whether a reduced number of satellite cells in the cerebral palsy muscle environment could cause the muscle regeneration cycle to lead to progressive degeneration of muscle. The coupled model consisted of a finite element model of a muscle fiber bundle undergoing eccentric contraction, and an agent-based model of muscle regeneration incorporating satellite cells, inflammatory cells, muscle fibers, extracellular matrix, fibroblasts, and secreted cytokines. Our coupled model simulated damage from eccentric contraction followed by 28 days of regeneration within the muscle. We simulated cyclic damage and regeneration for both cerebral palsy and typically developing muscle milieus. Here we show the nonlinear effects of altered satellite cell numbers on muscle regeneration, where muscle repair is relatively insensitive to satellite cell concentration above a threshold, but relatively sensitive below that threshold. With the coupled model, we show that the fiber bundle geometry undergoes atrophy and fibrosis with too few satellite cells and excess extracellular matrix, representative of the progression of cerebral palsy in muscle. This work uses in silico modeling to demonstrate how muscle degeneration in cerebral palsy may arise from the process of cellular regeneration and a reduced number of satellite cells.
Collapse
Affiliation(s)
- Stephanie Khuu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Justin W. Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
144
|
Drosophila, an Integrative Model to Study the Features of Muscle Stem Cells in Development and Regeneration. Cells 2021; 10:cells10082112. [PMID: 34440881 PMCID: PMC8394675 DOI: 10.3390/cells10082112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Muscle stem cells (MuSCs) are essential for muscle growth, maintenance and repair. Over the past decade, experiments in Drosophila have been instrumental in understanding the molecular and cellular mechanisms regulating MuSCs (also known as adult muscle precursors, AMPs) during development. A large number of genetic tools available in fruit flies provides an ideal framework to address new questions which could not be addressed with other model organisms. This review reports the main findings revealed by the study of Drosophila AMPs, with a specific focus on how AMPs are specified and properly positioned, how they acquire their identity and which are the environmental cues controlling their behavior and fate. The review also describes the recent identification of the Drosophila adult MuSCs that have similar characteristics to vertebrates MuSCs. Integration of the different levels of MuSCs analysis in flies is likely to provide new fundamental knowledge in muscle stem cell biology largely applicable to other systems.
Collapse
|
145
|
Characterization of the Skeletal Muscle Secretome Reveals a Role for Extracellular Vesicles and IL1α/IL1β in Restricting Fibro/Adipogenic Progenitor Adipogenesis. Biomolecules 2021; 11:biom11081171. [PMID: 34439837 PMCID: PMC8392554 DOI: 10.3390/biom11081171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022] Open
Abstract
Repeated mechanical stress causes injuries in the adult skeletal muscle that need to be repaired. Although muscle regeneration is a highly efficient process, it fails in some pathological conditions, compromising tissue functionality. This may be caused by aberrant cell-cell communication, resulting in the deposition of fibrotic and adipose infiltrates. Here, we investigate in vivo changes in the profile of skeletal muscle secretome during the regeneration process to suggest new targetable regulatory circuits whose failure may lead to tissue degeneration in pathological conditions. We describe the kinetic variation of expression levels of 76 secreted proteins during the regeneration process. In addition, we profile the gene expression of immune cells, endothelial cells, satellite cells, and fibro-adipogenic progenitors. This analysis allowed us to annotate each cell-type with the cytokines and receptors they have the potential to synthetize, thus making it possible to draw a cell-cell interaction map. We next selected 12 cytokines whose receptors are expressed in FAPs and tested their ability to modulate FAP adipogenesis and proliferation. We observed that IL1α and IL1β potently inhibit FAP adipogenesis, while EGF and BTC notably promote FAP proliferation. In addition, we characterized the cross-talk mediated by extracellular vesicles (EVs). We first monitored the modulation of muscle EV cargo during tissue regeneration. Using a single-vesicle flow cytometry approach, we observed that EVs differentially affect the uptake of RNA and proteins into their lumen. We also investigated the EV capability to interact with SCs and FAPs and to modulate their proliferation and differentiation. We conclude that both cytokines and EVs secreted during muscle regeneration have the potential to modulate adipogenic differentiation of FAPs. The results of our approach provide a system-wide picture of mechanisms that control cell fate during the regeneration process in the muscle niche.
Collapse
|
146
|
The Key Lnc (RNA)s in Cardiac and Skeletal Muscle Development, Regeneration, and Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8080084. [PMID: 34436226 PMCID: PMC8397000 DOI: 10.3390/jcdd8080084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a key role in the regulation of transcriptional and epigenetic activity in mammalian cells. Comprehensive analysis of these ncRNAs has revealed sophisticated gene regulatory mechanisms which finely tune the proper gene output required for cellular homeostasis, proliferation, and differentiation. However, this elaborate circuitry has also made it vulnerable to perturbations that often result in disease. Among the many types of ncRNAs, long non-coding RNAs (lncRNAs) appear to have the most diverse mechanisms of action including competitive binding to miRNA targets, direct binding to mRNA, interactions with transcription factors, and facilitation of epigenetic modifications. Moreover, many lncRNAs display tissue-specific expression patterns suggesting an important regulatory role in organogenesis, yet the molecular mechanisms through which these molecules regulate cardiac and skeletal muscle development remains surprisingly limited. Given the structural and metabolic similarities of cardiac and skeletal muscle, it is likely that several lncRNAs expressed in both of these tissues have conserved functions in establishing the striated muscle phenotype. As many aspects of regeneration recapitulate development, understanding the role lncRNAs play in these processes may provide novel insights to improve regenerative therapeutic interventions in cardiac and skeletal muscle diseases. This review highlights key lncRNAs that function as regulators of development, regeneration, and disease in cardiac and skeletal muscle. Finally, we highlight lncRNAs encoded by imprinted genes in striated muscle and the contributions of these loci on the regulation of gene expression.
Collapse
|
147
|
Cheng X, Shi B, Li J. Distinct Embryonic Origin and Injury Response of Resident Stem Cells in Craniofacial Muscles. Front Physiol 2021; 12:690248. [PMID: 34276411 PMCID: PMC8281086 DOI: 10.3389/fphys.2021.690248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Craniofacial muscles emerge as a developmental novelty during the evolution from invertebrates to vertebrates, facilitating diversified modes of predation, feeding and communication. In contrast to the well-studied limb muscles, knowledge about craniofacial muscle stem cell biology has only recently starts to be gathered. Craniofacial muscles are distinct from their counterparts in other regions in terms of both their embryonic origin and their injury response. Compared with somite-derived limb muscles, pharyngeal arch-derived craniofacial muscles demonstrate delayed myofiber reconstitution and prolonged fibrosis during repair. The regeneration of muscle is orchestrated by a blended source of stem/progenitor cells, including myogenic muscle satellite cells (MuSCs), mesenchymal fibro-adipogenic progenitors (FAPs) and other interstitial progenitors. Limb muscles host MuSCs of the Pax3 lineage, and FAPs from the mesoderm, while craniofacial muscles have MuSCs of the Mesp1 lineage and FAPs from the ectoderm-derived neural crest. Both in vivo and in vitro data revealed distinct patterns of proliferation and differentiation in these craniofacial muscle stem/progenitor cells. Additionally, the proportion of cells of different embryonic origins changes throughout postnatal development in the craniofacial muscles, creating a more dynamic niche environment than in other muscles. In-depth comparative studies of the stem cell biology of craniofacial and limb muscles might inspire the development of novel therapeutics to improve the management of myopathic diseases. Based on the most up-to-date literature, we delineated the pivotal cell populations regulating craniofacial muscle repair and identified clues that might elucidate the distinct embryonic origin and injury response in craniofacial muscle cells.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
148
|
Li JG, Cheng X, Huang YX, Liu YM, Li JT, Shi B. Wnt7a promotes muscle regeneration in branchiomeric orbicularis oris muscle. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:693-704. [PMID: 34239670 PMCID: PMC8255207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The orbicularis oris muscle exhibits a deficiency in cleft lip patients. Compared with the somite-derived limb muscles, the regeneration performance of the branchiomeric orofacial muscle has seldom been investigated. OBJECTIVE This study aims to explore the possibility of augmenting the orbicularis oris muscle through the stimulus of Wnt7a. METHODS Adult rat orbicularis oris muscle and tibialis anterior muscle were injected with recombinant human Wnt7a protein. The muscles were harvested at different time points after Wnt7a delivery. Muscle regeneration-related activity, including cell proliferation, stem cell proportion, myofiber plasticity, and total fiber number, was examined. RESULTS Adult rat orbicularis oris muscle and tibialis anterior muscle exhibit similar regeneration-related activities after Wnt7a administration. Recombinant human Wnt7a administration resulted in enhanced cell proliferation, stem cell expansion, and fiber type remodelling in rat orbicularis oris muscle. In addition, newly formed myofibers were detected, contributing to an increased total fiber number. CONCLUSION Wnt7a induces vigorous regeneration in rat orbicularis oris muscle. This study helps lay a foundation for developing biotherapies to combat orofacial muscle deficiency.
Collapse
Affiliation(s)
- Jing-Gui Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu, PR China
| | - Xu Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu, PR China
| | - Yi-Xuan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu, PR China
| | - Ying-Meng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu, PR China
| | - Jing-Tao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu, PR China
| | - Bing Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu, PR China
| |
Collapse
|
149
|
Camps J, Breuls N, Sifrim A, Giarratana N, Corvelyn M, Danti L, Grosemans H, Vanuytven S, Thiry I, Belicchi M, Meregalli M, Platko K, MacDonald ME, Austin RC, Gijsbers R, Cossu G, Torrente Y, Voet T, Sampaolesi M. Interstitial Cell Remodeling Promotes Aberrant Adipogenesis in Dystrophic Muscles. Cell Rep 2021; 31:107597. [PMID: 32375047 DOI: 10.1016/j.celrep.2020.107597] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/06/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
Fibrosis and fat replacement in skeletal muscle are major complications that lead to a loss of mobility in chronic muscle disorders, such as muscular dystrophy. However, the in vivo properties of adipogenic stem and precursor cells remain unclear, mainly due to the high cell heterogeneity in skeletal muscles. Here, we use single-cell RNA sequencing to decomplexify interstitial cell populations in healthy and dystrophic skeletal muscles. We identify an interstitial CD142-positive cell population in mice and humans that is responsible for the inhibition of adipogenesis through GDF10 secretion. Furthermore, we show that the interstitial cell composition is completely altered in muscular dystrophy, with a near absence of CD142-positive cells. The identification of these adipo-regulatory cells in the skeletal muscle aids our understanding of the aberrant fat deposition in muscular dystrophy, paving the way for treatments that could counteract degeneration in patients with muscular dystrophy.
Collapse
Affiliation(s)
- Jordi Camps
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium; Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Natacha Breuls
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Alejandro Sifrim
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Nefele Giarratana
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Marlies Corvelyn
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Laura Danti
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Hanne Grosemans
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sebastiaan Vanuytven
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Irina Thiry
- Laboratory for Molecular Virology and Gene Therapy, and Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Marzia Belicchi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122 Milan, Italy
| | - Mirella Meregalli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122 Milan, Italy
| | - Khrystyna Platko
- Department of Medicine, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Richard C Austin
- Department of Medicine, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, and Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yvan Torrente
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122 Milan, Italy
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium; Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
150
|
Chennaoui M, Vanneau T, Trignol A, Arnal P, Gomez-Merino D, Baudot C, Perez J, Pochettino S, Eirale C, Chalabi H. How does sleep help recovery from exercise-induced muscle injuries? J Sci Med Sport 2021; 24:982-987. [PMID: 34074604 DOI: 10.1016/j.jsams.2021.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Athletes and military personnel may experience sleep disturbances due to conditions of training and competitions or military missions/field operations. The risk of muscle injuries is greater for them when sleep duration decreases, and training load increases simultaneously, which can be exacerbated by fatigue. Accumulating evidence demonstrates that sleep extension improved performance, pain sensitivity and GH/IGF-I anabolic responses, which may be beneficial in accelerating recovery from muscle injuries. DESIGN & METHODS This narrative review describes the importance of sleep for the recovery/prevention of exercise-induced muscle injuries and provides perspectives on the transferability of currently available scientific evidence to the field. RESULTS The first part presents the role of sleep and its interaction with the circadian system for the regulation of hormonal and immune responses, and provides information on sleep in athletes and soldiers and its relationship to injury risk. The second part is an overview of muscle injuries in sport and presents the different phases of muscle regeneration and repair, i.e. degeneration, inflammation, regeneration, remodeling and maturation. Part three provides information on the deleterious effects of sleep deprivation on muscle tissue and biological responses, and on the benefits of sleep interventions. Sleep extension could potentially help and/or prevent recovery from exercise-induced muscle-injuries through increasing local IGF-I and controlling local inflammation. CONCLUSIONS Although the science of sleep applied to sport is still an emerging field, the current scientific literature shows many potential physiological pathways between sleep and exercise-related muscle injuries. More direct studies are needed to establish clear guidelines for medical personnel and coaches.
Collapse
Affiliation(s)
- Mounir Chennaoui
- French Armed Forces Biomedical Research Institute (IRBA), France; Paris University, VIgilance FAtigue SOMmeil unit (VIFASOM) EA 7330, France.
| | - Théo Vanneau
- French Armed Forces Biomedical Research Institute (IRBA), France; Paris University, VIgilance FAtigue SOMmeil unit (VIFASOM) EA 7330, France
| | - Aurélie Trignol
- French Armed Forces Biomedical Research Institute (IRBA), France; Paris University, VIgilance FAtigue SOMmeil unit (VIFASOM) EA 7330, France
| | | | - Danielle Gomez-Merino
- French Armed Forces Biomedical Research Institute (IRBA), France; Paris University, VIgilance FAtigue SOMmeil unit (VIFASOM) EA 7330, France
| | | | | | | | - Cristiano Eirale
- Paris Saint Germain FC, France; Aspetar Sports and Orthopedics Hospital, Qatar
| | - Hakim Chalabi
- Paris Saint Germain FC, France; Aspetar Sports and Orthopedics Hospital, Qatar.
| |
Collapse
|